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Abstract

One of the challenges of cloud computing is effective resource management due to its auto-scaling feature.
Prediction techniques have been proposed for cloud computing to improve cloud resource management. This
paper proposes an autonomic prediction suite to improve the prediction accuracy of the auto-scaling system in the
cloud computing environment. Towards this end, this paper proposes that the prediction accuracy of the predictive
auto-scaling systems will increase if an appropriate time-series prediction algorithm based on the incoming workload
pattern is selected. To test the proposition, a comprehensive theoretical investigation is provided on different risk
minimization principles and their effects on the accuracy of the time-series prediction techniques in the cloud
environment. In addition, experiments are conducted to empirically validate the theoretical assessment of the
hypothesis. Based on the theoretical and the experimental results, this paper designs a self-adaptive prediction
suite. The proposed suite can automatically choose the most suitable prediction algorithm based on the incoming
workload pattern.

Keywords: Cloud resource provisioning, Auto-scaling, Decision fusion technique, Structural risk minimization,
Empirical risk minimization, Multi-layer perceptron, Multi-layer perceptron with weight decay, Workload pattern,
Cloud computing

Introduction
The elasticity characteristic of cloud computing and the
cloud’s pay-as-you-go pricing model can reduce the
cloud clients’ cost. However, maintaining Service Level
Agreements (SLAs) with the end users obliges the cloud
clients to deal with a cost/performance trade-off [1].
This trade-off can be balanced by finding the minimum
amount of resources the cloud clients need to fulfill their
SLAs obligations. In addition, the cloud clients’ work-
load varies with time; hence, the cost/performance
trade-off needs to be justified in accordance with the
incoming workload. Auto-scaling systems are developed
to automatically balance the cost/performance trade-off.
There are two main classes of auto-scaling systems in

the Infrastructure-as-a-Service (IaaS) layer of the cloud
computing: reactive and predictive. Reactive auto-scaling
systems are the most widely used auto-scaling systems in
the commercial clouds. The reactive systems scale out or
in a cloud service according to its current performance

condition [2]. Although the reactive auto-scaling systems
are easy to understand and use, they suffer from neglect-
ing the virtual machine (VM) boot-up time which is
reported to be between 5 and 15 min [3]. Neglecting the
VM boot-up time results in the under-provisioning condi-
tion which causes SLAs violation. Predictive auto-scaling
systems try to solve this problem by forecasting the cloud
service’s future workload and adjusting the compute and
the storage capacity in advance to meet the future needs.
The predictive auto-scaling systems generate a scaling

decision based on the future forecast of a performance in-
dicator’s value. Therefore, to improve the accuracy of the
predictive auto-scaling systems, researchers have strived
to improve the accuracy of the prediction techniques that
are being used in the auto-scaling systems (see [4] for a
comprehensive overview of the auto-scaling prediction
techniques). According to [4], the most dominant predic-
tion technique in the IaaS layer of the cloud auto-scaling
domain is time-series prediction. Time-series prediction
techniques use the historical values of a performance indi-
cator to forecast its future value. Although in recent years
many innovative time-series prediction techniques have
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been proposed for the auto-scaling systems, the existing
approaches neglect the influence of the performance indi-
cator pattern (i.e., how the performance indicator values
change over time) on the accuracy of the time-series
prediction techniques. This paper proposes an autonomic
prediction suite using the decision fusion technique for
the resource provisioning of the IaaS layer of the cloud
computing environment. The proposed suite identifies the
pattern of the performance indicator and accordingly
selects the most accurate technique to predict the near
future value of the performance indicator for better re-
source management. The central hypothesis in this paper
that serves as the fusion rule of the prediction suite is:

The prediction accuracy of the predictive auto-scaling sys-
tems is impacted positively by using different prediction
algorithms for the different cloud workload patterns
In order to lay out the theoretical groundwork of the
prediction suite, this paper first examines the influence of
the cloud service’s incoming workload patterns on the
mathematical core of the learning process. Previous studies
on the predictive auto-scaling techniques in the IaaS layer
of cloud computing [2, 5, 6] are limited to the experimental
evaluation. To the best of our knowledge, none of the
research efforts in the predictive auto-scaling domain has
investigated the theoretical foundations of the predictive
auto-scaling techniques. Establishing a formal foundation is
essential to obtain a solid and more generic understanding
of various auto-scaling prediction algorithms. Thus, to sup-
port the proposed prediction suite, this paper performs a
formal study of the theories that have been used in the pre-
dictive auto-scaling systems. Further, this paper investigates
the components that theoretically affect the accuracy of the
models. The theoretical investigation provides a formal ana-
lysis and explanation for the behaviors of the time-series
prediction algorithms in the cloud environment with differ-
ent workload patterns. In addition, this paper proposes four
sub-hypotheses in section Theoretical investigation of the
hypothesis.
According to the theoretical discussion, the risk

minimization principle that is used by the time-series
prediction algorithms affects the algorithms’ accuracy
in the environments with the different workload pat-
terns (see Section Theoretical investigation of the hy-
pothesis). Furthermore, to experimentally validate the
formal discussion, this paper examines the influence
of the workload patterns on the accuracy of three
time-series prediction models: the Support Vector
Machine (SVM) algorithm and two variations of the
Artificial Neural Network (ANN) algorithm (i.e.,
Multi-Layer Perceptron (MLP) and Multi-Layer Per-
ceptron with Weight Decay (MPLWD)). The SVM
and the MLPWD algorithms use Structural Risk
Minimization (SRM) principle, but the MLP algorithm

uses Empirical Risk Minimization (ERM) principle to
create the prediction model. Comparing the MLP
with the MLPWD algorithm isolates the influence of
the risk minimization principle on the prediction ac-
curacy of the ANN algorithms. Therefore, comparing
the MLP with the MLPWD shows the impact of the
risk minimization principle on the prediction accur-
acy of the ANN algorithms. In addition, since the
SVM and the MLPWD algorithms use the same risk
minimization approach, comparing the SVM algo-
rithm with the MLPWD algorithm isolates the influ-
ence of the regression model on the prediction
accuracy.
This paper enhances the preciseness of our previous

experimental results in [2] by isolating and studying the
impact of the risk minimization principle on the predic-
tion accuracy of the regression models in regards to the
changing workload patterns. The main contributions of
this paper are:

� Proposing an autonomic prediction suite which
chooses the most suitable prediction algorithm
based on the incoming workload pattern,

� Providing the theoretical foundation for estimating
the accuracy of the time-series prediction algorithms
in regards to the different workload patterns,

� Investigating the impact of the risk minimization
principle on the accuracy of the regression models
for different workload patterns, and

� Evaluating the impact of the input window size on
the performance of the risk minimization principle.

TPC-W web application and Amazon Elastic Compute
Cloud (Amazon EC2) are respectively used as the bench-
mark and the cloud infrastructure in our experiments. It
should be noted that this paper is scoped to the influ-
ence of the workload patterns on the prediction results
at the IaaS layer of the cloud computing. Other IaaS
management aspects (such as the VM migration and the
physical allocation of the VMs) are out of the scope of
this paper.
The remainder of this paper is organized as follows:

Background and related work section discusses the
background and the related work. In Self-adaptive
workload prediction suite section a high level design
for the self-adaptive prediction suite is proposed.
Theoretical investigation of the hypothesis section,
describes the principles of the learning theory and
mathematically investigates the hypothesis. Section Ex-
perimental investigation of the hypotheses presents
the experimental results to support the theoretical
discussion. The conclusion and the possible directions
for the future research are discussed in Conclusions
and future work section.
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Background and related work
In this section, the background concepts that are used in
the paper and the related work are introduced. Sub-
section Workload is an overview of the workload concept
and its patterns. Sub-sections Decision making and Predic-
tion techniques provide an overview of the most dominant
auto-scaling approaches in two broad categories: decision
making and prediction techniques.

Workload
The term workload refers to the number of the end user
requests, together with their arrival timestamp [4]. Work-
load is the consequence of the end users accessing the
cloud service [7]. According to [4, 7, 8], there are five
workload patterns in the cloud computing environments:

� Static workload is characterized by a constant
number of requests per minute. This means that
there is normally no explicit necessity to add or
remove the processing power, the memory or the
bandwidth for the workload changes (Fig. 1).

� Growing workload represents a load that rapidly
increases (Fig. 2).

� Periodic workload represents regular periods (i.e.,
seasonal changes) or regular bursts of the load in a
punctual date (Fig. 3).

� On-and-off workload represents the work to be
processed periodically or occasionally, such as the
batch processing (Fig. 4).

� Unpredictable workloads are generalization of the
periodic workloads as they require elasticity but are
not predictable. This class of workload represents
the constantly fluctuating loads without regular
seasonal changes (Fig. 5).

Resource allocation for the batch applications (i.e., on-
and-off workload pattern) is usually referred to as sched-
uling which involves meeting a certain job execution
deadline [4]. Scheduling is extensively studied in the grid

environments [4] and also explored in the cloud
environments, but it is outside of the scope of this
paper. Similarly, the cloud services with a stable (or
static) workload pattern do not require an auto-scaling
system for resource allocation per se. Therefore, this
paper considers cloud services with the periodic, grow-
ing, and unpredictable workload patterns.

Decision making
The authors in [4] group the existing auto-scaling ap-
proaches into five categories: rule based technique,
reinforcement learning, queuing theory, control theory,
and time-series analysis. Among these categories, the
time-series analysis focuses on the prediction side of the
resource provisioning task and is not a “decision making”
technique per se. In contrast, the rule-based technique is a
pure decision making mechanism while the rest of the
auto-scaling categories play the predicator and the
decision maker roles at the same time.
The rule based technique is the only approach which is

widely used in the commercial auto-scaling systems [9–11].
The popularity of this approach is due to its simplicity and
intuitive nature. The rule based approaches typically have
six parameters: an upper threshold (thrU), a lower thresh-
old (thrL), durU and durL that define how long the condi-
tion must be met to trigger a scaling action, and inL and

Fig. 1 Static workload pattern

Fig. 2 Growing workload pattern

Fig. 3 Periodic workload pattern
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inU which indicate the cool down periods after the
scale out and scale in actions [4]. The performance of
the rule based technique highly dependents on these
parameters. Therefore, finding the appropriate values
for these parameters is a tricky task. A common prob-
lem in the rule based auto-scaling, which occurs due to
an inappropriate threshold value, is the oscillations in
the number of the leased VMs. In fact, the durU and
the durL parameters are introduced to decrease the
number of the scaling actions and reduce the VM oscil-
lations. Some researchers have proposed alternative
techniques to address the VM oscillation problem. For
instance, the work in [12] uses a set of four thresholds
and two durations. Moreover, some research works
(such as [13]) have adopted a combination of the rules
and a voting system to generate the scaling actions.

Prediction techniques
The most dominant prediction technique in the cloud
auto-scaling domain is the time-series analysis [4]. In
order to use the time-series analysis for the cloud auto-
scaling purposes, a performance indicator is periodically
sampled at fixed intervals. The result is a time-series con-
taining a sequence of the last observations of the perform-
ance indicator. The time-series prediction algorithms
extrapolate this sequence to predict the future value.

Some of the time-series prediction algorithms that are
used in the existing cloud resource provisioning systems
are Moving Average, Auto-regression, ARMA, exponen-
tial smoothing, and machine learning approaches [4].
Moving average generally generates poor results for the

time-series analysis [4]. Therefore, it is usually applied
only to remove the noise from the time-series. In contrast,
auto-regression is largely used in the cloud auto-scaling
field. The results in [13] show that the performance of the
auto-regression algorithm depends on the monitoring
interval length, the size of the history window, and the size
of the adaptation window. ARMA is a combination of the
moving average and the auto-regression algorithms. The
authors in [14] use ARMA to predict the future workload.
Machine learning algorithms are used in [3] and [6] to
carry out the prediction task in the cloud resource provi-
sioning problem. The authors in [6] verify the Artificial
Neural Networks (ANN) and the Linear Regression (LR)
algorithms to predict the future value of the CPU load.
The results in [6] conclude the ANN prediction model
surpasses the LR algorithm in terms of prediction accur-
acy in the auto-scaling domain. In addition, the authors in
[3] compare the SVM, the ANN and the LR algorithms
and show the SVM algorithm outperforms the ANN and
the LR algorithms to predict the future CPU utilization,
response time, and throughput of a cloud service. Further-
more, the authors in [15] propose a self-adaptive method
that uses a decision tree to assign the incoming workload
to one of the forecasting methods based on the workload
characteristics. According to the results of [15] the overall
prediction accuracy increases by using different prediction
algorithms for different workloads. However, to the best of
our knowledge, none of the research works in the predict-
ive auto-scaling domain investigates the theoretical foun-
dations of the correlation between the different workload
patterns and the accuracy of the prediction algorithms.
Therefore, this paper performs a formal study of the
theories that are closely related to the regression models
used in the predictive auto-scaling systems and investi-
gates the workload characteristics that affect the accuracy
of the regression models.

Self-adaptive workload prediction suite
This section proposes a high level architectural design of
the self-adaptive workload prediction suite. The self-
adaptive suite uses the decision fusion technique to
increase the prediction accuracy of the cloud auto-scaling
systems. Decision fusion is defined as the process of fusing
information from individual data sources after each data
source has undergone a preliminary classification [16].
The self-adaptive prediction suite aggregates the predic-
tion results of multiple time-series prediction algorithms
to improve the final prediction accuracy. The different
time-series prediction techniques use different risk

Fig. 4 On-and-off workload pattern

Fig. 5 Unpredictable workload pattern
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minimization principles to create the prediction model.
The theoretical analysis shows that the accuracy of a risk
minimization principle depends on the complexity of the
time-series. In addition, since the complexity of a time-
series is defined by its corresponding workload pattern,
the theoretical analysis concludes that the accuracy of a
regression model is a function of the workload pattern
(see Theoretical investigation of the hypothesis section).
Furthermore, Experimental investigation of the hypoth-

eses section experimentally confirms the theoretical conclu-
sion of Theoretical investigation of the hypothesis section.
In the experiment two versions of an ANN algorithm (i.e.,
multi-layer perceptron (MLP) and multi-layer perceptron
with weight decay (MLPWD)) and the Support Vector
Machine (SVM) algorithm are used to predict three groups
of time-series. Each time-series group represents a different
workload pattern. The objective of the experiment is to
investigate the correlation between the accuracy of the risk
minimization principle and the workload pattern.
The ANN algorithms are identical except that MLPWD

uses the structural risk minimization principle and MLP
uses the empirical risk minimization principle to create
the prediction model. Moreover, the SVM algorithm uses
the structural risk minimization principle to create the
prediction model. The experimental results show (see Ex-
perimental investigation of the hypotheses section):

� To predict the future workload in an environment
with the unpredictable workload pattern it is better
to use MLP algorithm with a large sliding window
size.

� To predict the future workload in an environment
with the periodic workload pattern it is better to use
MLPWD algorithm with a small sliding window size.

� To predict the future workload in an environment
with the growing workload pattern it is better to use
SVM algorithm with a small sliding window size.

The self-adaptive prediction suite uses the experimental
results as the fusion rule to aggregate the SVM, the MLP,
and the MLPWD prediction algorithms in order to improve
the prediction accuracy of the cloud auto-scaling systems.
The prediction suite senses the pattern of the incoming
workload and automatically chooses the most accurate
regression model to carry out the workload prediction.
Each workload is represented by a time-series. To identify
the workload pattern, the proposed self-adaptive suite de-
composes the incoming workload to its components by
using Loess package of the R software suite [17]. The Loess
component decomposes a workload to its seasonal, trend,
and remainder components. If the workload has strong sea-
sonal and trend components which repeat at fixed intervals,
then the workload has periodic pattern. If the trend of the
component is constantly increasing or decreasing, then the

workload has growing pattern. Otherwise the workload has
unpredictable pattern.
The self-adaptive suite constantly monitors the charac-

teristics of the incoming workload (i.e., seasonal and trend
components) and replaces the prediction algorithm
according to a change in the incoming workload pattern.
To this end, the autonomic system principles are used to
design the self-adaptive workload prediction suite.
The goal of an autonomic system (Fig. 6 is to make a

computing system self-managed. The field is motivated by
the increasing complexity in the software systems due to
objects change, environmental influence, and ownership
cost of software [18, 19]. The idea is that a self-managed
system (i.e., an autonomic system) must be attentive to its
internal operation and adapt to the behavior change in
order to produce future actions.
A typical autonomic system consists of a context, an auto-

nomic element, and a computing environment [20–22]. In
addition, the autonomic system receives the goals and gives
the feedback to an external environment. An autonomic
element regularly senses the sources of change by using the
sensors. In the prediction suite, the sensor is the change in
the workload pattern (Fig. 7).
In this paper, the autonomic system architecture is

adopted for the cloud auto-scaling system architecture.
The mapping between the two is presented in Fig. 8.
The presented cloud auto-scaling architecture con-

sists of the cloud workload context, the cloud auto
scaling autonomic system, and the cloud computing
scaling decisions. The cloud workload context consists
of two meta-autonomic elements: workload pattern
and cloud auto scaling. In addition, a component for
autonomic manager, knowledge, and goals is added to
the architecture.
The cloud workload usage represents the “real world

usage context” while the scaling decisions represents the
“computing environment” context. It is important to
note that an autonomic system always operates and
executes within a context. The context is defined by the
environment and the runtime behavior of the system.
The purpose of the autonomic manager is to apply the
domain specific knowledge to the cloud workload pat-
terns and the appropriate predictor algorithm (Fig. 9) in
order to facilitate the prediction. The autonomic
manager is constructed around the analyze/decide/act
control loop. Figure illustrates a detailed presentation of
the cloud auto-scaling autonomic element.
The cloud auto-scaling autonomic elements (workload

patterns and predictor) are designed such that the archi-
tecture can be implemented using the strategy design
pattern [23] (Fig. 10). The strategy design pattern consists
of a strategy and a context. In the self-adaptive prediction
suite the prediction model is the strategy and the work-
load pattern is the context. A context passes all data (i.e.,
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the workload pattern) to the strategy. In the prediction
suite, the context passes itself as an argument to the strat-
egy and lets the strategy call the context as required. The
way this works is that the context determines the work-
load pattern and passes its pattern interface to the strat-
egy’s interface. The strategy then uses the interface to
invoke the appropriate algorithm based on the workload
pattern interface. All of these functions are realized at
runtime automatically.
A careful examination of the strategy design pattern

(Fig. 10) shows that the context is in turn designed by
using the template design pattern. The intent of the
template design pattern is to define the skeleton of an
algorithm (or a function) in an operation that defers
some steps to subclasses [23].
In a generic strategy design pattern, the context is simply

an abstract class with no concrete subclasses. We have
modified this by using the template pattern to introduce
the concrete subclasses to represent the different workload
patterns and to implement the workload pattern context as
an autonomic element. This way, the cloud workload pat-
tern is determined automatically and the pattern interface
is passed on to the predictor autonomic element which
then invokes the appropriate prediction algorithm for the
workload pattern. After which the training is carried out
and the testing (i.e., the prediction) using the appropriate
algorithm is done.

Theoretical investigation of the hypothesis
Machine learning can be classified into the supervised
learning, semi-supervised learning, and unsupervised

learning. The supervised learning deduces a functional
relationship from the training data that generalizes well
to the whole dataset. In contrast, the unsupervised
learning has no training dataset and the goal is to
discover the relationships between the samples or reveal
the latent variables behind the observations [5]. The
semi-supervised learning falls between the supervised
and the unsupervised learning by utilizing both of the
labeled and the unlabeled data during the training phase
[24]. Among the three categories of the machine learn-
ing, the supervised learning is the best fit to solve the
prediction problem in the auto-scaling area [5]. There-
fore this paper investigates the theoretical foundation of
the supervised learning.
To accept or reject the hypothesis, we start with

the formal definition of the machine learning and
then explore the risk minimization principle as the
core function of the learning theory. The definitions
in the following sub-sections are taken from [25].

Formal definition of the machine learning process
Vapnik describes the machine learning process through
three components [25]:

1. A generator of random vectors x. The generator
uses a fixed but unknown distribution P(x) to
independently produce the random vectors.

2. A supervisor which is a function that returns an
output vector y for every input vector x, according
to a conditional distribution function P(y|x). The
conditional distribution function is fixed but unknown.

Fig. 6 Autonomic system

Fig. 7 Cloud auto-scaling autonomic system
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3. A learning machine that is capable of implementing
a set of functions f (x,w), w ∈W, where x is a
random input vector, w is a parameter of the
function, and W is a set of abstract parameters that
are used to index the set of functions f (x,w) [25].

The problem of learning is choosing from a given set of
the functions, the one which best approximates the super-
visor’s response. The selection is based on a training set of
l independent observations:

x1; y1ð Þ; …; xl; ylð Þ ð1Þ

The machine learning technique objective is to find
the best available approximation to the supervisor’s
response. To this end the loss L(y, f (x, w)) between the
supervisor response y with respect to a given input x
and the response f (x, w) provided by the learning

machine should be measured. The expected value of
the loss, given by the functional risk is [25]:

R wð Þ ¼
Z

L y; f x;wð Þð ÞdP x; yð Þ ð2Þ

To improve the accuracy, the functional risk R(w) should
be minimized over a class of functions f (x,w), w ∈W. The
problem in minimizing the functional risk is that the joint
probability distribution P(x, y) = P(y|x)P(x) is unknown
and the only available information is contained in the
training set.
In the predictive auto-scaling problem domain, the

Predictor component corresponds to the learning
machine of the learning process. The goal is to find
the most accurate predictor, which is the learning
machine with the minimum functional risk. Compo-
nents of the formal learning process can be mapped

Fig. 8 Mapping classical autonomic system to cloud auto-scaling autonomic system

Fig. 9 Projection of the cloud auto-scaling autonomic element

Nikravesh et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:3 Page 7 of 20



to those of the predictive auto-scaling problem as
follows:

� Supervisor’s response is analogous to the time-series
of workload values which is determined by P (x, y).

� Independent observations are equivalent of the
training dataset and indicate the historical values of
the workload.

� Learning machine maps to the Predictor component.

In the auto-scaling problem domain, P (x, y) refers to
the workload distribution. Suppose that we have a set of
candidate predictor functions f (x,w), w ∈W and we
want to find the most accurate function among them.
Given that only the workload values for the training
duration are known, the functional risk R(w) cannot
be calculated for the candidate predictor functions
f (x, w), w ∈W; hence, the most accurate prediction
function cannot be found.

Empirical risk minimization
To solve the functional risk problem, the functional risk
R(w) can be replaced by the empirical risk [25]:

E wð Þ ¼ 1
l

X
i¼1

l L yi; f xi; wð Þð Þ ð3Þ

The empirical risk minimization (ERM) assumes that
the function f xi; w�

l

� �
, which minimizes E(w) over the

set w ∈W, results in a functional risk R w�
l

� �
which is

close to minimum.
According to the theory of the uniform convergence

of empirical risk to actual risk [26], the convergence rate
bounds are based on the capacity of the set of functions
that are implemented by the learning machine. The
capacity of the learning machine is referred to as VC-
dimension (for Vapnik-Chervonenkis dimension) [27]
that represents the complexity of the learning machine.
Applying the theory of uniform convergence to the

auto-scaling problem domain concludes that the conver-
gence rate bounds in the auto-scaling domain are based
on the complexity (i.e., VC-dimension) of the regression
model that is used in the Predictor component.
According to the theory of the uniform convergence,

for a set of indicator functions with VC-dimension h, the
following inequality holds [25]:

RðwÞ < EðwÞ þ C0
l
h
; η

� �
ð4Þ

With confidence interval [25]:

Fig. 10 Design of autonomic elements (Cloud workload pattern and predictor) using strategy design patter

Fig. 11 Experimental setup
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C0
l
h
; η

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ln 2l

h þ 1
� �

−lnη
l

s
ð5Þ

where l is the size of the training dataset, h is the VC-
dimension of the regression model, e is the Euler’s num-
ber, and (1 − ŋ) is the probability of the validity of Eq. (4)
for all w ∈W.
Equation (4) determines the bound of the regression

model’s error. Based on this equation, the probability of
error of the regression model is less than the frequency
of error in the training set plus the confidential interval.
According to Eq. (4) the ERM principle is good to be
used when the confidence interval is small (i.e., the func-
tional risk is bounded by the empirical risk).

Structural risk minimization
Equations (4) and (5) show the bound of the regression
model’s error and the confidence interval. In Eqs. (4)
and (5), l is the size of training dataset and h is the VC-
dimension or the complexity of the regression model.
According to Eq. (5) when l

h is large, the confidence
interval becomes small and can be neglected. In this
case, the functional risk is bounded by the empirical risk,
which means the probability of error on the testing data-
set is bounded by the probability of error on the training
dataset.
On the other hand, when l

h is small, the confidence
interval cannot be neglected and even E(w) = 0 does not
guarantee a small probability of error. In this case to
minimize the functional risk R(w), both E(w) and C0
l
h ; ŋ
� �

(i.e., the empirical risk and the confidence inter-
val) should be minimized simultaneously. To this end, it
is necessary to control the VC-dimension (i.e., com-
plexity) of the regression model. In other words, when
the training dataset is complex, the learning machine
increases the VC-dimension to shatter1 the training
dataset. By increasing the VC-dimension, the regression
model becomes strongly tailored to the particularities
of the training dataset and does not perform well to
new data (the overfitting situation).
To control the VC-dimension, structural risk minimization

principle (SRM) is used. SRM uses a nested structure of sub-
sets Sp= {f (x,w), w ∈Wp} such that:

S1⊂S2⊂…⊂Sn ð6Þ
The corresponding VC-dimensions of the subsets satisfy:

h1 < h2 < … < hn ð7Þ
Therefor the structural risk minimization (SRM)

principle describes a general model of the capacity (or
complexity) control and provides a trade-off between

the hypothesis space complexity (i.e., the VC-dimension)
and the quality of fitting the training data.

Workload pattern effects on prediction accuracy of
empirical and structural risk minimizations
According to Workload section, there are three work-
load patterns in the cloud computing environment: peri-
odic, growing, and unpredictable. The periodic and the
growing workload patterns follow a repeatable pattern
and their trend and seasonality is predictable. Contrariwise,
the unpredictable workload pattern does not follow a
repeatable trend. Thus, the unpredictable workload
pattern is more complex than the growing and the
periodic patterns, which suggests using a regression
model with a higher VC-dimension to forecast the
unpredictable pattern. From the discussions in sec-
tions Formal definition of the machine learning
process to Summary and Workload, we propose the
following sub-hypotheses in addition to our main hy-
pothesis in the introduction:

� Hypothesis 1a: The structural risk minimization
principle performs better in the environments with
the periodic and growing (i.e., predictable) workload
patterns.

� Hypothesis 1b: The empirical risk minimization
principle performs better in the environments with
the unpredictable workload pattern.

� Hypothesis 1c: Increasing the window sizes does not
have a positive effect on the performance of the
structural risk minimization principle in the cloud
computing environments.

� Hypothesis 1d: Increasing the window size improves
the performance of the empirical risk minimization
principle in the unpredictable environments and has
no positive effect on the performance of the
empirical risk minimization principle in the periodic
and the growing environments.

Making these sub-hypotheses provides a basis for
proving the main hypothesis of this research. To system-
atically prove the sub-hypotheses, this section provides a
theoretical reasoning to explain the empirical and the
structural risk minimization principles behaviors in
regards to the different workload patterns in the cloud
computing environment.
As shown in Empirical risk minimization section, l

h de-
termines whether to use the empirical or the structural
risk minimizations. In this paper we assume the training
dataset size (i.e., , l) is static, therefore for the small
values of h, l

h fraction is large. In this case, the confidence
interval is small and the functional risk is bounded by the
empirical risk.
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In environments with the predictable workload pat-
terns (i.e., periodic or growing) the training and the
testing datasets are not complex. Thus, in such environ-
ments h is small and the empirical and the structural
risk minimizations perform well. However, it is possible
that the empirical risk minimization becomes over fitted
against the training dataset. The reason is that, although
the periodic and the growing workloads follow a repeat-
able pattern, it is highly probable that some of the data
points in the training dataset do not follow the main
pattern of the time-series (i.e., noise data). The noise in
the data increases the complexity of the regression
model. Increasing the complexity (i.e., VC-dimension)
increases the confidence interval as well as the probabil-
ity of error (see Eq. (5)), which reduces the ERM accur-
acy. On the other hand, the SRM principle controls the
complexity by neglecting the noise in the data, which
reduces the confidence interval. Therefore, in the envi-
ronments with the periodic and the growing workload
patterns the SRM approach is expected to outperform
the ERM approach (hypothesis 1a).
The same reasoning applies to the environments with

the unpredictable workload pattern. In the unpredictable
environments there is no distinctive workload trend and
none of the data points should be treated as the noise.
In the unpredictable environments, the ERM approach
increases the VC-dimension to shatter all of the training
data points. However, since the training and the testing
datasets follow the same unpredictable pattern, increas-
ing the VC-dimension helps the prediction model to
predict the fluctuations of the testing dataset, as well.
On the contrary, the SRM approach controls the VC-
dimension to decrease the confidence interval. There-
fore, the SRM approach cannot capture the fluctuating
nature of the unpredictable workload pattern and trains
a less accurate regression model compared to the ERM
approach (hypothesis 1b).
In the machine learning domain, window size refers to

the input size of the prediction algorithm. Increasing the
window size provides more information for the prediction
algorithm and is expected to increase the accuracy of the
prediction model. However, increasing the input size
makes the prediction model more complex. To manage
the complexity, the SRM approach compromises between
the accuracy and the VC-dimension. Therefore, increasing
the window size does not necessarily affect the accuracy of
the SRM prediction model. (Hypothesis 1c).
Furthermore, because the ERM approach cannot con-

trol the complexity of the regression model, increasing
the window size increases the VC-dimension of the pre-
diction model. In the predictable environments (i.e., the
periodic and the growing patterns) the training and the
testing datasets are not complex and the ERM principle
is able to capture the time-series behaviors by using

smaller window sizes. However, increasing the window
size in the predictable environments increases the noise
in the training dataset which causes a bigger confidence
interval, and reduces the accuracy of the prediction
model. On the other hand, due to the fluctuations in
the unpredictable datasets, none of the data points in
the training dataset should be considered as a noise.
Therefore, in the unpredictable environments increas-
ing the window size helps the ERM principle to shatter
more training data. However, since the training and the
testing datasets follow the same unpredictable pattern,
increasing the window size improves the ERM precision
to predict the fluctuations of the testing dataset, as well
(hypothesis 1d).
Experimental investigation of the hypotheses section

experimentally investigates the theoretical discussion of
this section and evaluates the four sub-hypotheses.

Summary
The research in the learning theory provides a rich set of
knowledge in learning the complex relationships and
patterns in the datasets. Vapnik et al. show that the pro-
portion of the training dataset size to the complexity of
the regression model determines whether to use the
empirical or the structural risk minimizations [25]. In
the auto-scaling domain, the Predictor component corre-
sponds to the learning machine of the leaning process.
Therefore, to improve the accuracy of the Predictor
component, the risk minimization principle should be
determined based on the complexity of the prediction
techniques (i.e., the VC-dimension) and the training
dataset size. The workload pattern complexity is the
main driving factor of the Predictor component’s VC-
dimension. Four sub-hypotheses are introduced in order
to experiment the risk minimization principles vis-à-vis
the different workload patterns.

Experimental investigation of the hypotheses
The main goal of the experiment presented in this sec-
tion is to verify the empirical and the structural risk
minimization principles behaviors in the environments
with the periodic, growing, and unpredictable workload
patterns. There are various learning algorithms that
have been used as the predictor for the auto-scaling
purposes (see Prediction techniques section) which use
either the empirical or the structural risk minimiza-
tions. In our previous work (see [2]) the SVM algorithm
which is based on the structural minimization and the
ANN algorithm which uses the empirical minimization
principle were used. Our experimental results in [2]
showed that in the environments with the periodic and
the growing workload patterns the SVM algorithm
outperforms the ANN algorithm, but ANN has a better
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accuracy in forecasting the unpredictable workloads.
These results support the theoretical discussion in
Evaluation metrics section. However, in this paper the
goal is to zero-in on two different implementations of
the ANN algorithm in order to compare the effect of
the structural and the empirical risk minimizations on
the ANN prediction accuracy. Therefore, in this experi-
ment two implementations of the ANN algorithm (i.e.,
MLP and MLPWD) are used to isolate the influence of
the risk minimization principle on the prediction accur-
acy. MLP uses the ERM principle and MLPWD uses
the SRM principle. In addition, since both of the
MLPWD and the SVM algorithms use the SRM
principle, the accuracy of the MLPWD is compared
with the SVM accuracy to isolate the impact of the
regression model structure on the accuracy of the
machine learning algorithms.
Sections Multi-layer perceptron with empirical risk

minimization, Multi-layer perceptron with structural risk
minimization, and Support vector machines briefly ex-
plain MLP, MLPWD, and SVM algorithms, respectively.
Sections Training and testing of MLP and MLPWD,
Evaluation metrics, and Experimental results describe
the experiment and the results.

Multi-layer perceptron with empirical risk minimization
There are different variations of the Artificial Neural
Network (ANN), such as back-propagation, feed-forward,
time delay, and error correction [5]. MLP is a feed-for-
ward ANN that maps the input data to the appropri-
ate output.
A MLP is a network of simple neurons that are called

perceptron. Perceptron computes a single output from
the multiple real valued inputs by forming a linear com-
bination to its input weights and putting the output
through a nonlinear activation function. The mathemat-
ical representation of the MLP output is [25]:

y ¼ φ
X

i¼1

n
wixi þ b

� �
¼ φ WTX þ b

� � ð8Þ

where W denotes the vector of weights, X is the vector
of inputs, b is the bias, and φ is the activation function.
The MLP networks are typically used in the supervised

learning problems. Therefore, there is a training set that
contains an input–output set similar to Eq. (1). The
training of the MLP refers to adapting all the weights
and biases to their optimal values to minimize the
following equation [25]:

E ¼ 1
l

X
i¼1
l T i−Y ið Þ2 ð9Þ

where Ti denotes the predicted value,Yi is the actual value,
and l is the training set size. Equation (9) is a simplified

version of Eq. (3) and represents the empirical risk
minimization.

Multi-layer perceptron with structural risk minimization
The general principle of the structural risk minimization
can be implemented in many different ways. According
to [28] there are four steps to implement the struc-
tural risk minimization (see section Structural risk
minimization), of which the first step is to choose a
class of functions with hierarchy of nested subsets in
ordered of the complexity. Authors of [25] suggest
three examples of the structures that can be used to
build the hierarchy of the neural networks.

� Structure given by the architecture of the neural
network.

� Structure given by the learning procedure
� Structure given by the preprocessing.

The second proposed structure (i.e., given by the
learning procedure) uses “weight decay” to create a
hierarchy of the nested functions. This structure con-
siders a set of the functions S = {f (x, w), w ∈W} that
are implemented by a neural network with a fixed
architecture. The parameters {w} are the weights of
the neural network. Nested structure is introduced
through Sp = {f (x, w), ||w|| ≤ Cp} and C1 < C2 <… < Cn,
where Ci is a constant value that defines the ceiling
of the norm of the neural network weights. For a
convex loss function, the minimization of the empir-
ical risk within the element Sp of the structure is
achieved through the minimization of [29]:

E w; γp
� �

¼ 1
l

Xl

1
L yi; f xi; wð Þð Þ þ γp wj jj j2 ð10Þ

The nested structure can be created by appropriately
choosing Lagrange multipliers γ1 > γ2 >… > γn. According
to Eq. (10), the well-known weight-decay procedure refers
to the structural minimization [25].
Training the neural networks with the weight decay

means that during the training phase, each updated
weight is multiplied by a factor slightly less than 1 to
prevent the weight from growing too large. The risk
minimization equation for the Multi-Layer Perceptron
with Weight Decay (MLPWD) algorithm is [29]:

E ¼ 1
l

X
i¼1
l T i−Y ið Þ2 þ λ

2

X
i¼1
l wi

2 ð11Þ

Authors of [29] have shown that the conventional
weight decay technique can be considered as the simpli-
fied version of the structural risk minimization in the
neural networks. Therefore, in this paper we use MLPWD
algorithm to study the accuracy of the structural risk
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minimization for predicting the different classes of
workload.

Support vector machines
Support Vector Machine (SVM) is used for many machine
learning tasks such as pattern recognition, object classifi-
cation, and regression analysis in the case of the time
series prediction. Support Vector Regression (SVR), is the
methodology by which a function is estimated by using
the observed data. In this paper the SVR and the SVM
terms are used interchangeably.
SVM uses Eqs. (12) and (13) to define the prediction

functions for the linear and the non-linear regression
models, respectively [6]:

f xð Þ ¼ w: xð Þ þ b ð12Þ
f xð Þ ¼ w: φ xð Þð Þ þ b ð13Þ

where, w is a set of weights, b is a threshold, and φ is a
kernel function.
If the time-series is not linear, the regression model

maps the time-series x to a higher dimension feature
space by using kernel function φ(x). Then the prediction
model performs the linear regression in the higher dimen-
sional feature space. The goal of the SVM training is to
find the optimal weights w and the optimal threshold b.
There are two criteria to find the optimal weights and the
optimal threshold. The first criterion is the flatness of the
weights, which can be measured by the Euclidean norm
(i.e., minimize ||w||2). The second criterion is the error
generated by the estimation process of the value, also
known as the empirical risk, which is to be minimized.
The overall goal is to find a regression function f (x,w)
which minimizes the structural risk Rs [6]:

Rs ¼ E þ λ

2
jjwjj2 ð14Þ

where, E is the empirical risk, and ||w||2 represents the
flatness of the weights of the regression function. The
scale factor λ is the regularization constant and is often
referred to as the capacity control factor. The scale factor
λ is useful for reducing the complexity of the regression
model to prevent the overfitting problem.

Experimental setup
In this experiment workload represents the web service
requests arrival rate. Workload is a key performance indi-
cator of a given web service that can be used to calculate
other performance indicators (such as utilization, and
throughput) of that web service. Furthermore, monitoring
workload of a web service is straightforward and can be
carried out by using instrumentation technique. There-
fore, in this experiment workload of the web service is the
target class of the prediction techniques.
The goal of this experiment is to compare the accuracy

of the MLP, the MLPWD, and the SVM algorithms for pre-
dicting the periodic, the growing, and the unpredictable
workload patterns. The required components to conduct
this experiment are: a benchmark to generate the workload
patterns, an infrastructure to deploy the benchmark, and
an implementation of the prediction algorithms. Java imple-
mentation of TPC-W [30] and Amazon EC2 are used as
the benchmark and the infrastructure, respectively. In
addition, the implementation of Multi-Layer Perceptron
and Support Vector Machine algorithms in WEKA tool is
used to carry out the prediction task.
The MLP algorithm in WEKA tool [31] has various

configuration parameters including a parameter to
switch on/off the weight decay feature (i.e., decay param-
eter). Therefore, to use the empirical risk minimization
the default value of the decay parameter (i.e., off ) is
used. Also, to use the structural risk minimization, the
decay parameter is switched on.
The TPC-W benchmark emulates an online book shop

and is implemented on 3-tier architecture. As shown in
Fig. 11, the experimental setup consists of three virtual
machines running on Ubuntu Linux. Table 1 shows the
details of the virtual machines. Note that to decrease the
experiment complexity, the experiment is limited to
monitoring the performance of the web server tier in
and it is assumed that the database is not a bottleneck.
For this reason, a relatively powerful virtual machine is
dedicated to the database tier.

Table 1 Hardware specification of servers for experiment

Memory Processor Storage

Client 1 GB 4 core 8 GB

Web server 1 GB 4 core 8 GB

Database 2 GB 8 core 20 GB

Table 3 SVM configuration

Parameter Name Value

C (complexity parameter) 1.0

kernel RBF Kernel

regOptimizer RegSMOImproved

Table 2 MLP and MLPWD configurations

Parameter Name MLP Value MLPWD

Learning Rate (ρ) 0.3 0.3

Momentum 0.2 0.2

Validation Threshold 20 20

Hidden Layers 1 1

Hidden Neurons (attributes + classes)/2 (attributes + classes)/2

Decay False True
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On the client side, a customized script is used along
with the TPC-W workload generator to produce the
growing, the periodic, and the unpredictable workload
patterns. In this experiment workload represents the
webpage requests arrival rate. Each of the workload pat-
terns is generated for 500 min. To improve accuracy of
the results, the experiment is repeated 10 times for each
workload pattern. On the web-server machine, the total
number of the user requests is stored in the log files
every minute. This results in 10 workload trace files, for
each of the workload patterns. Each of the workload trace
files has 500 data points. We refer to the workload trace
files as the actual workloads in the rest of this paper.

Training and testing of MLP and MLPWD
In our previous work [1] we proved that in the auto-
scaling domain the optimum training duration for the
ANN and the SVM algorithms is 60% of the experiment
duration. Therefore, in this experiment the first 300 data
points (i.e., 60%) of the actual workload trace files are
considered as the training datasets and the rest 200 data
points are dedicated to the test.
Another important factor in the training and the testing

of the time-series prediction algorithms is the dimension-
ality of the datasets (i.e., the number of the features that
exist in the dataset). In this experiment, the actual datasets
have only one feature, which is the number of the requests
that arrive at the cloud service per minute. Therefore, in
order to use the machine learning prediction algorithms
sliding window technique is used. The sliding window

technique uses the last k samples of a given feature to
predict the future value of that feature. For example, to
predict value of bk + 1 the sliding window technique uses
[b1, b2, …, bk] values. Similarly, to predict bk + 2, the sliding
window technique updates the historical window by
adding the actual value of bk + 1 and removing the oldest
value from the window (i.e., the sliding window becomes
[b2, b3, …, bk + 1]). Setting the sliding window size is not a
trivial task. Usually the smaller window sizes do not reflect
the correlation between the data samples thoroughly,
while using the bigger window size increases the chance
of the overfitting. Thus, in this experiment the effect of
the sliding window size on the prediction accuracy of
MLP and MLPWD is studied, as well.
To reduce the probability of the overfitting problem, the

cross-validation technique is used in the training phase.
Readers are encouraged to see [32] for more details about
the cross-validation technique. Table 2 shows the config-
uration of the MLP and the MLPWD algorithms in this
experiment. Configuration of the SVM algorithm is shown
in Table 3.

Evaluation metrics
Accuracy of the experimental results can be evaluated
based on the different metrics such as Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), PRED
(25) and R2 Prediction Accuracy [33]. Among these
metrics, PRED(25) only considers the percentage of the
observations whose prediction accuracy falls within 25%
of the actual value. In addition, R2 Prediction Accuracy

Fig. 13 Sample prediction results (periodic pattern)

Fig. 12 RMSE vs. MAE
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is a measure of the goodness-of-fit, which its value falls
within the range [0, 1] and is commonly applied to the
linear regression models [6]. Due to the limitations of
PRED (25) and R2 Prediction Accuracy, the MAE and
the RMSE metrics are used in this paper. The formal
definitions of these metrics are [33]:

MAE ¼ 1
n

X
i¼1

n YPi−Y ij j ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1

n YPi−Y ið Þ2
n

s
ð16Þ

where YPi is the predicted output and Yi is the actual
output for ith observation, and n is the number of the

observations for which the prediction is made. The
MAE metric is a popular metric in statistics, especially
in the prediction accuracy evaluation. The RMSE repre-
sents the sample standard deviation of the differences
between the predicted values and the observed values. A
smaller MAE and RMSE value indicates a more effective
prediction scheme.
The MAE metric is a linear score which assumes all of

the individual errors are weighted equally. Moreover, the
RMSE is most useful when the large errors are particularly
undesirable [34].
In the auto-scaling domain, a regression model that

generates a greater number of small errors (function f in
Fig. 12) is more desirable than a regression model that
generates a fewer number of the large errors (function g

Table 4 MAE and RMSE values (periodic pattern)

Phase Window
size

Average MAE Average RMSE

MLP MLPWD SVM MLP MLPWD SVM

Training 2 6.88 4.16 4.65 8.55 6.65 7.31

3 6.7 4.12 4.62 8.32 6.32 7

4 6.5 4.11 4.62 8.12 6.12 6.99

5 5.95 4.05 4.52 8 6.44 6.8

6 5.78 4.02 4.52 7.56 6.12 6.7

7 5.68 3.88 4.32 7.5 6.2 6.7

8 5.68 3.95 4.3 7.12 6.21 6.6

9 5.51 4.02 4.3 6.9 6.18 6.8

10 4.98 4 4.31 6.52 6.18 6.7

Testing 2 6.2 6 6 8.31 8 8.1

3 6.3 5.9 6 8.31 7.9 7.98

4 6.3 5.8 6.1 8.34 7.9 8.05

5 6.99 5.9 6.2 8.62 7.8 8.15

6 7.15 5.7 6.1 8.77 7.4 8

7 7.25 5.72 6 9.12 7 7.71

8 7.98 5.75 6 9.15 7 7.65

9 8.56 5.66 5.8 10.36 7.1 7.5

10 9.2 5.58 5.7 11.89 6.9 7.6

Table 5 MAE and RMSE values (growing pattern)

Phase Window
size

MAE RMSE

MLP MLPWD SVM MLP MLPWD SVM

Training 2 2.5 2.1 1.7 3.9 4.02 3.8

3 2.8 2.3 1.75 3.9 3.82 3.7

4 2.7 2.3 1.8 4.1 3.87 3.6

5 2.7 2.5 1.8 3.98 3.89 3.7

6 2.6 2.4 1.8 3.88 3.71 3.6

7 2.7 2.4 1.81 3.84 3.81 3.6

8 2.66 2.33 1.78 3.78 3.62 3.5

9 2.8 2.22 1.78 3.95 3.7 3.3

10 2.57 2.25 1.78 4 3.7 3.4

Testing 2 3.77 3 2.5 4.4 4 3.7

3 3.85 3.6 2.5 4.91 4.21 3.7

4 3.55 3.5 2.6 4.92 4.5 3.65

5 3.64 3.41 2.4 4.71 4.22 3.6

6 3.89 3.42 2.3 4.52 4.31 3.7

7 3.84 3.31 2.2 5.11 4 3.7

8 3.95 3.02 2.2 5.52 3.99 3.4

9 4.12 3 2.2 5.98 3.95 3.5

10 4.1 2.8 2.2 6.02 3.9 3.7

Fig. 14 Sample prediction results (growing pattern)
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in Fig. 12). The reason is because the rule-based decision
makers issue the scale actions based on the prediction
values and to generate a correct scale action, the predic-
tion should be close enough to the actual value. In other
words, the rule-based decision makers are not sensitive
to the small errors in the prediction results. Therefore,
the smaller errors in the prediction results are negligible.
Our previous work [1] investigates the sensitivity of the
rule-based decision makers to the prediction results. As
a result, in the cloud auto-scaling domain, the RMSE
factor is more important than the MAE factor. However,
considering both metrics (i.e., MAE and RMSE) provides
a comprehensive analysis of the accuracy of the predic-
tion models. The greater is the difference between

RMSE and MAE the greater is the variance in the indi-
vidual errors in the sample.

Experimental results
The experiment has three iterations and each of the
iterations evaluates the accuracy of the SVM, the MLP
and the MLPWD algorithms for predicting one of the
workload patterns. For each workload pattern, the
prediction models are trained and tested based on 10
workload trace files and their accuracy is measured by
MAE and RMSE metrics. The overall accuracy of each
prediction model is represented by its average MAE and
RMSE metric values. Figures 12 ,13 and 14 show the
average MLPWD, MLP, and SVM prediction results in
the test phase (window size = 3 min) for the periodic,
growing, and unpredicted workload patterns, respectively.
Tables 4, 5 and 6 present the training and the testing

accuracy of the MLWPD, MLP, and SVM for predicting
the periodic, the growing and the unpredictable work-
loads, respectively. The results are also plotted in
Figs. 16, 17, 18, 19, 20, 21. Note that the MAE and
RMSE values in Tables 4, 5 and 6 are the average of the
MAE and RMSE results over 10 repetitions of the
experiment for each of the prediction algorithms. The
following subsections analyze the experimental results in
regard to the four sub-hypotheses that are introduced in
Section Workload pattern effects on prediction accuracy
of empirical and structural risk minimizations.

Hypothesis 1.a: the SRM principle performs better in the
environments with the predictable workload patterns
In the environments with the predictable workloads,
the training and the testing datasets are not complex.
Therefore, both of the ERM and SRM principles are
accurate. For instance, in the environments with the
periodic workload pattern (Fig. 15), the MAE and the
RMSE values of the MLP and the MLPWD algo-
rithms for window size = 2 are very close (see Table 4).
Because the SRM neglects the noise data its accuracy
is slightly better than the ERM. However, by increas-
ing the window size the noise in the training data

Table 6 MAE and RMSE values (unpredictable pattern)

Phase Window
size

MAE RMSE

MLP MLPWD SVM MLP MLPWD SVM

Training 2 1.4 1.74 1.81 2.6 2.9 3.15

3 1.42 1.73 1.73 2.61 2.88 3.2

4 1.43 1.72 1.78 2.59 2.87 3.31

5 1.4 1.73 1.75 2.55 2.89 3.15

6 1.35 1.69 1.73 2.4 2.91 3.19

7 1.46 1.66 1.72 2.48 2.98 3.2

8 1.44 1.65 1.74 2.31 2.74 3.2

9 1.48 1.66 1.66 2.2 2.65 3.16

10 1.44 1.65 1.68 2.15 2.74 3.17

Testing 2 2.6 2.82 3.12 3.01 3.41 3.31

3 2.5 2.8 3.1 3 3.4 3.64

4 2.34 2.77 2.9 3 3.38 3.7

5 2.21 2.76 2.88 2.98 3.41 371

6 1.98 2.44 2.89 2.9 3.42 3.78

7 1.65 2.4 2.85 2.8 3.21 3.88

8 1.42 2.1 2.91 2.7 3.2 3.9

9 0.98 2.11 2.92 2.4 3.11 4.1

10 0.98 2.1 2.9 2.2 2.8 4.18

Fig. 15 Sample prediction results (unpredictable pattern)
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increases which reduces the accuracy of MLP, but be-
cause the MLPWD neglects the noise it’s accuracy
doesn’t affect much.
Table 4, Figs. 16 and 17 show the prediction results

for the periodic workload pattern. According to the
results, the MLPWD algorithm outperforms the SVM
and the MLP algorithms in the environments with
the periodic workload pattern. The only difference be-
tween the MLPWD and the MLP algorithms is the risk
minimization approach. Therefore, the results show that
for the periodic workload pattern it is better to use the
SRM principle.
Furthermore, the prediction results for the growing

workload pattern are shown in Table 5, Figs. 18 and 19.
The results show the SVM algorithm has better accuracy
compared with MLPWD and MLP in the environments
with the growing workload pattern. However, similar to
the results of the periodic pattern, the MLPWD algorithm
outperforms the MLP algorithm for predicting the grow-
ing workloads. This indicates that the SRM principle is
more suitable compared to the ERM principle for predict-
ing the growing workloads.
Based on the results, the SRM principle is more accurate

than the ERM principle for forecasting the predictable

workload patterns (i.e., the periodic and the growing
workloads).

Hypothesis 1.b: the ERM principle performs better in the
environments with the unpredictable workload patterns
According to Table 6, Figs. 20 and 21, the MLP algorithm
has a better prediction accuracy compared with the SVM
and the MLPWD algorithms in the environments with the
unpredictable workload pattern. The MLP algorithm uses
the ERM principle and tries to cover all of the training data.
On the other hand, the MLPWD and the SVM algorithms
use SRM principle and try to reduce the complexity by
finding a smooth curve to cover the training data. Since the
unpredictable data has a fluctuating nature, the SRM
principle assumes some of the training data points are noise
and removes them from the training dataset. As the result,
in the environments with many fluctuations, the MLPWD
and the SVM algorithms assume that the spikes are noise
in the data. Therefore, the MLPWD and the SVM algo-
rithms do not capture the spikes in the dataset. The result
is that in the environments with the unpredictable work-
load pattern the MLP algorithm outperforms the MLPWD
and the SVM algorithms. This confirms hypothesis 1.b.

Fig. 16 MAE and RMSE values in the training phase (periodic pattern)

Fig. 17 MAE and RMSE values in the testing phase (periodic pattern)
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Hypothesis 1.c: increasing the window sizes does not have
a positive effect on the performance of the SRM principle
According to Tables 4 and 5 in the periodic and the grow-
ing environments increasing the window size does not
affect the accuracies of the MLPWD and the SVM algo-
rithms. The reason is because the SRM principle controls
the prediction model’s complexity by neglecting some of
the training data points. As a result, increasing the window
size neither increase nor decreases the accuracy of the pre-
diction models.
By increasing the window size in the unpredictable envi-

ronments the MLPWD accuracy slightly improves while
the SVM accuracy slightly reduces (Table 6). However, the
changes in the accuracies of the MLPWD and SVM in the
unpredictable environments are negligible. Therefore, it
can be concluded that for all of the workload patterns,
increasing the window size has no substantial effect on
the prediction accuracy of the SRM principle.

Hypothesis 1.d: Increasing the window size improves the
performance of the ERM principle in the unpredictable
environments and has no positive effect of the performance
the ERM principle in the predictable environments.
Based on Fig. 16, for the smaller window sizes in the peri-
odic environment the MLP accuracy is close to the

MLPWD and the SVM accuracies. However, by increasing
the window size, the MLP accuracy decreases. Similar to
the results of the periodic pattern, in the environments
with the growing workload pattern, the MLP prediction
accuracy has a decreasing trend but does not change too
much by increasing the window size. This is because in-
creasing the window size of the MLP algorithm leads to
the overfitting issue which decreases the MLP accuracy.
As shown in Fig. 16, during the training phase the MLP ac-
curacy increases by increasing the window size. This shows
the MLP algorithm becomes over fitted to the training
dataset by increasing the window size. The results confirm
that in the environments with the periodic workload pat-
tern, increasing the sliding window size has no positive
effect on the prediction accuracies of the ERM principle.
Unlike the growing and the periodic patterns, increasing

the window size has a positive effect on the prediction ac-
curacy of the MLP algorithm in the environment with the
unpredictable workload pattern. The reason is that in the
unpredictable environments there are many fluctuations in
the data; therefore, the ERM prediction models cannot ex-
tract the relationships between the features thoroughly.
Thus, increasing the window size increases the input size of
the algorithms, which improves the ERM’s prediction
accuracies.

Fig. 19 MAE and RMSE values in the testing phase (growing pattern)

Fig. 18 MAE and RMSE values in the training phase (growing pattern)
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Experimental results conclusion
The results of the experiments support the theoretical
conclusion presented in Section Workload pattern effects
on prediction accuracy of empirical and structural risk
minimizations, which suggests the use of the SRM
principle in the environments with the growing and the
periodic workload patterns. In addition, the experimental
results show that increasing the window size does not
improve the SRM accuracy. On the other hand, for the
environments with the unpredictable workload pattern, it
is better to use the ERM principle with the bigger window
sizes. According to the experimental results, Section Self-
adaptive workload prediction suite proposes an autonomic
prediction suite which chooses the most accurate predic-
tion algorithm based on the incoming workload pattern.

Conclusions and future work
This paper proposed a self-adaptive prediction suite
with an aim to improve the accuracy of predictive
auto-scaling systems for the IaaS layer of cloud com-
puting. The prediction suite uses the decision fusion
technique and facilitates the selection of the most
accurate prediction algorithm and the window size
with respect to the incoming workload pattern. The
proposed architecture used the strategy and the template

design patterns which guarantees the automatic runtime
selection of the appropriate prediction algorithm as well
as detection of a suitable workload pattern and an appro-
priate window size. To lay out the theoretical foundation
of the prediction suite, this paper proposed and evaluated
a main hypothesis and four sub-hypotheses on the accur-
acy of several time-series prediction models in the IaaS
layer of cloud computing. According to the main hypoth-
esis, the prediction accuracy of the predictive auto-scaling
systems can be increased by choosing an appropriate
time-series prediction algorithm based on the incoming
workload pattern.
To the best of our knowledge, the theoretical founda-

tion of the predictive auto-scaling systems has not been
investigated in the existing research works. Therefore,
this paper performs a formal study of the theories that
are closely related to the accuracy of predictive auto-
scaling systems. To evaluate the main hypothesis, we
have proposed four sub-hypotheses concerning the influ-
ence of the risk minimization principle on the prediction
accuracy of the regression models in the environments
with different workload patterns. To test these sub-
hypotheses, the theoretical fundamentals of the predic-
tion algorithms were investigated through analyzing the
learning theory and the risk minimization principles.

Fig. 21 MAE and RMSE values in the training phase (unpredictable pattern)

Fig. 20 MAE and RMSE values in the testing phase (unpredictable pattern)
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Based on the formal analysis, the structural risk
minimization outperforms the empirical risk minimization
for predicting the periodic and the growing workload pat-
terns, but the empirical risk minimization is a better fit for
forecasting the unpredictable workload pattern. Further-
more, experiments were conducted to validate the theor-
etical discussion. In the experiments, the influence of the
risk minimization principle on the accuracy of the MLP
and the MLPWD algorithms for predicting different work-
load patterns was examined. Moreover, the experiments
compared the accuracy of the MLPWD and the SVM to
isolate the impact of the regression model’s structure on
the prediction accuracy. The experimental results support
the theoretical discussion. Also, the results show that in-
creasing the sliding window size only has positive impact
on the accuracy of the MLP algorithm in the environ-
ments with the unpredictable workload pattern. However,
in other environments (i.e., growing or periodic workload
patterns), increasing the window size does not improve
the prediction accuracies of the MLP, MLPWD, and the
SVM algorithms. The theoretical analysis and the experi-
mental results demonstrated that using an appropriate
prediction algorithm based on the workload pattern in-
creases the prediction accuracy of the auto-scaling sys-
tems. Thus, based on the theoretical and experimental
results in this paper, we can accept the main hypothesis
that is, the prediction accuracy of time-series techniques is
positively impacted by using different prediction algorithms
for the different cloud workload patterns.
In the current work we assume that the database tier

has no negative impact on the auto-scaling prediction
accuracy. Investigating the impact of the database tier
on the prediction accuracy warrants further research. In
addition, we aim to investigate the relationship between
the database tier auto-scaling and the workload patterns
and the sliding window sizes. Finally, the autonomic ele-
ments in Fig. 10 will be re-designed to include more time
series algorithms and possibly more work load patterns.

Endnotes
1Shattering definition: Model f with some parameter

vector θ shatters a set of data points (x1, x2,…, xn) if for
all assignments of labels to the data points there exists a
θ such that the model f makes no error evaluating that
set of data points.
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