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Abstract 

The S/U formalism of Peskin and Takeuchi is an elegant method for encoding the measurable effects of new physics which 
couples to light fermions dominantly through its effects on electmweak boson propagation. However, this formalism cannot 
handle the case where the scale of new physics is not much larger than the weak scale. In this case three new parameters 
(V,W and X) are required. A global fit to precision electroweak data for these six parameters is performed. Our results differ 
from what is found for just S/U. In particular we find that the preference for S < 0 is no longer statistically significant. 

1. Introduction 

As we impatiently await our first glimpse of physics 
beyond the standard model, an important task is to 
develop methods for parametrizing measurable ef- 
fects of new physics. This activity constitutes the vital 
link between experiment and the actual calculation of 
the effects of specific underlying models. One such 
parametrization is the STU treatment of Peskin and 
Takeuchi [ 1 ], the end product of which is a set of ex- 
pressions for electroweak observables, consisting of 
a standard model prediction corrected by some linear 
combination of the parameters S, T and U. The power 
of this formulation is that it permits the encapsulation 
of the experimental implications of a very broad class 
of new physics in terms of a very small number of 
parameters. It has broad applications because it relies 

1 Permanent Address: Physics Department, McGill University, 
3600 University St., Montr6al, Qu6bec, Canada, H3A 2T8. 

only on the validity of two requirements. (i) The new 
physics must contribute to light-fermion scattering 
dominantly through changes to the propagation of the 
usual electroweak gauge bosons. (Such self-energy 
contributions have come to be called 'oblique' cor- 
rections, and were first baptised as such in Ref. [2] .) 
(ii) The scale, M, of new physics must also be large 
enough to justify approximating the new-physics con- 
tributions to gauge-boson self-energies at linear order 
in q2/M2 [3]. Typically this requires M > 1 TeV. 
The technique has been applied to a wide variety of 
models [4] which satisfy these two requirements, 
including technicolor models, multi-Higgs models, 
models with extra generations, and the like. 

The requirement that the scale of new physics be 
large is something of a handicap, since the possibility 
of having previously-undetected new physics that is 
comparatively light is especially interesting. At first 
sight any useful relaxation of this assumption appears 
to be doomed, even if the dominant corrections are still 
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of the oblique form. This is because in this case the full 
q2-dependence of the vacuum polarizations cannot be 
summarized in terms of the values of a few constants. 
But the use of the entire vacuum polarization precludes 
obtaining reasonably model-independent constraints, 
since they contain too much information to be usefully 
fitted to the data. 

A way around this difficulty has recently been 
pointed out in Ref. [5]. To the extent that precision 
electroweak measurements are limited to momentum 
transfers q2 ~ 0 and q2 = M 2 or M 2 - presently a 
practical limitation - only three new parameters, V, 
W and X, are required to parametrize current experi- 
ments. This opens the possibility of using present data 
to constrain the large class of models with M < 1 TeV. 

In this Letter we briefly summarize the conclusions 
of Ref. [ 5 ], and report on the result of a global fit to 
the current range of precision electroweak measure- 
ments using this extended set of parameters. Adopting 
the conventional normalization, in which an explicit 
factor of the electromagnetic fine-structure constant, 
a, is included in their definitions, we find the parame- 
ters S through X to be bounded to be O(1) .  For com- 
parison, the contribution of a typical light particle to 
these parameters is expected to be of order 1/47rs 2 ~- 
0.3. We see that the data is sufficiently strong to con- 
strain models for which the electroweak scale is well 
populated with new particles. 

A second motivation is to see how the inclusion of 
V, W and X alters the bounds that have previously 
been obtained for S, T and U [ 1 ]. Global fits to S, 
T and U alone tended to favour central values for the 
parameter S that were negative, with S = +1 being 
excluded at the 20- level. This conclusion was particu- 
larly interesting considering that many models of the 
underlying physics at scale M, such as technicolour 
models, predict positive values for S and T [6]. Our 
more general fit finds that the preference for negative 
S is no longer statistically significant. In a joint fit for 
all six parameters we find that the 20- allowed range 
for S becomes -4 .3  < S < 2.5. Technicolour models 
might be able to use this result to evade the bounds 
from electroweak data, but only if they predict the 
existence of sufficiently light particles to allow signif- 
icant contributions to the new variables V, W and X. 

2. Expressions for observables in terms of S 
through X 

Insofar as it is sufficient to encode new physics ef- 
fects in gauge-boson self-energies only, one can ex- 
press electroweak observables as the usual SM predic- 
tion plus a contribution involving four types of pos- 
sible new-physics-generated self-energies, 81-Iab (q2), 
where {ab} = {WW}, {ZZ}, {Zv} and {VV}-Oblique 
corrections as general functions of q2 have been treated 
in [7] and [2]. To the extent that precision observ- 
ables only probe q2 ~ 0 and q2 = Mz2 and M 2, a sim- 
ple counting argument then shows that all corrections 
to electroweak observables can be expressed in terms 
of six independent combinations of the various 81-1's. 
The counting proceeds as follows. 

(1) A priori one would expect ten parameters 
to arise in observables, to linear order in 8IIab. 
These would consist of: 8Hrr(q2)/q 2 (q2 = 0, M2), 
t~ilzy(q2)/q2 (q2 = 0, Mz2), 8I-Iv, w(q 2) (q2 = 0, M2), 
t~rlzz (q2) (q2 o, M2) ,  , 2 ! 2 = 8II~(Mw),  and 8IIzz (Mz),  
where the prime denotes differentiation with respect 
to q2. (Note that 8rtrr(q2)/q 2 and 81-fzv(q2) /q  2 are 
well-defined at q2 = 0 since b'l-lr/(0) and 8IIzr(0) 
are zero by gauge invariance.) 

(2) Three combinations of these parameters can 
never lead to observable deviations from the Standard 
Model, since they can be absorbed into renormaliza- 
tions of Standard-Model quantities. These can be taken 
to be the renormalizations for the electroweak gauge 
potentials, W~, B~, and of the Higgs vev, (~b), for ex- 
ample. This brings the total number of precisely mea- 
surable combinations down from ten to seven. 

(3) Finally, new-physics contributions to 
8IIrr (M 2) are not expected to be measurable. This is 
because, at the Z resonance, the effect of 8IIrr(Mz 2) 
is already suppressed by Fz/Mz ,~ 0.03 relative to 
the effects of 8rIzv(M 2) and 8Hzz(M2). Thus, new- 
physics contributions to 8IIrr (M 2) are corrections to 
corrections, and can be neglected. This reduces the 
number of measurable oblique correction parameters 
to six. 

We therefore expect, to within the accuracy de- 
manded by current data, that all oblique corrections 
to observables should depend only on six combina- 
tions of the vacuum polarizations. We have verified 
that this is true by explicit calculation. The resulting 
expressions suggest the following six definitions [ 5 ]: 
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a S  [SIIzz (Mz  2) - 8IIzz(O) ] 
2 2 - 4SwCw i -M~ J 

(c5 - ~5) ~f i~ , (o )  - ~ f i , , ( o ) ,  
SwCw 

a T  = b'l-l~,(O) 8IIzz (0)  
M 2 M 2 ' 

a u  [ ~II~ , (M2)  - 81-I~,,(0) ] 
4 s 2 =  i h4~ 

2 [ a n = ( M ~ ) _ = , m = ( o )  ] 
-Cw L M2 ] 

- S2wSfirr (0) - 2SwCw~fi~r(O) 
aV , 2 [SII= (M~) - 8II=(O) J = 81I=(M~) - [ ~ , 

a W  ' 2 8IIww(M~) -- 8II,~,(O) 
= S I I - - (  Mw) - [ -~w ] '  

(5)  

a X = - s w C w  [t~[Iz~,(M2) - t S I I z , (O)  ] , (6)  

where 8[Iab( q 2) -~ 8nab( q2) / q  2. The first three of  

these agree with the standard defini t ions of  S, T and 
U that appear in  the literature. Manifest ly,  the expres- 
s ions for the r emain ing  three quanti t ies,  V, W and X, 
would  vanish i f  b'Hab (q2) were s imply a l inear  func-  
t ion o f  q2. This  ensures that exist ing expressions for 
observables  in  the STU formal ism are easily modified, 
when necessary, with the appropriate addit ional  cor- 
rections encoded by V, W and X. 

General  expressions for the obl ique  corrections to 
electroweak observables  may be found in Refs. [7] 
and [2 ] ,  which reduce in the present  case [5] to a 
dependence  of  these observables on the variables S 
through X. In  this analysis,  as is commonly  done, we 
take as numer ica l  inputs  the fo l lowing three observ- 
ables: a as measured in  low-energy scattering experi- 
ments ,  Gr  as measured in m u o n  decay, and Mz. These 
observables  are chosen because they are the most  pre- 
cisely measured.  With  this choice, the parameter  U 
appears on ly  in  the observables Mw and Fw, and W 
appears on ly  in  Fw. 2 We next  out l ine  these results, 
whose numerica l  values are summarized in Table 1. 

C.P. Burgess et al. / Physics Letters B 326 (1994) 276-281 

Table 1 
Summary of the dependence of electroweak observables on 
S.T, U, V,W and X 

(1)  Fz = (Fz)sM -O.O0961S+O.0263T+O.O194V 
-0.0207X (GeV) 

F~ = (F~)sM -- 0.00171S+ 0.00416T + 0.00295V 
(2)  -0.00369X (GeV) 

Ft+t- = (Ft+t-)SM -- 0.000192S+ 0.000790T+ 0.000653V 
--0.000416X (GeV) 

Fhaa = (Fhad)SM -- 0.00901S + 0.0200T + 0.0136V 
-0.0195X (GeV) 

AFa (/z) = (AFa(/-t))SM -- 0.00677S + 0.00479T-- 0.0146X 
Aool (r) = (Apol (~'))SM -- 0.0284S + 0.0201T -- 0.0613X 
Ae( Pr) = ( Ae( Pr) )SM - 0.0284S+ 0.0201T- 0.0613X 

(3)  A~(b) = (A~(b))sM - 0.0188S+ 0.013IT-- 0.0406X 
A~(c) = (A~(c))sM -- 0.0147S + 0.0104T- 0.03175X 
ALr = (ALr)SM -- 0.0284S + 0.0201T- 0.0613X 

(4)  M 2 = (M2)sM(1 -- 0.00723S + 0.011 IT + 0.00849U) 
Fw = (Fw) SM ( 1 -- 0.00723 S -- 0.00333T + 0.00849U 

+0.00781 W) 
= (~)sM - 0.00269S+ 0.00663T 
= (~)SM + 0.000937S -- 0.000192T 

g{(ve ~ re) = (~v)sM + 0.00723S-- 0.00541T 
~ ( v e  ---* re) = (~)SM -- 0.00395T 
Qw(133Cs) = Qw(CS)sM -- 0.795S- 0.0116T 

In preparing this table we used the numerical values a(M2z) = 
1/128 and s2w = 0.23 

In  observables defined at q2 ,,~ 0, on ly  the usual  pa-  
rameters S and T contribute.  For  example,  the effective 
value of  the weak mix ing  angle, (S2w)af, as measured 
in various low-energy asymmetr ies  ( such  as a tomic 
parity violat ion,  the low-energy neutral  current  scat- 
tering ratio R = o - ( v g e ) / o - ( ~ g e ) ,  etc.) is g iven by 

(s~)~ee(q2=O) 2 ~, 2 = (Sw)eff( q = 0 )  

a S  2 2 a T  SwCw 
d 4 ( c ~  - s~)  c~ - S2w ' (7 )  

and the relative strength of  the low-energy neutral-  and 
charged-current  interact ions is given by 

p = psM(e, Gr, Mz )  (1 + a T ) .  (8 )  

As for measurements  at the Z resonance,  the effec- 
tive weak mix ing  angle  is given by 

2 2 (Sw)eff(q2=Mz) 2 sM 2 2 = (Sw)eff( q = M z )  

orS 2 2 CwSwOtT 
+ 4(c2 w _ S2w) (c 2 _ s2 ) + a X ,  (9)  

and an example o f  a correct ion to Z-decay  is 

2 By contrast, a different choice of inputs - such as Mz, Mw and 
a for instance - would lead to U-dependence throughout all the 
neutral current observables. 
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-- F s u ( Z  ---~ ~,v) ( l  + a T  + a V ) .  

(10)  

Table 2 
Experimental values for electroweak observables included in global 
fit 

We thus see that V describes a contribution to the 
overall normalizat ion of  the strength of  the neutral- 
current interaction, while X acts to shift the effective 
value o f  ( 2 Sw)eff measured at the Z pole. 

The W boson mass and width are 

M 2 = (M2)sM(e,  sw, mz)  

[ c ,,T O,w] 
× 1 b ( c 2 _ s 2 w ) +  , (11)  

F ( W  ~ all)  = FsM(W ~ all)  

[ 2(C2w - s2~) a S  ( c ~ - s ~ )  s~aT  .-w etU ] × 1 . 

(12)  

As  advertised, the parameter  W turns out to appear 
only in the expression for Fw. 

A comprehensive list of  expressions for the elec- 
troweak observables that we include in our analysis is 
given in Table 2. These expressions consist o f  a ra- 
diatively corrected standard model  prediction plus a 
l inear combinat ion o f  the six parameters S, T, U, V, 
W and X. Fz and Fbb are the total width and par- 

tial width into bb; A n ( f )  is the forward-backward 
asymmetry for e+e - ~ f f ;  Apol(~'), or Pr, is the 
polarization asymmetry defined by Apol('r) = (o" R - 
O'L)/(O'R + O'L), where O'L.R is the cross section for 
a correspondingly polarized ~- lepton; Ae(Pr)  is the 
jo in t  fo rward-backward / l e f t - r igh t  asymmetry as nor- 
malized in Ref. [ 8 ] ; and AL.R is the polarization asym- 
metry which has been measured by the SLD collab- 
oration at SLC [9] .  The low-energy observables 
and ~ are measured in deep inelastic vN scattering, 

and ~ are measured in ve --~ ve scattering, and 
Q~(Cs)  is the weak charge measured in atomic parity 
violat ion in cesium. 

There are several features in Table 1 worth point- 
ing out. First,  as has already been mentioned, due to 
the choice of  numerical inputs ( a ,  Gr,  Mz) ,  only the 
two parameters S and T contribute to the observables 
for which q2 ,~ 0; the parameter U appears only in 
M~ and F,~. The l imit  on U comes principally from 
the Mw measurement,  since Fw is at present compar- 
atively poor ly  measured. For  the same reason, the pa- 
rameter W is weakly bounded, since it contributes only 

Quantity Experimental value Standard model 
prediction 

Mz (GeV) 91.1874-0.007 [10] input 
Fz (GeV) 2.4884-0.007 [10] 2.490 [4-0.0061 
R = Fhaa/Ftf 20.830 4-0.056 [10] 20.78[4-0.07] 

(nb) 41.454-0.17 [10] 41.42 I4-0.06] 
Fbb (MeV) 3834-6 [10] 375.9 [4-1.3] 
A~ (/z) 0.01654-0.0021 [10] 0.0141 
Apol (T) 0.1424-0.017 [10] 0.137 
Ae(P.t) 0.1304-0.025 [10] 0.137 
AFB (b) 0.0984 4- 0.0086 [ 10] 0.096 
AFB(C) 0.0904-0.019 [10] 0.068 
ALR 0.100 4- 0.044 [9] 0.137 
Mw (GeV) 79.91 4- 0.39111] 80.18 
Mw/Mz 0.8798 4- 0.0028 [ 12[ 0.8793 
Fw (GeV) 2.124-0.11113] 2.082 

0.3003 4- 0.0039 [8] 0.3021 
g2 R 0.0323 4- 0.0033 [8] 0.0302 

-0.508 4- 0.015 [8] -0.506 
g~v -0.035 4- 0.017 [8] -0.037 
Qw(Cs) -71.044- 1.584- [0.88][14] -73.20 

The Z-pole measurements are the preliminary 1992 LEP results 
taken from Ref. [ 10]. The couplings extracted from neutrino scat- 
tering data are the current world averages taken from Ref. [ 8]. The 
values for standard model predictions are taken from Ref. [ 15] 
and have been calculated using mt= 150 GeV and MH = 300 
GeV. We have not shown the errors in the standard model predic- 
tions associated with theoretical uncertainties in radiative correc- 
tions or with the uncertainty regarding the measurement of Mz, 
since these errors are in general overwhelmed by experimental er- 
rors. The exception is the error due to uncertainty in as, shown 
in square brackets. We include this error in quadrature in our fits. 
The error in square brackets for Qw(Cs) reflects the theoretical 
uncertainty regarding atomic wavefunctions [ 16] and is also in- 
cluded in quadrature with the experimental error. 

to Fw. In addition to S and T, observables on the Z ° 
resonance are also sensitive to V and X, which are ex- 
pressly defined at q2 = M2z" Observables that are not 
explicit ly given in Table 1 can be obtained using the 
given expressions. In particular the parameter R is de- 
fined as R = r h a d / r  e, and cr~ = 1 2 " r , : h a d / m F ~  is 
the hadronic cross section at the Z-pole .  

3. Numerica l  fit o f  S1UVWX 

We now determine the phenomenological  con- 
straints on 37UVWX by performing a global  fit to the 
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Table 3 
Global fits of STUVWX to precision electroweak data. The second 2 
column contains the results of inidividual fits, obtained by set- 
ring all but one parameter to zero. The third column is a fit of 1 
STU setting VWX equal to zero, and the final column allows all 
parameters to vary simultaneously. We have shown the 1o- errors. 0 

T 
-1 

Parameter Individual fit STU fit STUVWX fit 

S -0 .19  4- 0.20 -0.48 4- 0.40 -0.93 4- 1.7 
T 0.06 4- 0.19 -0.32 4- 0.40 -0.67 4- 0.92 
U -0.12 4- 0.62 -0.12 + 0.69 -0 .6  4- 1.1 
V -0 .09  4- 0.45 - -  0.47 4- 1.0 
W 2.3 4- 6.8 - -  1.2 4- 7.0 
X -0 .104-0 .10  - -  0.104-0.58 

. . . , . . . , . . . , . . . 

.->'>R// 
/ /  ,q It / / t"  

," ( L,,'.d i / / . ~ / :  
: / /  

( / / . / , /  
--2 ".---J /" 

- - 2  0 2 4 

s 
Fig. 1. Constraints on S and T from a global fit of precison 
electroweak measurements. The solid line represents the 68% C.L. 
setting VWX to zero, the dashed line represents the 90% C.L. 
setting VWX to zero, the dotted line represents the 68% C.L. 
allowing VWX to vary, and the dot-dashed line represents the 90% 
C.L. allowing VWX to vary. 

precision data. The experimental values and standard 
model predictions o f  the observables used in our fit 
are given in Table 2. The standard model predictions 
are taken from Ref. [ 15] and have been calculated 
using the values mt= 150 GeV and Me = 300 GeV. 
The LEP observables in Table 2 were chosen because 
they are closest to what is actually measured, and 
are relatively weakly correlated. In our analysis we 
include the combined LEP values for the correlations 
[17] .  

In Table 3 are displayed the results of  the fit. In the 
second column are shown the results of  individual fits, 
obtained by setting all but one parameter to zero. The 
third column is a fit o f  STU, with VWX set to zero. 
Finally, in column four, we give the results for the 
fit in which all six parameters were allowed to vary 
simultaneously. 

The most important observation concerning these 
results is that all of  the parameters are consistent with 
zero. In other words there is no evidence for physics 
outside the standard model. The second observation 
is that the inclusion of  VWX in our fits weakens the 
constraints on STU. This can be seen graphically in 
Fig. 1 where we have plotted the 68% and 90% C.L. 
contours for S and T. We show the results for the case 
in which the parameters VWX have been set to zero 
as well as that in which they have been allowed to 
vary. Notice in particular that although the entire lo- 
allowed range for S satisfies S < 0 in the fit to S /U 
alone (which corresponds to heavy new physics), this 
is not true for the fit with all six parameters, the light- 
physics scenario. 

4. Conclusions 

We have performed a global fit for the complete set 
of  six oblique correction parameters, S through X. This 
fit extends the results of  previous fits for S, T and U to a 
much wider class of  models for the underlying physics, 
including in particular new light particles which need 
not be much heavier than the weak scale. We find that 
these parameters are bounded by the data to be < 1, 
corresponding to an O(1%)  correction to the weak- 
boson vacuum polarizations, 811(q2). Such bounds are 
sensitive enough to constrain many models for new 
physics near the weak scale, much as did the original 
STU analysis for technicolour models at the TeV scale. 

We have also compared our joint fit of  the six 
parameters S through X to a three-parameter fit in- 
volving only S, T, and U (with V=W=X=O).  Not 
surprisingly, we find in the general case that the al- 
lowed ranges for S, T, and U are relaxed. In particular, 
the preference found in earlier fits for negative values 
for S - which had been uncomfortable for many un- 
derlying models - is no longer statistically significant 
for the six-parameter fit. Models for new physics can 
use this result to evade the stronger bounds coming 
from the S, T, U fit to the electroweak data, but only 
if they predict the existence of  sufficiently light par- 
ticles to allow significant contributions to the new 
variables V, W and X. 



C.P. Burgess et al. / Physics Letters B 326 (1994) 276-281 281 

5. Acknowledgement 

S.G. and D.L. gratefully acknowledge helpful con- 
versations and communications with Paul Langacker, 
and thank Paul Turcotte for supplying standard model 
values for ~ and ~ .  This research was partially funded 
by funds from the N.S.E.R.C. of Canada and le Fonds 
EC.A.R. du Qu6bec. 

References 

[1] M.E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65 (1990) 
964; Phys. Rev. D 46 (1992) 381; 
W.J. Marciano and J.L. Rosner, Phys. Rev. Lett. 65 (1990) 
2963; 
D.C. Kennedy and P. Langacker, Phys. Rev. Lett. 65 (1990) 
2967. 

[2] B. Lynn, M. Peskin and R. Stuart, in: Physics at LEP, CERN 
Report 86-02 

[3] Terms of O(q4/M 4) have been considered in: B. Grinstein 
and M.B. Wise, Phys. Lett. B 265 (1991) 326. 

[4] T. Appelquist, Yale U. Print-80-0832, Lectures presented at 
the 21st Scottish Universities Summer School in Phyiscs, St. 
Andrews, Scotland, Aug 10-30, 1980. Published in Scottish 
Summer School (1980); 
A. Longhitano, Phys. Rev. D 22 (1980) 1166; Nucl. Phys. 
B 188 (1981) 118; 
R. Renken and M. Peskin, Nucl. Phys. B 211 (1983) 93; 
M. Golden and L. Randall, Nucl. Phys. B 361 (1991) 3; 
B. Holdom and J. Terning, Phys. Lett. B 247 (1990) 88; 
A. Dobado, D. Espriu and M.J. Herrero, Phys. Lett. B 255 
( 1991 ) 405. 

[5] I. Maksymyk, C.P. Burgess and D. London, preprint 
McGill-93/13, UdeM-LPN-TH-93-151, hepph-9306267 
(unpublished). 

[6] For recent attempts to produce negative values for S and T 
in underlying theories, see H. Georgi, Nucl. Phys. B 363 
(19301) 1991; 
E. Gates and J. Terning, Phys. Rev. Lett. 67 (191840) 1991; 
E. Ma and P. Roy, Phys. Rev. Lett. 68 (1992) 2879; 
M. Luty and R. Sundrum, preprint LBL-32893-REV 
(unpublished); 
L. Lavoura and L.-E Li, preprint DOE-ER-40682-27 
(unpublished). 

[7] D. Kennedy and B.W. Lynn, Nucl. Phys. B 322 (1989) 1 
[8] P. Langacker, to appear in the Proceedings of 30 Years of 

Neutral Currents, Santa Monica, February 1993. 
[9] K. Abe et al., Phys. Rev. Lett. 70 (1993) 2515. 

[ 10] C. DeClercqan, Proc. of the Recontre de Moriond, Les Arcs 
France, March 1993; 
V. Innocente, ibid. 

[ 11 ] R. Abe et al., Phys. Rev. Lett. 65 (1990) 2243. 
[ 12] J. Alitti et al., Phys. Lett. B 276 (1992) 354. 
[13] Particle Data Group, Phys. Rev. D 45 (1992) 11. 
[14] M.C. Noecker et al., Phys. Rev. Lett. 61 (1988) 310. 
[15] The standard model predictions come from: E Langacker, 

Proceedings of the 1992 Theoretical Advanced Study 
Institute, Boulder CO, June 1992, which includes references 
to the original literature. We thank P. Turcotte for supplying 
us with the standard model values for ~ and g2 R. 

[16] S.A. Blundell, W.R. Johnson, and J. Sapirstein, Phys. Rev. 
Lett. 65 (1990) 1411; 
V.A. Dzuba et al., Phys. Lett. A 141 (1989) 147. 

[ 17] The LEP Collaborations: ALEPH, DELPHI, L3, and OPAL, 
Phys. Lett. B 276 (1992) 247. 


