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Abstract. For a fixed integer k ≥ 0, a k-transmitter is an omnidirec-
tional wireless transmitter with an infinite broadcast range that is able to
penetrate up to k “walls”, represented as line segments in the plane. We
develop lower and upper bounds for the number of k-transmitters that
are necessary and sufficient to cover a given collection of line segments,
polygonal chains and polygons.

1 Introduction

Illumination and guarding problems generalize the well-known art gallery prob-
lem in computational geometry [15, 16]. The task is to determine a minimum
number of guards that are sufficient to guard, or “illuminate” a given region
under specific constraints. The region under surveillance may be a polygon, or
may be the entire plane with polygonal or line segment obstacles. The placement
of guards may be restricted to vertices (vertex guards) or edges (edge guards)
of the input polygon(s), or may be unrestricted (point guards). The guards may
be omnidirectional, illuminating all directions equally, or may be represented as
floodlights, illuminating a certain angle in a certain direction.
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Inspired by advancements in wireless technologies and the need to offer wire-
less services to clients, Fabila-Monroy et al. [10] and Aichholzer et al. [2] intro-
duce a new variant of the illumination problem, called modem illumination. In
this problem, a guard is modeled as an omnidirectional wireless modem with an
infinite broadcast range and the power to penetrate up to k “walls” to reach a
client, for some fixed integer k > 0. Geometrically, walls are most often repre-
sented as line segments in the plane. In this paper, we refer to such a guard as a
k-transmitter, and we speak of covering (rather than illuminating or guarding).
We address the general problem introduced in [10, 2], reformulated as follows:

k-Transmitter Problem: Given a set of obstacles in the plane, a target
region, and a fixed integer k > 0, how many k-transmitters are necessary
and sufficient to cover that region?

We consider instances of the k-transmitter problem in which the obstacles are
line segments or simple polygons, and the target region is a collection of line seg-
ments, or a polygonal region, or the entire plane. In the case of plane coverage,
we assume that transmitters may be embedded in the wall, and therefore can
reach both sides of the wall at no cost. In the case of polygonal region coverage,
we favor the placements of transmitters inside the region itself; therefore, when
we talk about a vertex transmitter, the implicit assumption is that the trans-
mitter is placed just inside the polygonal region, and so must penetrate one wall
to reach the exterior.

1.1 Previous Results

For a comprehensive survey on the art gallery problem and its variants, we refer
the reader to [15, 16]. Also see [9, 7, 4] for results on the wireless localization
problem, which asks for a set of 0-transmitters that need not only cover a given
region, but also enable mobile communication devices to prove that they are
inside or outside the given region. In this section, we focus on summarizing
existing results on the k-transmitter problem and a few related issues.

For k = 0, the k-transmitter problem for simple polygons is settled by the Art
Gallery Theorem [5], which states that bn

3 c guards are sufficient and sometimes
necessary to guard a polygonal region with n vertices. Finding the minimum
number of 0-transmitters that can guard a given polygon is NP-hard [14, 15].
For k > 0, Aichholzer et al. [10, 2] study the k-transmitter problem in which the
target region is represented as a monotone polygon or a monotone orthogonal
polygon with n vertices. They show that n

2k k-transmitters are sufficient, and
d n

2k+4e k-transmitters are sometimes necessary15 to cover a monotone polygon.
They also show that d n

2k+4e k-transmitters are sufficient and necessary to cover
any monotone orthogonal polygon. The authors also study simple polygons, or-
thogonal polygons and arrangements of lines in the context of very powerful
transmitters, i.e, k-transmitters where k may grow as a function of n. For exam-
ple, they show that any simple polygon with n vertices can always be covered
15 The bound dn/(2k + 2)e stated in Theorem 7 from [2] is a typo.



with one transmitter of power d 2n+1
3 e, and this bound is tight up to an additive

constant. In the case of orthogonal polygons, one dn
3 e-transmitter is sufficient

to cover the entire polygon. The problem of covering the plane with a single
k-transmitter has been also considered in [12], where it is proved that there
exist collections of n pairwise disjoint equal-length segments in the Euclidean
plane such that, from any point, there is a ray that meets at least 2n/3 of them
(roughly). While the focus in [10, 2, 12] is on finding a small number of high power
transmitters, our focus in this paper is primarily on lower power transmitters.

The concept of visibility through k segments has also appeared in other
works. Dean et al. [8, 13, 11] study vertical bar k-visibility, where k-visibility
goes through k segments. Aichholzer et al. [1] introduce and study the notion of
k-convexity, where a diagonal may cross the boundary at most 2(k − 1) times.

1.2 Our Results

We consider several instances of the k-transmitter problem. If obstacles are dis-
joint orthogonal segments and the target region is the entire plane, we show that
d 5n+6

12 e 1-transmitters are always sufficient and dn+1
4 e are sometimes necessary

to cover the target region. If the target region is the plane and the obstacles
are lines and line segments that form a guillotine subdivision (defined in §2.2),
then n+1

2 1-transmitters suffice to cover the target region. We next consider the
case where the obstacles consist of a set of nested convex polygons. If the tar-
get region is the boundaries of these polygons, then bn

7 c + 3 2-transmitters are
always sufficient to cover it. On the other hand, if the target region is the entire
plane, then bn

6 c+ 3 2-transmitters suffice to cover it, and bn
8 c+ 1 2-transmitters

are sometimes necessary. All these results (detailed in §2) use point transmit-
ters, with the implicit assumption that transmitters on a boundary segment are
embedded in the segment and can reach either side of the segment at no cost.

In Section 3 we move on to the case where the target region is the interior
of a simple polygon. In this case, we restrict the placement of vertex and edge
transmitters to the interior of the polygon. We show that n

6 2-transmitters are
sometimes necessary to cover the interior of a simple polygon. In Section 3.2 we
introduce a class of spiral polygons, which we refer to spirangles, and show that
bn

8 c 2-transmitters are sufficient, and sometimes necessary, to cover the interior
of a spirangle polygon. In the case of arbitrary spiral polygons, we derive an
upper bound of bn

4 c 2-transmitters, matching the upper bound for monotone
polygons from [2].

2 Coverage of Plane with Obstacles

We begin with the problem of covering the entire plane with transmitters, in the
presence of obstacles that are orthogonal segments (§2.1), a guillotine subdivision
(§2.2), or a set of nested convex polygons (§2.3). There is no restriction on the
placement of transmitters (on or off a segment). In the case of a transmitter
located on a segment itself, the assumption is that the segment does not act as



on obstacle for that transmitter, in other words, that the transmitter has the
power of a k-transmitter on both sides of the segment.

2.1 Orthogonal Line Segments

In this section the set of obstacles is a set of n disjoint orthogonal line seg-
ments and the target region is the whole plane. Czyzowicz et al. [6] proved that
d(n+ 1)/2e 0-transmitters always suffice and are sometimes necessary to cover
the plane in the presence of n disjoint orthogonal line segments. We generalize
this to k-transmitters. Our main ideas are captured by the case of 1-transmitters,
so we begin there:

Theorem 1. In order to cover the plane in the presence of n disjoint orthogonal
line segments, d(5n+ 6)/12e 1-transmitters are always sufficient and d(n+ 1)/4e
are sometimes necessary.

Proof. The lower bound is established by n parallel lines—a single 1-transmitter
can cover only 4 of the n+ 1 regions.

For the upper bound, the main idea is to remove from the set of segments,
S, a set of segments that are independent in the sense that no covering ray
goes through two of them consecutively. We then take a set of conventional
transmitters for the remaining segments. By upgrading these transmitters to
1-transmitters we cover the whole plane with respect to the original segments S.

We now fill in this idea. We will assume without loss of generality that the
segments have been extended (remaining interior-disjoint) so that each end of
each segment either extends to infinity, or lies on another segment: if a set of
k-transmitters covers the plane with respect to the extended segments then it
covers the plane with respect to the original segments. With this assumption the
segments partition the plane into n+ 1 rectangular faces.

The visibility graph G(S) has a vertex for each segment of S and an edge st
if segments s and t are weakly visible, i.e. there is a point p interior to s and a
point q interior to t such that the line segment pq does not cross any segment in
S. Equivalently, for the case of extended segments, s and t are weakly visible if
some face is incident to both of them.

Lemma 1. If I is an independent set in G(S) and T is a set of 0-transmitters
that covers the whole plane with respect to S−I, then T is a set of 1-transmitters
that covers the whole plane with respect to S.

Proof. Suppose that a 0-transmitter at point p covers point q with respect to
S− I. Then the line segment from p to q does not cross any segment of S− I. It
cannot cross two or more segments of I otherwise two such consecutive segments
would be visible (and not independent). Thus a 1-transmitter at p covers q with
respect to S. ut

To obtain a large independent set in G(S) we will color G(S) and take the
largest color class. If the faces formed by S were all triangles then G(S) would



be planar and thus 4-colorable. Instead, we have rectangular faces, so G(S) is
1-planar and can be colored with 6 colors. A graph is 1-planar if it can be drawn
in the plane, with points for vertices and curves for edges, in such a way that
each edge crosses at most one other edge. Ringel conjectured in 1965 that 1-
planar graphs are 6-colorable. This was proved in 1984 by Borodin, who gave a
shorter proof in 1995 [3].

Fig. 1. (left) A set S of disjoint orthogonal segments and their extensions (dashed) with
an independent set shown in bold; (middle) G(S) with vertices drawn as segments and
edges as dashed curves so 1-planarity is clear; (right) contracting a segment to a point
to get a conventional drawing of the graph.

Lemma 2. If S is a set of extended orthogonal segments then G(S) is 1-planar.

Proof. The idea is the same as that used to show that the visibility graph of
horizontal line segments is planar. If G(S) is drawn in the natural way, with
every vertex represented by its original segment, and every edge drawn as a
straight line segment crossing a face, then it is clear that each edge crosses at
most one other edge. See Figure 1. We can contract each segment to a point
while maintaining this. Note that we end up with a multi-graph in case two
segments are incident to more than one face. ut

We now wrap up the proof of Theorem 1. Since G(S) is 1-planar it has a
6-coloring by Borodin’s result. The largest color class has at least n/6 vertices
and forms an independent set I. The set S− I has at most 5n/6 segments, so by
the result of Czyzowicz et al. [6], it has a set of 0-transmitters of cardinality at
most d( 5n

6 + 1)/2e = d(5n + 6)/12e that covers the entire plane. By Lemma 1,
placing 1-transmitters at those points covers the entire plane with respect to S.

ut

We note that the above proof relies on a 6-coloring of G(S). An example that
requires 5 colors is shown in Figure 2(a).

Theorem 2. In order to cover the plane in the presence of n disjoint orthogonal
line segments, d 12 ((5/6)log(k+1)n + 1)e k-transmitters are always sufficient and
d(n+ 1)/2(k + 1)e are sometimes necessary.

Proof. As for k = 1, the lower bound is realized by parallel segments. One k-
transmitter can only cover 2(k + 1) of the n+ 1 regions.



. . .

(a) (b)

Fig. 2. (a) An arrangement of five segments whose visibility graph is complete and
thus requires 5 colors. (b) A guillotine subdivision with n = 6k + 2 segments that
requires 4k 0-transmitters. Each of the 4k triangular faces must have a 0-transmitter
on its boundary and no two triangular faces share a boundary.

For the upper bound, we build on the proof technique for k = 1. We re-
peatedly remove independent sets, extending the remaining segments after each
removal.

For a set of segments S, let X(S) be a set of segments formed by extending
those of S until they touch. It will not matter that X(S) is not unique. Let R0

be S and for i = 1, 2, . . . let Si be a maximal independent set in the visibility
graph of X(Ri−1) and let Ri = S − (∪i

j=1Sj). Then Ri has cardinality at most
(5/6)in.

Lemma 3. If T is a set of 0-transmitters that covers the whole plane with respect
to Ri, then T is a set of (2i − 1)-transmitters that covers the whole plane with
respect to S = R0.

Proof. We prove by induction on j = 0, . . . , i that T is a set of (2j − 1)-
transmitters that covers the whole plane with respect to Ri−j . Suppose this
holds for j − 1. Suppose a (2j−1 − 1)-transmitter at point p sees point q in
Ri−j+1. Then the line segment pq crosses at most 2j−1 − 1 segments of Ri−j+1,
and thus 2j−1 faces. Consider putting back the segments of Si−j+1 to obtain
Ri−j . The segments of Si−j+1 are independent in Ri−j . Therefore the line seg-
ment pq can cross at most one segment of Si−j+1 in each face. The total number
of segments of Ri−j crossed by pq is thus 2j−1 − 1 + 2j−1 = 2j − 1. In other
words, a (2j − 1)-transmitter at p in Ri−j covers the same area as the original
(2j−1 − 1)-transmitter at p in Ri−j+1. ut

We use this lemma to complete the proof of the theorem. Since we have
the power of k-transmitters, we can continue removing independent sets until
Ri, where k = 2i − 1, i.e. i = log(k + 1). Then Ri has size (5/6)log(k+1)n, and
the number of 0-transmitters needed to cover the plane with respect to Ri is
d 12 ((5/6)log(k+1)n+1)e. Applying the lemma, this is the number of k-transmitters
we need to cover the plane with respect to S. ut

2.2 Guillotine Subdivisions

A guillotine subdivision S is obtained by inserting a sequence s1, . . . , sn of line
segments (possibly rays or lines), such that each inserted segment si splits a face



of the current subdivision Si−1 into two new faces yielding a new subdivision Si.
We start with one unbounded face S0, which is the entire plane.

As the example in Figure 2(b) shows, a guillotine subdivision with n segments
can require 2(n−2)/3 0-transmitters. In this section, we show that no guillotine
subdivision requires more than (n+1)/2 1-transmitters. We begin with a lemma:

Lemma 4. Let F be a face in a guillotine subdivision S. If there are 1-transmitters
on every face that shares an edge with F then these 1-transmitters see all of F .

Proof. Consider the segment si whose insertion created the face F . Before the
insertion of si, the subdivision Si−1 contained a convex face that was split by
si into two faces F and F ′ (Figure 3(a)). No further segments were inserted
into F , but F ′ may have been further subdivided, so that there are now several
faces F ′1, . . . , F

′
k, with F ′j ⊆ F ′ and F ′j incident on si for all j ∈ {1, . . . , k}

(Figure 3(b)).

F ′

F

si

F

F ′
1

F ′
2

F ′
3

F ′
4

F̃ ′
1

F̃ ′
2

F̃ ′
3

F̃ ′
4

(a) (b) (c) (d)

Fig. 3. The proof of Lemma 4.

We claim that the 1-transmitters in F ′1, . . . , F
′
k guard the interior of F . To see

this, imagine removing si from the subdivision and instead, constructing a guil-
lotine subdivision S̃ from the sequence s1, . . . , si−1, si+1, . . . , sn (Figure 3(c)).
In this case, each face F ′j in S becomes a larger face F̃ ′j in S̃ and together⋃k

j=1 F̃
′
j ⊇ F . Finally, we observe that each 1-transmitter in S in face F ′j guards

at least F̃ ′j , so together, the 1-transmitters in F ′1, . . . , F
′
k guard all of F (Fig-

ure 3(d)). ut

Theorem 3. Any guillotine subdivision can be guarded with at most (n + 1)/2
1-transmitters.

Proof. Consider the dual graph T of the subdivision. T is a triangulation with
n+ 1 vertices. Let M be any maximal matching in T . Consider the unmatched
vertices of T . Each such vertex is adjacent only to matched vertices (otherwise M
would not be maximal). Let G be the set of 1-transmitters obtained by placing a
single 1-transmitter on the primal edge associated with each edge e ∈M . Then
|G| = |M | ≤ (n+ 1)/2. For every face F of S, F either contains a 1-transmitter
in G, or all faces that share an edge with F contain a 1-transmitter in G. In the
former case, F is obviously guarded. In the latter case, Lemma 4 ensures that
F is guarded. Therefore, G is a set of 1-transmitters that guards all faces of F
and has size at most (n+ 1)/2. ut



2.3 Nested Convex Polygons

The problems analyzed in this section are essentially two:

1. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the edges of a set of nested convex polygons?

2. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the plane in the presence of a set of nested convex polygons?

Henceforth, we use the bounding box of a polygon to refer to the smallest axis-
parallel rectangle containing the polygon.

Some notation. We call a set of k convex polygons {P1, P2, . . . , Pk} nested
if P1 ⊇ P2 ⊇ · · · ⊇ Pk. The total number of vertices of the set of polygons
{P1, P2, . . . , Pk} is n.

Given such a set, we use the term layers for the boundaries of the polygons
and rings for the portions of the plane between layers, i.e., the the i-th ring is
Ri = Pi − Pi+1, for i = 1, . . . , k − 1. In addition, R0 = R− P1 and Rk = Pk.

We assume that vertices on each layer have labels with indices increasing
counterclockwise. Given a vertex vj ∈ Pi, we call the positive angle ∠vj−1vjvj+1

its external visibility angle. (Positive angles are measured counterclockwise, and
negative angles are measured clockwise.) Its internal visibility angle is the neg-
ative angle ∠vj−1vjvj+1.

Lemma 5. Placing a 2-transmitter at every other vertex in a given layer i guar-
antees to completely cover layers i− 3, i− 2, i− 1 and i, as well as rings i− 3,
i− 2 and i− 1.

Proof. The fact that layer i is covered is obvious. As for the previous layers,
notice that the convexity of Pi guarantees that the external visibility angles of
any vertex pair vj and vj+2 overlap, as illustrated in Figure 4(a). Since vj ∈
Pi ⊆ Pi−1 ⊆ Pi−2 ⊆ Pi−3 and the polygons are convex, all rays from vj within
its external visibility angle traverse exactly two segments before reaching layer
i− 3. ut

Lemma 6. Placing a 2-transmitter at each vertex of a given layer i guarantees
to completely cover layers i− 3, i− 2, i− 1, i, i+ 1, i+ 2 and i+ 3, as well as
rings i− 3, i− 2, i− 1, i, i+ 1 and i+ 2.

Proof. The fact that layers i − 3, i − 2, i − 1, i and rings i − 3, i − 2 and i − 1
are covered is a consequence of Lemma 5. As for the remaining layers and rings,
notice that, in the internal visibility angle of a 2-transmitter vj ∈ Pi, visibility
is determined by the supporting lines from vj to layers i+ 1, i+ 2 and i+ 3, as
illustrated in Figure 4(b). Having a 2-transmitter on each of the vertices of layer
i, combined with the fact that all polygons are convex, guarantees total covering
of layers i+ 1, i+ 2 and i+ 3 and rings i, i+ 1 and i+ 2. ut



j+2vjv

(a) (b) (c)

Fig. 4. (a) External visibility angles of two vertices vj , vj+2 of layer i. Only layers i−3,
i − 2, i − 1 and i are shown. (b) External and internal visibility from a 2-transmitter
located in a vertex of layer i. Only layers i− 3, i− 2, i− 1, i, i+ 1, i+ 2 and i+ 3 are
shown. (c) The shaded region is not covered by the 2-transmitters located at the red
vertices. Only the three involved layers are shown.

Theorem 4. bn
7 c+ 5 2-transmitters are always sufficient to cover the edges of

any nested set of convex polygons with a total of n vertices.

Proof. If the number of layers is k ∈ {1, 2, 3, 4, 5, 6}, five 2-transmitters trivially
suffice: one in the interior of Pk and the other four at the corners of the bounding
box of P1. If k ≥ 7, from the pigeonhole principle one of i ∈ {1, 2, 3, 4, 5, 6, 7}
is such that the set G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 7)} has no more
than bn

7 c vertices. Place one 2-transmitter at each vertex of each Pj ∈ G. From
Lemma 6, for a certain value of m ∈ Z all edges in the following layers are
covered: i− 3, i− 2, i− 1 (if they exist), i, . . . , i+ 7m, i+ 7m+ 1, i+ 7m+ 2 and
i + 7m + 3 (if they exist). In the worst case, the only layers that may remain
uncovered are 1, 2 and 3, as well as k− 2, k− 1 and k. Because of the convexity
of the polygons, four 2-transmitters conveniently located at the corners of the
bounding box of P1, and one 2-transmitter located in the interior of Pk, can take
care of covering these remaining layers. The total number of 2-transmitters used
is at most bn

7 c+ 5. ut

The transmitter placement from Theorem 4 guarantees that all edges are
covered, while some rings remain uncovered.

Theorem 5. bn
6 c+ 3 2-transmitters are always sufficient to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. The proof is similar to Theorem 4, but locating the 2-transmitters at all
vertices of every 6th layer (as opposed to every 7th layer in Theorem 4). ut

Lemma 7. bn
8 c 2-transmitters are sometimes necessary to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. This lower bound is established by the example from Figure 5, which
shows four nested regular t-gons, with t even (so n = 4t). Consider the set
S of midpoints of alternating edges of the outermost convex layer (marked ui
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Fig. 5. (a) bn
8
c 2-transmitters are necessary to cover the edges of these four nested

convex layers. (b) bn
8
c 2-transmitters are necessary to cover the edges of this spirangle

polygon.

in Figure 5). The gap between adjacent layers controls the size of the visibility
regions of the points in S (by symmetry, all visibility regions have identical size).
A small enough gap guarantees that the visibility regions of the points in S are
all disjoint, as illustrated in Figure 5. This means that at least t/2 2-transmitters
are necessary to cover all points in S (one transmitter in the visibility region
of each point). So the number of 2-transmitters necessary to cover all edges is
t/2 = n/8. ut

Lemmas 8 and 9 establish improved upper bounds for the case when all layers
(convex polygons) have an even number of vertices. Due to space constraints,
we omit the proofs of these lemmas.

Lemma 8. bn/8c+ 1 2-transmitters are always sufficient to cover the edges of
any nested set of convex polygons with a total of n vertices, if each of the polygons
has an even number of vertices.

Lemma 9. bn
6 c+1 2-transmitters are always sufficient to cover the plane in the

presence of any nested set of convex polygons with a total of n vertices, if each
of the polygons has an even number of vertices.

3 Coverage of Simple Polygons

This section addresses the problem of covering a polygonal region P with 2-
transmitters placed interior to P . Therefore, when we talk about a vertex or an
edge transmitter, the implicit assumption is that the transmitter is placed just
inside the polygonal region, and so must penetrate one wall to reach the exterior.



Our construction places a small (constant) number of transmitters outside P ,
but still within the bounding box for P .

3.1 Lower Bounds For Covering Polygons

p p

Fig. 6. A family of polygons requiring at least n/6 interior 2-transmitters to cover. For
labeled point p located in the tip of a barb (shown magnified on the right with the
arms shortened), the locus of all interior points from which a 2-transmitter can cover
p is shown shaded.

Theorem 6. There are simple polygons that require at least n
6 2-transmitters to

cover when transmitters are restricted to the interior of the polygon.

Proof. Figure 6 shows the construction for a n = 36 vertex polygon, which
generalizes to n = 6m, for any m ≥ 2. It is a pinwheel whose n/3 arms alternate
between spikes and barbs. Consider an interior point p at the tip of a barb. The
locus of all interior points from which a 2-transmitter can cover p includes the
spike counter-clockwise from the barb, the barb containing p, and a small section
of the pinwheel center. This region is shown shaded for the point p labeled in
Figure 6. Observe that this shaded region is disjoint from the analogous regions
associated with the other barb tips. Hence no two barb tips can be covered by
the same 2-transmitter. Since there are n/6 barbs, the lower bound is obtained.

ut

3.2 Spirangles

Two edges are homothetic if one edge is a scaled and translated image of the
other. A t-spirangle is a polygonal chain A = a1, a2, ..., am that spirals inward
about a center point such that every t edges it completes a 2π turn, and each
edge pair aiai+1, ai+tai+1+t is homethetic, for 1 ≤ i ≤ m − t. We assume that
the spiral direction is clockwise. A t-sided convex polygon may be thought of as



generating a family of t-spirangles where the ith edge of each spirangle is parallel
to the (i mod t)th edge of the polygon, for i = 0, 1, 2, . . .. See Figure 7(a) for a
4-spirangle example and a polygon generating it.

A homothetic t-spirangle polygon P is a simple polygon whose boundary con-
sists of two nested t-spirangles A = a1, a2, ..., am and B = b1, b2, ..., bm generated
by the same t-sided convex polygon, plus two additional edges a1b1 and ambm
joining their endpoints. We assume that chain B is nested inside of chain A, as
shown in Figure 7(b). We refer to A as the convex chain and B as the reflex
chain in reference to the type of vertices found on each.
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Fig. 7. Definitions (a) A 4-spirangle and corresponding convex polygon (b) Edge-
homothetic spiral polygon (left) and quadrilaterals entirely visible to a6 (right).

Property 1. Let P be a homothetic spirangle polygon, composed of a convex
spirangle A = a1, a2, . . ., and a reflex spirangle B = b1, b2, . . .. Then ai and bi
see each other, and the set of diagonals {aibi | i = 1, 2, . . .}, induces a partition
of P into quadrilaterals. Furthermore, the visibility region of ai includes six
quadrilaterals: two quadrilaterals adjacent to ai−tbi−t, two adjacent to aibi, and
two adjacent to ai+tbi+t. See right of Figure 7(b).

Theorem 7. bn
8 c 2-transmitters are sufficient, and sometimes necessary, to

cover a homothetic t-spirangle polygon P with n vertices.

Proof. The algorithm that places transmitters at vertices of P to cover the in-
terior of P is fairly simple, and is outlined in Table 1.
The proof that this algorithm covers the interior of P is fairly intuitive. Due to
space constraints, we omit this proof. The fact that the bn

8 c bound is tight is
established by the spirangle polygon example from Figure 5(b), and the argu-
ments are similar to the one used in the proof of Lemma 7. The example from
Figure 5(b) depicts a worst-case scenario, in which transmitters do not get the
chance to use their full coverage potential, since the total turn angle of the spi-
rangle is between 2π and 6π. ut



Homothetic t-Spirangle Polygon Cover(P )

Let A = a1, a2, . . . am be the convex spirangle of P , with a1 outermost.
Let B = b1, b2, . . . bm be the reflex spirangle of P .

1. If m ≤ t+ 2 (or equivalently, the total turn angle of A is ≤ 2π):
Place one transmitter at am, and return (see Figure 8a).

2. Place the first transmitter at vertex at+2 (see a7 in Figure 8b).
3. Starting at at+2, place transmitters at every other vertex of A, up to a2t+1

(i.e., for a 2π turn angle of A, but excluding a2t+2).
4. Let aj be the vertex hosting the last transmitter placed in step 3.

(j = 2t+ 1 for t odd, j = 2t for t even.)
Let P1 be the subpolygon of P induced by vertices a1, . . . , aj+t+1 and
b1, . . . , bj+t+1 (shaded left of Figure 8b.)

Recurse on P \ P1: Homothetic t-Spirangle Polygon Cover(P \ P1).

Table 1. Covering the interior of a homothetic spirangle polygon with 2-transmitters.

3.3 Arbitrary Spirals

A spiral polygon P consists of a clockwise convex chain and a clockwise reflex
chain that meet at their endpoints. A trivial bn

4 c upper bound for the number
of 2-transmitters that are sufficient to cover P can be obtained as follows. Pick
the chain Γ of P with fewer vertices (i.e., Γ is the reflex chain of P , if the
number of reflex vertices exceeds the number of convex vertices, and the convex
chain of P otherwise). Then simply place one vertex 2-transmitter at every other
vertex of Γ . By definition, the visibility ray from one 2-transmitter can cross the
boundary of P at most twice. Note however that, even under the restriction
that transmitters be placed interior of P , the visibility ray of one transmitter
can leave and re-enter P , as depicted in Fig. 9(a) for transmitter labeled a.
Then arguments similar to the ones used in Lemma 5 show that the union of
the external visibility angles of all these 2-transmitters cover the entire plane.
So we have the following result:

Lemma 10. bn
4 c 2-transmitters placed interior to an arbitrary polygonal spiral

P are sufficient to cover P (in fact, the entire plane).

We remark on two special situations. In the case of transmitters placed at
every other reflex vertex of P , 0-transmitters are sufficient to cover the interior
of P , and 1-transmitters are sufficient to cover the entire plane. In the case
of transmitters placed at every other convex vertex of P , 1-transmitters are
sufficient to cover P , if they are placed outside of P .

An improved upper bound can be established for non-degenerate spirals,
which we define as spirals in which each 2π-turn of each of the convex and reflex
chain of P is homothetic to a convex polygon (i.e., it contains at least 3 vertices).
The result (whose proof we omit due to space restrictions) is as follows.
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Fig. 8. Covering spirangles with 2-transmitters. (a) A t-spirangle (t = 5) with 2t + 4
edges covered with one transmitter. (b) A t-spirangle (t = 5) with 8t edges. (c) A t-
spirangle (t = 5) with 6t+ 4 edges covered with t/2 + 1 transmitters. (d) A t-spirangle
(t = 4) with 6t edges covered with t/2 transmitters.

Lemma 11. Let P be a polygonal spiral whose every 2π turn chain has at least
3 vertices. Then d 2n

9 e + 1 2-transmitters placed interior to P are sufficient to
cover the interior of P (in fact, the entire plane).

R0

R1

R2

(b) (c)

a

b

c

a

b

c

d
split ray

(a)

a

split ray

Fig. 9. Transmitters marked with small circles (a) Visibility angle of a (b) The dark
area is not covered by a or b (c) P is covered.

4 Conclusion

In this paper we study the problem of covering (“guarding”) a target region in
the plane with k-transmitters, in the presence of obstacles. We develop lower
and upper bounds for the problem instance in which the target region is the
plane, and the obstacles are lines and line segments, a guillotine subdivision, or
nested convex polygons. We also develop lower and upper bounds for the problem



instance in which the target region is the set of rings created by nested convex
polygons, or the interior of a spiral polygon. Our work leaves open two main
problems: (i) closing the gap between the bn

8 c lower bound and the bn
6 c upper

bound in the case of nested convex layers, and (ii) closing the gap between the
bn

8 c lower bound and the bn
4 c upper bound for spiral polygons. Investigating the

k-transmitter problem for other classes of polygons (such as orthogonal polygons)
also remains open.
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Fig. 6 and for initiating this line of work.
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