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Abstract

Inference using di�erence-in-di�erences with clustered data requires care. Previous

research has shown that, when there are few treated clusters, t tests based on a cluster-

robust variance estimator (CRVE) severely over-reject, di�erent variants of the wild

cluster bootstrap can over-reject or under-reject dramatically, and procedures based on

randomization inference show promise. We demonstrate that randomization inference

(RI) procedures based on estimated coe�cients, such as the one proposed by Conley

and Taber (2011), fail whenever the treated clusters are atypical. We propose an RI

procedure based on t statistics which fails only when the treated clusters are atypical

and few in number. We also propose a bootstrap-based alternative to randomization

inference, which mitigates the discrete nature of RI P values when the number of

clusters is small. Two empirical examples demonstrate that alternative procedures can

yield dramatically di�erent inferences.
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1 Introduction

Inference for estimators that use clustered data, which in practice are very often di�erence-
in-di�erences estimators, has received considerable attention in the past decade. Cameron
and Miller (2015) provides a recent and comprehensive survey. While much progress has been
made, there are still situations in which reliable inference is a challenge. It is particularly
challenging when there are very few treated clusters. Past research, including Conley and
Taber (2011), has shown that inference based on cluster-robust test statistics greatly over-
rejects in this case. MacKinnon and Webb (2016) explains why this happens and why the
wild cluster bootstrap of Cameron, Gelbach and Miller (2008) does not solve the problem. In
fact, the wild cluster bootstrap either greatly under-rejects or greatly over-rejects, depending
on whether or not the null hypothesis is imposed on the bootstrap DGP.

Several authors have considered randomization inference (RI) as a way to obtain tests
with accurate size when there are few treated groups (Conley and Taber, 2011; Canay,
Romano and Shaikh, 2014; Ferman and Pinto, 2015). RI procedures necessarily rely on
strong assumptions about the comparability of the control groups to the treated groups. We
show that, for the Conley-Taber procedure, these assumptions almost always fail to hold
when the treated groups have either more or fewer observations than the control groups. As
a consequence, the procedure can severely over-reject or under-reject if the treated groups
are substantially smaller or larger than the controls.

We are motivated by the many studies that use individual data, in which there is variation
in treatment across both groups and time periods. Such models are often expressed as
follows. If i indexes individuals, g indexes groups, and t indexes time periods, then a classic
�di�erence-in-di�erences� (or �DiD�) regression can be written as

yigt = β1 + β2GTigt + β3PTigt + β4GTigtPTigt + εigt, (1)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T.

Here GTigt is a �group treated� dummy that equals 1 if group g is treated in any time
period, and PTigt is a �period treated� dummy that equals 1 if any group is treated in time
period t. The coe�cient of most interest is β4, which shows the e�ect on treated groups in
periods when there is treatment.1 Following the literature, we divide the G groups into G0

control groups, for which GTigt = 0, and G1 treated groups, for which GTigt = 1, so that
G = G0 +G1. We are concerned with the case in which G1 is small.

Section 2 deals with a variety of procedures for inference with clustered errors. Subsection
2.1 discusses cluster-robust variance estimation and shows why it fails when there are few
treated clusters. Subsection 2.2 brie�y discusses some alternative procedures that we do
not study. Subsection 2.3 explains how the wild cluster bootstrap works. Subsection 2.4
introduces randomization inference, Subsection 2.5 describes the Conley-Taber approach to
RI, and Subsection 2.6 suggests an alternative RI procedure based on t statistics instead
of coe�cients. Subsection 2.7 examines some of the theoretical properties of these two RI
procedures and shows that neither of them can be expected to perform well in certain cases.

1In many cases, of course, regression (1) would contain additional regressors, often including group and/or
time dummies, which might make it necessary to drop GTigt, PTigt, or both.
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In Section 3, we use Monte Carlo simulation experiments to compare several procedures.
The model and DGP used in the experiments are described in Subsection 3.1, and the
results are presented in Subsections 3.2, 3.3, and 3.4. We �nd, as the theory of Subsection
2.7 suggests, that none of the existing procedures yields reliable inferences when groups
are heterogeneous and only one group is treated. However, the new RI procedure always
outperforms the Conley-Taber procedure when two or more groups are treated.

Section 4 discusses a practical problem with all random inference procedures when the
number of control groups is small. Subsection 4.1 then introduces a bootstrap-based modi-
�ed RI procedure that solves this problem. In Subsection 4.2, we show that this procedure
substantially improves inference in cases where the only problem is an insu�cient number
of control groups.

Section 5 presents results for two empirical examples, one based on Bailey (2010) and
one based on Conley and Taber (2011). Section 6 concludes.

2 Inference with Few Treated Clusters

A linear regression model with clustered errors may be written as

y ≡


y1
y2
...
yG

 = Xβ + ε ≡


X1

X2
...
XG

β +


ε1
ε2
...
εG

, (2)

where each of the G clusters, indexed by g, has Ng observations. The matrix X and the

vectors y and ε have N =
∑G

g=1Ng rows, X has k columns, and the parameter vector β
has k rows. OLS estimation of equation (2) yields estimates β̂ and residuals ε̂.

Because the elements of the εg are in general neither independent nor identically dis-
tributed, both classical OLS and heteroskedasticity-robust standard errors for β̂ are invalid.
As a result, conventional inference can be severely unreliable. It is therefore customary to
use a cluster-robust variance estimator, or CRVE. There are several of these, of which the
earliest may be the one proposed in Liang and Zeger (1986). The CRVE we investigate is
de�ned as:

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1, (3)

where ε̂g is the subvector of ε̂ that corresponds to cluster g. This is the estimator that is
used when the cluster command is invoked in Stata. It yields reliable inferences when
the number of clusters is large (Cameron, Gelbach and Miller, 2008) and the number of
observations per cluster does not vary too much (Carter, Schnepel and Steigerwald, 2015;
MacKinnon and Webb, 2016). However, Conley and Taber (2011) and MacKinnon and
Webb (2016) show that t statistics based on (3) over-reject severely when the parameter of
interest is the coe�cient on a treatment dummy and there are very few treated clusters.
Rejection frequencies can be over 80% when only one cluster is treated, even when the t
statistics are assumed to follow a t(G− 1) distribution, as is now commonly done based on
the results of Donald and Lang (2007) and Bester, Conley and Hansen (2011).
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2.1 Cluster-Robust Variance Estimation

It is of interest to see precisely why inference based on the CRVE (3) fails so dramati-
cally when there is just one treated cluster.2 Consider, for simplicity, the dummy variable
regression model

yig = β1 + β2dig + εig, (4)

where the treatment dummy dig equals 1 for the �rst G1 clusters and 0 for the remaining
G0 clusters. Making equation (4) more complicated by adding additional regressors, or
by allowing only some observations within the treated clusters to be treated, as in the DiD
regression (1), would not change anything important. The fundamental problem for all these
models, as we will see shortly, is that the residuals sum to zero over all treated observations.

Equation (4) may be rewritten in vector notation as y = β1ι + β2d + ε, where y, ι, d,
and ε are N -vectors with typical elements yig, 1, dig, and εig, respectively, and i is assumed
to vary more rapidly than g. Then the OLS estimate of β2 is

β̂2 =
(d− d̄ι)′y

(d− d̄ι)′(d− d̄ι) =
(d− d̄ι)′ε
N(d̄− d̄ 2)

, (5)

where the second equality holds under the null hypothesis that β2 = 0, and d̄ =
(∑G1

g=1Ng

)
/N

is the sample mean of the dig, that is, the proportion of treated observations. The variance

of β̂2 is evidently

Var(β̂2) =
(d− d̄ι)′Ω(d− d̄ι)(
(d− d̄ι)′(d− d̄ι)

)2 =
(d− d̄ι)′Ω(d− d̄ι)
N2d̄ 2(1− d̄)2

, (6)

where Ω is an N ×N block diagonal matrix with G covariance matrices Ωg of dimensions
Ng ×Ng forming the diagonal blocks.

From expression (3), it is easy to see that the CRVE for β̂2 is proportional to

1

N2d̄ 2(1− d̄)2

G∑
g=1

(dg − d̄ιg)′ε̂gε̂′g(dg − d̄ιg), (7)

where dg is the subvector of d that corresponds to cluster g, and ιg is an Ng-vector of 1s.
Thus expression (7) should provide a good estimate of Var(β̂2) if the summation provides
a good estimate of the quadratic form in (6). Unfortunately, this is not the case when the
number of treated clusters is small.

It is not di�cult to show that the summation in expression (7) is equal to

(1− d̄)2
G1∑
g=1

(ι′gε̂g)
2 + d̄ 2

G∑
g=G1+1

(ι′gε̂g)
2. (8)

This expression is supposed to estimate the quadratic form in expression (6), which can be
written as

(1− d̄)2
G1∑
g=1

ι′gΩgιg + d̄ 2

G∑
g=G1+1

ι′gΩgιg. (9)

2This subsection is based on parts of Section 6 of MacKinnon and Webb (2016).
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Unfortunately, expression (8) estimates expression (9) very badly when G1 is small.
Consider the extreme case in which G1 = 1. Since di1 = 1 and dig = 0 for g > 1, the
residuals for cluster 1 must sum to zero. This implies that the �rst term in expression (8)
equals zero. In contrast, the �rst term in expression (9) is not zero, and it will generally be
quite large relative to the second term, because d̄ will normally be small if just one cluster
is treated. In fact, if we let G→∞ while keeping G1 = 1, it must be the case that d̄→ 0.
Evidently (8) will severely underestimate (9) when G1 = 1.

When two or more clusters are treated, the residuals for those clusters will not sum to
zero for each cluster, but they must sum to zero over all the treated clusters. In consequence,
the expectation of the squared summation for the �rst treated cluster must underestimate
the corresponding true variance. When the errors are homoskedastic and independent, it
does so by a factor of (M1 − N1)/M1, where N1 is the number of treated observations in
cluster 1, and M1 is the number of treated observations in all treated clusters.3 Although
this result is somewhat special, it strongly suggests that, for G1 small, the sum of squared
summations in the �rst term of (8) will severely underestimate the corresponding double
summation in (9). The problem evidently goes away as G1 increases, provided the sizes of
the treated clusters are not too variable, and simulation results in MacKinnon and Webb
(2016) suggest that it does so quite quickly.

2.2 Other Procedures

Building o� results in Donald and Lang (2007), Ibragimov and Müller (2016) studies the
Behrens-Fisher problem of comparing means of two groups with di�erent variances. The
paper focuses on di�erences in means for treated and control groups and proves that t tests
for these di�erences in means follow asymptotic distributions with degrees of freedom equal
to min(G0, G1)−1. When G1 = 1, this number is 0, which implies that the Ibragimov-Müller
procedure is not appropriate when there is only one treated group.

A very di�erent procedure is proposed by Abadie, Diamond and Hainmueller (2010). It
also bases inference on an empirical distribution generated by perturbing the assignment
of treatment. However, the procedure di�ers substantially from the ones considered in this
paper, because it constructs a �synthetic control� as a weighted average of potential control
groups, based on the characteristics of the explanatory variables. This results in both a
di�erent estimate of the �treatment e�ect� and a di�erent P value. For this reason, we do
not study the synthetic controls approach in this paper.

Recent work by Carter, Schnepel and Steigerwald (2015) develops the asymptotic prop-
erties of the CRVE when the number of observations per cluster is not constant. The authors
show that, when clusters are unbalanced, the dataset has an e�ective number of clusters,
G∗, which is less than G (sometimes very much less). Simulations in MacKinnon and Webb
(2016) show that using critical values based on G∗ can work fairly well when intermediate
numbers of clusters are treated. However, when few clusters are treated (or untreated), it
can either over-reject or under-reject severely. When G∗ is extremely small, which happens
whenever G1 is small, sharply di�erent results can be obtained depending on whether the
test statistic is assumed to follow a t(G∗) or a t(G∗− 1) distribution. For this reason, we do
not consider these procedures in our simulation experiments. Alternative degrees-of-freedom

3This result is equation (A.2) of the online appendix of MacKinnon and Webb (2016).
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corrections, in some cases based on alternative CRVEs, have also been proposed by Imbens
and Kolesar (2016) and Young (2015b). All of these procedures are computationally chal-
lenging, and in some cases infeasible, for datasets with large clusters. We therefore do not
study them in our experiments.

2.3 The Wild Cluster Bootstrap

The wild cluster bootstrap was proposed in Cameron, Gelbach and Miller (2008) as a method
for reliable inference in cases with a small number of clusters.4 It was studied extensively
in MacKinnon and Webb (2016) for the cases of unbalanced clusters and/or few treated
clusters. Because we will be proposing a new procedure that is closely related to the wild
cluster bootstrap in Subsection 4.1, we review how the latter works.

Suppose we wish to test the hypothesis that a single coe�cient in equation (2) is zero.
Without loss of generality, we let this be βk, the last coe�cient of β. The restricted wild
cluster bootstrap works as follows:

1. Estimate equation (2) by OLS.

2. Calculate t̂k, the t statistic for βk = 0, using the square root of the kth diagonal element
of (3) as a cluster-robust standard error.

3. Re-estimate the model (2) subject to the restriction that βk = 0, so as to obtain the
restricted residuals ε̃ and the restricted estimates β̃.

4. For each of B bootstrap replications, indexed by b, generate a new set of bootstrap
dependent variables y∗big using the bootstrap DGP

y∗big = Xigβ̃ + ε̃igv
∗b
g , (10)

where y∗big is an element of the vector y∗b of observations on the bootstrap dependent
variable, Xig is the corresponding row of X, and so on. Here v∗bg is a random variable
that follows the Rademacher distribution; see Davidson and Flachaire (2008). It takes
the values 1 and −1 with equal probability. Observe that v∗bg takes the same value for
all observations within each group. Because of that, we would not want to use the
Rademacher distribution if G were smaller than about 12; see Webb (2014), which
proposes an alternative for such cases.

5. For each bootstrap replication, estimate regression (2) using y∗b as the regressand,
and calculate t∗bk , the bootstrap t statistic for βk = 0, using the square root of the kth

diagonal element of (3), with bootstrap residuals replacing the OLS residuals, as the
standard error.

6. Calculate the bootstrap P value as

p̂∗s =
1

B

B∑
b=1

I
(
|t∗bk | > |t̂k|

)
, (11)

4A di�erent, but much less e�ective, bootstrap procedure for cluster-robust inference was previously
suggested by Bertrand, Du�o and Mullainathan (2004).
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where I(·) denotes the indicator function. Equation (11) assumes that the distribution
of tk is symmetric. Alternatively, one can use a slightly more complicated formula to
calculate an equal-tail bootstrap P value.

The procedure just described is known as the restricted wild cluster, or WCR, bootstrap,
because the bootstrap DGP (10) uses restricted parameter estimates and restricted residuals.
The unrestricted wild cluster, or WCU, bootstrap is a closely related procedure. It uses
unrestricted estimates and unrestricted residuals in step 4, and the bootstrap t statistics in
step 5 now test the hypothesis that βk = β̂k.

MacKinnon and Webb (2016) explains why the wild cluster bootstrap fails when the
number of treated clusters is small. The WCR bootstrap, which imposes the null hypothesis,
leads to severe under-rejection. In contrast, the WCU bootstrap, which does not impose
the null hypothesis, leads to severe over-rejection. When just one cluster is treated, it over-
rejects at almost the same rate as using CRVE t statistics with the t(G − 1) distribution.
In many of the Monte Carlo experiments discussed below, we obtained results for the WCR
and WCU bootstraps, but we do not report most of them because those procedures are
treated in detail in MacKinnon and Webb (2016).

2.4 Randomization Inference

Randomization inference was �rst proposed by Fisher (1935) as a procedure for performing
exact tests in the context of experiments. Rosenbaum (1996) mentions the possibility of
using randomization inference for group level interventions.5 The idea is to compare an
observed test statistic T̂ with an empirical distribution of test statistics T ∗j for j = 1, . . . , S
generated by re-randomizing the assignment of treatment across experimental units. To
compute each of the T ∗j , we use the actual outcomes while pretending that certain non-
treated experimental units were treated. If T̂ is in the tails of the empirical distribution of
the T ∗j , then this is evidence against the null hypothesis of no treatment e�ect.

The general practice is to incorporate all available information about treatment assign-
ment in conducting the re-randomization (Yates, 1984). This is done because randomization
tests are valid only when the distribution of the test statistic is invariant to the realization of
the re-randomizations across permutations of assigned treatments (Lehmann and Romano,
2008). In practice, this means making use of any information that determines treatment
assignment in the original data.

When treatment is randomly assigned at the individual level, the invariance of the distri-
bution of the test statistic to re-randomization will follow naturally. However, if treatment
assignment is instead at the group level, then the extent of unbalancedness can determine
how close the distribution is to being invariant. When clusters are balanced, the value of
d̄ in equation (8) will be constant across re-randomizations. However, when clusters are
unbalanced, d̄ may vary considerably across re-randomizations. The implications of this are
discussed below in Subsection 2.7.

2.5 Randomization Inference � Coe�cients

Conley and Taber (2011) suggests two procedures for inference with few treated groups.
Both of these procedures involve constructing an empirical distribution by randomizing the

5Monte Carlo tests are closely related to randomization inference; see Dufour (2006).
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assignment of groups to �treatment� and �control� and using this empirical distribution to
conduct inference. These procedures are quite involved, and the details can be found in
their paper. Of the two procedures, we restrict attention to the one based on randomization
inference, because it can be used whether or not G0 > G1 and because it often has better
size properties in their Monte Carlo experiments.

For the RI procedure of Conley and Taber (2011), a coe�cient equivalent to β4 in
equation (1) is estimated, and the estimate, say β̂, is compared to an empirical distribution
of estimated β∗j , where j indexes repetitions. The β

∗
j are obtained by pretending that various

sets of G1 groups are actually treated. When G1 = 1, the number of β∗j is just G0. For
G1 > 1, the number is generally much larger, as we discuss in the next subsection.

This procedure evidently depends on the strong assumption that β̂ and the β∗j follow
the same distribution. But that cannot be the case if the coe�cients for some clusters
are estimated more e�ciently than for others, perhaps because some clusters have more
observations. As we will demonstrate in Subsection 3.2, when clusters are of di�erent sizes,
and unusually large or small clusters are treated, this type of RI procedure can have very
poor size properties. A similar problem arises whenever the variance of the error terms
for the treated clusters di�ers from the variance of the error terms for the controls; see
Subsection 3.4.

2.6 Randomization Inference � t statistics

As an alternative to the Conley-Taber procedure, we consider an RI procedure based on
cluster-robust t statistics. Instead of comparing β̂ to the empirical distribution of the β∗j ,
we compare the actual t statistic t̂ to an empirical distribution of the t∗j that correspond to
the β∗j. This is similar to one of the procedures studied in Young (2015a).

When there is just one treated group, it is natural to compare t̂ to the empirical dis-
tribution of G0 di�erent t

∗
j statistics. However, when there are two or more treated groups

and G0 is not quite small, the number of potential t∗j to compare with can be very large. In
such cases, we may pick B of them at random. Note that, to avoid ties, we never include
the actual t̂ among the t∗j .

Our randomization inference procedure works as follows:

1. Estimate the regression model and calculate t̂, the cluster-robust t statistic for the
coe�cient of interest. For the DiD model (1), this is the t statistic for β4 = 0.

2. Generate a number of t∗j statistics to compare t̂ with.

• When G1 = 1, assign a group from the G0 control groups as the �treated� group
g∗ for each repetition, re-estimate the model using the observations from all
G groups, and calculate a new t statistic, t∗j , indicating randomized treatment.
Repeat this process for all G0 control groups. Thus the empirical distribution of
the t∗j will have G0 elements.

• When G1 > 1, sequentially treat every set of G1 groups except the set actually
treated, re-estimate equation (1), and calculate a new t∗j . There are potentially

GCG1 − 1 sets of groups to compare with, where nCk denotes �n choose k.� When
this number is not too large, obtain all of the t∗j by enumeration. When it exceeds
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B (picked on the basis of computational cost), choose the comparators randomly,
without replacement, from the set of potential comparators. Thus the empirical
distribution will have min(GCG1 − 1, B) elements.

3. Sort the vector of t∗j statistics.

4. Determine the location of t̂ within the sorted vector of the t∗j , and compute a P value.
This may be done in more than one way; see Subsection 4.

We will refer to the procedure just described as �t statistic randomization inference,� or
RI-t for short, and to the Conley-Taber procedure described in the preceding subsection as
�coe�cient randomization inference,� or RI-β for short.

2.7 Properties of Randomization Inference Procedures

It seems plausible that randomization inference should perform better when it is based on
t statistics than when it is based on coe�cients, because t statistics are asymptotically
pivotal (that is, invariant to any unknown parameters) and coe�cients are not. Thus it is
less unrealistic to assume that t̂ and the t∗j follow the same distribution than it is to assume
that β̂ and the β∗j do so. Unfortunately, as we now demonstrate, the two RI procedures do
not di�er much when G1 is very small. As a result, there are many circumstances in which
they are both likely to yield similar inferences, which can be grossly invalid.

Consider again the pure treatment model (4). Under the null hypothesis, the parameter
estimate β̂2 is given in equation (5) and can be rewritten as

β̂2 =
1

Nd̄(1− d̄)

(
(1− d̄)

G1∑
g=1

ι′gεg − d̄
G∑

g=G1+1

ι′gεg

)
. (12)

Combining this result with (7) and (8), we �nd that the t statistic is

t̂2 =
(1− d̄)

∑G1

g=1 ι
′
gεg − d̄

∑G
g=G1+1 ι

′
gεg(

(1− d̄)2
∑G1

g=1(ι
′
gε̂g)

2 + d̄ 2
∑G

g=G1+1(ι
′
gε̂g)

2
)1/2 . (13)

Note that the numerator depends on the error terms εg, and the denominator depends on
the residuals ε̂g.

Now suppose that G1 = 1. In that case, as we saw in Subsection 2.1, the �rst term in the
denominator of (13) equals zero. Consider the two terms in parentheses in equation (12),
which also form the numerator of t̂2. If we further assume that G0 is large relative to G1

and that N1 is not unusually large, the �rst of these two terms must be much larger than
the second. Therefore, it must be approximately the case that

β̂2 ≈
1

Nd̄
ι′1ε1 = Op(N

−1/2
1 ), (14)

where the order relation uses the facts that d̄ = O(N1)/O(N) and ι′1ε1 =
∑N1

i=1 εi1 = Op(N
1/2
1 ).

The result (14) is intuitive: The larger the number of treated observations, the less dispersed
will be the estimate of β.
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Similarly,

t̂2 ≈
(1− d̄)ι′1ε1

d̄
(∑G

g=2(ι
′
gε̂g)

2
)1/2 = Op(N

−1/2
1 )Op(N

1/2), (15)

where the order relation uses the same facts. For simplicity, we have also assumed that
G = O(N), so that the square root in the denominator is Op(N

1/2). Since the rightmost
factor on the right-hand side of equation (15) does not depend on which cluster is being
treated, this assumption does not matter for RI inference, and that factor can be ignored.
The important thing is that the absolute values of both t̂2 and β̂2 are Op(N

−1/2
1 ). They can

both therefore be expected to shrink as the number of treated observations increases.
Equations (14) and (15) make it evident that both RI procedures will tend to over-reject

when N1 is small and under-reject when N1 is large. In the former case, both β̂2 and t̂2
will tend to be more variable than the β∗j and t∗j with which they are being compared,
because N

−1/2
1 is larger than N∗j

−1/2 for most of the other clusters. In the latter case, by the
same argument in reverse, both β̂2 and t̂2 will tend to be less variable than the β∗j and t∗j
with which they are being compared. Thus neither RI procedure can possibly provide valid
inferences when G1 = 1 and the treated cluster is larger or smaller than the controls.

The case of G1 = 1 is the most extreme one. As G1 increases, we would expect the
distribution of t̂ eventually to lose any dependence on the sizes of the treated clusters,
because the �rst term in the denominator of (13) will no longer be zero, and d̄ will increase
with G1. In contrast, the distribution of β̂2 will continue to depend on the sizes of the
treated clusters. Thus we would expect the behavior of the two RI procedures to become
less and less similar as G1 increases in cases with unbalanced clusters where neither of them
yields valid inferences when G1 = 1.

The failure of both RI-β and RI-t when G1 is small and cluster sizes vary, and of the
former even when G1 is not small, is a consequence of the fact that β̂2 and t̂2 depend
on d̄, which is not invariant across re-randomizations. As such, it is not surprising that the
randomization inference procedures fail with unbalanced clusters, as the simulation results
in Subsections 3.2 and 3.3 will demonstrate.

The RI-β procedure was originally suggested for use with aggregate data, or with individ-
ual data that have been aggregated into time-cluster cells. It is probably less unreasonable
to expect β̂2 and the β∗j to follow the same distribution in those cases than in the case of
individual data. Nevertheless, the assumption that β̂ and the β∗j follow the same distri-
bution is still a very strong one. Variations across clusters in the number of underlying
observations per cell, in the values of other regressors, or in the variances of the error terms
may all invalidate this crucial assumption.6 In contrast, t̂ and the t∗j can be expected to
follow approximately the same distribution whenever G1 and G are not too small.

3 Simulation Experiments

We conduct a number of Monte Carlo experiments to study the performance of various
inferential procedures when the number of treated clusters is small and cluster sizes are

6Ferman and Pinto (2015) show that aggregation of unbalanced clusters introduces heteroskedasticity in
the aggregate data, which causes similar problems for randomization inference when either large or small
clusters are treated.
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heterogeneous. In the experiments, we vary the total number of clusters, the number of
treated clusters, and which clusters are treated. Since sample size does not seem to matter,
we either hold it �xed or let it vary with the number of clusters.

3.1 Monte Carlo Design

In all experiments, we assign N total observations unevenly among G clusters using the
following formula:

Ng =

[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (16)

where [x] means the integer part of x. The value of NG is then set to N −∑G1

g=1Ng. The
key parameter here is γ ≥ 0, which determines how uneven the cluster sizes are. When
γ = 0 and N/G is an integer, equation (16) implies that Ng = N/G for all g. As γ increases,
however, cluster sizes vary more and more.7

The data generating process is the DiD model, equation (1), with β4 = 0. Each ob-
servation is assigned to one of 20 �years�, and the starting year of �treatment� is randomly
assigned to years between 4 and 14. The error terms are homoskedastic and correlated
within each cluster, with correlation coe�cient 0.05. The number of Monte Carlo replica-
tions in all experiments is 100,000. Rejection frequencies are calculated at the 1%, 5%, and
10% levels, although only the 5% rejection frequencies are discussed below.

3.2 Monte Carlo Results for RI Procedures

In the �rst set of experiments, N = 4000, G = 40, and the number of treated clusters
varies from 1, 2, ..., 10. The treated clusters are chosen in three ways: the smallest �rst, the
largest �rst, or at random. The more observations the treated clusters have (at least up to
about half the sample size), the more e�ciently β4 should be estimated.8 Thus, as discussed
in Subsection 2.7, we would expect randomization inference based on coe�cient estimates
to perform less well than randomization inference based on t statistics when the treated
clusters are unusually large or small.

For the two varieties of randomization inference, the number of randomizations is as
follows: 39 for G1 = 1; 40C2 − 1 = 779 for G1 = 2; and 999 for G1 ≥ 3. We set G = 40 to
avoid the problem of interval P values, which is discussed in Section 4.

The most striking result is that the size of some tests depends heavily on which clusters
are treated. For instance, with RI-β, there is severe under-rejection when the largest clusters
are treated �rst and fairly severe over-rejection when the smallest clusters are treated �rst.
As the analysis in Subsection 2.7 predicts, RI-t also performs poorly when G1 = 1, with the
same pattern of under-rejection and over-rejection as RI-β.

These patterns can be seen clearly in Figure 1, which graphs rejection frequencies against
G1 for both RI-β and RI-t tests. For RI-β, not much changes as G1 increases. In contrast, for

7For the experiments with 4000 observations and γ = 2, the sizes of the 40 clusters are: 32, 33, 35, 37,
39, 41, 43, 45, 47, 50, 52, 55, 58, 61, 64, 67, 71, 75, 78, 82, 87, 91, 96, 101, 106, 112, 117, 123, 130, 136, 143,
151, 158, 167, 175, 184, 194, 204, 214, and 246.

8It is di�cult to be precise about this, because e�ciency will also depend on intra-cluster correlations,
the number of treated years, and the values of other regressors.
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RI-t, the rejection frequencies improve rapidly as G1 increases. When the smallest clusters
are treated, the procedure seems to work perfectly for G1 ≥ 6. When the largest clusters
are treated, it always under-rejects, but not severely.

One other result that is evident in Figure 1 is that both RI procedures work extremely
well when the treated clusters are chosen at random. That makes sense, because the theory
of randomization inference is based on treatment being assigned at random. In the context of
DiD inference with non-experimental data, however, this result is actually quite misleading.
In this case, clusters are not treated at random, and the investigator knows which clusters
were actually treated.

The distribution of cluster sizes is the same for all the experiments. The good results
for random treatment arise because we are averaging over 100,000 replications. In some
of those replications, when small clusters happen to be treated, too many rejections occur.
In others, when large clusters happen to be treated, too few rejections occur. Only when
clusters of intermediate size (or an appropriate mix of small and large clusters) are treated
do both RI procedures actually work well before averaging.

Figure 2 illustrates this point. The �gure shows rejection frequencies for the RI-t pro-
cedure when G1 = 1 and G = 40.9 The horizontal axis shows the rank of the treated
cluster, ordered from smallest to largest. There are �ve curves, which correspond to �ve
values of γ. Each point on the curve represents a rejection frequency for a di�erent treated
cluster. The higher the value of γ, the more variable are the cluster sizes. As expected, the
tests over-reject when the treated cluster is small and under-reject when it is large. Both
over-rejection and under-rejection become more severe as γ increases.

Because the relative sizes of treated and control clusters evidently matter greatly when
the smallest clusters are treated, we perform a second set of experiments in which N = 5000,
G = 20, and the parameter γ in equation (16) is varied between 0 and 4 at intervals of 0.5.
This is done for three values of G1 (1, 2, and 3) for both RI procedures. As can be seen in
Figure 3, they both work very well when γ = 0, and they both over-reject to a greater and
greater extent as γ increases. However, the RI-t procedure over-rejects less and less severely
as G1 increases from 1 to 2 to 3, while the RI-β procedure over-rejects much more severely
for G1 = 2 and G1 = 3 than for G1 = 1. This is consistent with the theoretical results in
Subsection 2.7.

It is of interest to compare the performance of the RI-β and RI-t procedures with that of
the wild cluster bootstrap. Figure 4 shows rejection frequencies for the restricted wild cluster
bootstrap for the same experiments as Figure 1.10 As the theoretical and simulation results
in MacKinnon and Webb (2016) suggest, the WCR bootstrap severely under-rejects for very
small values of G1, but it performs very well for G1 ≥ 6. Unlike the two RI procedures, its
performance is very similar in all three cases, although the region of severe under-rejection
is smallest when the treated clusters are the largest ones.

9Results for the RI-β procedure are not reported because, as the theory of Subsection 2.7 suggests, they
are very similar to the ones in Figure 2.

10The �gure does not show results for the WCU bootstrap, because they are so di�erent from the ones for
the WCR bootstrap. When G1 = 1, the rejection frequencies are 0.615, 0.758, and 0.861 for the largest-�rst,
random, and smallest-�rst cases.
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3.3 Why the RI Procedures Can Fail

Figure 5 provides more intuition about why both RI procedures can fail with unbalanced
clusters. The �gure plots the distributions of β̂ and of the corresponding t statistic for
G1 = 1 and G1 = 2 with N = 2000, G = 40, and γ = 2 for a pure treatment model.
The smallest cluster has 16 observations, and the largest has 134. Within each panel,
distributions are plotted for three cases: the case in which G1 randomly-chosen clusters are
treated, the case in which the treated clusters are chosen from the smallest 10 clusters, and
the case in which the treated clusters are chosen from the largest 10 clusters. The �rst
case corresponds to the unconditional distribution of either β̂ or t̂, and the other two cases
correspond to distributions conditional on the treated clusters being either small or large.

Recall that, for randomization inference to be valid, the distribution of the test statistic
must be invariant to randomization. An implication of this is that the two conditional
distributions should be indistinguishable from the unconditional distribution. For G1 = 1,
however, both conditional distributions di�er greatly from the unconditional distribution
for both β̂ and t̂. For G1 = 2, the conditional distributions of β̂ di�er just as greatly
from the unconditional one. However, the conditional distributions of t̂ are much closer to
the unconditional distribution, although they are still distinct. We also obtained results,
not shown, for G1 = 3, 4, . . . , 8. As G1 increases, the conditional distributions of β̂ never
converge to the unconditional distribution, while those of t̂ do converge quite rapidly.

Since researchers always know the sizes, and usually the identities, of the clusters that
are treated, it generally makes no sense to pretend that the treated clusters are chosen at
random. Failing to condition on what the researcher knows about the treated and control
clusters inevitably results in unreliable inference, especially for RI-β. Ferman and Pinto
(2015) eloquently makes this point in the context of aggregate data.

3.4 RI Procedures with Heteroskedasticity

In the experiments reported so far, the distributions of the coe�cients can di�er across
clusters only because cluster sizes may vary. However, that is not the only possible reason
for those distributions to di�er. Another possibility is that the error terms for the treated
clusters may have larger or smaller variances than those of the controls. To investigate
this possibility, we performed an additional set of experiments in which the standard error
for the treated clusters was λ times the standard error for the controls. We would expect
over-rejection when λ > 1 and under-rejection when λ < 1. This is easiest to see for the
extreme case in which G1 = 1. From equations (14) and (15), it is evident that the larger
the variance of the error terms for the treated cluster, the larger will be the variances of β̂2
and t̂2 for the treated cluster when G1 = 1. As G1 increases, the problem should go away
for RI-t but not for RI-β.

Figure 6 shows rejection frequencies for the RI-β and RI-t procedures for a DiD model
with 40 equal-sized clusters and 800 observations. Results are shown for three values of λ,
namely, λ = 2.0, λ = 1.25, and λ = 0.5. As expected, both procedures over-reject when
λ > 1 and under-reject when λ < 1. When G1 = 1, both the over-rejection for λ = 2.0 and
the under-rejection for λ = 0.5 are very severe. For all values of λ, they are almost identical
for RI-β and RI-t. As G1 increases, the performance of RI-t initially improves quite quickly,
while that of RI-β improves very slowly. However, the rate of improvement for RI-t slows
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down greatly as G1 increases. It still over-rejects noticeably for G1 = 10 when λ = 2.0 and
under-rejects noticeably when λ = 0.5.11

4 Randomization Inference and Interval P Values

The most natural way to calculate an RI P value is probably to use the equivalent of
equation (11). Let S denote the number of repetitions, which would be G0 when G1 = 1
and the minimum of GCG1 − 1 and B when G1 > 1. Then the analog of (11) is

p̂∗1 =
1

S

S∑
j=1

I
(
|t∗j | > |t̂|

)
. (17)

However, this method of computing a P value is arbitrary. A widely-used alternative is

p̂∗2 =
1

S + 1

(
1 +

S∑
j=1

I
(
|t∗j | > |t̂|

))
. (18)

Both procedures are valid, as would be any procedure that yields a number between p̂∗1 and
p̂∗2, because P values based on a �nite number of simulations are interval-identi�ed rather
than point-identi�ed. Evidently, p̂∗1 and p̂

∗
2 tend to the same value as S →∞, but they can

yield quite di�erent results when S is small.
Figure 7 shows analytical rejection frequencies for tests at the .05 level based on equations

(17) and (18). The tests would reject exactly 5% of the time if S were in�nite, but the �gure
is drawn for values of S between 7 and 103. In the �gure, R denotes the number of times that
t̂ is more extreme than t∗j , so that p̂

∗
1 = R/S and p̂∗2 = (R+ 1)/(S + 1). It is evident that p̂∗1

always rejects more often than p̂∗2, except when S = 19, 39, 59, and so on.12 Even for fairly
large values of S, the di�erence between the two rejection frequencies can be substantial.13

This phenomenon does not cause a serious problem for bootstrap inference. We can
obtain identical inferences from the two varieties of P value by choosing the number of
bootstraps B (which is equivalent to S) so that α(B + 1) is an integer, where α is the level
of the test. In many cases, it is feasible to make B large, so that the interval between p̂∗1
and p̂∗2 must be very small whether or not α(B + 1) is an integer.

Unfortunately, neither of these solutions works for randomization inference. As an ex-
treme example, suppose the data come from Canada, which has just ten provinces. If one

11Using a di�erent experimental design, Canay, Romano and Shaikh (2014) also study the performance
of RI-β (and several other tests) when the treated clusters have greater variance than the untreated ones.
They �nd even more severe overrejection for λ = 2.0 than we do.

12The �gure is drawn under the assumption that we reject whenever either P value is equal to or less
than 0.05. This is the only correct procedure for p̂∗2. However, for p̂

∗
1 it might be more natural to reject only

when p̂∗1 < 0.05. If that were done, the results for p̂∗1 with S = 20, 40, 60, and so on would be identical to
the results for p̂∗2 with those values of S. The remainder of the �gure would be unchanged.

13It is possible to obtain an exact test by using a draw from the U[0, 1] distribution. The procedure
proposed in Racine and MacKinnon (2007) simply replaces the 1 after the large left parenthesis in (18)
with such a draw. A similar procedure, which allows for ties, is used in Young (2015a). However, these
procedures have the unfortunate property that the outcome of the test depends on the realization of a single
random variable drawn by the investigator.
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province is treated, then G1 = 1, G0 = 9, and the P value can lie in only one of nine intervals:
0 to 1/10, 1/9 to 2/10, 2/9 to 3/10, and so on. Even if R = 0, it would never be reasonable
to reject at the .01 or .05 levels. The problem with P values not being point-identi�ed is
discussed at length in Webb (2014).

4.1 Wild Bootstrap Randomization Inference

In this subsection, we suggest a simple way to overcome the problem discussed in the previous
one. We propose a procedure that we refer to as wild bootstrap randomization inference, or
WBRI. The WBRI procedure essentially nests the RI-t procedure of Subsection 2.6 within
the wild cluster bootstrap of Subsection 2.3. The procedure for generating the t∗ statistics
is as follows:

1. Estimate equation (1) by OLS and calculate t̂ for the coe�cient of interest using CRVE
standard errors.

2. Construct a bootstrap sample, y∗b , using the restricted wild cluster bootstrap procedure
discussed in Subsection 2.3. Then estimate equation (1) using y∗b and calculate a
bootstrap t statistic t∗b using CRVE standard errors.

3. Re-estimate equation (1) using y∗b , sequentially changing the �treated� group(s) to all
possible sets of G1 groups, except the set that was actually treated. When G1 = 1,
this is done by cycling the �treated� group across all G0 control groups. Calculate a t
statistic t∗bj for each randomization using CRVE standard errors.

4. Repeat steps 2 and 3 B times, constructing a new y∗b in each step 2.

5. Perform inference by comparing t̂ to the B×GCG1 bootstrap statistics. These include
B bootstrap statistics t∗b that correspond to the G1 actually treated groups and are
drawn from exactly the same distribution as the t statistics in the restricted wild
cluster bootstrap procedure, along with B(GCG1 − 1) bootstrap statistics t∗bj in which
each set of groups other than the actual one is �treated� in turn.

The WBRI procedure can be used to generate as many t∗ statistics as desired by making
B large enough. Thus it can solve the problem of interval P values. However, it does not
remedy the failure of the RI-t procedure when G1 is small. Thus we cannot expect it to
yield reliable inferences in that case when clusters are heterogeneous.

Since every possible set of G1 clusters is �treated� in the bootstrap samples, the number
of test statistics is B×GCG1 . Unless G is quite small, this will be a large number for G1 > 2
even when B = 1. In general, it makes sense to use the WBRI procedure only when the RI-t
procedure does not provide enough t∗j for the interval P value problem to be negligible. As
a rule of thumb, we suggest using WBRI when G1 = 1 and G < 500, or G1 = 2 and G < 45,
or G1 = 3 and G < 20. We suggest choosing B so that B × GCG1 is at least 1000. If G is
su�ciently small, one may want to enumerate (that is, pick every possible value from) the
Rademacher distribution, or use an alternative bootstrap weight distribution such as the
6-point distribution suggested in Webb (2014).
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4.2 Monte Carlo Results for WBRI

The WBRI procedure described in Subsection 4.1 is designed to avoid the problem of interval
P values. Based on Figure 8, it seems to be quite e�ective at doing so. The �gure deals
with the case in which G1 = 1, which is when the interval P value problem is most severe.
Every cluster has 100 observations, and the number of clusters varies from 10 to 60, which
implies that the number of controls varies from 9 to 59. Thus when G = 20, 40, and 60,
the two RI P values must yield the same outcomes. In every other case, however, p̂∗1 = R/S
must reject more often than p̂∗2 = (R + 1)/(S + 1). As expected, the observed rejection
frequencies for the two RI tests look very similar to the theoretical ones in Figure 7.

In Figure 8, the WBRI rejection frequencies are almost always between the two RI
rejection frequencies and are always quite close to 5% except when G is very small. This
is what we would like to see. However, it must be remembered that the �gure deals with
a very special case. The WBRI procedure cannot be expected to work any better than the
RI-t procedure when the treated clusters are smaller or larger than the untreated clusters,
or when their error terms have di�erent variances. There is at present no proof that it will
work well even when the only problem is that the number of control groups is small and α
times one plus that number is not an integer.

5 Empirical Examples

In this section, we consider two empirical examples. In the �rst of them, G1 = 2, so that
no method can be expected to work very well. In the second, G1 = 10, so that the WCR
bootstrap should work well and randomization inference should not work better. We include
the second example because it was used in Conley and Taber (2011).

5.1 Birth Control Pills

Bailey (2010) examines the relationship between the introduction of the birth control pill
and the decrease in fertility in the United States since about 1957. The paper uses state-by-
state variation in �Comstock laws,� which prohibited, among other things, the advertising
and sale of the birth control pill. The practice of using these laws to restrict the sale of
birth control pills was essentially ended by the U.S. Supreme Court's 1965 Griswold v.
Connecticut decision.

Part of the analysis in Bailey (2010) shows that women in states with sales restrictions
on the birth control pill were indeed less likely to have taken the pill by 1965. The analysis
employs a DiD regression using data on married, white women from the National Fertility
Surveys for the years 1965 and 1970. The women come from 47 states, and clustering is
done at the state level.

Bailey estimates a probit regression in which the dependent variable is an indicator
variable that equals 1 in 1965 or 1970 if the respondent had ever taken the birth control
pill by that year. The key regressors are an indicator variable Salesban that equals 1 if
the state had a sales ban on the birth control pill in 1960, and Salesban interacted with
a dummy variable D1970 for observations from 1970. Estimated coe�cients and standard
errors for these two regressors are presented in her Table 2, Column 1. Other regressors
include D1970, three regional dummies, an indicator variable equal to 1 if the state had a
physician exemption to the sales ban, and each of these variables interacted with D1970.
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There is no real need to use a probit model in this case. Because all regressors are
indicator variables, and the mean of the dependent variable (which is 0.515) is far from the
limits of 0 and 1, using ordinary least squares inevitably produces results almost identical
to the probit ones. In fact, the probit t statistics for Salesban and Salesban×D1970 are
−2.76 and 1.46, and the OLS ones are −2.71 and 1.37; these are all based on cluster-robust
standard errors.14

Prior to the �Griswold� decision, several states repealed their previously existing sales
bans. In particular, Illinois and Colorado repealed their Comstock laws in 1961. It is of
interest to ask whether women in these early-repeal states were more or less likely to use
the pill than women in other states with a sales ban. We therefore created an indicator
variable rep61 equal to 1 for those two states and added rep61×D1965 and rep61×D1970
to the base speci�cation. Results for the four coe�cients of interest are shown in Table 1.

Table 1: E�ects of Sales Ban and Early Repeal, Full Sample
Coef. Std. Err. CR t-stat WCR p∗ RI-β p∗ RI-t p∗

Salesban −0.0418 0.0156 −2.677 0.0275
Salesban×D1970 0.0290 0.0274 1.059 0.3196

rep61×D1965 −0.1253 0.0231 −5.432 0.5455 0.0629 0.0555
rep61×D1970 −0.0427 0.0287 −1.488 0.4577 0.6152 0.4450

Taken at face value, the cluster-robust t statistic for rep61×D1965 in column 3 of Table 1
appears to be telling us that living in an early-repeal state very signi�cantly lowered the
probability of using the pill in 1965. However, because there are only two such states, the
analysis of Section 2.1 suggests that this t statistic is probably much too large. In contrast,
the WCR bootstrap (based on B = 99,999) yields a P value of about 0.55, which the
analysis of MacKinnon and Webb (2016) suggests is probably much too conservative. Thus
the cluster-robust t statistic and the bootstrap P value yield wildly contradictory results,
which could have been expected before even computing them, and are therefore of no real
use in this case.

We also compute two randomization inference P values for each regressor. Because
G = 47, the value of S is 47 · 46/2 − 1 = 1080. We report RI P values computed using
equation (18), because they are slightly more conservative than ones based on equation (17).
The two RI procedures yield results that are very similar to each other, with P values just
a little greater than .05. Although the RI P values do not entirely resolve the uncertainty
about whether the coe�cient on rep61×D1965 is signi�cant, they at least yield sensible
results that could not have been predicted in advance.

One way to investigate the robustness of these results is to limit attention to the 23 states
that had sales bans in 1960. This reduces the sample size to 3780 observations and requires
us to drop the variables Salesban and Salesban×D1970. Results for the two coe�cients of
interest are shown in Table 2.

14Although we attempted to use the same sample as Bailey, our sample has 6929 observations, and hers
has 6950. We are unable to explain this minor discrepancy. Bailey does not explicitly report t statistics.
Calculating them from coe�cients and standard errors reported to only two decimal places, her t statistics
are similar enough to our probit ones that they could actually be equal.
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Table 2: E�ects of Early Repeal, Sales Ban Sample
Coef. Std. Err. CR t-stat WCR p∗ RI-β p∗ RI-t p∗

rep61×D1965 −0.1199 0.0244 −4.917 0.4390 0.0395 0.0791
rep61×D1970 −0.0457 0.0316 −1.445 0.4602 0.3162 0.2885

The results in Table 2 are very similar to the ones in Table 1. The most noticeable
di�erence is that the RI-β P value is now just 0.0395, while the RI-t P value is almost
exactly twice as large. Since these are based on S = 23 · 22/2 − 1 = 252, they would
have been noticeably smaller (0.0357 and 0.0754) if we had used equation (17) rather than
equation (18) to compute them. Because it is di�cult to understand why early repeal would
have reduced pill use in 1965, we believe the RI-t results to be more plausible than the RI-β
ones. This accords with the results in Figures 1, 3, and 5, all of which suggest that RI-t
should be somewhat less unreliable than RI-β when G1 = 2.

Although this example is not one where randomization inference can be expected to
work well, because there are only two treated clusters, RI certainly yields results that are
much more plausible, and much less predictable, than using either cluster-robust t statistics
or the wild cluster bootstrap.

5.2 Merit Scholarships

In this subsection, we consider an empirical example studied in Conley and Taber (2011). It
deals with the impact of state-level merit scholarships initiated during the 1989-2000 period.
These programs generally o�ered scholarships for students to attend college in their home
state conditional on being above some academic threshold. The details di�er state by state,
but they are not important for our purposes.

Conley and Taber (2011) attempts to determine whether the 10 merit scholarships that
were in operation by the end of 2000 had any impact on college enrollment by estimating
the following DiD regression using data from 1989-2000:

collegeist = β0 + β1meritist + β2maleist + β3blackist + β4asianist

+
51∑
j=2

γj statejist +
12∑
k=2

δkyearkist + εist.

Here collegeist is the outcome of interest, a binary indicator for whether individual i in
state s and year t was enrolled in college, and the treatment variable meritist equals 1 if
state s o�ered a merit scholarship in year t. The remaining variables are all binary indicator
variables. The dataset has N = 42,161 observations taken from all states, including the
District of Columbia, so that G = 51. The paper presents estimates of β1 along with several
di�erent con�dence intervals in Column C of Table II.

The table reports that β̂1 = 0.034, along with a 95% CRVE con�dence interval of
[0.008, 0.059]. Although it is not explicitly reported, we calculated the P value for the
test of β1 = 0 based on the t(50) distribution to be 0.010. However, using a method that
essentially inverts RI-β P values, the paper estimates a 95% con�dence interval for β1 of
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[−0.003, 0.093].15 Thus, unlike the conventional CRVE con�dence interval, the Conley-
Taber 95% con�dence interval contains 0.

We use the Conley-Taber data and modify their Stata code to conduct inference on β1
using both RI-β and RI-t.16 With 3000 randomizations and symmetric P values, we obtain
an RI-t P value of 0.032 and an RI-β P value of 0.117. Like the Conley-Taber con�dence
interval, the RI-β P value fails to reject the null at the 5% level. In contrast, our RI-t P
value of 0.032 suggests that there is a statistically signi�cant e�ect at the 5% level.

We also calculate the WCR P value for β1 = 0, based on B = 99, 999 bootstraps. It is
0.021, which is quite similar to the RI-t P value. With 10 treated states, the WCR P value
should be quite reliable. In view of this result and the fact that, in all our Monte Carlo
experiments, the RI-t procedure was closer to the desired size than RI-β, we conclude that
the merit scholarship programs did have a statistically signi�cant impact.

6 Conclusion

We compare several new and existing procedures for inference with few treated clusters,
focusing on ones based on randomization inference (RI). There are three main �ndings,
which are obtained theoretically for a simple model in Subsection 2.7 and con�rmed by
simulation results in Section 3.

The �rst result is that none of the procedures works well when there are very few treated
clusters and those clusters are atypical in terms of either the number of observations or the
variance of the error terms. The second is that all the RI procedures appear to work well
when the treated clusters are typical or chosen at random. The third is that the performance
of procedures based on randomization inference for coe�cients (RI-β) improves slowly or not
at all as G1 (the number of treated clusters) increases, while the performance of procedures
based on randomization inference for t statistics (RI-t) generally improves quite rapidly.
Thus the latter can often be used safely when G1 is fairly small, but not extremely small.
We also introduce a bootstrap-based modi�cation of randomization inference which appears
to solve the problem of interval P values when there are few control groups.

15The procedure searches separately for both the upper and lower limit of the con�dence interval, by
re-randomizing treatment amongst 10 of the 51 states.

16We thank the authors for making their code and data easily available.

19



References

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller (2010) `Synthetic control meth-
ods for comparative case studies: Estimating the e�ect of California's tobacco control
program.' Journal of the American Statistical Association 105(490), 493�505

Bailey, Martha A. (2010) `�Momma's got the pill�: How Anthony Comstock and Griswold
v. Connecticut shaped US childbearing.' American Economic Review 100(1), 98�129

Bertrand, Marianne, Esther Du�o, and Sendhil Mullainathan (2004) `How much should
we trust di�erences-in-di�erences estimates?' The Quarterly Journal of Economics
119(1), pp. 249�275

Bester, C. Alan, Timothy G. Conley, and Christian B. Hansen (2011) `Inference with depen-
dent data using cluster covariance estimators.' Journal of Econometrics 165(2), 137�151

Cameron, A. Colin, and Douglas L. Miller (2015) `A practitioner's guide to cluster robust
inference.' Journal of Human Resources 50, 317�372

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2008) `Bootstrap-based im-
provements for inference with clustered errors.' The Review of Economics and Statistics
90(3), 414�427

Canay, Ivan A, Joseph P Romano, and Azeem M Shaikh (2014) `Randomization tests under
an approximate symmetry assumption.' Technical Report No. 2014-13, Stanford Univer-
sity

Carter, Andrew V., Kevin T. Schnepel, and Douglas G. Steigerwald (2015) `Asymptotic
behavior of a t test robust to cluster heterogeneity.' Technical Report, University of Cal-
ifornia, Santa Barbara

Conley, Timothy G., and Christopher R. Taber (2011) `Inference with �Di�erence in Di�er-
ences� with a small number of policy changes.' The Review of Economics and Statistics
93(1), 113�125

Davidson, Russell, and Emmanuel Flachaire (2008) `The wild bootstrap, tamed at last.'
Journal of Econometrics 146(1), 162 � 169

Donald, Stephen G, and Kevin Lang (2007) `Inference with di�erence-in-di�erences and
other panel data.' The Review of Economics and Statistics 89(2), 221�233

Dufour, Jean-Marie (2006) `Monte carlo tests with nuisance parameters: A general ap-
proach to �nite-sample inference and nonstandard asymptotics.' Journal of Econometrics
133(2), 443�477

Ferman, Bruno, and Christine Pinto (2015) `Inference in di�erences-in-di�erences with few
treated groups and heteroskedasticity.' Technical Report, Sao Paulo School of Economics

Fisher, R.A. (1935) The Design of Experiments (Oliver and Boyd)

20



Ibragimov, Rustam, and Ulrich K. Müller (2016) `Inference with few heterogeneous clusters.'
Review of Economics & Statistics 98, to appear

Imbens, Guido W., and Michal Kolesar (2016) `Robust standard errors in small samples:
Some practical advice.' Review of Economics and Statistics 98, to appear

Lehmann, E. L., and Joseph P. Romano (2008) Testing Statistical Hypotheses Springer Texts
in Statistics (Springer New York)

Liang, Kung-Yee, and Scott L. Zeger (1986) `Longitudinal data analysis using generalized
linear models.' Biometrika 73(1), 13�22

MacKinnon, James G., and Matthew D. Webb (2016) `Wild bootstrap inference for wildly
di�erent cluster sizes.' Journal of Applied Econometrics 31, to appear

Racine, Je�rey S., and James G. MacKinnon (2007) `Simulation-based tests that can use
any number of simulations.' Communications in Statistics: Simulation and Computation
36(2), 357�365

Rosenbaum, Paul R (1996) `6 observational studies and nonrandomized experiments.' Hand-
book of Statistics 13, 181�197

Webb, Matthew D. (2014) `Reworking wild bootstrap based inference for clustered errors.'
Working Papers 1315, Queen's University, Department of Economics, August

Yates, F. (1984) `Tests of signi�cance for 2 × 2 contingency tables.' Journal of the Royal
Statistical Society. Series A (General) 147(3), 426�463

Young, Alwyn (2015a) `Channelling �sher: Randomization tests and the statistical insignif-
icance of seemingly signi�cant experimental results.' Technical Report, London School of
Economics

Young, Alwyn (2015b) `Improved, nearly exact, statistical inference with robust and clus-
tered covariance matrices using e�ective degrees of freedom corrections.' Technical Report,
London School of Economics

21



Figure 1: Rejection Frequencies for Randomization Inference
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Figure 2: Rejection Frequencies for t Statistic RI when G1 = 1
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Figure 3: Rejection Frequencies for Two Types of Randomization Inference
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Figure 4: Rejection Frequencies for the WCR Bootstrap
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Figure 5: Empirical Distributions of β̂ and t̂
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Figure 6: Rejection Frequencies for RI Procedures with Heteroskedasticity
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Figure 7: Rejection Frequencies and Number of Simulations
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Figure 8: WBRI Rejection Frequencies and RI Intervals
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