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SUMMARY 
The effect on earthquake rupturing of heterogeneities in tectonic stress and in material 
strength along a large fault zone is incorporated in the potential dynamic stress drop, 
defined as the difference between the tectonic shear stress and the dynamic frictional 
strength according to a slip-weakening model. The distribution of the potential dynamic 
stress drop Az,(x) along the strike of the fault plane is modelled as a 1-D stochastic 
process. Using a simple dynamic fracture criterion, a relation is established between 
earthquake rupturing and potential dynamic stress drop, by which any earthquake 
rupture process can be regarded as a segment of a realization of the process At&) 
where Azd(x) > 0. Since dynamic slip varies approximately linearly with dynamic stress 
drop, it has the same distribution function as Azd(x), provided that Azd(x) is a Gaussian 
process. Three independent earthquake observations, i.e. the average stress drop, the 
Gutenberg-Richter relation and the surface slip along earthquake faults, are used to 
estimate the distribution function of Azd(x). An analytical solution is derived for the 
distribution function of Azd(x), which shows that, among all known distribution models, 
only the fractional Brownian motion with index H -+ 0 (fractal dimension D = 2 in the 
1-D case) can give rise to the observed approximately constant stress drop independent 
of earthquake size. The probability distribution of the size of zerosets of the fractional 
Brownian motion shows a power-law relation with frequency, which resembles the 
frequency-seismic-moment relation. Using an average b value of 1 .O for small earth- 
quakes, an index H-+O of the fractional Brownian motion is obtained. The model 
predicts that the b value for large earthquakes is smaller than that for small earthquakes 
along the same fault zone, which is in agreement with observations. The surface slip 
data of two strike-slip-dominated earthquake faults with rupture lengths larger than 
100 km are inverted using power spectral analysis. Both data sets display a power-law 
relation between the sample power spectrum and the spatial frequency, which implies 
a fractional Brownian distribution. The estimated index H is close to zero for both 
earthquake faults. Stress drops, b values, and surface slips all independently suggest 
that the earthquake rupturing process can be modelled stochastically as a fractional 
Brownian motion with index H -+ 0. 
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INTRODUCTION 

Earthquake sequences are complex dynamic processes associ- 
ated with brittle faulting. The spatial and temporal distribution 
of earthquakes has a significant random component. This is 
reflected in the fact that many physical properties of earth- 
quakes have been formulated through statistical approaches, 

*Now at: Pacific Geoscience Centre, PO Box 6000, Sidney, BC, 
Canada V8L 4B2. 

such as the frequency-magnitude relation, the average stress 
drop-earthquake size relation and the recurrence times of large 
events (Wyss 1973; Kanamori & Anderson 1975; Caputo 1977; 
Hanks 1977; Wesnousky, Scholz & Shimazaki 1983; Singh, 
Rodriguez & Esteva 1983; Hanks & Boore 1984). It has also 
been recognized that the heterogeneities in tectonic stress and 
in rock strength along active fault zones may play an important 
role in earthquake mechanics (Das & Aki 1977; Aki 1979; Lay 
& Kanamori 1981; Lay, Kanamori & Ruff 1982; Aki 1984; 
Lomnitz-Adler & Lemus-Diaz 1989; Aki 1992; Dmowska & 
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Lovison 1992; Ruff 1992). Consequently, understanding the 
distribution characteristics of stress-strength heterogeneities 
may clarify the earthquake mechanism. 

Two empirical statistical relations seem to hold universally. 
One is the Gutenberg-Richter ( 1954) frequency-magnitude 
relation. The other is the constancy of average stress drop (e.g. 
Aki 1972; Thatcher & Hanks 1973; Kanamori & Anderson 
1975; Hanks 1977). As the logarithm of seismic moment has 
statistically a linear relation with the magnitude, assuming a 
constant stress drop, earthquake frequency can be related to 
seismic moment by a power law (3rune & King 1967; Wyss 
& Brune 1968; Kanamori & Anderson 1975). This power-law 
relation has led to the conclusion that the distribution of 
earthquakes is fractal (Hanks 1979; von Seggern 1980; Andrews 
1980; Aki 1981; Huang & Turcotte 1988). Using different b 
values, different fractal dimensions have been obtained; they 
nearly cover the permissible range from 2 to 3 in the 2-D case 
(Hanks 1979; von Seggern 1980; Andrews 1980; Huang & 
Turcotte 1988). Thus, the variation in b value is thought to be 
a consequence of the spatial and temporal variation of the 
fractal dimension D (von Seggern 1980; Huang & Turcotte 
1988). Investigations have also been carried out into the 
spectral properties of stress-strength heterogeneities based on 
the constant average stress drop (Hanks 1979; Andrews 1980). 
In spite of the same assumptions that (1) average stress drop 
is constant and ( 2 )  stress-strength heterogeneities follow a 
fractal distribution [specifically, a power-law dependence of 
the spectrum of potential stress drop on wavenumber by 
Hanks (1979), and a power-law dependence of the frequency 
of ruptures on size by Andrews (1980)], Hanks (1979) infers 
the fractal dimension D = 2, while Andrews (1980) obtains 
D = 3 (for the 2-D case). Theoretically, the physical properties 
of the fractal distribution of stress-strength heterogeneities are 
quite different for different Ds. It appears that the physical 
significance of the b value and the constancy of average stress 
drop are still imperfectly understood. 

The measured surface slips of large earthquake ruptures 
show heterogeneous features (Sharp et al. 1982; Crone & 
Machette 1984; Deng et al. 1986; Zhang et al. 1987; Nakata 
et al. 1990; Yoshida & Abe 1992). The variation of slip along 
the strike of an earthquake fault is very irregular. This irregu- 
larity cannot be interpreted solely in terms of variation of 
surface lithology and fault geometry, but it must reflect complex 
physical processes along the fault. Since slip is directly related 
to stress drop, measured surface slips are useful to infer the 
distribution of stress-strength heterogeneities. 

In this paper, the effects of heterogeneity in stress and in 
strength on earthquake rupturing are incorporated in the 
potential dynamic stress drop, defined as the difference between 
the tectonic shear stress and the dynamic frictional strength 
according to a slip-weakening model (Scholz & Aviles 1986). 
The potential dynamic stress drop allows both stress and 
frictional strength to vary along the fault, i.e. it poses no 
restrictions on the residual frictional stress. The potential 
dynamic stress drop is modelled as a stochastic process. Our 
analysis differs from previous ones mainly in three aspects: 

(1) the basis of our model is the potential dynamic stress 

(2) the analysis proceeds in the stochastic domain and 

(3) no a priori assumption is made on the distribution of 

drop, which has a clear physical meaning; 

follows the fundamentals of stochastic processes; 

stress-strength heterogeneities, whereas a fractal (fraction- 
al Brownian motion) distribution of the heterogeneities is 
assumed in almost all previous models. 

Three independent earthquake observations, i.e. the constancy 
of average stress drops, the frequency-magnitude relation, and 
the surface slips of earthquake faults, are used to explore the 
characteristics of the potential dynamic stress drop distribution. 

EARTHQUAKE RUPTURING AS A 
STOCHASTIC PROCESS 

Assume a planar fault with area A,,, that can generate 
earthquakes of all sizes; the maximum magnitude corresponds 
to rupture of the entire area. All earthquakes nucleate at some 
point on the fault plane, and the earthquake size (magnitude 
or seismic moment) depends on the ultimate rupture area 
(Hanks 1979; Andrews 1980; von Seggern 1980; Huang & 
Turcotte 1988). When an earthquake nucleates, the stress at 
the nucleation point must satisfy the Coulomb-Navier static 
fracture criterion: 

z,(xo, Y o )  - zf(X0, Y o )  2 0 ,  (1) 
where zs(xo,yo), zf(xo, yo)  are static shear stress and static 
frictional strength respectively, and (xo, yo) are the coordinates 
of the nucleation point in a Cartesian system on the fault 
plane with the x-axis and y-axis parallel to the strike and the 
dip direction respectively. Once the rupture has nucleated, 
dynamic fracture criteria govern the propagation of rupture. 
A simple dynamic criterion can be expressed as 

az3(x, y )  - zf(x, y )  (2) 
(Richards 1976; von Seggern 1980), where a 2  1 is a factor 
that brings the static stress up to a dynamic stress due to the 
stress concentration at the crack tips. The rupture will propa- 
gate if the dynamic criterion is satisfied in the area around the 
nucleation point. The magnitude of stress concentration at the 
crack tips is approximately equal to the dynamic stress drop 
of the adjacent ruptured area (Nur 1978). Therefore, inequality 
(2) can be written also as 

zs(x, y )  + Azd(X - Ax, y - Ay) - t f ( X ,  y) 2 0 ,  (3) 
where Azd(x -Ax, y - Ay) is the dynamic stress drop of the 
adjacent ruptured area at position (x - Ax, y - Ay). Here, we 
adopt a slip-weakening model as proposed by Scholz & Aviles 
(1986) in which Azd(x - Ax, y - Ay) is related to the static 
shear stress z, and the dynamic frictional strength zd as 

A T ~ ( x  - AX, y - Ay) = Z,(X - AX, y ~ Ay) - zd(x - AX, y - Ay). 
(4) 

We term Azd(x, y )  the potential dynamic stress drop, 
since before any earthquake occurs Azd(x, y) exists poten- 
tially on the fault surface. Azd(x, y) incorporates the effects of 
heterogeneity, both in stress and in strength, on rupture 
propagation. 

If either z,(x, y )  or zd(x, y )  (or both) is a stochastic process, 
Azd(x, y )  will be a 2-D stochastic process. A detailed discussion 
of the physical genesis of random distributions of zS(x, y) and 
zd(x,y) is beyond the scope of this paper. It is apparent, 
however, that z,(x,y) and z,(x,y) are not only functions of 
position, but also of time, since earthquake sequences involve 
the time-scale. Several arguments favour the stochastic nature 
of z3(x, Y )  and zd(X, Y): 
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(1) spatial and temporal variations in principal stress direc- 
tions and magnitudes may result in a random distribution in 
both shear stress and strength on the fault plane (Lana & 
Correig 1987); 

(2) the frictional coefficient shows a time-dependent behav- 
iour (Dieterich 1972, 1978; Dieterich & Conrad 1984); 

(3) the occurrence of small earthquakes causes random 
redistributions of the shear stress along the fault plane 
(Andrews 1980); 

(4) irregular variations of pore pressure and stress corrosion 
give rise to randomness in the time dependence of the strength 
(e.g. Scholz 1990, pp. 29-35). 

In this paper, we consider only the variation of Azd(x,y) 
along the strike direction and model ATd(?) by a 1-D stochastic 
process, as a profile of the 2-D process Az,(x,y). When an 
earthquake nucleates at a point, the inequality z,(x, y) - 
~ ( x ,  y )  < 0 must hold everywhere except at the nucleation 
point. The rupture terminates at points where the potential 
stress drop bzd(x) I 0, according to inequality (3). However, 
Azd(x) 5 0  is a sufficient but not necessary condition for the 
termination of the rupture. The rupture can also stop at points 
where Azd(x) is small and the state of stress does not satisfy 
the dynamic criterion (inequality 3). Consequently, under this 
simple dynamic criterion, earthquake rupturing is connected 
with the potential stress drop. Any earthquake faulting process 
can be regarded as a segment of a realization of the stochastic 
process Azd(x), that is, a segment where Azd(x) > 0. Different 
distribution functions (or spectra) of Azd(x) will give rise to 
different patterns of earthquake distributions, 

Many physical processes in nature can be modelled by 
Gaussian (normal) processes (Priestley 1981). If both zS(x) and 
zd(x) are Gaussian processes with a constant mean, Azd(x) 
must also be a Gaussian process with a constant mean 
E[Atd(x)] = E[z,(x)] - E[Td(x)] because z,(x) and zd(x) are 
independent. Earthquake observation suggests that during a 
seismic cycle the regional tectonic stress increases with time, 
and rock strength decreases with time, due to stress corrosion 
and wearing-out of asperities. Both effects will cause an increase 
of the mean of Azd(x) with time. Because a larger segment of 
Azd(x) will be shifted above zero due to the increase of the 
mean, the probability of large earthquakes along a given fault 
increases with time. Seismic cycles have been interpreted in 
terms of variation of the spectrum of stress and strength from 
roughness to smoothness (von Seggern 1980; Huang & 
Turcotte 1988). They could also result from a stationary 
process (usually with rough paths) coupled with a time-varying 
(increasing) mean of the potential dynamic stress drop. 
Throughout this paper, we focus our attention on the spatial 
variation of the potential dynamic stress drop. The effect of 
the time factor on the occurrence of earthquakes is discussed 
only briefly. Further investigation into the time variation of 
the potential dynamic stress drop and its effect on earthquake 
occurrence is currently in progress. 

We use three independent earthquake observations, i.e. the 
constancy of average stress drops, the Gutenberg-Richter 
relation, and the surface slips of earthquake faults, to infer the 
distribution function of Azd(x). 

AVERAGE STRESS DROP 

One of the most important features of the earthquake process 
is that average stress drops are statistically constant. The 

average stress drops on seismic faults are almost always found 
to lie within the range of 1-lOMPa, with a mean value of 
about 5 MPa, independent of source dimension and of geo- 
graphic location over twelve orders of magnitude in seismic 
moment (e.g. Aki 1972; Thatcher & Hanks 1973; Kanamori & 
Anderson 1975; Hanks 1977). Some investigations have been 
carried out into the spectral properties of stress-strength 
heterogeneities based on this observation [see the discussion 
of the work by Hanks (1979) and Andrews (1980) above]. 

An earthquake rupture process can be regarded as a segment 
of a realization of the stochastic process Azd(x,y), where 
Azd(x, y) > 0. Thus the average stress drop is the integral of 
Atd(x, y) over the rupture area, divided by the area. In the 1-D 
case, the average stress drop can be expressed accordingly as 

G ( L )  = - AZd(X) d X ,  h d ( X )  2 0 .  ( 5 )  z s, 
For the average stress drop to be constant, the mean value of 
G ( L )  must be independent of L, where L is the rupture 
length. Here, we examine how constancy of average stress drop 
may arise from a stochastic process. 

First we consider a special case, i.e. assume a fractional 
Brownian distribution for Azd(x). Fractional Brownian motion 
with index H(O < H < 1 )  is defined as follows (Mandelbrot 
1983, pp. 350-352; Feder 1988, p. 170; Falconer 1990, p. 246; 
Turcotte 1992, p. 75): (1) Z(x) is continuous and Z(0) = 0 with 
probability P = 1; (2) for any x 2 0 and s > 0, the increment 
Z(x + s) - Z(x)  follows the normal distribution with zero mean 
and variance sOsZH, that is 

P(Z(X + s) - Z(X) I z )  = ~ 1 exp(---Ilf--)du, 2s, S Z H  J 2 n s , s ~  -m 

where so is a factor identical to the variance of the increment 
Z(x + s) - Z(x) when s = 1. This definition can be extended to 
processes with constant mean (rn) by changing the definition 
(1) from Z ( 0 )  = 0 to Z ( 0 )  = rn. The fractional Brownian motion 
comprises a family of random functions described by the index 
H(O < H < 1). When H = 112, it reduces to classical Brownian 
motion. Fig. 1 shows examples of fractional Brownian motion 
with zero mean and different indexes H, simulated using the 
method proposed by Feder (1988, pp. 172-174). The spectral 
properties of the processes are quite different for different H s .  
The smaller H is, the more conspicuous the high-frequency 
component of the process, and the process tends to be station- 
ary for H+O. The path (graph) of a fractional Brownian 
motion has an approximate fractal (Hausdorff) dimension of 
D x 2 - H for the 1-D case and D x 3 - H for the 2-D case 
(Falconer 1990, pp. 246-247). 

The paths (graphs) of the fractional Brownian motion are 
self-affine fractals, i.e. they look the same upon changing scales 
x+px and Azd(x)+pHAzd(x), where p is a constant and fi 
is the index (Wong & Lin 1988). However, this scale-invariant 
property of fractional Brownian motion is only valid for the 
statistical average of ensembles. For any given finite realization, 
the two records can be quite different and the vertical scale 
will not be changed by the expected factor p H  (Feder 1988, 
p. 167). This means that the spatial position of Azd(px) is not 
equal to that of pHAzd(x) for any finite records, but their mean 
values are identical. Using this scale invariance and recalling 
eq. (5), the mean value of average stress drop over a rupture 
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Figure 1. Simulated 1-D fractional Brownian processes for different indexes H ,  with mean zero and variance equal to xZH.  (a) H = 0.01: 
(b) H = 0.2; (c) H = 0.5 and (d) H = 0.8. 

length pL is variance is 

Eq. (7) shows that if Azd(x) follows a fractional Brownian 
distribution, ruptures with different lengths (or earthquakes 
with different magnitudes) can have a constant average stress 
drop only if H --* 0 otherwise, the mean value of average stress 
drops would increase systematically with rupture size. 
Furthermore, eq. (7) also agrees with the observation that 
average earthquake stress drops, although having a constant 
mean value, vary within a finite dispersion (Hanks 1977). 

Now we take the general case, i.e. without any assumption 
about the probability distribution of AT~(x). As Azd(x) is a 
continuous stochastic process, its sample mean is 

A, = ~ jxl AZ,(X) dx. (8) 

Note that A, is different from K ( L )  given in eq. ( 5 ) .  The 
former is the, sample mean of a segment of a realization of the 
process Az,(x), which can take either a positive or a negative 
value. The latter is the sample mean of a portion of a realization 
where Az,(x)20. Since AT,@) is a random variable for any 
fixed x, it follows that Ar is also a random variable. Its mean 
can be derived from eq. (8) as 

x1-xo xo 

r x .  
(9) 

where E[Az,(x)] is the mean of Azd(x) at a point x, and its 

Consequently, any G ( L )  (the average earthquake stress drop) 
can be considered as a sample of all positive values taken by 
the random variable AT. 

Taking a Gaussian process as an example, A, follows the 
normal distribution with mean and variance given by eqs (9) 
and (10) respectively (Priestley 1981, p. 91). Because G ( L )  
takes only positive values, its mean value is always larger than 
the mean of A,, and it also increases as the mean of A, 
increases. Therefore, for the average stress drop to have a 
constant mean, the mean of fir must be constant. Eq. (9) shows 
that this condition is satisfied only if Azd(x) has a constant 
mean E[Az,(x)] = m,, independent of position. Eq. (9) is thus 
reduced to 

where m, is the mean of the process Azd(x). However, the 
constant mean is a necessary but not a sufficient condition for 
Azd(x) to give rise to the constancy of average stress drops. 
This point can be seen clearly by considering the variance of At. 

Fig. 2 shows two distributions of A, with an identical mean 
and different variances. The mean value of the average stress 
drop increases with the variance of the sample mean. 
Consequently, for the average stress drop to maintain a 
constant mean value, At must have not only a constant 
mean, but also a constant variance. Substituting eq. (1 1) into 
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Figure 2. Schematic diagram of two normal distributions of mz, with 
mean zero and variance (A) V = 4 and (B)  V = 36. The two vertical 
lines show the positions of the mean of G ( L )  for the two distributions. 

eq. (10) yields 

V ( k J  = E[(m, - m,)'] 

Changing the integral variables from x, t to x, s = t - x, we 
thus obtain 

V ( i q  = 
1 jX'-'" ds jx;-s 

(x1 -Xo)' s_,,,,o~ ds lo+lsl 
(Xi  - XO)' -(XI -xo) 

COV[AZ,j(X), ATd(X + S ) ]  dx, S 2 0 
1 x1 -*o XI 

V(&) = 

COV[AZd(X), AZd(X + S)] dX, S < 0 (13) 

where cov [Azd(x), Azd(x + s)] is the autocovariance function 
of Azd(x). Eq. (13) shows ;hat a necessary condition for V(%,) 
to be constant is that the autocovariance function be indepen- 
dent of position. This result demonstrates that Azd(x) must be 
a stationary process. If the fractional Brownian motion is used 
to model the process A.zd(x), only one member in this family 
can become a candidate, that is, the one with index H+O, 
because the fractional Brownian motions with other indexes 
are non-stationary. This conclusion is consistent with that 
based on scale invariance. 

Stationarity is not a sufficient condition for Azd(x) to produce 
a constant earthquake stress drop. By taking the autocovari- 
ance function, which is now a function of s only, out of the 
second integral, eq. (13) reduces to 

V(&) = - 

For most stationary processes, such as autoregressive, 
moving average, and general linear processes, since 

cov[A.zd(x), Atd(x + s)] is an even and decreasing function of 
I s I ,  V(A,) is also a decreasing function of the sample size, and 
usually V(&) -P 0 as the sample size (xl - xo) goes to infinity 
(Priestley 1981, p. 320). Because the mean value of G ( L )  
increases sIowly with increasing V(&) (see Fig. 2), small earth- 
quakes should have a mean value of average stress drop 
slightly larger than that of large earthquakes. Besides, the 
dispersion of average stress drops should decrease as earth- 
quake size increases. Statistical results on earthquake stress 
drop show that neither of these predictions is fulfilled (Hanks 
1977). This excludes those stationary processes whose autocov- 
ariance function is a decreasing function of IsI. However, a 
stationary process exists that can lead both to a constant mean 
and a constant variance of m,, and consequently give rise to a 
constant mean value of earthquake stress drops, independent 
of earthquake size. This is the fractional Brownian motion 
with index H-0.  Recalling the definition of fractional 
Brownian motion, the autocovariance function is 

COV[ATd(X), AZd(X + S)] 

When H + 0, the autocovariance function is approximately 
independent of both x and s, and so becomes the variance of 
the process Azd(x). Thus, V(ri?,) can be obtained from eqs (14) 
and (15) as 

The variance of kt (sample mean), which is approximately 
equal to half the variance of the process, is constant and 
independent of sample size. Consequently, the mean value of 
Azd(L) (average earthquake stress drop) is also constant and 
independent of rupture length. 

In summary, the observed constancy of average stress drop 
requires that Az,(x) be a stationary process, which is implied 
by the fact that the statistical properties of the earthquake 
process do not change over position. Physically, this can be 
explained by postulating that the overall levels of both the 
static shear stress and the dynamic frictional strength remain 
constant on average and do not fluctuate too far from their 
mean values along the fault. In other words, the fault (and by 
extension the brittle crust) is in a metastable state, everywhere 
near failure (see also Sornette, Davy & Sornette 1990a). 
Consequently, the mean and variance of the dynamic stress 
drop can be expected to be constant and not to increase or 
decrease systematically with position. However, the constancy 
of average stress drop implies rather more than this. Many 
stationary processes whose autocovariance function is charac- 
terized by a decreasing dependence on I S /  cannot give rise to 
a constant mean value of the average stress drop independent 
of rupture size. Of the known models, only the fractional 
Brownian motion with H -0 can reproduce the observations. 
H -P 0 corresponds to D z 3 and shows a very rough profile of 
Azd(x) (see Fig. la), which contrasts with the very low value 
of D measured for the roughness of the fault surface (Aviles & 
Scholz 1987). This implies that the distribution of Atd(x) is 

- 
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affected not only by fault geometry, but also by many other 
factors, such as occurrences of small earthquakes, local fluctu- 
ations in lithology and fluid pressure. Main (1988) presented 
a model of recursive fault bends with low topological dimen- 
sions which nevertheless gave rise to a very rough stress profile. 

The fractional Brownian motion with H+O, which is often 
termed ‘flicker noise’, is an especially important stationary 
process. It has found many applications in geophysical model- 
ling (see Jensen et al. 1991 for general discussion). The flicker 
noise differs from other stationary processes mainly in its 
correlation function. It has a long-run correlation between 
positions of Azd(x) in the ‘past’ and in the ‘future’ along the 
x-axis, whereas other stationary processes are either ‘memory- 
less’, such as the white noise, or of ‘poor memory’. Although 
the increments of flicker noise are antipersistent (i.e. have a 
negative correlation), the process itself has a positive (persist- 
ent) correlation. One can derive from eq. (15) that the autocor- 
relation function for the flicker noise (H +O) is approximately 
constant and equal to 112. A detailed discussion of the physical 
genesis of the long-distance positive correlation of Azd(x) is 
beyond the scope of this paper. However, it is not difficult to 
find seismological and geological phenomena conforming to 
this property. For instance, the tectonic stress is persistently 
low along a fault segment where a recent large earthquake 
occurred and is continuously high along another segment 
where there has been no large earthquake for a long time. The 
large-scale variation in lithology may give rise to long-distance 
positive correlation in fault frictional strength. 

With respect to the effect of the time factor on the occurrence 
of earthquakes, the mean of the process Azd(x) is likely to 
increase during an earthquake cycle. When the slip-rate is high 
along a fault zone, the mean of Azd(x) increases more quickly 
with time, and the occurrence of large earthquakes is more 
frequent along the fault zone, i.e. the recurrence times of large 
earthquakes are short. The recurrence times of large earth- 
quakes depend on both the time-rate of the mean and the 
distribution of ATd(x). The former, which depends on the slip- 
rate of plate motion, is likely to be deterministic, and the latter 
is stochastic. Therefore, the recurrence times of large earth- 
quakes have a random component. We can determine only the 
average recurrence time of large earthquakes, which is related 
to the slip-rate of plate motion. 

THE GUTENBERG-RICHTER RELATION 

Besides the average stress drop, another important statistical 
property of earthquakes is the Gutenberg-Richter frequency- 
magnitude relation. Statistics of seismicity show that the 
exponential relation between the cumulative number of earth- 
quakes and the magnitude holds universally over a broad 
range of magnitudes, although the parameters may vary from 
one area to another (e.g. von Seggern 1980; Main & Burton 
1984; Rydelek & Sacks 1989; Main 1992; Pacheco, Scholz & 
Sykes 1992). Because the logarithm of seismic moment has a 
statistically linear relation with magnitude, a constant stress 
drop results in a power-law relation between the cumulative 
number of earthquakes and the seismic moment (Brune & 
King 1967; Wyss & Brune 1968; Kanamori & Anderson 1975): 

N(Mo)  = c1M;(*/C), (17) 
where c1 is a constant, and b and c are the slopes of the 
logarithmic magnitude-frequency relation and of the logar- 

ithmic seismic moment-magnitude relation respectively. This 
power-law scaling relation has led to the proposal that earth- 
quakes are manifestations of a fractal physical process (Hanks 
1979; von Seggern 1980; Andrews 1980; Aki 1981; Huang & 
Turcotte 1988). 

Investigations into the statistical behaviour of seismicity 
have followed two different directions. In the first approach, 
the Gutenberg-Richter relation is interpreted in terms of 
the random spatial (fractal) distribution of active fault 
sizes (Turcotte 1986; Hirata 1989; Sornette, Davy & Sornette 
1990b; Sornette & Davy 1991). In the second approach, the 
Gutenberg-Richter relation is ascribed to the random distri- 
bution of inhomogeneous stress and strength along a single 
fault (Hanks 1979; von Seggern 1980; Andrews 1980; Huang 
& Turcotte 1988). More recently, a few models have been 
proposed that combine these two interpretations (Sornette, 
Vanneste & Sornette 1991; Lomnitz-Adler 1992). Here, our 
analysis is restricted to the physical genesis of seismicity along 
a single fault. 

Although the frequency-magnitude relation is usually 
derived from statistics of regional or global seismicity, studies 
of seismicity along a single fault zone suggest that it is also 
applicable in this case (Wesnousky et al. 1983; Singh et al. 
1983; Schwartz & Coppersmith 1984; Davison & Scholz 1985). 
For small earthquakes with rupture radius P I ho/2 sin 0, where 
ho is the thickness of the seismogenic layer and 0 is the dip of 
the fault plane, with an average c-value equal to 1.5, eq. (17) 
can be expressed in terms of the rupture area: 

N ( A )  = e,A-b, (18) 
where c2 is a constant (von Seggern 1980; Scholz 1982; Huang 
& Turcotte 1988). Assuming b M 1.0, von Seggern (1980) 
obtained D = 3 (fractal dimension for the graph of the 2-D 
fractional Brownian motion). Huang & Turcotte (1988) 
obtained b z 0.77-1.1 1 by numerical simulation of the 2-D 
fractional Brownian motion with fractal dimension 
D M 2.2-2.4. In both cases, the spatial and temporal variations 
in the b value were considered as a reflection of the variation 
in the fractal dimension. 

In our model, the propagation of earthquake rupture in 
principle stops at positions where Azd(x, y )  = 0. Therefore, the 
study of the earthquake size distribution is approximately 
equivalent to the study of the size distribution of zerosets of 
the stochastic process Azd(x,y). The zerosets are defined as 
sets of intersections between Ar,(x, y )  and the plane Azd(x, y )  = 
0, and their size is the area within the intersection line. For 
2-D fractional Brownian motion, the number of zerosets with 
size larger than A is given as (Adler 1981, p. 215; Mandelbrot 
1983, p. 260 and p. 272) 

N(A)  = c3A- (2 -H) /2 ,  (19) 
where c3 is a constant and H is the index. D, = 2 - H is often 
called the fractal (or Hausdorff) dimension of the zerosets; the 
relation between the fractal dimension of the zerosets and the 
fractal dimension of the path of fractional Brownian motion 
is D, = D - 1. Eq. (19) is derived under the condition that the 
process has a mean of zero, whereas the mean of Atd(x, y )  is 
likely to increase during a seismic cycle and may not be zero. 
It has been proven, however, that eq. (19) is still valid for any 
level sets defined as sets of intersections between Az,(x, y )  and 
the plane Azd(x, y )  = B, where B is any given value, as long as 
the level sets are not empty (Adler 1981, p. 251). This implies 
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that eq. ( 19) can be applied to Azd(x, y )  with non-zero mean 
as well. An exactly solvable model for eq. ( 19), applicable to 
the magnitudefrequency distribution, has been provided by 
Hemmer & Hansen (1992) and Sornette (1992). 

Eq. (19) shows that the fractional Brownian motion gives 
rise to a power-law relation between the cumulative number 
and the size of zerosets similar to the frequency-rupture area 
relation given in eq. (18). Comparison of the two equations 
yields 

H = 2 - 2b.  

Based on eq. (20), the spatial and temporal variation in b 
value can be interpreted in terms of the variation of fractal 
dimension D of Azd(x, y )  (von Seggern 1980 Huang & Turcotte 
1988). However, since the cumulative number of zerosets with 
size larger than A is a random variable, eq. (19) refers to its 
mean value (Adler 1981, p. 215; Karatzas 1988, pp. 400-417). 
Consequently, for a given H or D, two records of any given 
finite realization of Az,(x,y)  do not give rise to the same 
number-size relation, but the mean value of the cumulative 
number of zerosets for all realizations is related to the size by 
a power-law relation (eq. 19). Since each realization of the 
process Azd(x, y )  corresponds to an instant on the time-axis, 
the mean value of the cumulative number of zerosets is 
equivalent to the cumulative number of earthquakes during a 
long period of time. Therefore, the variation in b values can 
arise from a dispersion from the mean value due to the 
randomness of zerosets, rather than from a one-to-one relation 
between the b value and the fractal dimension D. This inference 
is supported by the observation that the average b value over 
long time periods is stable and approximately equal to 1.0, 
although over short times it varies from 0.5 to 1.5 (Shi & Bolt 
1982; Scholz 1990, pp. 188-189). Taking on the average b % 1.0, 
it follows that H+O. This result is consistent with that based 
on the observation of constant average stress drop. 

For larger earthquakes, i.e. earthquakes with rupture length 
L 2 h,/sin 8, where h, and 8 have the same meanings as in 
eq. (18), a model has been proposed by Scholz (1982, 1990, 
pp. 180-189). This model (termed the L-model), assuming an 
average c-value equal to 1.5 and a constant fault width, 
expresses the cumulative number of large earthquakes with 
rupture length 2 L as 

(20) 

N ( L )  = c4L-(4b'3), (21) 

where c4 is a constant. 
The ultimate rupture sizes of large intraplate earthquakes 

depend predominantly on how far the rupture can propagate 
along the strike direction, since the rupture width is constrained 
by the thickness of the seismogenic layer. Therefore, their 
frequency-size relation is equivalent to the distribution of 
zerosets of the 1-D process Atd(x) .  The mean value of the 
cumulative number of zerosets with length larger than L is 
given by (Adler 1981, p. 215; Mandelbrot 1983, p. 354) 

N(L)  = c,L-"-H', (22) 

where c5 is a constant and H is the index (Dz = 1 - H is the 
fractal or Hausdorff dimension of the zerosets of the 1-D 
fractional Brownian motion). Comparing eq. (22) with eq. (21), 
we obtain 

4b 
3 '  

H = 1 - -  

The average b value for large earthquakes along a single fault 
zone is not available because the historical record is not 
sufficient to do meaningful statistics for a single fault. Using 
H +O, we predict that on average b x 0.75, i.e. the b value for 
large earthquakes along a single fault zone is smaller than that 
for small earthquakes. A few case studies have suggested that 
the maximum earthquake size is greatly underestimated by the 
extrapolation of the size distribution of small earthquakes for 
the same fault, which implies a smaller b value for large 
earthquakes (Wesnousky et al. 1983; Singh et al. 1983; Schwartz 
& Coppersmith 1984; Davison & Scholz 1985). This result is 
in agreement with our theoretical prediction. 

The Gutenberg-Richter relation describes the number of 
earthquakes of given magnitude (or moment) per unit time. 
The time-rate of occurrence of earthquakes has been considered 
in other models (Lomnitz-Adler 1988; Rundle 1989). In this 
work, we assume that the mean of the process Azd(x) increases 
with time during an earthquake circle. Along the time-axis, 
different points correspond to different means of the process 
Azd(x) .  The fractional Brownian motion with any mean yields 
a power-law relation between the number and the size of the 
zerosets (eq. 19). Therefore, the fractional Brownian distri- 
bution of Azd(x) can generate the Gutenberg-Richter relation 
per unit time. 

SURFACE SLIPS OF EARTHQUAKE 
FAULTS 

Investigation of large earthquake ruptures has shown that the 
variation of surface slips along the strike of faults is very 
irregular (Sharp et a/. 1982; Crone & Machette 1984; Deng 
et al. 1986; Zhang et al. 1987; Nakata et al. 1990; Yoshida & 
Abe 1992). This irregularity cannot be interpreted in terms of 
the variation of surface lithology and fault geometry alone, 
but it must reflect a complex physical process along the fault. 

On the basis of the circular rupture model and/or the 
rectangular L-model, a linear relation is obtained between the 
average stress drop and the mean slip (Scholz 1990, p. 181): 

where cg, for a given rupture, is a constant that depends on 
the rupture model and material parameters. We rewrite eq. (24) 
as 

AZd(X) = C,AUd(X), Atd(X) 2 0 ,  (25) 

in which both quantities are expressed as a function of position. 
For a given rupture, integration of eq. (25) yields eq. (24). 
Since Azd(x)  is a stochastic process, the dynamic slip Aud(x) is 
also a stochastic process. Its mean is 

where c7 = l/c6 is a constant for a given earthquake. Its 
autocovariance function is 

COV[AUd(X), AUd(X + S)] 

= C: COV[Azd(X), ATd(X + S)] , Azd(X) 2 0 .  (27) 

Eq. (27) shows that the process Aud(x) has the same distri- 
bution function as Azd(x), but with a different mean and 
variance, provided that Azd(x) is a Gaussian process. This 
can be seen clearly from their autocorrelation functions. 
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Eq. (27) gives 

where pJs) and p,(s) are the autocorrelation functions of the 
two processes. Since their autocorrelation functions are ident- 
ical, Aud(x) and A7,(x) have the same normalized power 
spectrum. Therefore, the distribution function of the potential 
dynamic stress drop Azd(x) can be estimated by power spectral 
analysis of surface slip data. 

Spectral analysis is a common method to estimate the 
distribution function of stationary stochastic processes (see 
Priestley 1981, pp. 432-449). Application to non-stationary 
fractional Brownian motion yields an approximate power-law 
dependence of the power spectral density on ;he wavenumber 
K ,  provided that ~t is relatively large: 

(29) kK) N C , K  -0  +2H) 

where c, is a constant and H is the index (Mandelbrot 1983, 
p. 388; Falconer 1990, pp. 155-158). Consequently, spectral 
analysis can be applied to infer whether a given record 
originates in a particular stationary process or in one of the 
fractional Brownian family by comparing the sample power 
spectral density function with theoretical ones. 

In order to make the estimation rigorous, slip data sets 
should satisfy the following conditions: (1) the earthquake 
fault is large; (2) there exist no or little surface unconsolidated 
sediments; and (3) the size of the data set is large, i.e. there 
are many measurements of slip along the earthquake fault. 
Although there are many earthquake ruptures whose slips 
have been measured, data sets that satisfy the above three 
conditions are rare. We analyse two earthquake ruptures 
reasonably suitable for this purpose. One is the 1920 Haiyuan 
earthquake ( M  = 8.7) in north-western China (36.7"N, 105.3"E) 
(Deng et al. 1986; Zhang et al. 1987). The other is the 1990 
Luzon earthquake (M,  = 7.8) in the Philippines (15.7"N, 
121.2"E) (Nakata et al. 1990; Yoshida & Abe 1992). The 
Haiyuan earthquake caused a surface breakage about 220 km 
long. The fault is predominantly strike-slip with a relatively 
small dip-slip component. Although the earthquake occurred 
several decades ago, the displacements are still visible in most 
places along the fault trace. Deng et al. (1986) and Zhang et al. 
(1987) took detailed measurements of the horizontal compo- 
nent of displacement associated with this earthquake, for a 
total of 168 slip measurements along the 220 km long surface 
fault (the maximum measured horizontal displacement is about 
12 m). The surface fault associated with the Luzon, Philippines 
earthquake is about 120 km long, with a predominant strike- 
slip component. The surface ruptures are impressive, offsetting 
roads, foot-paths, streams, paddy dykes and so on (Nakata 
et al. 1990; Yoshida & Abe 1992). The displacements were 
measured in detail along the fault (Nakata et al. 1990; Yoshida 
& Abe 1992). There are in total 111 separate measurements, 
and the measured maximum amount of slip is about 6 m. [See 
Deng et al. (1986) and Yoshida & Abe (1992) for detailed 
information about the surface displacement measurements of 
the two seismic faults.] 

The surface displacements are affected by many factors, such 
as the inertial force, surface lithology, and measurement errors. 
We assume that the effects of surface lithology and measure- 
ment errors are relatively small. The inertial force or 'over- 
shooting' causes the final static slip to be on average about 

30 per cent larger than the dynamic slip (Scholz 1990, p. 174) 
and therefore its effect on the dynamic slip can be approximated 
by the surface displacements divided by a constant factor. 
Since a Gaussian process times a constant factor is still a 
Gaussian process, the use of the original data does not affect 
the estimation. We have applied power spectral analysis to the 
measured surface slips of the two earthquake faults to estimate 
the distribution function of Ard(x). The estimated power 
spectra of surface slips for the two earthquake faults are shown 
in Fig. 3. The estimation is not robust due to the relatively 
poor data sets (small sample size and irregular sampling), and 
the curves of power spectral density fluctuate more than the 
theoretical ones. However, the sample power spectral density 
shows clearly a power-law dependence on the spatial frequency 
f (wavelength is llf) for both data sets. These results confirm 
that the process Azd(x) follows the fractional Brownian distri- 
bution. The estimated index, calculated using the method of 
least squares, is H = 0.13 for the Haiyuan fault and H = 0.27 
for the Luzon fault; both values are small. Consequently, this 
result does not contradict the conclusion H - 0  obtained from 
the observation of constant average stress drop and the 
Gutenberg-Richter relation. It also shows that, even just before 
the two large earthquakes occurred, the spatial series of the 
potential dynamic stress drop were very rough, contrary to 
the hypothesis (von Seggern 1979; Huang & Turcotte 1988) of 

6 -1 1 
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' I  I I 
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Figure 3. Logarithmic power spectral density of surface slip. 
(a) Haiyuan fault; (b) Luzon fault. The linear least-squares best fits are 
denoted by the straight lines. H is the estimated index. 
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a gradual change from roughness to smoothness of the stress- 
strength difference during the earthquake cycle. 

CONCLUSIONS 

Nearly all previous stochastic models of the earthquake process 
assume a priori a fractal distribution of stress and strength 
heterogeneities along the seismic fault. This assumption is 
dropped in this paper. Assuming a stick-slip weakening model, 
a relation is established between heterogeneities in stress- 
strength and the potential dynamic stress drop (and, conse- 
quently, fault slip). The variation of the potential dynamic 
stress drop h d ( x )  along the strike of the fault plane is modelled 
as a 1-D stochastic process. Thus, any seismic rupture can 
be regarded, as a segment of a realization of Azd(x) where 

Three sets of independent observations (observed stress drop, 
Gutenberg-Richter magnitudefrequency relation, and meas- 
ured surface slip along a seismic fault) are used to infer the 
properties of ATd(x) .  The constancy of the observed average 
stress drop places important constraints on the distribution 
function of Azd(x). The property of scale invariance shows 
that, if the distribution of Azd(x) is of fractional Brownian 
type, only the member of the Brownian family with index 
H --* 0 can give rise to a constant mean value of average stress 
drop. The result for the general case, i.e. without the assumption 
of fractal distribution, is the same as that based on the property 
of scale invariance. Among several possible stochastic models, 
it appears that only the fractional Brownian motion with 
H -0 (fractal dimension D = 2 in the 1-D case) can produce 
an approximately constant mean value of seismic stress drop, 
and so fit the observations. 

The distribution of zerosets in the fractional Brownian 
motion has the same power-law dependence on frequency as 
the earthquake rupture size, and therefore the fractal dimension 
D can be related to the b value in the magnitudefrequency 
law. However, the spatial and temporal variations of the b 
value can be interpreted to be a consequence of the randomness 
of the zerosets, rather than a consequence of variations of D. 
Using an average value of b z 1.0, the result H z 0 is obtained 
for the case of small earthquakes, which is in agreement with 
that based on the constancy of average stress drop. We also 
predict that the b value for large earthquakes is somewhat 
lower than that for small earthquakes along a common fault. 
This inference seems to be confirmed by observation and is 
potentially of importance for the estimation of the maximum 
magnitude. 

Using the relation between the average stress drop and the 
average slip, the dynamic slip can be expressed as a linear 
function of the dynamic stress drop, both of which are a 
function of position along the seismic fault. The dynamic slip 
follows the same distribution as the dynamic stress drop, 
provided that the latter is a Gaussian process. Consequently, 
the distribution function of the potential dynamic stress drop 
can be inferred using earthquake fault slip data. The slip data 
of two large predominantly strike-slip earthquake faults have 
been analysed by power spectral analysis. Both faults show 
clearly a power-law relation between the power spectrum and 
the spatial frequency, which confirms that the process ATd@) 

follows the fractional Brownian distribution. The result of 
estimation, although not robust due to relatively small sample 
sizes and irregular sampling, does not contradict the conclusion 

A Z d ( X ) > o .  , 

H -+ 0 obtained from the observation of constant average stress 
drop and from the Gutenberg-Richter relation. 

Further work is required to confirm the fractional Brownian 
distribution (with H + 0) of the earthquake process, using 
other arguments, based for instance on records of strong 
ground motion. Our analysis suggests that many earthquake 
parameters, such as the b value and the average stress drop, 
are random variables. The dispersions as well as the central 
values of these variables are likely to pose additional con- 
straints on the distribution function of ATd(x) .  In addition, the 
model presented in this paper is purely stochastic and does 
not consider the deterministic properties of the seismic occur- 
rence. Models combining stochastic and deterministic analyses 
will improve our understanding of the earthquake process. 

With respect to earthquake prediction, the model is pessi- 
mistic about the relevance of the variation of b values to the 
likelihood of large earthquakes, because the b value is a 
random variable and is unstable in short time periods. The 
model also suggests that understanding the variation of AT&) 
along a single large fault zone at depth is of primary importance 
for earthquake prediction. Any workable approach to earth- 
quake prediction should incorporate the stochastic analysis of 
seismicity, the distribution pattern of small earthquakes, and 
space-time correlations between earthquakes along a single 
fault. 
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