
Linear Search with Terrain-Dependent Speeds∗

J. Czyzowicz1, E. Kranakis2, D. Krizanc3, L. Narayanan4, J. Opatrny4 and S. Shende5
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Abstract

We revisit the linear search problem where a robot, initially placed at the origin on an
infinite line, tries to locate a stationary target placed at an unknown position on the line.
Unlike previous studies, in which the robot travels along the line at a constant speed, we
consider settings where the robot’s speed can depend on the direction of travel along the line,
or on the profile of the terrain, e.g. when the line is inclined, and the robot can accelerate.
Our objective is to design search algorithms that achieve good competitive ratios for the time
spent by the robot to complete its search versus the time spent by an omniscient robot that
knows the location of the target.

We consider several new robot mobility models in which the speed of the robot depends
on the terrain. These include 1) different constant speeds for different directions, 2) speed
with constant acceleration and/or variability depending on whether a certain segment has
already been searched, 3) speed dependent on the incline of the terrain. We provide both
upper and lower bounds on the competitive ratios of search algorithms for these models, and
in many cases, we derive optimal algorithms for the search time.

Key words and phrases. Competitive Ratio, Linear Terrain, Robot, Search Algorithm,
Speed of Movement, Zig-Zag Algorithm.

1 Introduction

Searching and exploration are fundamental problems in the areas of robotics and autonomous
mobile agents. The objective for searching is to find a target placed at an unknown location in
the domain in a provably optimal manner. In the linear search problem, the target is placed at
a location on the infinite line unknown to the robot. The robot moves with uniform speed, and
the goal is to find the target in minimum time. This problem was first proposed by Bellman [6]
and independently by Beck [4].

Previous studies on the linear search problem generally assume that the robot moves with
constant speed that is independent of the terrain. In this paper, we study a generalization of
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the problem where the horizontal line may be replaced by a more complicated (and hence, more
realistic) continuous linear terrain. Moreover, the speed of the robot may depend in various ways
on the nature or profile of the terrain. The robot initiates the search for the unknown target on
the terrain from a reference starting point (without loss of generality, the origin). In our models,
the robot can move with different speeds depending on its position on the terrain, its direction
of movement, its exploration history etc. We also assume that the robot starts moving initially
in the positive x- direction, or more informally, moving to the right (the leftward movement is
in the negative x-direction).

Consider the linear search problem with a single robot. Since the position of the target is
unknown to the robot, the robot cannot proceed indefinitely in just one direction and is forced
to turn around and explore the terrain in the opposite direction as well; this zig-zag movement
is inevitable and must be repeated periodically. The canonical zig-zag search algorithm
is described below: note that the algorithm is parametrized by an infinite sequence of positive
distances X = {xk}k≥1 from the origin that specifies the turning points. We refer to the sequence
X as the strategy. To ensure progress in searching along a given direction, each trip away from
the origin must cover more distance along the line than the previous trip in the same direction:
this is formalized in the requirement that xk < xk+2 for all k ≥ 1.

Input: Infinite sequence of distances X = {x1, x2, . . .} with 0 < xk < xk+2 for all k ≥ 1

for k ← 1, 2, . . . do
if k is odd (resp. even) then

move right (resp. left) a distance of xk unless the target is found enroute
if target found then

quit search
end
Turn; then move left (resp. right), return to origin

end

end

Algorithm: Zig-Zag Search

A natural measure of the efficacy of the zig-zag search algorithm with strategy X, is how well
it performs in competition with an omniscient adversary that knows the exact location of the
target. Let σX(d) be the ratio between the time taken by the robot using the zig-zag strategy X
to reach an unknown target at distance d from the origin versus the time taken by the adversary
to proceed directly to the target. Then,

σX , sup
d>1

σX(d)

denotes the competitive ratio of the algorithm. We denote the optimal competitive ratio by
σ∗.

For strategies where xk = αrk−1 for some constant α > 0, we call r the expansion factor of
the strategy. Let D denote the doubling strategy that is a strategy with expansion factor 2 (and
α = 1). Thus, D = {1, 2, 22, . . .}. When the robot moves with unit speed in both directions,
it is well-known that the doubling strategy is optimal: σ∗ = σD = 9, see for example [2].
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1.1 Our Results

A natural point of departure from traditional unit-speed models is to considering linear terrains
in which the speed of the robot depends on the nature of the terrain or the environment. Two
kinds of models are considered:

0 0

Speed  s > 1 Speed 1

Speed  s > 1

(b)

Speed 1

(a)

Figure 1: Two-speed models based on (a) absolute direction and (b) direction relative to origin

(1) Two-speed models of linear search: The robot can operate at two distinct constant
speeds 1 and s > 1 in the following models.

• The absolute direction or tailwind model, viz. unit speed going left and tailwind speed
s > 1 going right (see Figure 1-(a))

• The direction relative to the origin or the beacon model, viz. unit speed moving away from
the origin and speed s moving towards it (see Figure 1-(b))

• The exploration history model, where the robot explores unknown regions slowly and
deliberately with unit speed, but is able to search faster (with speed s) when it encounters
a region already seen earlier in its search.

For the tailwind model, we analyze a time-based zig-zag search strategy in Subsection 2.1,
which is provably better than the doubling strategy. It turns out that the doubling zig-zag
strategy is optimal for the beacon model; we prove this in Subsection 2.2. We also show in
Subsection 2.3 that the exploration history model admits an asymptotically optimal strategy,
whose expansion factor depends on the speed s.
(2) Constant acceleration models for linear terrain search: We first consider a linear
search model with the property that whenever the robot starts from rest (i.e. either initially from
the origin, or when it turns around in the zig-zag search), its speed increases at a constant rate c
until the next turn, i.e. at time t after starting from rest, the robot’s speed is given by s(t) = ct:
see Figure 2-(a). In Subsection 3.1, we show that for this model, 6.36 < σ∗ < σD ≈ 11.1.

We then study search on inclined linear terrains. The robot can operate in two modes where
it is moving with unit speed going uphill and with constant acceleration going downhill. The
different terrains include an inclined line, a symmetric hill with the hill-top at the origin, or
a symmetric valley with the valley-bottom at the origin as shown in Figure 2-(b), (c) and (d)
respectively. Again, at time t from rest, the robot’s speed going downhill is given by s(t) = ct.
The increase in speed due to constant acceleration going downhill on a slope is a very natural
manifestation of Newtonian physics: for example, we could interpret the constant c as the
gravitational acceleration along the incline.

We analyze the doubling zig-zag strategy and lower bounds on the optimal strategy for the
inclined line, hill, and valley models in Subsections 3.2, 3.3, and 3.4 respectively. There are
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(a) (b) (c) (d)

Speed 1

Speed  s(t) = ct

0 0

0

0

Figure 2: Constant acceleration models: (a) Line, (b) Inclined line, (c) Hill, (d) Valley

surprising differences in the nature of the results: while the competitive ratio of the doubling
strategy is unbounded in the inclined line and hill models, we show that in the valley model,
the competitive ratio is constant.

1.2 Related Work

Searching an environment or terrain with one or more searchers, possibly moving at different
speeds, has the objective of localizing a hidden target in the minimum amount of time. Numerous
variants of the search problem have been considered, e.g. with static or moving targets, multiple
searchers with or without communication capabilities, and in environments that may not be
fully known in advance.

The search problem has been extensively studied, e.g. see the survey by Benkoski et.al. [7];
deterministic algorithms for optimal linear search [2]; incorporating a turn cost when a robot
changes direction during the search [17]; when bounds on the distance to the target are known in
advance [9]; and for moving targets or more general linear cost functions [8]. Other approaches
include optimal randomized algorithms for the related cow-path problem [19], and stochastic and
game theoretic investigations [1, 5].

The search problem has also been studied in environments where search occurs in graphs
(see, e.g. [18]) or along dynamically evolving links of networks [10, 20]. More recently, vari-
ants of search using collections of collaborating robots have been investigated. The robots can
employ either wireless communication (at any distance) or face-to-face communication, where
communication is only possible among co-located robots. For example, the problem of evacu-
ation [13, 15] is essentially a search problem where search is completed only when the target
is reached by the last robot. Linear group search in the face-to-face communication model has
also been studied with robots that either operate at the same speed or with a pair of robots
having distinct maximal speeds [11, 3]. Finally, a new direction of research seeks to analyze
linear search with multiple robots where some fraction of the robots may exhibit either crash
faults [14] or Byzantine faults [12].

2 Two-speed Models of Linear Search

In this section we consider linear search problems where the robot can switch between two
different constant speeds depending on its absolute direction of movement (the tailwind model)
or its direction of movement relative to the origin (the beacon model).
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2.1 The Tailwind Model

In this model, the robot moves at speed s > 1 in the positive (right) direction and at unit speed
in the negative (left) direction as depicted in Figure 1-(a). Observe that if we use the doubling
strategy, the size of the explored segment expands by a factor of 2 in each iteration (i.e. between
turns). However, the strategy favours the negative direction of the line in the sense that it spends
less time exploring the positive direction of the line because the speed is higher when moving
right.

To account for this, we propose a different strategy, viz. one that balances the search time
on both sides of the origin. In other words, we expand the time spent on each side of the
origin, rather than the distance travelled as follows. Fix two parameters r > 1 and α > 0.
Then, our strategy is defined as sequence X = {x1, x2, . . .} = {s, αr, r2s, αr3, . . .}, i.e. with
x2k−1 = r2k−2s and x2k = αr2k−1 for k ≥ 1.

Thus, strategy X spends even powers of r time moving to the right from the origin, and
α times odd powers of r time moving the left. In the next theorem we show how to select the
parameters α, r so as to optimize the search time. In particular, we prove the following result.

Theorem 1 Assume the robot has speed s ≥ 1 when moving left to right and speed 1 otherwise.
For α, r such that α = (1 − s +

√
(s− 1)2 + 4r2s)/(2r) and r =

√
2 + (s+ 1)/

√
s , and X =

{s, αr, r2s, αr3, . . .} :

2 + 1/s ≤ σ∗ ≤ σX ≤ 1 +
s+ 2

√
s+ 1

s+
√
s+ 1

· s+ 1

2s
·
(
s+ 1 +

√
(s− 1)2 + 8s+ 4

√
s(s+ 1)

)
. (1)

Proof. Let’s look first at the lower bound. The robot must visit both points +d and −d. If −d
is the first point to be visited by the robot then the adversary will place the target at +d. The
resulting competitive ratio in this case is at least (d + 2d/s)/(d/s) = 2 + s. If +d is the first
point to be visited by the robot then the adversary will place the target at −d. The resulting
competitive ratio in this case is at least (d/s + 2d)/d = 2 + 1/s. Since s ≥ 1, the minimum of
these two values is 2 + 1/s, which proves that σ∗ ≥ 2 + 1/s.

Next we consider the upper bound given by the strategy X. There are two possibilities
depending on whether the target is located at +d or −d.:

Case 1: The target is at +d. Let i be defined such that r2is < d ≤ r2i+2s. The time T it
takes until the target is given by:

T = r0 + r0s+ αr1 + αr1/s+ · · ·+ r2i + r2is+ αr2i+1 + αr2i+1/s+ d/s

= (1 + s)(r0 + r2 + · · ·+ r2i) + αr(1 + 1/s)(r0 + r2 + · · ·+ r2i) + d/s

= (1 + s)(1 + αr/s)
(r2)i+1 − 1

r2 − 1
+ d/s < (1 + s)(1 + αr/s)

(d/s)r2

r2 − 1
+ d/s

and an upper bound on σX(d) for this case (denoted σ+) is obtained by dividing the last term
above by d/s, namely

σ+ := 1 + (1 + s)(1 + αr/s)
r2

r2 − 1
. (2)
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Case 2: The target is at −d. Let i be defined such that αr2i+1 < d ≤ αr2i+3. This is
similar to the previous case with the additional term r2i+2 + r2i+2s and replacing d/s by d. The
time T it takes until the target is given by:

T = (1 + s)(1 + αr/s)
(r2)i+1 − 1

r2 − 1
+ r2i+2(1 + s) + d

< r2i+2(1 + s)

(
1 +

1 + αr/s

r2 − 1

)
+ d <

rd

α
(1 + s)

r2 + αr/s

r2 − 1
+ d

and an upper bound on σX(d) for this case (denoted σ−) is obtained by dividing the last term
above by d, namely

σ− := 1 +
r2

r2 − 1
(1 + s)(r/α+ 1/s). (3)

We see that σ+ = σ− if and only if the following equation is satisfied

1 + αr/s = r/α+ 1/s. (4)

If we multiply Equation (3) by αs we derive the equivalent quadratic (in α) equation

rα2 + (s− 1)α− rs = 0

whose unique positive solution is α = (1− s+
√

∆)/(2r) , where ∆ = (s− 1)2 + 4r2s.
Let σ , σX(d) be the common value of σ+, σ− which is obtained for α = (1− s+

√
∆)/(2r).

Observe from Equations (2) and (4) that

(σ − 1)
2s

s+ 1
=

2s

s+ 1
(s+ 1)(1 + αr/s)

r2

r2 − 1
= 2(s+ αr)

r2

r2 − 1
= (s+ 1 +

√
∆)

r2

r2 − 1
=

= (s+ 1 +
√

∆)

(
1 +

1

r2 − 1

)
.

Next, we minimize σ as a function of the expansion factor r: it is straightforward to show
that this is equivalent to solving the following equation of degree 4 in the unknown R where
R = r2.

sR4 − 6sR3 + (9s− (s− 1)2)R2 + (2s2 − 8s+ 2)R− (s− 1)2 = 0. (5)

Solving for R and using R = r2, we conclude that r =
√

2 + (s+ 1)/
√
s is the unique expansion

factor which minimizes the competitive ratio σ of our algorithm. Substituting this value of r
into the formula for the competitive ratio in the right-hand side of Equation (2) yields the value

1 +
s+ 2

√
s+ 1

s+
√
s+ 1

· s+ 1

2s
·
(
s+ 1 +

√
(s− 1)2 + 8s+ 4

√
s(s+ 1)

)
,

which is exactly the right-hand side of Inequality (1). This competes the proof of Theorem 1.

Remark 1 Note that as s→∞, the righthand side of Inequality (1) approaches 3
2 + s+ o(s).
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2.2 The Beacon Model

In this model the robot moves with speed 1 away from the origin and constant speed s > 1
towards the origin of the line.

Theorem 2 The doubling strategy is optimal for the beacon model, i.e.

σ∗ = σD = 5 +
4

s
. (6)

Proof. First we prove the upper bound. Assume the robot executes Algorithm 1 with the
doubling strategy, and let the target be at distance d from the origin. Let k be such that
2k < d ≤ 2k+1. Since 2k < d, starting from the origin, by the k-th iteration of the algorithm the
robot spends search time 20 +20/s+21 +21/s+ · · ·+2k+2k/s = (2k+1−1)(1+1/s) and returns
to the origin without having found the target. In the next turn, the robot again starts from the
origin, spends time 2k+1 +2k+1/s and returns back to the origin, since the adversary could place
the target to the other side of the origin. Hence the total time spent so far is (2k+2−1)(1 + 1/s)
Finally, since d ≤ 2k+1, in the last turn the robot finds the target in time d It follows that

σD = sup
d>0

(2k+2 − 1)(1 + 1/s) + d

d
<

4d(1 + 1/s) + d

d
= 5 + 4/s.

For the lower bound, we use a lower bounding technique [16] (itself based on [2]) used
to obtain a lower bound of 9 for the unit speed model. Consider a deterministic strategy
X = (x1, x2, . . .) with xi > 0, for all 1 ≤ i < ∞. We consider several cases depending on the
position of the target.

Assume the target is between xk and xk+2. Then the time it takes to find the target is

x1 + x1/s+ x2 + x2/s+ · · ·+ xk + xk/s+ xk+1 + xk+1/s+ d = (1 + 1/s)

k+1∑
i=1

xi + d.

It follows that the competitive ratio is

σX = sup
k

sup
d>xk

{
1 + (1 + 1/s)

∑k+1
i=1 xi
d

}
= sup

k

{
1 + (1 + 1/s)

∑k+1
i=1 xi
xk

}
As a consequence it is easily seen that

σX ≥ 2 + 1/s+ (1 + 1/s)

∑k−1
i=1 xi
xk

+ (1 + 1/s)
xk+1

xk

and hence, σXxk ≥ (2 + 1/s)xk + (1 + 1/s)
∑k−1

i=1 xi + (1 + 1/s)xk+1. Separating xk+1 from the
last inequality we derive

xk+1 ≤
σX − (2 + 1/s)

1 + 1/s
xk −

k−1∑
i=1

xi.

If we now put µ0 = (σX − (2 + 1/s))/(1 + 1/s) and ν0 = 1, the last inequality can be rewritten
as

xk+1 ≤ µ0xk − ν0
k−1∑
i=1

xi, (7)
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At this point, we can use the technique suggested in [2, 16] as follows. Induction on the
Inequality (7) can be used to construct two infinite sequences of positive integers {µi : i ≥ 0}
and {νi : i ≥ 0} defined via a system of recurrences of the form:

µm+1 = µ0µm − νm (8)

νm+1 = ν0µm + νm. (9)

for all m ≥ 0. The recurrences (8), (9) can be solved using difference equations that yield the
characteristic polynomial z3 − µ0z2 + (µ0 + 1) = 0. This polynomial has z = −1 as one of its
roots. Dividing by z + 1 we obtain the polynomial

z2 − (µ0 + 1)z + (µ0 + 1) = 0 (10)

whose two roots are ρ1, ρ2 := µ0+1±
√
D

2 , where D := (µ0 − 1)2 − 4 is the discriminant of the
quadratic Equation (10). Note that D < 0 if and only if µ0 < 3. In turn, µ0 < 3 is equivalent
to σX being less than a certain constant c, since σX and µ0 are related (in the original proof of
the lower bound, for instance, this yields σX < c = 9.)

On the other hand, it can be shown that D being less than 0 implies that for some k ≥ 1,
the value µk is negative. This is a contradiction since µk must be positive by construction for
all k. Hence, D must in fact be greater than or equal to zero, and it follows that the CR σX is
greater than or equal to c.

By applying the above lower bound technique to the present case, we conclude that the roots
of the resulting quadratic equation are conjugate complex numbers with non-zero imaginary
parts iff µ0 < 3, which is equivalent to σX < 5 + 4/s. This completes the proof of the lower
bound of Theorem 2.

Remark 2 Assume that the robot moves with speed 1 towards the origin, and speed s away from
the origin of the line. A proof similar to that of Theorem 2 shows that Algorithm 1 with the
doubling strategy is optimal and its competitive ratio is also 5 + 4

s . Details are left to the reader.

2.3 The Exploration History Model

We consider a robot that moves at speed 1 when searching for the target, but the robot can
move at speed s > 1 when moving over a part of the line already explored. For example, the
robot’s attention to identifying the target limits the speed at which the robot can move.

Theorem 3 Let r = 1 +
√

2/(s+ 1), and X = (r0, r1, r2, . . .) be an expansion strategy. Then,
with this strategy, the zig-zag algorithm’s competitive ratio satisfies

2 + 1/s ≤ σ∗ ≤ σX = 2 +
1

s

(
3 + 2

√
2s+ 2

)
. (11)

Proof. Consider first the lower bound. The robot must visit both points +d and −d. Without
loss of generality assume that −d is the first point to be visited by the robot. Then the adversary
will place the target at +d. Therefore the robot will traverse the segment [−d, 0] once with speed
at least 1 to reach −d from 0 and a second time with speed s on its way to +d from −d. The
resulting competitive ratio is at least (2d+ d/s)/d = 2 + 1/s. This proves the lower bound.
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Next we look at the upper bound. Consider a robot following a zig-zag strategy X =
(r1, r2, r3, . . .) and that the first move of the robot is to the right with the target located at
distance d with rk < d ≤ rk+2. The time needed by the robot to find the target is equal to

r1 + r1/s+ r2 + (r2 + r1)/s+ r3 − r1 + (r3 + r2)/s+ r4 − r2 + · · ·

+ (rk + rk−2)/s+ rk+1 − rk−1 + (rk+1 + rk)/s+ d− rk =

(
1 +

1

s

)
rk+1 +

2

s

k∑
i=1

ri

s
+ d

It follows that the competitive ratio of this strategy σX is

σX = sup
k≥1

(((
1 +

1

s

)
rk+1 +

2

s

k∑
i=1

ri

s
+ rk

)
/rk

)
=

(
1 +

1

s

)
r +

2r

s(r − 1)
+ 1.

To find the optimal value of r we put the derivative dσX/dr = 1 + 1/s− 2/(s(r− 1)2) equal
to 0, which gives us that the competitive ratio is optimized for r = 1 +

√
2/(s+ 1) and for this

r, we obtain σX = 2 + 1
s (3 + 2

√
2s+ 2)

Remark 3 For example, if s = 1 then σ = 9, if s = 2 then σ ≈ 5.95, if s = 3 then σ ≈ 4.88,
and if s = 4 then σ ≈ 4.33. Thus as s → ∞ the value of r approaches 1 and the competitive
ratio σ as given in Theorem 3 approaches 2. Therefore, the strategy is asymptotically optimal
in s.

3 Searching with Constant Acceleration

In this framework, the robot exhibits constant acceleration c > 0 in some part of the linear
terrain when starting from rest. As is well known from Newtonian physics, at time t after the
robot accelerates from rest, it will be moving with speed s = ct and would have covered a
distance of x(t) = ct2/2. Thus, to cover distance x we need time

√
2x/c.

3.1 Constant acceleration in both directions

Here we assume that the constant acceleration applies in both directions throughout the entire
terrain (see Figure 2-(a)).

Theorem 4 Assume the robot is searching with constant acceleration c in either direction, start-
ing from rest initially, as well as at turning points. Then:

3(
√

2 + 1/
√

2) ≤ σ∗ ≤ σD ≤
2
√

3√
2− 1

+
√

3 + 1 (12)

Proof. First we consider the upper bound. Assume the robot executes the doubling strategy
and let the target be at distance d from the origin. Let k be such that 2k < d ≤ 2k+1. There
are two identical cases to consider depending on whether the target is to the left or right of the
origin.

9



Let b =
√

2/c. Since 2k < d, starting from the origin, the robot spends search time

T = b+ b
√

20 + 21 + b
√

21 + 22 + · · ·+ b
√

2k−1 + 2k + b
√

2k + 2k+1 + b
√

2k+1 + d

= b+ b
√

3(
√

20 +
√

21 +
√

2k) + b
√

2k+1 + d = b+ b

√
3√

2− 1
2k/2+1 + b

√
2k+1 + d <

< b+ b
2
√

3√
2− 1

√
d+ b

√
3d (since 2k+1 < 2d) = b+ b

(
2
√

3√
2− 1

+
√

3

)
√
d

The target is to the left or right of the starting position and at distance d; therefore if we divide
the above expression by b

√
d, it follows that

σD(d) ≤ 2
√

3/(
√

2− 1) +
√

3 + 1/
√
d

Since the maximum value of σD(d) is achieved for d = 1, we substitute d = 1 to obtain the upper
bound on σD. Next we consider the lower bound. We use a similar technique as in the proof of

Theorem 2. Consider a deterministic strategy X = (x1, x2, . . .) with xi > 0, for all 1 ≤ i < ∞.
Assume xk < d ≤ xk+2. In the sequel we use the abbreviation b =

√
2/c. The time it takes to

find the target placed at d satisfies the following equation.

b
√
x1 + b

√
x1 + x2 + · · ·+ b

√
xk + xk+1 + b

√
xk+1 + d =

= b
√
x1 + b

k∑
i=1

√
xi + xi+1 + b

√
xk+1 + d

Therefore the competitive ratio is given by

√
x1 +

∑k
i=1

√
xi + xi+1 +

√
xk+1 + d

√
d

≥
√
x1 + 1√

2

∑k
i=1(
√
xi +

√
xi+1) + 1√

2
(
√
xk+1 +

√
d)

√
d

≥
2√
2

∑k+1
i=1

√
xi + 1√

2

√
d

√
d

, (13)

where in the righthand side above we used the simple inequality
√
x+ y ≥ 1√

2
(
√
x +
√
y).

Therefore the overall competitive ratio σ satisfies

σ ≥
2√
2

∑k+1
i=1

√
xi + 1√

2

√
d

√
d

=
√

2

k−1∑
i=1

√
xi√
xk

+
3√
2

+
√

2

√
xk+1√
xk

.

If we multiply out by
√
xk we conclude that

√
xk+1 ≤ σ−3/

√
2√

2

√
xk −

∑k−1
i=1

√
xi.

If we set µ0 := σ−3/
√
2√

2
then as usual we obtain the condition (µ0 − 1)2 < 4⇔ −1 < µ0 < 3 for

the quadratic to have complex roots. Substituting for µ0 yields the lower bound 3(
√

2 + 1/
√

2).

3.2 Moving on an inclined line

In this section we consider the situation where the robot has unit speed in one direction, but
in the other direction, due to the inclination of the line, the robot is subjected to a constant
acceleration c.

Consider a target at distance d > 1 from the origin. In the theorem below we show that the
doubling strategy has unbounded competitive ratio.
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Theorem 5 Assume the robot moves with acceleration c in the positive direction, and constant
speed 1 in the negative direction using the doubling strategy. Then for any d ≥ 1,

√
2c
√
d < σD(d) ≤

√
8c ·
√
d+O(1)

Furthermore, σ∗ ≥ supd>1 min{2 +
√

2/(cd),
√

2 +
√
cd/2}.

Proof. Let’s look at the lower bound first. The robot must visit both points +d and −d.
Assume that −d is the first point to be visited by the robot. Then the adversary will place the
target at +d. Therefore the robot will traverse the segment [−d, 0] in time at least d and then
move downhill a distance 2d to the target. Thus

σ∗ ≥ (d+
√

4d/c)/
√

2d/c =
√
cd/2 +

√
2.

Now assume that +d is the first point to be visited by the robot. Then the adversary will place
the target at −d. Therefore the robot will traverse the segment [0,+d] in time at least

√
2d/c

and then move uphill a distance 2d to the target. Thus

σ∗ ≥ (
√

2d/c+ 2d)/d = 2 +
√

2/(cd),

which proves the lower bound.
Next we look at the upper bound. Assume the robot executes the doubling strategy and let

the target be at distance d from the origin. Let k be such that 2k < d ≤ 2k+1 and b =
√

2/c.
There are two cases to consider depending on the parity of k.

The target is uphill and k is even. Since 2k < d, starting from the origin, the robot spends
search time

b+ (20 + 21) + b
√

21 + 22 + · · ·+ (2k−1 + 2k) + b
√

2k + 2k+1 + 2k+1 + d

= 2k+2 − 1 + b+ b
√

21 + 22 + · · ·+ b
√

2k + 2k+1 + d

< 5d+ b+ b
√

3(
√

20 +
√

22 + · · ·+
√

2k) = 5d+ b
√

3(2k/2+1 − 1)

The target is uphill at distance d; therefore if we divide the above expression by d, we conclude
that in this case σD(d) ≤ 5 +O(d−1/2).

The target is downhill and k is odd. Starting from the origin, the robot spends search
time

T =1 + b
√

20 + 21 + 21 + 22 + · · ·+ b
√

2k−1 + 2k + 2k + 2k+1 + b
√

2k+1 + d

= 2k+2 − 1 + b
√

20 + 21 + · · ·+ b
√

2k−1 + 2k +
√

2k+1 + d

= 2k+2 − 1 + b
√

3(2(k+1)/2 − 1) +
√

2k+1 + d

Since 2k < d ≤ 2k+1, we have that

2d− 1 + b
√

3(
√
d− 1) < T < 4d+ b

√
3
√

2d+ b
√

3d

The target is downhill at distance d; if we divide the above expression by b
√
d, we conclude that

in this case
2d

b
√
d

=
√

2c
√
d < σD(d) ≤ 4

b

√
d+O(1) =

√
8c ·
√
d+O(1).
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3.3 Starting at the top of a hill

This model differs from the previous one by having the origin of the line located on the top of
a hill. Thus, the speed of a robot increases when going downhill from the origin. Namely it
travels with constant speed 1 uphill but has a constant acceleration when going downhill. The
main result here is that the competitive ratio of the optimal search algorithm is unbounded.
Notice that if a robot has initial speed 1 at the top of the hill then when going downhill with
constant acceleration c it has at time t speed 1 + ct, and to covers distance x it needs time
(
√

1 + 2cx− 1)/c.

Theorem 6 Assume that the robot travels with constant acceleration c away from the origin,
and with unit speed towards the origin. Then σD(d) = Θ(

√
d) and this is optimal.

Proof. The upper bound proof uses the main idea of the upper bound in Theorem 5. However,
unlike in Theorem 5, the analysis of the algorithm is now symmetric. As before, let k be such
that 2k < d ≤ 2k+1 and b =

√
2/c. Since 2k < d, starting from the origin, the robot spends

search time

b+ 1 + (
√

1 + c22 − 1)/c+ 21 + (
√

1 + c23 − 1)/c+ 22+

+ · · ·+ (
√

1 + c2k+2 − 1)/c+ 2k+1 + (
√

1 + cd− 1)/c =

= b+
1

c
(−(k + 1) +

√
1 + cd+

k+2∑
i=2

√
1 + c2i ) +

k+1∑
i=0

2i

< b+
√

1 + cd/c+ b
k+3∑
i=3

√
2i +

k+1∑
i=0

2i < b+ 2k+2 + b2(k+4)/2 +
√

1 + cd/c

< b+ 4d+ b(1 + 4
√
d) +

√
1 + cd/c

The target is downhill at distance d; if we divide the above expression by b
√
d, we get that the

competitive ratio in this case is at most

b+ 4d+ b(1 + 4
√
d) +

√
1 + cd/c

b
√
d

=
4

b

√
d+O(1).

To see the lower bound, observe that the robot must visit both points +d and −d. Assume that
−d is the first point to be visited by the robot. Then the adversary will place the target at +d.
Therefore the robot will traverse the segment [−d, 0] in time at least b

√
d. To get to +d, the

robot needs time at least d to get to the origin and another (
√

1 + 2cd− 1)/c =
√

1/c2 + b2d to
reach the target. The omniscient optimal algorithm needs time b

√
d. Thus, for any strategy X,

σX(d) ≥
b
√
d+ d+

√
1/c2 + b2d

b
√
d

= 1 +
√
d/b+

√
1

c2b2d
+ 1.

3.4 Starting at the bottom of a valley

An interesting situation occurs if we reverse the speeds, i.e., the origin is located at the bottom of
a valley and thus we have constant acceleration when moving towards the origin, but the robot

12



moves at unit speed away from the origin (see Figure 2). In this case can prove the following
theorem:

Theorem 7 Assume that the robot travels with constant acceleration c towards the origin, and
with unit speed away from the origin. Then for any d ≥ 1:

σD(d) ≤ 5 +O(d−1/2)

Furthermore, σ∗ ≥ 5.

Proof. As before, the upper bound proof uses the main idea of the upper bound in Theorem 5.
However, unlike Theorem 5, the analysis of the algorithm is now symmetric. Let k be such that
2k < d ≤ 2k+1 and b =

√
2/c. Since 2k < d, starting from the origin, the robot spends search

time

1 + b
√

20 + 21 + b
√

21 + · · ·+ 2k + b
√

2k + 2k+1 + b
√

2k+1 + d

= 2k+2 − 1 + b
(√

20 +
√

21 + · · ·+
√

2k +
√

2k+1
)

+ d

< 4d+ b
(
√

2)k+2 − 1√
2− 1

+ d < 5d+
2b√
2− 1

√
d

The target is uphill at distance d; if we divide the above expression by d, we get that the
competitive ratio in this case is at most

5d+ 2b√
2−1

√
d

d
= 5 +O(d−1/2).

Next we look at the lower bound. Consider a deterministic strategy X = (x1, x2, . . .) with
xk > 0, for all 1 ≤ k < ∞. Because of the symmetry of the problem, we may assume that the
target is to the right of the origin between xk and xk+2 and k is odd. Then the time it takes to
find the target is

x1 + b
√
x1 + x2 + b

√
x2 + · · ·+ xk + b

√
xk + xk+1 + b

√
xk+1 + d =

k+1∑
i=1

xi + b

k+1∑
i=1

√
xi + d

Therefore the competitive ratio satisfies

σ ≥
∑k+1

i=1 xi + d

d
≥ 1 +

k+1∑
i=1

xi
xk

= 2 +
xk+1

xk
+
k−1∑
i=1

xi
xk
.

In turn, this gives rise to the following recurrence

xk+1 ≤ (σ − 2)xk +

k−1∑
i=1

xi. (14)

Note that Inequality (14) is exactly of the form displayed in Recurrence (7) with µ0 = σ−2 and
ν0 = 1. Moreover the same proof technique yields easily that the competitive ratio is at least 5.
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4 Discussion

In this paper we have considered and analyzed several zig-zag strategies for search on a linear
terrain for cases when the speed of the robot is not constant. Our work provides an initial step
for the study of a robot searching terrains of different profiles for a target placed at an unknown
location. We study two kinds of models of speed: two-speed models, and constant acceleration
models. An interesting observation is in our two-speed models, as in the traditional one-speed
model, the performance of the doubling algorithm vis-a-vis an omniscient optimal algorithm
gets worse as d (the distance of the target to the initial location) increases and converges to
some maximum value as d→∞. However, in the constant acceleration models that we studied,
either the competitive ratio is unbounded, or the performance of the doubling algorithm improves
vis-a-vis an omniscient optimal algorithm as d increases.
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