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Abstract

Inference based on cluster-robust standard errors is known to fail when the number

of clusters is small, and the wild cluster bootstrap fails dramatically when the number

of treated clusters is very small. We propose a family of new procedures called the sub-

cluster wild bootstrap. In the case of pure treatment models, where all the observations

in each cluster are either treated or not, the new procedures can work astonishingly

well. The key requirement is that the sizes of the treated and untreated clusters should

be very similar. Unfortunately, the analog of this requirement is not likely to hold for

di�erence-in-di�erences regressions. Our theoretical results are supported by extensive

simulations and an empirical example.
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1 Introduction

It is common in many areas of economics to assume that the disturbances of linear regression
models are correlated within clusters but uncorrelated between them. Inference is then based
on a cluster-robust covariance matrix, or CRVE. However, t tests based on cluster-robust
standard errors tend to overreject severely when the number of clusters is small. The wild
cluster bootstrap proposed by Cameron, Gelbach and Miller (2008) often leads to much
more reliable inferences, but, as MacKinnon and Webb (2016a) showed, this procedure can
also fail dramatically. When the regressor of interest is a dummy variable that is nonzero
for only a few clusters, tests based on the usual restricted wild cluster bootstrap underreject
severely, and tests based on the unrestricted wild cluster bootstrap overreject severely.

An alternative approach for the case of few treated clusters, based on randomization in-
ference, was suggested by Conley and Taber (2011). MacKinnon and Webb (2016b) studied
that procedure and proposed an improved one which uses t statistics rather than coe�cient
estimates and sometimes works well. However, randomization inference fails in many cases.
In particular, it fails when cluster sizes vary and there are few treated clusters, it fails
when there is heteroskedasticity of unknown form across clusters and there are few treated
clusters, and it simply cannot be used when the number of clusters is very small.1

In this paper, we propose a family of new procedures that we call the subcluster wild
bootstrap. The key idea is to employ a wild bootstrap data generating process (DGP) which
clusters at a �ner level than the covariance matrix.2 In many cases, this will simply be the
ordinary wild bootstrap DGP (Wu, 1986; Liu, 1988), which does not cluster at all, but it
could also be, for example, a DGP that clusters by state-year pair when the covariance
matrix clusters by state. Thus the subcluster wild bootstrap DGP deliberately fails to
match a key feature of the (unknown) true DGP.

In Section 2, we study a simple theoretical model for which all the observations in each
cluster are either treated or not and explain why t tests and wild cluster bootstrap tests fail
when the number of treated clusters is small. In Section 3, we then analyze the performance
of the ordinary wild bootstrap for this pure treatment model. We show that, even when the
number of clusters is very small, the procedure can be expected to work well if a certain
condition is satis�ed. The condition requires that all clusters be the same size, but it allows
for heteroskedasticity across clusters. We also explain why such a condition will rarely be
satis�ed for di�erence-in-di�erence (DiD) regressions. Finally, we extend the analysis to the
subcluster wild bootstrap.

In Section 4, we report the results of a large number of simulation experiments. We
show that the ordinary wild bootstrap, combined with CRVE standard errors, often works
astonishingly well in cases where the wild cluster bootstrap performs very badly either
because either the number of clusters is small or the number of treated clusters is very
small, perhaps made worse by heteroskedasticity. Bootstrap tests based on the ordinary
wild bootstrap often yield surprisingly reliable inferences even when there is just one treated

1Ferman and Pinto (2015) proposes a procedure to handle aggregate data with heteroskedasticity, and
MacKinnon and Webb (2016b) suggests a method that combines randomization inference and the bootstrap
which can be used when the number of clusters is small.

2We assume that the covariance matrix is clustered at the coarsest possible level, in terms of nested
clusters, which is usually the appropriate thing to do; see Cameron and Miller (2015).
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cluster. Additional simulation experiments con�rm all the principal theoretical predictions
of Section 2.

In Section 5, we discuss an empirical example for which the subcluster wild bootstrap
(the ordinary one in this case) yields sensible results even though there are just eight clusters.
Section 6 concludes and provides recommendations for applied work.

2 A Pure Treatment Model

In general, we are concerned with linear regression models in which there are N observations
divided among G clusters, with Ng observations in the gth cluster. However, we focus on
the special case of a pure treatment model, in which all observations in the �rst G1 clusters
are treated and no observations in the remaining G0 = G − G1 clusters are treated. This
model can be written as

yig = β1 + β2dig + εig, (1)

where yig denotes the ith observation on the dependent variable within cluster g, and dig
equals 1 for the �rst G1 clusters and 0 for the remaining G0 = G−G1 clusters. As usual in
the literature on cluster-robust inference, we assume that

E(εgε
′
g) = Ωg and E(εgε

′
h) = 0 for g 6= h, (2)

where the εg are vectors with typical elements εig, and the Ωg are Ng ×Ng positive de�nite
covariance matrices. The model (1) is estimated by OLS, and standard errors are based on
the cluster-robust variance estimator, or CRVE,

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1. (3)

In this case, Xg has typical row [1 dig], ε̂g is the Ng-vector of OLS residuals for cluster g,
and X is the N × 2 matrix formed by stacking the Xg matrices vertically.3

2.1 Why CRVE Inference Can Fail

It is shown in Section 6 of MacKinnon and Webb (2016a) that, under the null hypothesis,
the cluster-robust t statistic for β2 = 0 in equation (1) can be written as

t2 =
c(d− d̄ι)′ε(∑G

g=1(dg − d̄ιg)′ε̂gε̂′g(dg − d̄ιg)
)1/2 , (4)

where the N -vectors d, ι, and ε have typical elements dig, 1, and εig, respectively, ιg is an
Ng-vector of 1s, dg is the subvector of d corresponding to cluster g, and d̄ is the fraction
of treated observations. The scalar c is the square root of

(
(G − 1)(N − 2)

)
/
(
G(N − 1)

)
,

the inverse of the degrees-of-freedom correction in expression (3). In what follows, we omit

3Expression (3), which is sometimes called CV1, is not the only CRVE. Alternatives are discussed in Bell
and McCa�rey (2002), Imbens and Kolesar (2016), MacKinnon (2015), Pustejovsky and Tipton (2016), and
Young (2016), among others. We focus on CV1 because it is by far the most commonly used and because
it is the easiest to analyze and to compute.
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the factor c for simplicity. Since it multiplies both the actual and bootstrap t statistics, it
cannot a�ect bootstrap P values.

With c omitted, the numerator of the t statistic (4) can be written as

(1− d̄)

G1∑
g=1

ι′gεg + d̄

G∑
g=G1+1

ι′gεg. (5)

The �rst term is the contribution of the treated clusters, and the second term is the con-
tribution of the untreated ones. Similarly, the summation inside the square root in the
denominator can be written as

(1− d̄)2
G1∑
g=1

(ι′gε̂g)
2 + d̄ 2

G∑
g=G1+1

(ι′gε̂g)
2. (6)

The �rst and second terms in expression (6) are evidently supposed to estimate the variances
of the corresponding terms in expression (5). However, as was shown in MacKinnon and
Webb (2016a), expression (6) is a very poor estimator when either G1 or G0 is small.4

For simplicity, and because this is the worst case, suppose that G1 = 1. Then expression
(6) reduces to

(1− d̄)2(ι′1ε̂1)
2 + d̄ 2

G∑
g=2

(ι′gε̂g)
2 = d̄ 2

G∑
g=2

(ι′gε̂g)
2, (7)

where the �rst term is zero because the residual subvector ε̂1 must be orthogonal to the
treatment dummy d. It is obvious from equation (7) that expression (6) provides a dreadful
estimator of the variance of

(1− d̄)ι′1ε1 + d̄
G∑

g=2

ι′gεg, (8)

which is what expression (5) reduces to when G1 = 1. Unless cluster 1 is extraordinarily
large, d̄ will be much less than one half, and (1 − d̄)2 will therefore be very much larger
than d̄ 2. Thus, unless the disturbances for the �rst cluster are much less variable than
those for the other clusters, most of the variance of expression (8) will come from the �rst
term. However, we can see from equation (7) that the variance of that term is incorrectly
estimated to be zero.

This argument explains why tests based on the cluster-robust t statistic (4) almost always
overreject extremely severely when G1 = 1. The denominator of the test statistic grossly
underestimates the variance of the numerator. It is shown in MacKinnon and Webb (2016a)
that this underestimation, and the resulting overrejection, become much less severe as G1

increases. Just how rapidly this happens depends on the sizes of the treated and untreated
clusters and on the covariance matrices of the disturbances.

4For the pure treatment model (1), small values of G0 have the same consequences as small values of G1.
In contrast, for DiD models, only small values of G1 cause problems. It is not di�cult to make inferences
from such models even when G0 = 0, provided treatment starts at di�erent times for di�erent clusters.

4



2.2 The Wild Cluster Bootstrap and Why It Can Fail

The wild cluster bootstrap was suggested by Cameron, Gelbach and Miller (2008) as a way
to improve the �nite-sample properties of cluster-robust t tests. In the case of the dummy
variable regression (1), the restricted wild cluster bootstrap DGP for bootstrap sample b is

y∗big = β̃1 + ε̃igv
∗b
g , (9)

where β̃1 is the restricted OLS estimate of β1, which in this case is just the sample mean of
the dependent variable, ε̃ig is the restricted residual for observation i in cluster g, and v∗bg is
a random variable that follows the Rademacher distribution and takes the values 1 and −1
with equal probability. Other auxiliary distributions can also be used, but the Rademacher
distribution seems to work best in most cases; see Davidson and Flachaire (2008) and Mac-
Kinnon (2015). However, when G ≤ 12, it is better to use a distribution with more than
two mass points; see Webb (2014).

To perform a bootstrap test, the bootstrap DGP (9) is used to generate B bootstrap
samples indexed by b, each of which is then used to compute a bootstrap test statistic t∗b2 ;
see below. The symmetric bootstrap P value is then calculated as

p̂∗ =
1

B

B∑
b=1

I
(
|t∗b2 | > |t2|

)
, (10)

where I(·) denotes the indicator function.5
In most cases, the wild cluster bootstrap works well. Even when G is quite small (say,

between 15 and 20), simulation results in MacKinnon and Webb (2016a) and MacKinnon
(2015) suggest that rejection frequencies tend to be very close to nominal levels, provided
that cluster sizes do not vary extremely and the number of treated clusters is not too small.
However, the restricted wild cluster bootstrap tends to underreject very severely when G1

is small. When G1 = 1, it typically never rejects at any conventional level. In order to
motivate the subcluster wild bootstrap procedure that we introduce in the next section, we
now explain why this happens.

The bootstrap t statistic analogous to t2 is

t∗b2 =
c(d− d̄ι)′ε∗b(∑G

g=1(dg − d̄ιg)′ε̂∗bg ε̂∗bg ′(dg − d̄ιg)
)1/2 , (11)

where ε∗b is an N -vector formed by stacking the vectors of bootstrap disturbances ε∗bg with
typical elements ε̃igv

∗b
g , and ε̂

∗b
g is the vector of OLS residuals for cluster g and bootstrap

sample b; compare equation (4).
Now consider the extreme case in which G1 = 1. Ignoring the factor c, the numerator of

the right-hand side of equation (11) becomes

(1− d̄)ι′1ε
∗b
1 + d̄

G∑
g=2

ι′gε
∗b
g ; (12)

5It would of course be valid to use an equal-tail P value instead of (10), and the latter would surely be
preferable if the distribution of the t∗b2 were not symmetric around the origin.
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this is the bootstrap analog of expression (8). Because d̄ = N1/N , the �rst term in expression
(12) must be the dominant one unless N1 is extraordinarily large or the variance of the
disturbances in the �rst cluster is extraordinarily small.

For the Rademacher distribution, the vectors of bootstrap disturbances for g = 1 can
have just two values, namely, ε̃1 and −ε̃1. When G1 = 1, the distribution of the bootstrap
t statistics t∗b2 is then bimodal, with half the realizations in the neighborhood of t2 and the
other half in the neighborhood of −t2; see Figure 4 in MacKinnon and Webb (2016a). The
wild cluster bootstrap fails for G1 = 1 because the absolute value of the bootstrap test
statistic is highly correlated with the absolute value of the actual test statistic. This makes
it very di�cult to obtain a bootstrap P value below any speci�ed level and leads to severe
underrejection. However, the problem rapidly becomes less severe as G1 increases.

It might seem that this problem could be solved by using unrestricted instead of restricted
residuals in the bootstrap DGP (9). However, this creates a new problem, which is just as
severe. When unrestricted residuals are used with G1 = 1, the �rst term in expression (12)
always equals zero, just like the �rst term on the left-hand side of equation (7), because
the unrestricted residuals sum to zero for the single treated cluster. As a consequence, the
bootstrap t statistics have far less variance than the actual t statistics, and the bootstrap test
overrejects very severely. Again, the problem rapidly becomes less severe as G1 increases;
see Figure 7 in MacKinnon and Webb (2016a).

3 The Subcluster Wild Bootstrap

The wild cluster bootstrap fails when G1 = 1 because the same value of the auxiliary random
variable v∗bg multiplies every residual for cluster g. Thus the vector of bootstrap disturbances
for the treated cluster is always proportional to the vector of residuals. This is an essential
feature of the wild cluster bootstrap, because it allows the bootstrap samples to mimic the
(unknown) covariance structure of the εg. But it leads to highly unreliable inferences when
either G1 or (in the pure treatment case) G0 is not su�ciently large.

The idea of the subcluster wild bootstrap is to break up the vector of residuals within
each cluster into mutually exclusive subvectors and multiply each subvector by an auxiliary
random variable. In the simplest case, each subvector has just one element, and the sub-
cluster wild bootstrap DGP is simply the ordinary wild bootstrap DGP; see Davidson and
Flachaire (2008). Of course, standard errors are still computed using a CRVE like (3).6

Even though the wild bootstrap fails to capture some important features of the true
DGP, it yields asymptotically valid inferences when both G1 and G0 are large, and it often
yields greatly improved inferences when one or both of them is small. Most importantly,
it yields (approximately) valid inferences for the pure treatment model (1) whenever all
clusters are the same size, even when G1 = 1. This is a very important special case.

In Section 3.4, we discuss other variants of the subcluster wild bootstrap in which there
are fewer subclusters than observations, so that each subcluster contains more than one
observation. However, we focus on the ordinary wild bootstrap because it is the easiest one
to describe and implement, and because it is almost certainly the one that should be used
in practice most of the time.

6Using the same t statistic for the original sample and the bootstrap samples is imperative.
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3.1 The Ordinary Wild Bootstrap

The restricted wild bootstrap DGP analogous to equation (9) is

y∗big = β̃1 + ε̃igv
∗b
ig . (13)

The only di�erence between equations (9) and (13) is that, for the former, the auxiliary
random variable takes the same value for every observation in cluster g, and, for the latter,
it takes an independent value for every observation. Consider once again the special case
in which G1 = 1. Provided N1 is not too small, the DGP (13) solves the problem of the
absolute value of the numerator of the bootstrap test statistic being highly correlated with
the absolute value of the numerator of the actual test statistic; see expression (12). Instead
of there being just two possible vectors of bootstrap disturbances ε∗b1 for cluster 1, there are
now 2N1 possible vectors.

Of course, solving this problem comes at a cost: The bootstrap disturbances no longer
mimic the covariance structure of the εg. Thus it may seem that using the bootstrap DGP
(13) cannot possibly yield valid inferences. However, it does so in at least two important
cases. The �rst case is when G tends to in�nity and the limit of φ ≡ G1/G is strictly between
0 and 1. The second case is when the covariance matrix of ι′gεg satis�es certain conditions.
Of course, the �rst case is of no practical interest, since both cluster-robust t tests and the
wild cluster bootstrap work extremely well. But the ordinary wild bootstrap (and, more
generally, the subcluster wild bootstrap) can be extremely valuable in the second case.

The ordinary wild bootstrap works in the �rst case because, whenever we bootstrap
an asymptotically pivotal test statistic, the asymptotic validity of bootstrap tests does not
require the bootstrap DGP to mimic the true, unknown DGP. It merely requires that the
bootstrap DGP belong to the family of DGPs for which the test statistic is asymptotically
pivotal. Two papers in which this point has been explicitly recognized are Davidson and
MacKinnon (2010) and Gonçalves and Vogelsang (2011).

Consider the t statistic (4) and its bootstrap analog (11). Under the wild bootstrap
DGP (13), the numerators of (4) and (11) do not have the same distributions. But, in both
cases, the denominator correctly estimates the standard deviation of the numerator when
G is large and φ is not close to 0 or 1. Therefore, both test statistics are approximately
distributed as standard normal for large G, so that computing a bootstrap P value for (4)
using the empirical distribution of B realizations of (11) is asymptotically valid. Of course,
this argument is not intended to be fully rigorous. Providing a formal treatment of what
happens as G → ∞ is tricky, because we need to specify what happens to the Ng as G
increases; see Carter, Schnepel and Steigerwald (2015). Since what happens in this case is
of no practical interest, we make no attempt to provide such a treatment.

The wild bootstrap DGP (13) imposes the null hypothesis. We could instead use the
unrestricted wild bootstrap DGP

y∗big = β̂1 + β̂2dig + ε̂igv
∗b
ig , (14)

where β̂1 and β̂2 are unrestricted OLS estimates, and the ε̂ig are unrestricted residuals. If
the restricted wild bootstrap works well, then so should the unrestricted one, provided the
bootstrap t statistic is rede�ned so that it is testing the hypothesis β2 = β̂2 instead of
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the hypothesis β2 = 0. Using (14) instead of (13) will inevitably a�ect the �nite-sample
properties of bootstrap tests, often making P values smaller, but it makes it much easier
to compute con�dence intervals. In the simulation experiments of Section 4, we study both
the restricted and unrestricted wild (cluster) bootstraps.

3.2 Equal Cluster Sizes

Our most important, and most surprising, result is that the ordinary wild bootstrap can
yield approximately valid inferences even when G1 is very small, provided all cluster sizes
are the same. This is true even when there is an arbitrary pattern of heteroskedasticity at
the cluster level.

From expressions (5) and (6), under the null hypothesis, the actual t statistic is

t2 =
c(1− d̄)

∑G1

g=1 ι
′
gεg + d̄

∑G
g=G1+1 ι

′
gεg(

(1− d̄)2
∑G1

g=1(ι
′
gε̂g)

2 + d̄ 2
∑G

g=G1+1(ι
′
gε̂g)

2
)1/2 . (15)

Now consider the bootstrap t statistic based on the ordinary wild bootstrap DGP (13).
Omitting the b superscripts for clarity, it is

t∗2 =
c(1− d̄)

∑G1

g=1 ι
′
gε
∗
g + d̄

∑G
g=G1+1 ι

′
gε
∗
g(

(1− d̄)2
∑G1

g=1(ι
′
gε̂
∗
g)

2 + d̄ 2
∑G

g=G1+1(ι
′
gε̂
∗
g)

2
)1/2 . (16)

The bootstrap t statistic (16) evidently has the same form as the t statistic (15), but with
bootstrap disturbances and bootstrap residuals replacing the actual ones.

Now assume that all clusters are the same size and that Ωg = λgΩ̄ for all g, with
λg > 0. According to this assumption, the covariance matrices for all clusters are propor-
tional, with factors of proportionality λg that may di�er across clusters. This implies that
Var(ι′gεg) = λgι

′
gΩ̄ιg ≡ λgω

2 for all g. The key requirement here is that all the scalars
Var(ι′gεg) must be proportional to λg. Thus we are allowing there to be an arbitrary pattern
of heteroskedasticity at the cluster level.

From (15) and the de�nition of ω2, we may conclude that, in this special case, the
variance of 1/c times the numerator of t2 is simply

(1− d̄)2
G1∑
g=1

λgω
2 + d̄ 2

G∑
g=G1+1

λgω
2. (17)

The variance of t2 itself depends on how well the denominator of (15) estimates expression
(17). This denominator involves two terms. The �rst involves a summation over G1 random
scalars (ι′gε̂g)

2 that estimates the �rst term in (17), and the second involves a summation
over G0 random scalars that estimates the second term.

Now de�ne θ1 as 1/(λgω
2) times the expectation of a typical element (ι′gε̂g)

2 in the �rst
summation, and θ0 as 1/λgω

2 times the expectation of the same typical element in the
second summation. In most cases, the factors θ1 and θ0 will be less than one, sometimes
much less; indeed, we saw in the previous section that θ1 = 0 when G1 = 1. These two
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factors will almost always be di�erent, because they depend on the numbers and sizes of
the treated and untreated clusters.

Provided that the Ng are not too small, so that the OLS residuals mimic the disturbances
su�ciently well, the square of the denominator of (15) must be approximately equal to

(1− d̄)2θ1

G1∑
g=1

λgω
2 + d̄ 2θ0

G∑
g=G1+1

λgω
2. (18)

Thus, from (17) and (18), we conclude that

Var(t2) ∼=
(1− d̄)2

∑G1

g=1 λg + d̄ 2
∑G

g=G1+1 λg

(1− d̄)2θ1
∑G1

g=1 λg + d̄ 2θ0
∑G

g=G1+1 λg
. (19)

Notice that ω2 does not appear in this expression.
Because the ordinary wild bootstrap does not preserve intra-cluster correlations, the

variance of ι′gε
∗
g is not λgω

2. Instead, assuming that N is large enough for the residuals to
be good estimators of the disturbances, it is approximately λgNg times the average diagonal
element of Ω̄. Thus the variance of the numerator of t∗2 is approximately

(1− d̄)2
G1∑
g=1

λgNgσ
2 + d̄ 2

G∑
g=G1+1

λgNgσ
2. (20)

By essentially the same argument that led to expression (18), the square of the denominator
of t∗2 must be approximately equal to

(1− d̄)2θ1

G1∑
g=1

λgNgσ
2 + d̄ 2θ0

G∑
g=G1+1

λgNgσ
2. (21)

Therefore, using (20) and (21), we conclude that

Var(t∗2)
∼=

(1− d̄)2
∑G1

g=1 λg + d̄ 2
∑G

g=G1+1 λg

(1− d̄)2θ1
∑G1

g=1 λg + d̄ 2θ0
∑G

g=G1+1 λg
, (22)

which is just expression (19). The factors of Ngσ
2 have cancelled out in the same way that

the factors of ω2 did previously. The same factors of λg appear in both (19) and (22) because
the wild bootstrap preserves the heteroskedasticity of the original disturbances.

Of course, the relations (19) and (22) hold only as approximations. They might be poor
ones if N were small, because both the residuals and the bootstrap disturbances might
provide poor approximations to the true disturbances in such a case. Therefore, both the
numerators and the denominators of Var(t2) and Var(t∗2) might di�er substantially from
each other and from the expressions that appear in (19) and (22).

The argument above does not claim that t2 and t
∗
2 actually follow the same distribution

in �nite samples. It merely suggests that they have approximately the same variance. For
simplicity, we have treated the denominators of t2 and t

∗
2 as constants when they are in fact
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random variables, but this should not be a bad approximation when N is reasonably large.
Moreover, if those random variables have similar distributions for the actual and bootstrap
samples, that should help to make the distribution of t∗2 mimic the distribution of t2.

More importantly, we have assumed that the factors θ1 and θ0, which determine how
badly the two terms in the denominators of (15) and (16) underestimate the quantities they
are trying to estimate, are the same for t2 and t

∗
2. It makes sense that these factors should be

approximately the same, because the underestimation arises largely from the orthogonality
between the OLS residuals and the treatment dummy, which is present for both the actual
residuals and the bootstrap ones. The orthogonality causes the variances of sums of residuals
to be smaller than the variances of the corresponding sums of disturbances in a manner that
depends on G1, G0, and the number of elements in each of the sums; see Section A.3 of the
appendix to MacKinnon and Webb (2016a). However, if these factors were substantially
di�erent between the actual and bootstrap test statistics, then it would no longer be the
case that Var(t2) ∼= Var(t∗2). This is most likely to happen when the sample size is small,
because the residuals may then be poor estimators of the disturbances.

3.3 Di�ering Cluster Sizes and Di�erence in Di�erences

The key results (19) and (22) depend critically on the assumption that all clusters are the
same size. Without that assumption, the ratio of Var(ι′gεg) to Var(ι′gε

∗
g) would not be the

same for all g, and t∗2 would not have approximately the same variance as t2 when G1 or G0

is small. The ratio would evidently be larger for large clusters than for small ones, because
the number of o�-diagonal terms (which must surely be positive when there is clustering,
at least on average) is proportional to N2

g .
Suppose that, instead of being the same size, the treated clusters were all smaller than

the untreated ones. This would make the variance of the �rst term in the numerator of t2
smaller relative to the variance of the second term, and likewise for the �rst and second
terms in the numerator of t∗2; see equations (15) and (16). However, the e�ect would be
stronger for t2 than for t∗2, because Var(ι′gεg) increases faster than Ng, while Var(ι′gε

∗
g) is

proportional to Ng. Since 1 − d̄ >> d̄ unless a large proportion of the clusters is being
treated, it is primarily the �rst terms that determine Var(t2) and Var(t∗2). Moreover, it is
the �rst terms that the corresponding terms in the denominators of t2 and t

∗
2 underestimate

(often severely) when G1 or G0 is small.
We conclude that, when G1 is small (at any rate, not too much larger than G/2),

and the treated clusters are smaller than the untreated ones, it must be the case that
Var(t∗2) > Var(t2). This will lead the ordinary wild bootstrap test to underreject. By a
similar argument, the test will overreject whenever the treated clusters are larger than the
untreated ones. Of course, this is only a problem when at least one of G1 and G0 is small. For
G1 and G0 su�ciently large, the denominators of t2 and t

∗
2 correctly estimate the variances

of the numerators, and so Var(t2) ∼= Var(t∗2)
∼= 1.

It might seem tempting to create a sample in which every cluster is the same size by
taking averages of individual observations. For example, if every observation is associated
with a jurisdiction and a time period, we could create a balanced panel by averaging over
all the observations associated with each jurisdiction and time period. Unfortunately, this
will probably not yield good results if the sample is not balanced originally. The problem
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is that, when we take averages over di�erent numbers of observations, we implicitly create
intra-cluster covariance matrices that depend on those numbers. As a result, the condition
that all the covariance matrices, and hence all the scalars Var(ι′gεg), must be identical up
to a factor λg will be violated.

The result that Var(t2) ∼= Var(t∗2) when cluster sizes are equal applies only to pure
treatment models like (1). In the case of di�erence-in-di�erences regressions, only some of
the observations in the treated clusters are actually treated. This means that expression (5)
for the numerator of the t statistic has to be replaced by

(1− d̄)

G1∑
g=1

d′gεg + d̄

G1∑
g=1

(ιg − dg)
′εg + d̄

G∑
g=G1+1

ι′gεg. (23)

Recall that the dg are Ng-vectors equal to 1 for treated observations and 0 for untreated
ones. The numerator of the t statistic now has three terms instead of two. The �rst term
corresponds to the treated observations in the treated clusters, the second corresponds to the
untreated observations in the treated clusters, and the third corresponds to the untreated
clusters. The �rst two terms are not independent, because they both depend on the same
set of treated clusters.

It is clear from expression (23) that the analysis which led to the approximations (19)
and (22) does not apply to the DiD case. The previous arguments about what happens
when cluster sizes di�er suggest that the subcluster bootstrap is likely to underreject when
the number of treated observations in each treated cluster is small relative to the number
of untreated observations, and/or relative to the number of observations in each untreated
cluster. They also suggest that it is likely to overreject when the number of treated obser-
vations in each treated cluster is relatively large. The former situation is likely to be more
common than the latter, however, because the number of treated observations per treated
cluster can only be relatively large if two conditions are satis�ed: The treated clusters must
be relatively large, and a substantial fraction of the observations must be treated. In most
cases, we would not expect both these conditions to be satis�ed.

3.4 Using Actual Subclusters

Up to this point, we have only discussed the wild cluster bootstrap and the ordinary wild
bootstrap. In general, the subcluster wild bootstrap is a sequence of procedures with the
former as one limiting case and the latter as the other. In between, there could potentially
be a large number of bootstrap DGPs that involve some degree of clustering, but at a �ner
level than the covariance matrix estimator.

Recall from Subsection 3.3 that the ordinary wild bootstrap fails when cluster sizes vary
and at least one of G1 and G0 is small, so that the denominators of the actual and bootstrap
t statistics do a poor job of estimating the variance of the numerators. The fundamental
reason for this failure is that the ratio of Var(ι′gε

∗
g) to Var(ι

′
gεg) varies across clusters. This

happens because, with the ordinary wild bootstrap, the elements of ε∗g are uncorrelated,
while those of εg are not.

Suppose the observations within each cluster fall naturally into subclusters. For exam-
ple, with panel data, every observation will be associated with a time period as well as a
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jurisdiction. With location data, every observation might be associated with a city or a
county within a larger region. In such a case, equation (1) can be rewritten as

yitg = β1 + β2ditg + εitg, (24)

where g indexes jurisdictions or regions, the level at which the covariance matrix is clustered,
t indexes time periods or locations, and i indexes individual observations. In this case, there
is a natural subcluster wild bootstrap DGP:

y∗bitg = β̃1 + ε̃itgv
∗b
tg . (25)

This is a variant of the wild cluster bootstrap, since the auxiliary random variable v∗btg is the
same for all i within each tg pair. But it is not the usual wild cluster bootstrap, for which
the auxiliary random variable would be v∗bg .

For the DGP (25), the bootstrap disturbances will be correlated within subclusters but
uncorrelated across them. If the correlations between εitg and εjtg are substantially larger
than the correlations between εitg and εjsg, for i 6= j and s 6= t, then much of the intra-cluster
correlation is really intra-subcluster correlation. In this case, we would expect Var(ι′gε

∗
g) to

provide a better approximation to Var(ι′gεg) than would be the case for the ordinary wild
bootstrap. In consequence, we would expect Var(t∗2) to be closer to Var(t2) and bootstrap
tests to perform better when cluster sizes vary.

Suppose that each cluster contains M observations that can be evenly divided into S
equal-sized subclusters. Therefore, the total number of unique o�-diagonal elements is
M(M − 1)/2, and the number of those that are contained within the S diagonal blocks
is M(M/S − 1)/2. The ratio of these numbers is (M − 1)/(M/S − 1), which is always
greater than S. Therefore, using S subclusters will capture a fraction of the intra-cluster
correlations that is less than 1/S.7 We conclude that, unless the intra-subcluster correlations
are large relative to the remaining intra-cluster correlations, the potential gain from using
actual subclusters instead of the ordinary wild bootstrap is likely to be modest.

Moreover, there is a cost to subclustering at anything but the individual level. With the
restricted subcluster wild bootstrap, when the number of treated or untreated subclusters
is small, the bootstrap t statistic will be correlated with the actual t statistic. With the
unrestricted subcluster wild bootstrap, in the same cases, the variance of the bootstrap t
will be too small. These are precisely the reasons why the two variants of the wild cluster
bootstrap fail when G1 or G0 is too small; see Subsection 2.2 and Section 6 of MacKinnon
and Webb (2016a). The whole point of the subcluster wild bootstrap is to avoid this type
of failure, but we are very likely to encounter it if we subcluster at too coarse a level.

We tentatively conclude that subclustering at a very �ne level should yield results similar
to those from using the ordinary wild bootstrap DGP, and subclustering at a very coarse
level is likely to yield unreliable results unless G1 and G0 are both fairly large (in which
case subclustering may not be necessary at all). Subclustering at an intermediate level will
probably only be bene�cial if the correlations within subclusters are a lot higher than the
correlations between them.

7Moreover, with unbalanced subclusters, this fraction would be further reduced.
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4 Simulation Experiments

In this section, we report some of the results from a very extensive set of simulation experi-
ments, mainly for the pure treatment model (1) with G small and G1 often very small. The
primary objective is to see whether combining the ordinary wild bootstrap DGP with CV1

standard errors works as well the analysis of Subsection 3.2, which necessarily involves some
approximations, suggests that it should. Secondary objectives are to study subclustering
and to investigate situations in which the theory of Subsection 3.3 suggests that the ordinary
wild bootstrap should not work well.

In all experiments, the disturbances are normally distributed, uncorrelated across clus-
ters, and equicorrelated within clusters with correlation coe�cient ρ. The bootstrap meth-
ods use B = 399 bootstrap samples.8 There are always 400,000 replications. Using such a
large number is essential in order to distinguish between experimental noise and small but
systematic failures of exactness for various bootstrap tests.

Figure 1: Rejection frequencies for existing tests, G = 14, N/G = 200
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Figure 1 shows rejection frequencies at the .05 level for four conventional tests with
G = 14, N/G = 200, and ρ = 0.10. The horizontal axis shows the number of treated
clusters, G1, which varies from 1 to 13. The vertical axis has been subjected to a square
root transformation in order to present both large and small rejection frequencies in the
same �gure.

8In empirical analysis, it is desirable to use a larger value for B, but 399 seems to work well in simulation
experiments, where any randomness in the bootstrap P values tends to average out across replications.
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Simply using t statistics based on heteroskedasticity-robust standard errors�speci�cally,
the HC2 variant proposed in MacKinnon and White (1985)�combined with the t(2798)
distribution results in severe overrejection for all values of G1. This overrejection would
have been even more severe if either N/G or ρ had been larger.

As the analysis of Subsection 2.1 suggests, using t statistics based on the CV1 covariance
matrix (3), combined with the t(13) distribution, leads to extremely severe overrejection
when G1 = 1 and G1 = 13, but the overrejection is much less severe for values of G1 that
are not too far from G/2.

The two wild cluster bootstrap methods perform exactly as the analysis of MacKinnon
and Webb (2016a), reviewed in Subsection 2.2, suggests. The restricted wild cluster boot-
strap (WCR) almost never rejects for G1 = 1 and G1 = 13, underrejects severely for G1 = 2
and G1 = 12, performs almost perfectly for G1 = 3 and G1 = 11,9 and overrejects modestly
for other values of G1. In contrast, the unrestricted wild cluster bootstrap (WCU) over-
rejects very severely for G1 = 1 and G1 = 13, but it improves rapidly as G1 becomes less
extreme and performs extremely well for 6 ≤ G1 ≤ 8.

Figure 1 would have looked more or less the same for any moderate value of G. As
G increases, the range of extreme values of G1 for which the WCR bootstrap severely
underrejects and the WCU bootstrap severely overrejects gradually becomes a little wider,
but the range of moderate values for which both bootstrap tests perform well becomes
larger relative to G. When G = 40, for example, both wild cluster bootstrap tests perform
extremely well for 6 ≤ G1 ≤ 34.

Numerous experiments suggest that, whenever the WCR and WCU P values di�er sub-
stantially, at least one of them must be seriously misleading. Thus it is often easy to tell
when G1 is too small. In contrast, when the two P values are close, they both seem to be
at least fairly reliable. Of course, the P values being similar certainly does not guarantee
that they are entirely reliable; consider the cases of G1 = 4 and G1 = 10 in Figure 1.

Figure 2 shows rejection frequencies for ordinary wild bootstrap tests at the .05 and .01
levels for the same thirteen experiments. These tests combine the wild bootstrap, either
restricted (WR) or unrestricted (WU), with the CV1 covariance matrix. They perform
extraordinarily well. The only deviations between rejection frequencies and nominal levels
that are clearly not due to experimental noise are for G1 = 1 and G1 = 13. These are cases
where wild cluster bootstrap tests fail dramatically; see Figure 1. The very minor deviations
visible in Figure 2 are extraordinarily trivial by comparison.

Figure 3 investigates the consequences of using genuine subclusters. In these experi-
ments, G = 14, ρ = 0.10, and Ng = 256 for all g. The horizontal axis shows the number of
subclusters S, which varies from 1 (the wild cluster bootstrap) to 256 (the wild bootstrap)
by factors of 2. The vertical axis shows rejection frequencies for G1 = 1 and G1 = 2 for
restricted and unrestricted bootstrap tests. Note that, as in Figure 1, the vertical axis has
been subjected to a square root transformation.

The results in Figure 3 are dramatic. The unrestricted wild cluster bootstrap overrejects
very severely, and the restricted one underrejects very severely. As the level of subclustering
becomes �ner, both procedures improve monotonically. For S = 256 (the ordinary wild
bootstrap), they perform very well for G1 = 1 and almost perfectly for G1 = 2. In additional

9This is a coincidence that would not have occurred if G had been larger or smaller.
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Figure 2: Rejection frequencies for ordinary wild bootstrap tests, G = 14, N/G = 200
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experiments, not reported, we varied the value of ρ. As expected, the performance of WCR
and WCU is almost invariant to ρ, but the performance of all the subclustering procedures
deteriorates as ρ increases. This is true for all values of S, but it is particularly true for
small values.

The results in Figure 3, together with additional ones for larger values of G1 and other
values of ρ, suggest that it is better to use the ordinary wild bootstrap than to subcluster
at any level. We suspect that this will generally be the case unless correlations within
subclusters are substantially larger than correlations across them.

The next set of experiments is designed to investigate the e�ects of the number of clusters
and their size. Figure 4 reports the results of several experiments for G1 = 1, which is always
the worst case. There are three panels, for N/G = 20, N/G = 100, and N/G = 500. The
vertical axis shows rejection frequencies at the .05 level. The horizontal axis shows G, which
varies from 3 to 15.10 Remarkably, both variants of the ordinary wild bootstrap perform
almost perfectly when G = 3. As G increases, their performance gradually deteriorates, but
it is still generally quite good. As in Figure 2, the restricted variant underrejects, and the
unrestricted variant overrejects. The former improves only slightly as N/G increases, but
the latter improves very substantially.

We showed in Subsection 3.2 that the ordinary wild bootstrap is approximately invariant

10G = 3 is the smallest value for which it is possible to compute the CV1 standard error of β̂2. When
G = 1, all observations are either treated or not treated, and so β2 cannot be identi�ed. When G = 2 and
G1 = 1, both terms in expression (6) equal 0 by an extension of the argument that led to equation (7),
causing the CV1 standard error to be zero.
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Figure 3: Rejection frequencies as level of subclustering changes, G = 14, N/G = 256
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to heteroskedasticity at the cluster level. To investigate this important result, we perform
a number of experiments in which the standard deviation σg for cluster g depends on a
parameter δ, as follows:

σg = exp

(
δ(g − 1)

G− 1

)
. (26)

According to equation (26), σg equals 1 when δ = 0 and is increasing in δ. In the experiments,
δ varies between −2 and 2, so that σg varies between 0.135 and 7.39. The treated clusters
are always the ones with the highest indices. Therefore, exp(δ) can be thought of as the
ratio of the highest standard deviation for a treated cluster to the lowest standard deviation
for an untreated cluster.

All the experiments have 400,000 replications, with G = 14, N = 2800, ρ = 0.10, and
B = 399. They are therefore comparable to the experiments of Figures 1 and 2. We
performed �ve sets of experiments, for G1 = 1, 2, . . . , 5. However, for reasons of space, we
only report results for G1 = 2 and G1 = 4.

Figure 5 plots rejection frequencies at the .05 level against δ for all four tests. As
the theory of Subsection 3.2 predicts, the two ordinary wild bootstrap tests work almost
perfectly. It is extremely di�cult to distinguish their rejection frequencies from each other
or from the horizontal line at .05. In contrast, the performance of the two wild cluster
bootstrap tests is very sensitive to δ. Remarkably, when G1 = 4 and δ > 0.4, the WCR
bootstrap rejects more often than WCU. Given the slopes of the two curves near δ = 2, it
seems very likely that this would also be the case for G1 = 2 when δ is large enough.

There has been very little investigation of the e�ects of heteroskedasticity on inference
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Figure 4: E�ect of G on rejection frequencies for two tests when G1 = 1
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Figure 5: E�ects of heteroskedasticity on rejection frequencies
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Figure 6: E�ect of varying cluster sizes on rejection frequencies for WR + CV1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

1.00 1.65 2.07 2.60 3.24 4.16 5.18 6.54




G1 = 1

.................................................................................................................................
G1 = 2




G1 = 6


...........................................................................................................................................................................................................................................................................................................................................................

G1 = 8
......................................

.........................................................
.................................................

..........................................................................................................................
........................................................................................

....................................................................................................................................................................................................................................
......................................................G1 = 10

......
.....

.....
........

........
.........

..........
............

..............
.................................

....................

G1 = 12

.............
.............
.............
...........
................
..............
.................
.............
..................
............
..................
............
....................

....................
....................

....................
......................

......................
.....................

.........................
..............................

..............................
..............................

........................................
.................................................

.........................................
...........................................

............................................
...........................................

......................................

G1 = 13

Rej. rate

N14/N1

using the wild cluster bootstrap. In particular, all of the simulations in MacKinnon and
Webb (2016a) assume that the disturbances are homoskedastic. Figure 5 suggests that
the wild cluster bootstrap can perform much worse under heteroskedasticity than under
homoskedasticity. Since that is not the case for the ordinary wild bootstrap, it may be
attractive to use the latter when there is cluster-speci�c heteroskedasticity even when G1 is
not particularly small.11

The next set of experiments deals with varying cluster sizes. The theory of Subsection
3.3 suggests that the ordinary wild bootstrap may not perform well when either G1 or G0

is small and cluster sizes vary. In these experiments, G = 14, ρ = 0.10, and the average
value of N/G is 200. The actual cluster sizes depend on a parameter γ that varies between
0 and 2. When γ = 0, all clusters are the same size. When γ = 2, the largest cluster is
about 6.5 times as large as the smallest one; with clusters sorted from smallest to largest,
N1 = 67 and N14 = 438. For details, see Section A.6 of the appendix to MacKinnon and
Webb (2016a).

Figure 6 plots rejection frequencies at the .05 level for the restricted (WR) variant of
the wild bootstrap when clusters are treated from smallest to largest. Results for the WU
variant, not shown in the �gure, are very similar. Instead of γ, which is hard to interpret,
the horizontal axis shows the ratio of the largest to the smallest cluster size. There are eight
curves, which correspond to G1 = 1, 2, 4, 6, 8, 10, 12, 13. We expect to see underrejection

11Similar experiments in MacKinnon and Webb (2016b) show that randomization inference procedures
also perform poorly with cluster-speci�c heteroskedasticity and few treated clusters.
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for G1 < 7 and overrejection for G1 > 7, because treating, say, the 12 smallest clusters is
equivalent to treating the 2 largest clusters.

The ordinary wild bootstrap performs just as the theory of Subsection 3.3 predicts. It
works quite well for 4 ≤ G1 ≤ 10 even when cluster sizes vary by a factor of more than
six. However, it underrejects fairly severely for G1 = 1, and it overrejects fairly severely for
G1 = 13 when they vary by as little as a factor of two. Performance for G1 = 2 and G1 = 12
is much better than for G1 = 1 and G1 = 13 but still not very good when cluster sizes vary
by a factor of three or more.12

The situation depicted in Figure 6 is a rather extreme one. In practice, it should be
rare for only the largest or the smallest clusters to be treated. Thus, for G1 ≥ 2, we would
generally expect to see better performance than is shown in the �gure. Moreover, since
the investigator knows the cluster sizes, he or she will know whether the wild bootstrap
is likely to overreject or underreject. For example, if the treated clusters are, on average,
smaller than the untreated ones, we would expect there to be underrejection. In that case,
a signi�cant bootstrap P value would provide strong evidence against the null hypothesis,
but an insigni�cant one might be misleading.

All of the experimental results so far are for the pure treatment case, in which every
observation in the treated clusters is treated. In Subsection 3.3, we showed that the key
results (19) and (22) do not apply to DiD regression models. To investigate the performance
of the ordinary wild bootstrap for these models, we performed another set of experiments in
which only a fraction ψ of the observations in the treated clusters is treated. The experiments
have G = 12, N = 2400, ρ = 0.10, and ψ = 0.05, 0.10, . . . , 1.00.

Figure 7 reports rejection frequencies at the .05 level as functions of ψ for four tests.
The top panel shows results for G1 = 1, and the bottom panel shows results for G1 = 2.
As expected, the two wild cluster bootstrap tests perform very badly when G1 = 1. The
restricted variant (WCR) almost never rejects, and the unrestricted one (WCU) rejects
more than half the time and is therefore not shown on the �gure. In contrast, the two
wild bootstrap tests perform about the same, with the unrestricted variant (WU) always
rejecting a bit more often than the restricted one (WR). Both tests underreject severely
when ψ is small, but the extent of the underrejection diminishes steadily as ψ increases.
When ψ = 1, WU actually overrejects very slightly.

All four tests perform much better when G1 = 2, but WCR still underrejects severely,
and WCU still overrejects severely. The two wild bootstrap tests still underreject, but not
nearly as much as when G1 = 1. They are fairly reliable for ψ ≥ 0.75, always rejecting
between 4% and 5% of the time.

An actual DiD model with treatments starting at di�erent times would normally include
a full set of time and cluster dummy variables. We did not use such a model here, partly for
reasons of computational cost, but more importantly because the dummies would eliminate
any intra-cluster correlations in the disturbances of the DGP. Therefore, in order for there
to be any reason to use a CRVE, we would need to use a complicated DGP that creates
intra-cluster correlations which dummies cannot eliminate.

It seems very unlikely that the amount of intra-cluster correlation left after regressing

12Randomization inference also performs poorly when cluster sizes vary and G1 is small; see MacKinnon
and Webb (2016b).
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Figure 7: E�ects of fraction of treated observations in treated clusters
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on a full set of dummy variables would be anything like as large as 0.10 on average. Thus
the results for the wild bootstrap tests in Figure 7 are probably much worse than we would
see in practice with 12 clusters of 200 observations each. Of course, with clusters that were
substantially larger or variable in size, we might well see even worse results.

5 Empirical Example

Angrist and Lavy (2001) studies the impact of teacher training on student outcomes using
a matched comparisons design in Jerusalem schools. The paper tests whether students
who were taught by teachers that received additional training increased their test scores by
more than students taught by teachers with no additional training. The analysis is done
separately for students in religious and secular schools.

We focus our attention on 255 students taught in eight religious schools. Additionally,
we restrict attention to the change in math scores between 1995 and 1996, as this coe�cient
is reported to be quite statistically signi�cant; see Table 5, column 4 of the original paper.
The experimental design allows for a very simple identi�cation strategy:

di�is = β0 + β1treatedis + εis.
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Table 1: E�ects of Teacher Training on Math Score Di�erence
full sample drop 48 drop 40

coef. −0.866 −0.778 −0.903
std. error 0.195 0.206 0.205
t stat (P value) −4.45 (0.003) −3.78 (0.009) −4.41 (0.005)
WCR P value 0.031 0.411 0.322
WCU P value 0.024 0.053 0.033
WR P value 0.020 0.247 0.109
WU P value 0.014 0.152 0.039
N 255 207 215
G 8 7 7
G1 3 2 2

Notes: The outcome variable is the di�erence between 1995 and 1996 math test

scores. All bootstrap P values use B = 99,999. Because there is one school with just

one student, and one otherwise untreated school with just one treated student, the

e�ective values of G and G1 are probably smaller by 1 than the reported values.

Here di�is is the di�erence in math scores for student i in school s between 1995 and 1996,
and treatedis is an indicator for whether a student was in a class taught by a treated teacher.
The standard errors are clustered by school.

Although the example nominally has G = 8 and G1 = 3, it e�ectively has G = 7 and
G1 = 2, because there is one untreated school with just one student, and there is one school
with 53 untreated students and just one treated student.

Initially, we repeat the analysis of Angrist and Lavy (2001). We also calculate four
bootstrap P values, using wild cluster and wild bootstraps, both restricted and unrestricted.
All bootstrap P values use B = 99, 999 replications. Because G = 8, the wild cluster
bootstrap DGPs use the six-point distribution proposed by Webb (2014). The ordinary
wild bootstrap DGPs use the Rademacher distribution.

Our results for the full sample are found in column 1 of Table 1. Our coe�cient estimate
is identical to the one reported in the paper, but our standard error estimate di�ers slightly.
The CRVE P value, which is based on the t(7) distribution, suggests that the treatment
has a negative impact which is statistically signi�cant at well below the 1% level. However,
all four bootstrap procedures agree that it is signi�cant only at the 5% level.

It may seem surprising that all four bootstrap procedures agree in this case. The reason
is that, because G is so small, the two wild cluster bootstrap procedures actually work
quite well despite G1 being small. The equivalent of Figure 1 for G = 7 shows very good
performance by the WCR bootstrap when G1 = 2. Since the two treated schools are only a
little larger than the average size of 254/7 = 36.3 (ignoring the school with just one student),
it is also not surprising that the ordinary wild bootstrap works well.

In order to make inference more di�cult, we drop either the school with 48 treated
students or the school with 40 treated students from the sample; see columns 2 and 3 of
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Table 1. After dropping either of these schools, we are left with two treated schools, one of
which only has one student. When we do this, neither the coe�cient nor the standard error
changes much. Both alternate samples yield CRVE P values, based on the t(6) distribution,
that are signi�cant at the 1% level.

It seems strange that dropping roughly half the treated students apparently has very little
e�ect on the signi�cance of the estimated coe�cient. In fact, it does have a substantial e�ect,
which is masked by the unreliability of cluster-robust standard errors when G1 is very small.
This is clear from the bootstrap P values. In all cases, the P values based on restricted
estimates are much larger than the ones based on unrestricted estimates. None of the former
suggest that the null hypothesis should be rejected.

The di�erence between the P values based on restricted and unrestricted estimates is
much more pronounced for the wild cluster bootstrap (WCR and WCU) than for the wild
bootstrap (WR and WU). The former are so far apart that they convey little information.
The latter also do not yield unambiguous results, but they are very much closer, and for
column 2 they yield the same inferences. Moreover, there are two reasons to suspect that the
WU P value of 0.039 in column 3 is too small: The treated school in that case is relatively
large, and the WR P value is quite a bit larger than the WU one. Thus, if the results
in column 3 were the only ones we had, it would be reasonable to conclude that there is
insu�cient evidence of a treatment e�ect.

6 Conclusion and Recommendations

Although the wild cluster bootstrap works well much of the time, MacKinnon and Webb
(2016a) have shown that it often fails when the number of treated clusters is small, whether
or not the total number of clusters is small. What very often happens is that the restricted
wild cluster bootstrap P value is quite large, and the unrestricted wild cluster bootstrap P
value is very much smaller. In such cases, neither of them can be trusted.

We have proposed a family of new bootstrap procedures, called the subcluster wild
bootstrap, that often works much better than the wild cluster bootstrap when there are few
treated clusters. In principle, the subcluster wild bootstrap can be implemented in a variety
of ways. In most cases, however, it seems that the best approach is simply to combine the
ordinary wild bootstrap with cluster-robust standard errors.

We showed in Section 3.2 that the ordinary wild bootstrap can be expected to work
very well, even with as few as one treated cluster, under certain conditions. Firstly, clusters
must be either treated or untreated. That is, if any observation in a cluster is treated, then
every observation must be treated. Secondly, every cluster must have the same number of
observations and the same covariance matrix up to a scalar factor which may be di�erent
for every cluster. Finally, the number of observations per cluster must be su�ciently large.
Simulation results in Section 4 con�rm these predictions.

The conditions in the previous paragraph are quite stringent. Happily, the subcluster
wild bootstrap often works reasonably well even when they are violated, provided the vio-
lations are not too extreme. With just a few treated clusters, it is very likely to underreject
(overreject) when the treated clusters are smaller (larger) than average. It also tends to
underreject for di�erence-in-di�erence regression models with few treated clusters, unless
the treated clusters are relatively large and have a large proportion of treated observations.
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In that case, it may overreject.
When the restricted (WCR) and unrestricted (WCU) variants of the wild cluster boot-

strap yield similar inferences, there is no real need to employ any other procedure. The
results may not be entirely reliable, especially if the number of treated clusters is small, but
they are almost certainly not severely misleading. However, WCR and WCU will very often
yield di�erent inferences when the number of treated clusters is very small. Typically, the
latter will reject the null and the former will not. When that happens, we evidently cannot
rely on the wild cluster bootstrap.

In such cases, the ordinary (or subcluster) wild bootstrap can often allow us to make
reasonable, albeit imperfect, inferences, as in the empirical example of Section 5. Moreover,
the wild bootstrap will probably outperform the wild cluster bootstrap when there is a
substantial amount of cluster-speci�c heteroskedasticity unless the numbers of treated and
untreated clusters are so large that both procedures work very well.

In principle, for the ordinary wild bootstrap to provide valid inferences, we need the
conditions of Section 3.2 to be satis�ed. In practice, however, we are likely to obtain
reasonably reliable inferences when the number of treated clusters is not too small (2 is a
lot better than 1), when the treated and untreated clusters are approximately the same size,
and when the sample size is not too small (50 observations per cluster is a lot better than 10
when there are not many clusters). It can be useful as a conservative procedure even in the
case of DiD models, where it will often tend to underreject. However, like the wild cluster
bootstrap, the procedure should never be relied upon if the restricted and unrestricted wild
bootstrap P values are not quite similar.
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