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Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information
on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently
challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investi-
gate aspects of energy metabolism in four free-ranging shark species (n = 281; blacktip, bull, nurse, and tiger) by measuring
three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy
sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season,
year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger
sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and
CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species,
there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species display-
ing a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an
important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future.
In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling
designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

Key words: Cholesterol, fatty acid, metabolite, nutrition, shark, triglyceride

Editor: Steven Cooke

Received 22 November 2016; Revised 28 December 2016; Editorial Decision 2 January 2017; Accepted 5 January 2017

Cite as: Gallagher AJ, Skubel RA, Pethybridge HR, Hammerschlag N (2017) Energy metabolism in mobile, wild-sampled sharks inferred by
plasma lipids. Conserv Physiol 5(1): cox002; doi:10.1093/conphys/cox002.

Introduction
Nutrition and energy metabolism in wild animals are both con-
ceptualized and measured by a variety of methods, ranging
from techniques that span behavioural approaches, morpho-
logical and developmental measurements and ecological

interactions (Raubenheimer et al., 2009). The metabolic build-
ing blocks and pathways that animals use to obtain, transfer,
store and use energy over time are fundamentally linked to their
productivity and survival. Moreover, the demand for energy
constrains the behaviour of animals (Speakman, 1997), which is
fundamental to life-history variation and thus intrinsically
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connected to natural selection (Elliott et al., 2014). Yet, in
the purest sense, nutrition and metabolism link individuals
to the function of communities and structure of entire popu-
lations (Raubenheimer et al., 2009).

Lipids, including fatty acids and sterols, are a diverse
group of metabolites (small molecule intermediates and pro-
ducts of metabolism) that play a critical role in almost all
aspects of biological life. Lipids are under tight homeostatic
control, but their composition, interaction and levels in
organismal tissues are dynamic, which reflects long-term and
health-related responses to changes in diet or other environ-
mental variations (Orešič, 2009). In teleost and elasmo-
branch fishes, lipid-derived measurements have been used as
metrics of nutritional condition, tissue damage and recent
feeding events and to elucidate life histories (Norton et al.,
2001; Wagner and Congleton, 2004; Yan et al., 2012). Three
lipid classes play crucial roles in energy transport and are
commonly used to study metabolism: triglycerides (TAG),
free fatty acids (FFA) and total cholesterol (CHOL; Han,
2016; Orešič, 2009). Triglycerides (three fatty acids esterified
to glycerol) are a main source of metabolic energy in many
organisms and are thought to respond relatively quickly to
changes in feeding. Free fatty acids (also known as non-
esterified fatty acids) are also metabolic fuels; they are con-
sidered dynamic and the most metabolically active of the lipids.
CHOL is an unsaturated alcohol of the steroid family and is
essential for cell membrane production and a precursor for
steroid hormones and further lipid transport. In most organ-
isms, plasma transports these exogenous (dietary-derived) or
endogenous (liver-produced) lipids towards different tissues,
where they are stored or oxidized (Babin and Vernier, 1989).
Strategies of lipid metabolism, including absorption and
depositional processes, appear different between the different
animal classes, reflecting distinct evolutionary paths (Speers-
Roesch et al., 2006; Mazurie et al., 2010).

Sharks are a diverse group of marine predatory fishes.
Many of the larger species undergo extensive migrations
linked to foraging and reproduction (Hammerschlag et al.,
2011; Domeier and Nasby-Lucas, 2013; Hussey et al., 2015;
Graham et al., 2016), and are slow-growing, exhibiting long
gestation periods that produce relatively few, highly devel-
oped offspring (Lucifora et al., 2002). Many species of
sharks are threatened and experiencing population declines
attributable to overfishing and habitat loss (e.g. Ferretti
et al., 2010; Gallagher et al., 2012). Therefore, there is sig-
nificant interest in enhancing an understanding of key
physiological states that may help to inform the conservation
and management of threatened populations (Simpfendorfer
et al., 2011). However, measurements and temporal profiles
of metabolites for most species of shark are not available.

Compared with teleost fish, the energy metabolism of sharks
is considered unusual, being characterized by limited extrahe-
patic fatty acid oxidation capacity (Zammit and Newsholme,
1979; Ballantyne, 1997; Speers-Roesch and Treberg, 2010),

albumin activation and utilization of lipoprotein, which bind
to FFA (Metcalf and Gemmell, 2005). Experimental studies
investigating the response of shark plasma lipids to diet have
shown mixed results; dogfish (Squalus spp.) plasma lipids
were shown not to be responsive to feeding to the same
degree as in teleosts (Wood et al., 2010). After 150 days of
starvation, dogfish FFA concentrations decreased, whereas
ketone concentrations increased, suggesting their importance
as fuel during food shortages (Zammit and Newsholme,
1979). The fatty acid profiles in the plasma of Port Jackson
sharks (Heterodontus portjacksonii) have been shown to
reflect short-term dietary changes (Beckmann et al., 2013a, b),
which conforms to work showing that plasma lipids in other
classes of organisms (birds, mammals and teleosts) vary pro-
portionally to dietary composition (e.g. Grundy and Denke,
1990; Tocher, 2003; Käkelä et al., 2009). There is a clear
opportunity to explore the overall usefulness of evaluating
plasma lipid metabolites and dynamics in sharks, including an
understanding of the extent of within- and between-species
variation and how this may relate to different behavioural,
genetic and environmental factors. Although undertaking
experimental studies would be optimal, they are often not pos-
sible on large, mobile shark species of high conservation con-
cern, demanding non-lethal ways of acquiring such information
(Hammerschlag and Sulikowski, 2011).

Here, we present an exploratory and comparative study
of three metabolite parameters (using non-lethal blood
biopsy) in adult specimens of four species of free-ranging
sharks from the subtropical Atlantic Ocean. As energetic
requirements are driven by both intrinsic (biological) and
extrinsic (environmental) factors, we also evaluate the signifi-
cance of location, date, season, shark length and sex on the
variability in measured metabolite levels. Specifically, we
used these data to address the following questions. (i) What
are the concentrations of plasma TAG, FFA and CHOL in
the species assessed and how do they differ among indivi-
duals and between species? (2) How are these metabolic
parameters related to one another? (3) Do concentrations of
plasma TAG, FFA and CHOL differ greatly over time? We
discuss our findings as they may relate to metabolic path-
ways and various biological traits (diet, habitat quality and
life-history strategies) of marine predators.

Materials and methods
Sampling sites, species and capture
This study was conducted in four locations along a subtrop-
ical latitudinal gradient off Florida: off Miami and Soldier
Key, Biscayne Bay, FL, USA (25.61°N, 80.17°W); the reef
edge in the mid-Florida Keys National Marine Park in US
federal waters (24.69°N, 80.85°W); inside Florida state
waters within Everglades National Park (~25.0°N, 81.0°W);
and off the west end of Grand Bahama Island, Bahamas
(~26.6°N, 79.1°W). Sampling was conducted throughout
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the wet and dry seasons from 2011 to 2015, and tissue
sampling efforts focused on the following four species of
sharks: blacktip sharks (Carcharhinus limbatus), bull sharks
(Carcharhinus leucas), nurse sharks (Ginglyostoma cirratum)
and tiger sharks (Galeocerdo cuvier). All sharks were cap-
tured using circle-hook drumlines, a passive fishing technique
(as described by Gallagher et al., 2014b). Each fishing unit
consisted of a submerged weight base tied to a line running to
the surface by means of an attached, inflatable buoy float. A
23m monofilament gangion line (~400 kg test) was attached
to the submerged weight by a swivel, which terminated at a
baited 16/0, 5° offset circle hook. This method permitted any
captured sharks to swim in a 23m radius circle around the
base. After 1 h, each drumline was sequentially checked for
shark presence. Captured sharks were slowly brought to the
boat and restrained on a partly submerged dive platform.
Once landed, a water pump moving fresh seawater was
inserted into the shark’s mouth to facilitate respiration. This
capture and handling method is used to promote shark vitality
and minimize stress levels during sampling (Gallagher et al.,
2014a). For each individual captured, sex was recorded and
stretched total length (TL) was measured to the nearest centi-
metre over a straight line along the axis of the body.

Haematological collection and metabolite
analyses
Whole blood (~10ml) was collected from the caudal vein
using cooled 18 gauge needles and 10ml syringes.
Approximately 7 ml of the mixed whole blood samples was
then centrifuged at 1300g for 5 min to separate plasma.
Samples were frozen on board, then transferred to a −20°C
freezer on shore, where they were stored for future analyses.
We ran three separate nutritional metabolic assays on the
resulting plasma samples: triglycerides (in millimoles per litre;
EnzyChrom Triglyceride Assay Kit, BioAssay Systems;
Haywood, CA, USA), free fatty acids (in millimoles per litre;
EnzyChrom Free Fatty Acid Assay Kit; BioAssay Systems) and
total CHOL (in millimoles per litre; EnzyChromTM AF
Cholesterol Assay Kit; BioAssay Systems), on a 96-well micro-
plate absorbance reader at 570 nm (Tecan Sunrise, Tecan,
Grödig, Austria); concentrations were determined using the
appropriate standard curves. Although we performed each
analysis for the majority of individuals in the present study,
for certain individuals we did not run all metabolite analyses
owing to blood plasma availability and collection anomalies
(e.g. low volume). The ratio of TAG and CHOL was calcu-
lated as a potential index of nutritional condition (Amara and
Galois, 2004; Giraldo et al., 2013; Sardenne et al., 2016) on
the basis that in fishes TAG concentrations, indicative of
energy reserves, are often positively correlated with body size,
whereas CHOL concentrations are relatively stable over time.

Statistical analyses
All data were logarithmically transformed to meet parametric
assumptions. We compared mean values in all metabolites

among species by using analysis of variance (ANOVA). To
identify potential relationships among variability between
metabolites and biological and environmental predictor vari-
ables, we first conducted principal component analysis (PCA)
on the ranked metabolite and TL values, capture site and
year, species and season (wet = June–September, dry =
October–May). This analysis included only blacktip, bull and
nurse sharks because we had only TAG values for tiger
sharks (thus they were excluded from the PCA). A general-
ized linear model (GLM) was constructed to explore rela-
tionships between each metabolite and shark species, sex,
animal TL, year, month and capture location (Biscayne
Bay, outer reef, Everglades National Park or the Bahamas).
Spearman correlations were used to evaluate patterns of
metabolites, both within species and among all species com-
bined. Statistical significance was declared at P < 0.05, and
all analyses were conducted in MATLAB (Mathworks, Inc.)
and R (R Core Team).

Results
From May 2011 to May 2015 we captured, sampled and
released a total of 281 sharks composed of 61 blacktip sharks,
45 bull sharks, 82 nurse sharks and 93 tiger sharks (Table 1).

The largest species in our study was the tiger shark
(293.0 ± 64.3 cm TL; Table 1), followed by the bull shark
(217.5 ± 36.5 cm), blacktip shark (150.5 ± 20.8 cm) and
nurse shark (223.2 ± 34.9 cm). The ranges of the sizes
sampled here suggested that the majority of individuals cap-
tured were either adults or sub-adults; we did not encounter
individual sizes indicative of early juveniles, young-of-year or
neonates for any species (Table 1).

For all shark species combined, metabolite values ranged
as follows (in millimoles per litre): TAG, 0.0031–8.79,
1.45 ± 1.60; FFA, 0.0031–2.48, 0.53 ± 0.53; and CHOL,
0.18–4.42, 1.30 ± 0.60. We detected a wide range of
species-specific differences in metabolite values (Table 1 and
Fig. 1). Nurse and blacktip sharks had the highest TAG
values (1.66 ± 1.65 and 1.59 ± 1.89mmol l−1, respectively;
Table 1) followed by bull sharks (0.83 ± 0.40mmol l−1), with
tiger sharks having the lowest values (0.30 ± 0.40mmol l−1;
Table 1 and Fig. 1a). Blacktip sharks had the highest FFA
concentrations (0.80 ± 0.59mmol l−1), followed by bull and
then nurse sharks (0.67 ± 0.45 and 0.13 ± 0.19mmol l−1,
respectively; Table 1 and Fig. 1b). Likewise, bull and blacktip
sharks had the greatest CHOL values (1.54 ± 0.83 and
1.39 ± 0.34mmol l−1, respectively; Table 1 and Fig. 1c) and
nurse sharks the lowest (0.99 ± 0.39mmol l−1). These differ-
ences were species specific (ANOVA; TAG, F4,253 = 47.65,
P < 0.0001; FFA, F3,119 = 45.97, P < 0.0001; and CHOL,
F3,113 = 13.59, P < 0.0001; Table 2). Ratios of TAG/CHOL,
used as an additional nutritional proxy, were of a similar
range for nurse and blacktip sharks (2.01 ± 3.17 and
1.62 ± 1.63, respectively), which were higher than those
found in bull sharks (0.67 ± 0.44).
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Principal components analysis yielded two distinct princi-
pal components (PCs), which collectively explained 65.8%
of variability in the data set (Table 3). In the PC1, the predic-
tors which explained most of the data variance were season,
species, TL and year of capture (Table 3), whereas TL, year
and species had similarly dominant eigenvectors in the PC2

(Table 3). Metabolite values were less influential on the data
set’s variability than the explanatory factors included.

Species effects were significant in the GLMs for all of the
three metabolites (P < 0.0001; Table 4). Shark TL was the only
other significant variable in the model for CHOL, whereas year
and month of capture were also significant in the model for
TAG (Table 4). Given the impact of TL on variability in the
data set as illustrated by PCA (Table 4), we normalized metab-
olite values by TL before running pairwise comparisons. Each
of the metabolites showed significant positive relationships with
one another for all shark species combined, explaining between
~20 and 50% of the variability (Fig. 2).

Intra-annual variability in some of the metabolites was
detected in all species (Figs 3 and 4). In blacktip sharks,
relative levels of TAG peaked in April and November
(Fig. 3a), while FFA and CHOL remained relatively constant
throughout the year (Fig. 4a and b). In nurse sharks, TAG was
highest in February–April (Fig. 3a), while FFA and CHOL
were highly variable throughout the year (Fig. 4a and b). In
bull sharks, relative levels of TAG peaked in March (Fig. 3a),
CHOL peaked in April–May (Fig. 4a), and FFA declined in
June–August (Fig. 4a). Temporal trends in TAG/CHOL ratios
followed that of TAG in all species (Fig. 3b).

Discussion
Our investigation into plasma lipid dynamics in four free-
ranging shark species provided baseline data on their natural
variability in three metabolic parameters (TAG, FFA and
CHOL) and insights into how these lipid metabolites may be
used in studies monitoring shark nutritional health status
over space and time. In our study, biological attributes (spe-
cies and body size) and environmental features (season and
year) had the greatest influence on variability in the plasma
lipid spectra. The importance of these factors to our data set
highlights the relationship between animal physiology and
life history (Ricklefs and Wikelski, 2002), and the complex
and unusual dynamics of lipid metabolism in sharks (Valls
et al., 2016).

Plasma TAG, FFA and CHOL were positively related
across species, highlighting a common organization of lipid
metabolism among these taxa, as expected (Speers-Roesch

Table 1: Mean total length, triglycerides, free fatty acids and cholesterol concentrations of all sampled sharks from the present study

Total length (cm) Triglycerides (mmol l−l) Free fatty acids (mmol l−l) Cholesterol (mmol l−l)

Species Mean SD n Mean SD n Mean SD n Mean SD n

Blacktip 150.5 20.8 61 1.59 1.89 61 0.80 0.59 46 1.39 0.34 41

Bull 217.5 36.5 45 0.83 0.40 39 0.67 0.45 33 1.54 0.83 36

Nurse 223.2 34.9 82 1.66 1.65 80 0.13 0.19 42 0.99 0.39 38

Tiger 295.2 63.0 75 0.30 0.40 75 – – – – – –

Figure 1: Triglyceride (TAG), free fatty acid (FFA) and cholesterol
(CHOL) concentrations (in millimoles per litre) of nurse, bull, blacktip
and tiger sharks over the study period from May 2011 to May 2015.

Table 2: P-values of an analysis of variance comparing means among
all species using logarithmically transformed metabolite values

Triglycerides Free fatty acids Cholesterol

Nurse vs. bull 0.14 9.71E−10 3.50E−05

Nurse vs. blacktip 1.00 9.56E−10 6.04E−05

Blacktip vs. bull 0.21 0.94 0.96

Tiger vs. nurse 3.77E−09 – –

Tiger vs. bull 4.08E−09 – –

Tiger vs. blacktip 3.77E−09 – –

Bold denotes statistical significance (P < 0.05).
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and Treberg, 2010). However, a wide range of values among
the three plasma metabolites were detected, and species
effects loaded strongly in both components of our PCA,

which may be related to the different ecologies, physiologies
and behaviours of these sharks. Highly active sharks, such as
blacktip and bull sharks, revealed higher concentrations of
plasma FFA, whereas they were low in nurse sharks, a spe-
cies known to be relatively sedentary, with low metabolic
rates (Carrier and Pratt, 1998; Whitney et al., 2016). During
non-migratory periods, blacktip and bull sharks have been
shown to exhibit relatively restricted home ranges and high
site fidelity to coastal areas (Papastamatiou et al., 2010;
Hammerschlag et al., 2012; Graham et al., 2016). Sharks
that occupy this ecological niche may meet their energetic
requirements within their relatively small home ranges
(Papastamatiou et al., 2009). These inter-species differences
may also be explained by the fact that the larger sharks (bull
and tiger), which were found in our study to have low FFA,
have a lower mass-specific metabolic rate than that of smal-
ler sharks and probably do not require as much energy to
fuel movement (Carlson et al., 2004). Free fatty acids typic-
ally function as a transport form of lipids from storage
depots to other tissues (i.e. muscle), meaning that highly
mobile predators may have a large demand for FFA. In tele-
osts, FFA are considered the most metabolically active lipid
fraction; however, FFA oxidation in sharks is considered to
be more limited (Zammit and Newsholme, 1979; Ballantyne,
1997; Speers-Roesch and Treberg, 2010), with only recent
work suggesting that FFA in shark plasma does reflect an
exogenous pathway (i.e. recent feeding; Beckmann et al.,
2013a, b). As such, we cannot pinpoint the specific pathway
leading to FFA detection in the plasma of the study sharks.
Our plasma FFA results are among the highest yet to be
reported for an elasmobranch (Ballantyne et al., 1993;
Speers-Roesch and Treberg, 2010), but are much lower than
that typically reported in teleosts (e.g. seabass Dicentrarchus
labrax, 2.22 ± 0.32mmol l−1 and seabream Chrysophyrys
auratus, 2.79 ± 0.62mmol l−1; McClelland et al., 1995),
which is in agreement with earlier work showing that teleosts
have 10-fold higher concentrations of plasma FFA than
sharks (Zammit and Newsholme, 1979).

Table 3: Principal eigenvectors from principal components analysis
of metabolite values and explanatory variables for nurse, bull and
blacktip sharks

PC1 PC2

Species −0.46 −0.45

Sex 0.32 −0.22

Length −0.44 0.60

Season 0.53 −0.23

Year −0.43 −0.57

Site −0.11 0.04

Triglycerides −0.0095 0.10

Free fatty Acids 0.077 0.042

Cholesterol 0.051 −0.0042

Table 4: P-values of a generalized linear model for logarithmically
transformed metabolite values

Triglycerides Free fatty acids Cholesterol

Species 2.18E−04 1.91E−09 7.93E−07

Location 0.066 0.47 0.48

Year 0.048 0.62 0.38

Month 0.016 0.22 0.56

Length 0.52 0.57 7.87E−04

Sex 0.57 0.79 0.20

Location refers to shark capture location (Biscayne Bay, Everglades, Florida Keys
or the Bahamas). Bold denotes statistical significance (P < 0.05).

Figure 2: Relationships of logarithmically transformed metabolites triglycerides, free fatty acids and cholesterol for nurse, bull and blacktip sharks.
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Nurse sharks, which are relatively sedentary animals with
a low metabolic rate and high cost of movement (Whitney
et al., 2016), showed significantly higher concentrations of
plasma TAG than other species assessed. It is thus possible
that the mobilization of TAG may be more important for
low-cost movements in sharks. The two study species (tiger

and bull shark) that usually have the most generalist diet
within the group of species investigated (Cortés, 1999) had
the lowest TAG. High concentrations of TAG are found in
the livers of many species of shark (Lipshaw et al., 1972;
Pethybridge et al., 2011; Beckmann et al., 2013a, b), and
TAG is typically bound to lipoproteins when circulating in

Figure 3: Inter-annual variability of the ratio of triglyceride to cholesterol (TAG/CHOL; a) and triglyceride (TAG; in millimoles per litre) on its
own (b) for nurse, bull and blacktip sharks over the study period. Months are denoted on the x-axis.

Figure 4: Inter-annual variability of free fatty acids (FFA, in millimoles per litre; a) and cholesterol (CHOL, in millimoles per litre; b) for nurse,
bull and blacktip sharks over the study period. Months are denoted on the x-axis.
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the blood (Mills et al., 1977). It is possible that the low TAG
concentrations found here could be attributed to the con-
sumption of a broad diet of both high- and low-quality nutri-
tional items. Plasma TAG concentrations have been linked to
body condition, as Gallagher et al. (2014a) found a signifi-
cant relationship between plasma TAG and body condition
in tiger sharks, with girthier animals (relative to length) hav-
ing higher energy stores. Yet, other work has starved smaller
sharks and not found a link between TAG and condition
(Zammit and Newsholme, 1979). The high variability in
TAG may also reflect recent feeding activity, different physio-
logical states (maturation, fasting, resting, temperature, etc.)
or even genetic variability. Additional research is needed to
investigate these potential mechanisms further.

Sharks are considered to have a low capacity for the trans-
port of CHOL (Larsson et al., 1976; Larsson and Fange,
1977). Thus, the detection of cholesterol in the plasma could
be used as an indicator of tissue catabolism, although it is
clearly also found in the diet. The highest CHOL values in our
study were evident in bull sharks, and our values are similar
to those reported in blue sharks (Prionace glauca) and mako
sharks (Isurus oxyrinchus; Stillwell and Kohler, 1982). In our
study, CHOL was significantly affected by shark size
(Table 4), indicating that as sharks (particularly the bull
shark) increase in size they may have greater access (i.e. gape
and experience) to larger, more profitable prey, such as turtles
and marine mammals (both groups inhabit our sampling loca-
tions; Hart and Fujisaki, 2010; Litz et al., 2012). We did not
measure CHOL concentrations in any prey species, however,
and future work should seek to compare lipid profiles of prey
items with those measured in predators. There were large dif-
ferences in the ratios of TAG/CHOL observed between
sharks, suggesting that bull sharks have a lower nutritional
condition than both blacktip and nurse sharks that shared
similar value ranges. Although we cannot pinpoint the reason
for this result, it may be related to foraging strategies, physio-
logical differences or other biotic factors that we did not meas-
ure (i.e. reproduction). We do not know whether our
standardized capture methods affected the metabolite values
in sharks (although they were likely to affect them in a similar
manner); however, our fishing technique included short fish-
ing times (<1 h) and allowed the sharks to swim in circles
when hooked, thus permitting respiration (Gallagher et al.,
2014b).

The finding that each of the metabolites was significantly
correlated with one another (Table 5 and Fig. 2) may indicate
that our physiological parameters can be used to trace differ-
ences or trade-offs in food availability and activity in sharks
over space and time. This concept is supported by the observed
significant effects of year and month in TAG results and tem-
poral variability in all metabolites (Figs 3 and 4). Plasma TAG
concentrations and TAG/CHOL ratios were found to be rela-
tively constant during the year but peaked in February–April
for blacktip, bull and nurse sharks (Fig. 3). This temporal shift
in TAG may correspond to greater ecosystem productivity and

a pulse in food availability during this period (Lirman et al.,
2008), as the concentrations appeared to drop off during the
warmer summer months. The agreement between intra-annual
patterns in TAG concentrations and TAG/CHOL suggests that
TAG is an important metabolite for the condition of sharks
over time. Relatively constant concentrations of FFA and
CHOL (as documented here; Fig. 4), interspersed with peaks at
discrete times throughout the year (e.g. bull sharks; Fig. 4b)
may be linked to balanced energy metabolism interspersed with
sporadic feeding pulses/episodes used to support movements
requiring large amounts of energy. Seasonal variations in plas-
ma CHOL concentrations in species of fish have been linked to
spawning (Larsson and Fange, 1977). Constant concentrations
of FFA and changing TAG may suggest a concurrent utilization
of endogenous and exogenous energy sources where metabolic
costs are balanced, and future work should expand on these
temporal patterns. Clearly, more sampling is needed in the sum-
mer months (Table 6), especially as shark occurrence is gener-
ally lower in our sampling regions during this time (our
unpublished data). However, the bi-modal patterns detected
in the metabolite values for some species here provide an im-
portant link between behaviour (residency, movements) and
physiology (energy) that could be especially valuable for under-
standing the mechanisms of decision-making in sharks.

Conclusions
We investigated aspects of the nutrition and energy metabolism
of multiple large, mobile shark species that co-occur over space
and time using non-lethal biopsy sampling. As many of the
specific dynamics of lipid metabolism and mobilization are still
not well understood in large sharks, we affirm that this study is
a needed preliminary step to understanding these parameters
in the blood of free-ranging sharks, and these parameters could
be candidate markers for understanding energy and nutrition
in wild sharks. The range of values between and among species
for each of the metabolites investigated here suggests that pos-
sible ecological (dietary), biological (shark size, metabolic rate,
reproductive state) and environmental factors (time of year,
season) may be important in explaining nutritional and ener-
getic variation. However, we must be transparent that these
inferences are in areas speculative and require further valid-
ation across species and time scales. The inter-species variation
in metabolites documented here provides insight, but the

Table 5: Spearman correlation coefficients of relationships for length-
normalized metabolites and the slope of the relationship

Slope r P-value

TAG vs. FFA 0.21 0.27 0.036

TAG vs. CHOL 0.36 0.23 0.017

FFA vs. CHOL 1.30 0.52 4.70E−09

Abbreviations: CHOL, cholesterol; FFA, free fatty acid; and TAG, triglyceride.
Bold denotes statistical significance (P < 0.05).
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underlying mechanisms that explain this diversity need explor-
ing. We realize that we touched upon only a small subset of
what a species’ ‘nutritional ecology’ entails, and the integration
of additional nutritional parameters with behavioural and
reproductive information may be particularly informative for
future studies. Additionally, inclusion of other metabolites (i.e.
ketone bodies; Valls et al., 2016) will help to improve our
understanding of the dynamics and relative importance and/or
contribution of these parameters to the nutritional ecology of
shark species. Such information can ultimately improve our
understanding of the mechanistic basis of animal movement,
decision-making and even the health of entire habitats and
prey sources, therefore helping us better link nutrition and
health to the conservation physiology of sharks.
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