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Abstract. In this paper, we present a novel semidefinite programming
approach for multiple-instance learning. We first formulate the multiple-
instance learning as a combinatorial maximum margin optimization prob-
lem with additional instance selection constraints within the framework
of support vector machines. Although solving this primal problem re-
quires non-convex programming, we nevertheless can then derive an
equivalent dual formulation that can be relaxed into a novel convex
semidefinite programming (SDP). The relaxed SDP has O(T ) free pa-
rameters where T is the number of instances, and can be solved using
a standard interior-point method. Empirical study shows promising per-
formance of the proposed SDP in comparison with the support vector
machine approaches with heuristic optimization procedures.

1 Introduction

Multiple-instance learning was introduced by Dietterich et al. [1] to solve a gen-
eralized supervised classification problem where the data set is composed of
many bags such that each of them contains many instances and the class labels
are associated with the bags, instead of individual instances. A bag is labeled
as a positive bag if it contains at least one positive instance; otherwise it is la-
beled as a negative bag. Different from the standard supervised learning where
all training instances are with known labels, the labels for individual instances
in a positive bag is unknown in a multiple-instance learning problem, which
makes the multiple-instance learning a much more challenging problem than the
standard supervised classification.

Multiple-instance learning problems arise naturally from many application
domains. One prominent example is the problem of drug activity prediction [1],
where each molecule has a bag of different conformations, and the molecule
qualified to make a drug has at least one conformation that could tightly bind
to the target protein molecules. A second application is in content-based image
retrieval or classification [2–4], where each image can be viewed as a bag of local
subimages and one image is relevant with respect to one particular category if
it has at least one relevant subimage. Another application is the problem of text
categorization [5], where each document contains multiple passages over different
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topics and a document is considered relevant regarding to one particular topic
when it has one or more passages on this topic.

Motivated by these application challenges, multiple-instance learning has be-
come one active research area in machine learning. A number of multiple-instance
learning approaches have been developed in the literature, including special pur-
pose algorithms using axis-parallel rectangular hypothesis [1], diverse density [3,
6], kernel methods [7], support vector machines [5, 8], ensemble methods [9],
boosting methods [10], non-i.i.d. style methods [11] and etc.

In this paper, we propose to extend one popular classification method, max-
imum margin classification, to address the multiple-instance learning problem.
Two maximum margin multiple-instance learning methods, mi-SVM and MI-
SVM, based on support vector machines have been proposed in [5], mi-SVM
for instance-level classification and MI-SVM for bag-level classification. The mi-
SVM explicitly treats the instance labels in positive bags as unobserved hidden
variables subject to constraints defined by their bag labels. In comparison, the
MI-SVM aims to maximize the bag margin, which is defined as the margin of the
most positive instance in case of positive bags, or the margin of the least negative
instance in case of negative bags. However, due to the combinatorial nature of
the formulated maximum margin problems, iterative heuristic procedures were
used to conduct optimization in [5], which naturally suffer from the problem
of local optima. Here we propose to formulate the multiple-instance learning as
a combinatorial optimization problem of maximizing the classification margin
with additional instance selection constraints. Like the mi-SVM, our approach
can be categorized as an instance-level method. However, instead of figuring out
the labels for all instances in positive bags, our approach selects only positive
instances to use and ignore the negative ones in positive bags. The primal max-
imum margin formulation we developed is still non-convex, but we nevertheless
can derive its equivalent dual formulation which can be relaxed into a convex
semidefinite programming (SDP) problem by exploiting the Schur complement
lemma. The relaxed SDP has O(T ) free parameters where T is the number of
instances, and can be solved using a standard interior-point method. Our empiri-
cal study shows promising performance of the proposed SDP in comparison with
the support vector machine approaches with heuristic optimization procedures.

The remainder of this paper is organized as follows. After establishing the
preliminaries and notations in Section 2, we present our maximum margin for-
mulation for multiple-instance learning in Section 3. In Section 4, we derive an
equivalent dual formulation and show it can be finally relaxed to yield a convex
semidefinite programming problem which allows a global solution to be com-
puted. Experimental results are reported in Section 5. We finally conclude the
paper in Section 6.

2 Preliminaries

Since our approach is based on support vector machines (SVMs), we will first
establish the background knowledge of SVMs as well as establish the notation



we will use. Assume we are given labeled training instances (xi, yi), · · · , (xT , yT ),
where each instance is assigned to one of two classes yi ∈ {−1, +1}. The goal
of a SVM is to find the linear discriminant function fw,b(x) = w>φ(x) + b that
achieves maximum margin (separation) between the two classes in φ(x) space.
Note here φ(x) denotes the general feature vector produced from the original
feature vector x, and it is introduced to cope with nonlinear classification. The
standard primal soft margin SVM is formulated as follow

min
w,b,ξ,

1

2
‖w‖2 + Cξ>e (1)

s.t. yi(w
>φ(xi) + b) ≥ 1 − ξi, ∀

T
i=1

ξ ≥ 0

where slack variables ξ are introduced to cope with noisy instances and the non-
separability of the training data; C is a parameter that controls the tradeoff
between the separation margin and the misclassification error; b is a parameter
to control the bias; and e denotes the vector of all 1 entries. For the simplicity
reason, we will use the same e notation to denote any vectors with all 1 entries
later in the paper. The length of the e vector for each of its appearance can
be determined from the context. By introducing Lagrangian multipliers and
following the standard procedure, an equivalent dual formulation for SVM in (1)
can be obtained

max
α

α>e−
1

2
α>(K ◦ yyT )α (2)

s.t. 0 ≤ α ≤ C, α>y = 0

where α denotes the vector of dual variables; K denotes the T ×T kernel matrix
formed from the inner products of feature vectors Φ = [φ(x1), · · · , φ(xT )] such
that K = Φ>Φ; y denotes the label vector, such that y = [y1, · · · , yT ]>; A ◦ B
denotes componentwise matrix multiplication.

In the following section, we will extend the standard SVM to address the
problem of multiple-instance learning.

3 Max-Margin Multiple-Instance Learning

Different from the standard supervised learning scenario where a label is assigned
to each training instance, in multiple-instance learning, a label is assigned to a
bag of instances. A bag is labeled as a positive bag if it contains at least one posi-
tive instance; otherwise it is labeled as a negative bag, which means all instances
in negative bags are negative instances. Thus the difficulty for extending any
standard supervised learning methods to address the multiple-instance learning
problem lies in that the labels for instances in positive bags are unknown. More-
over, different from the standard semi-supervised learning scenario, we need to
guarantee that at least one instance from each positive bag gets a positive label.



The mi-SVM proposed in [5] views the instance labels in positive bags as hid-
den variables, and maximizes a soft margin criterion jointly over discriminant
model parameters and possible label assignments while taking an extra checking
step to enforce that at least one instance gets a positive label for each positive
bag. However, there are usually a lot of ambiguities with regard to the label
assignments over the hidden variables. On the other hand, we can obtain many
confirmed negative instances from negative bags. Based on these observations,
we propose to select only a set of positive instances from positive bags to use
together with the negative instances from negative bags for multiple-instance
learning. Our intuition is to incorporate only the most useful information into
the model learning process while avoiding the unnecessary ambiguities. Specifi-
cally, we propose to formulate the multiple-instance learning as a combinatorial
optimization problem that maximizes a soft SVM margin criterion jointly over
both the model parameters and the instance selection variables. The instance
selection variables are used to choose the most informative positive instances
from the positive bags such that when the selected positive instances are incor-
porated into the proposed maximum margin model, the soft margin criterion can
be maximumly optimized. Below we will present this joint optimization model in
detail. Moreover, we will show later that this optimization model with instance
selection variables can lead to a simple SDP formulation.

Assume we are given a multiple-instance training set with N bags of instances
{B1, · · · ,BN}, where the first Np bags are positive bags, following by Nn nega-
tive bags such that Np+Nn = N . Assume each bag Bi contains ti instances such

that
∑Np

i ti = Tp,
∑N

i=Np+1
ti = Tn and Tp + Tn = T . Our maximum margin

multiple-instance learning can be formulated as follows

min
η

min
w,b,ξ

1

2
‖w‖2 + Cξ>[η; e] (3)

s.t. yi(w
>φ(xi) + b) ≥ 1 − ξi, ∀ T

i=1

ξ ≥ 0

η ∈ {0, 1}Tp×1

Aη ≥ e

where η denotes the vector of instance selection binary variables; yi = 1 for
i = 1, · · · , Tp and yi = −1 for i = 1 + Tp, · · · , T ; A is a Np × Tp binary matrix
such that

A =











ones(1, t1), zeros(1, t2), · · · , zeros(1, tNp
)

zeros(1, t1), ones(1, t2), · · · , zeros(1, tNp
)

...
...

...
...

zeros(1, t1), zeros(1, t2), · · · , ones(1, tNp
)











and all the other notations are same as introduced before. Note that the con-
straint Aη ≥ e is used to guarantee that at least one positive instance from each
positive bag will be selected. Given fixed η, the optimization problem (3) will



become a standard SVM optimization problem over a training set formed by the
negative instances from negative bags and the positive instances selected using
η from positive bags.

The minimization problem (3) we formulated is a NP-hard combinatorial
optimization problem. In order to obtain an efficient convex optimization, we
first need to derive its dual formulation.

Proposition 1. For fixed η, the inner minimization problem in (3), that is

min
w,b,ξ

1

2
‖w‖2 + Cξ

>[η; e] (4)

s.t. yi(w
>φ(xi) + b) ≥ 1 − ξi, ∀ T

i=1

ξ ≥ 0

is equivalent to the following dual maximization problem

max
α

α>e−
1

2
α>(K ◦ yyT )α (5)

s.t. 0 ≤ α ≤ C[η; e]

α>y = 0

Proof. The proof is simple. Note the minimization problem in (4) is a slightly
modified version of the standard SVM optimization in (1). The only difference
lies in that the ξ in the objective function of (4) is weighted by a vector [η; e].
Thus following the standard procedure for deriving a dual formulation of SVMs,
an equivalent dual formulation (5) can be obtained.

Exploiting Proposition 1, the minimization problem (3) can be rewritten into
the following equivalent min-max optimization problem by simply replacing the
inner minimization of (3) with its equivalent dual formulation (5)

min
η

max
α

α>e −
1

2
α>(K ◦ yyT )α (6)

s.t. 0 ≤ α ≤ C[η; e]

α>y = 0

η ∈ {0, 1}Tp×1

Aη ≥ e

Although the dual optimization problem in (6) does not provide a convex
solution immediately, it provides a foundation for further reformulation.

4 Semidefinite Programming

In this section, we will reformulate the min-max optimization problem (6) ob-
tained in the previous section to finally get a convex semidefinite programming
problem which can provide a global solution without local optima.



Theorem 1. The combinatorial min-max optimization problem in (6) is equiv-
alent to the following minimization problem

min
η,µ,λ,ε,δ

δ (7)

s.t.

(

K ◦ yy> (e + µ − λ + εy)

(e + µ − λ + εy)> 2δ − 2Cλ>[η; e]

)

� 0

µ ≥ 0

λ ≥ 0

η ∈ {0, 1}Tp×1

Aη ≥ e

Proof. The min-max optimization problem (6) can be equivalently rewritten as

min
η

δ (8)

s.t. δ ≥ max
α

α>e−
1

2
α>(K ◦ yyT )α

0 ≤ α ≤ C[η; e]

α>y = 0

η ∈ {0, 1}Tp×1

Aη ≥ e

Below we will express the constraint δ ≥ maxα α>e − 1

2
α>(K ◦ yyT )α as a

linear matrix inequality for given η.
First define the Lagrangian of the maximization problem (5) by

L(α, µ, λ, ε, δ) = α>e−
1

2
α>(K ◦ yyT )α + µ>α + λ>(C[η; e] − α) + εα>y

where µ ≥ 0, λ ≥ 0 and ε ∈ IR. By duality [12], we have

max
α

min
µ,λ,ε,δ

L(α, µ, λ, ε, δ) = min
µ,λ,ε,δ

max
α

L(α, µ, λ, ε, δ).

Then the inner maximization over α, maxα L(α, µ, λ, ε, δ), can be easily solved
by determining a critical point, since L(α, µ, λ, ε, δ) is concave in α. By setting
∂L/∂α = 0, we obtain α = (K ◦yy>)−1(e+ µ−λ + εy). Substituting this into
L(α, µ, λ, ε, δ), we can form the following dual problem of (5)

min
µ,λ,ε,δ

Cλ>[η; e] +
1

2
(e + µ − λ + εy)>(K ◦ yy>)−1(e + µ − λ + εy) (9)

s.t. µ ≥ 0

λ ≥ 0

This implies that for any δ, the constraint δ ≥ maxα α>e − 1

2
α>(K ◦ yyT )α

holds if and only if there exist µ ≥ 0, λ ≥ 0 and ε such that

δ ≥ Cλ>[η; e] +
1

2
(e + µ − λ + εy)>(K ◦ yy>)−1(e + µ − λ + εy)



or equivalently using the Schur complement lemma [12] such that

(

K ◦ yy> (e + µ − λ + εy)

(e + µ − λ + εy)> 2δ − 2Cλ
>[η; e]

)

� 0 (10)

Substituting this into (8) yields (7).

However, the minimization problem (7) is still not convex for two reasons.
First, there is a bilinear term λ

>[η; e] in the matrix inequality constraint (10),
which makes the constraint non-convex. Second, the existence of binary con-
straints over variables η makes the overall optimization problem a combinatorial
optimization. We thus need to solve these two issues to obtain an efficient convex
optimization problem.

For the problem of bilinear term, we notice that λ>[η; e] = λ>

1:Tp
η+λ>

Tp+1:Te,

and 2λ>

1:Tp
η = (λ1:Tp

+ η)>(λ1:Tp
+ η) − λ>

1:Tp
λ1:Tp

− η>η. Note that since η

is a vector of binary variables, thus η>η = η>e. Now we introduce two new
variables g and h such that g = (λ1:Tp

+η)>(λ1:Tp
+η) and h = λ>

1:Tp
λ1:Tp

. For
simplicity reason, we also let u denote the constant vector [0; e], where 0 is a
vector of all 0 entries, such that λ>u = λ>[0; e] = λ>

Tp+1:Te. Therefore

2λ>[η; e] = g − h − η>e + 2λ>u.

Substituting this back to the matrix inequality constraint in (7), we obtain an
equivalent optimization problem

min
η,µ,λ,ε,δ,g,h

δ (11)

s.t.

(

K ◦ yy> (e + µ − λ + εy)

(e + µ − λ + εy)> 2δ − C(g − h − η>e + 2λ>u)

)

� 0

g = (λ1:Tp
+ η)>(λ1:Tp

+ η)

h = λ>

1:Tp
λ1:Tp

µ ≥ 0

λ ≥ 0

η ∈ {0, 1}Tp×1

Aη ≥ e

Now we have successfully got rid of the bilinear term from the matrix inequal-
ity constraint. However, two new quadratic equality constraints have been in-
troduced. In order to obtain a convex optimization, we need to relax the two
quadratic equality constraints into inequality constraints

g − (λ1:Tp
+ η)>(λ1:Tp

+ η) ≥ 0

h − λ>

1:Tp
λ1:Tp

≥ 0

Using quadratic inequality constraints to replace corresponding equality con-
straints is a typical relaxation technique used in the literature, e.g. [13], towards



obtaining convex semidefinite approximations. Here the inequality constraints
above can then be rewritten equivalently into convex linear matrix inequality
constraints according to the Schur complement lemma [12]

(

I (λ1:Tp
+ η)

(λ1:Tp
+ η)> g

)

� 0 (12)

(

I λ1:Tp

λ>

1:Tp
h

)

� 0 (13)

Finally replacing the two equality quadratic constraints in (11) with the relaxed
constraints (12) and (13) and relaxing the integer constraints over η into con-
tinuous constraints 0 ≤ η ≤ 1, we obtain a relaxed optimization problem

min
η,µ,λ,ε,δ,g,h

δ (14)

s.t.

(

K ◦ yy> (e + µ − λ + εy)

(e + µ − λ + εy)> 2δ − C(g − h − η>e− 2λ>u)

)

� 0

(

I (λ1:Tp
+ η)

(λ1:Tp
+ η)> g

)

� 0

(

I λ1:Tp

λ>

1:Tp
h

)

� 0

µ ≥ 0, λ ≥ 0

0 ≤ η ≤ 1, Aη ≥ e

The problem in (14) is a convex optimization problem, more specifically,
a semidefinite programming problem. It has O(T ) free parameter in the SDP
cone and O(T ) linear inequality constraints, that involves a worst-case compu-
tational complexity of O(T 4.5). It is much more efficient than the SDP problems
formulated for semi-supervised support vector machines such as in [14] which
has O(T 2) free parameter in the SDP cone. Our SDP problem can be efficiently
solved by using an interior-point method [13] implemented in some optimiza-
tion packages, such as SeDuMi [15]. In our experiments, we used the Yalmip
interface [16] together with the optimization engine of SeDuMi to solve this
semidefinite programming problem.

After the training process, we obtain continuous optimal η∗ values. We then
use a heuristic rounding procedure to recover the discrete binary values η̂ by
enforcing the constraints Aη̂ ≥ e while minimizing λ∗>

1:Tp
η̂. (See the objective

function of (9).) After recovering the discrete η̂ values, the target maximum
margin discriminant function can be learned by solving the optimization problem
(4) or its dual (5).

5 Experimental Results

We have conducted experiments on various data sets to evaluate the proposed
semidefinite programming approach, comparing with the two maximum margin



approaches, mi-SVM and MI-SVM, proposed in [5]. In our experiments, in order
to reduce the ambiguity of the problem, we used equality constraints Aη = e

instead of the inequality constraints for the proposed SDP. This implies that we
only select one most promising positive instance from each positive bag. The C
parameters used for each approach are selected based on results obtained using
one random training/test split of the data.

5.1 Musk Data Sets

We first conducted experiments using the benchmark Musk data sets for multiple-
instance learning, Musk1 and Musk2. The Musk data sets are produced for the
task of drug activity prediction, and have been described in detail in [1]. The
two data sets, Musk1 and Musk2, consist of instances describing different con-
formations of various molecules. A bag is defined as a set of all conformations for
one molecule. A positive bag has at least one instance, that is one conformation
of the molecule, that can bind well to a target protein.

We conducted experiments by randomly selecting 4/5 of the bags in Musk1
(1/8 in Musk2) as training data and keeping the remaining as test data. The
experiments were repeated 10 times and the average test accuracies are reported
in Table 1. One can see that the proposed SDP approach returns the best result
among the three methods on data set Musk2. However, on Musk1, mi-SVM gives
the best accuracy value and the bag-level method, MI-SVM, gives the weakest
result. This might indict that on Musk1 data set it is helpful to incorporate more
instances to build the classification model.

Table 1. Classification accuracy results on the Musk data sets(%)

Data Set #Bags #Data SDP MI-SVM mi-SVM

Musk1 92 476 69.5 69.0 71.6

Musk2 102 6598 61.3 58.9 59.7

5.2 Corel Image Data Sets

We have also conducted experiments on the corel image data sets used in [5].
Here an image is viewed as a bag, which consists of a set of instances, that is
segments, characterized by color, texture and shape descriptors. We used the
three data sets constructed in [5]: Elephant, Fox and Tiger. The problem is to
determine whether a given animal is present in an image. For each data set,
we conducted experiments by randomly sampling 3/5 of the bags as training
data and keeping the remaining as test data. The test accuracy results reported
in Table 2 are averages over 10 repeated runs. In this case, the proposed SDP
approach outperforms the other two methods on both Fox and Tiger data sets.
However, MI-SVM presents a better test accuracy than SDP on the Elephant
data set.



Table 2. Classification accuracy results on the Corel data sets(%)

Data Set #Bags #Data SDP MI-SVM mi-SVM

Elephant 200 1391 74.8 76.7 70.8
Fox 200 1320 56.8 52.3 55.0
Tiger 200 1220 73.6 71.9 69.4

5.3 Text Categorization

Finally, we conducted experiments for text categorization using the text data
sets generated from the publicly available TREC9 data set in [5]. In a multiple-
instance learning setting, each document of the data set corresponds to a bag,
where the instances in the bag are overlapping passages splitted from the docu-
ment, consisting of 50 words in length. For each data set, we randomly sampled
1/3 of the data as training set and kept the remaining as test set. We repeated
this process 10 times and the average results are reported in Table 3. Evidently
here the SDP approach presents a more consistent advantage over the other two
SVM methods. On the 7 data sets, the SDP has only been slightly overperformed
by mi-SVM on TREC3. These results suggest that better performance can be
gained by pursuing convex global optimization.

Table 3. Classification accuracy results on the TREC9 text sets(%)

Data Set #Bags #Data SDP MI-SVM mi-SVM

TREC1 400 3224 92.7 92.5 85.8
TREC2 400 3344 75.1 74.4 63.4
TREC3 400 3246 74.3 73.2 74.6

TREC4 400 3391 77.7 76.9 72.8
TREC7 400 3367 72.5 70.9 63.8
TREC9 400 3300 59.9 55.0 59.0
TREC10 400 3453 74.4 73.8 67.8

6 Conclusion and Future Work

We have presented a novel maximum margin semidefinite programming approach
for multiple-instance learning. Comparing to two other maximum margin ap-
proaches based on heuristic procedures that suffer from local optima, our convex
approach can be solved using a global optimization method. Unlike the semi-
supervised SDP method proposed in the literature which has O(T 2) parameters,
our SDP has only O(T ) parameters and can be solved more efficiently. The em-
pirical results reported in the experimental section suggest that the proposed
SDP can yield more promising results than the two locally optimized nonconvex
maximum margin methods.



Although the SDP approach proposed in this paper selects only positive
instances from positive bags to use, it is still an instance-level method. Extending
it to get a bag-level approach is an interesting future work we are considering.
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