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Abstract. Motivated by the problem of detecting software performance
anti-patterns in data-intensive applications (DIAs), we present a tool,
Tulsa, for transforming software architecture models specified through
UML into Layered Queueing Networks (LQNs), which are analytical
performance models used to capture contention across multiple software
layers. In particular, we generalize an existing transformation based on
the Epsilon framework to generate LQNs from UML models annotated
with the DICE profile, which extends UML to modelling DIAs based on
technologies such as Apache Storm.

1 Introduction

The objective of our research is to design tools for iteratively enhancing the
quality of data-intensive applications (DIAs) that leverage Big Data technologies
hosted in private or public clouds. We consider that the DIAs are developed in a
DevOps process, where the developers obtain runtime monitoring information,
especially performance metrics, and reflect them back into design time models
to reason about system performance improvements. In order to achieve that,
a performance model needs to be generated from the DIA architecture model
and runtime information. In this work, we use the Unified Modeling Language
(UML) to specify the software architecture at the design stage. The architecture
model characteristics (see Section 3) and its performance attributes are mainly
captured by DICE profile [2], a recently proposed UML profile to annotate tech-
nology specific aspects of Storm, Hadoop and Spark into UML diagrams. DICE
profile extends the standard MARTE profile[5], so it inherits the MARTE stereo-
types for non-functional properties and performance attributes [4]. The specific
problems we consider in this paper is how to annotate the runtime performance
measurements in the UML model, and how to transform the UML model into
the performance model for subsequent performance analysis.
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Fig. 1. High level abstract view of DICE profile

Several approaches have been proposed for generating performance models,
such as queueing networks [1], stochastic Petri nets [3] and layered queueing net-
works (LQNs) [6] from architecture models. While these studies remain relevant,
the advent of Big Data has popularized technologies such as Apache Storm and
Hadoop in the implementation of DIAs. However, there is a shortage of methods
for specifying UML models for these DIAs and automatically deriving perfor-
mance models.

In this paper, we focus on Storm applications and transform the correspond-
ing UML model into a performance LQN model. There are three reasons for
choosing LQNs. First, a Storm topology may be seen as a network of buffers
and processing elements that exchange messages, so it is quite natural to map
them into a queueing network model. Second, the core elements of LQN models
are semantically similar to the corresponding elements of UML activity and de-
ployment diagrams. Third, LQN solvers such as LINE1 or LQNS2 are available
to provide analytical methods to solve the LQN model. This paper proposes a
new tool called Tulsa, which leverages DICE profile as a better way of annotat-
ing DIA UML models and transforms them to LQN models. Our work extends
an existing UML+MARTE-to-LQN transformation based on the Epsilon frame-
work3 to leverage specific stereotypes of the DICE profile in the generation of
LQN models [6].

2 DICE Profile

The DICE profile expresses some familiar model-driven architecture concepts for
DIAs. In particular, the DICE profile offers three new models, called DICE Plat-
form Independent Model (DPIM), DICE Technology Specific Model (DTSM),
and DICE Deployment Specific Model (DDSM) [2][4]. Fig.1 shows the high level
abstract view of DICE profile. DPIM provides an abstract specification of the
DIA architecture, allowing the inclusion of computation nodes and storage n-
odes. At this abstraction layer, DPIMs help the developer to define a high-level
topology, the main services exposed by the DIA and their QoS requirements.
The DTSM layer is a refinement of the DPIM layer that encompasses techno-
logical decisions. For example, data processing needs are detailed in a DTSM
through configuration requirements for appropriate Big Data technologies, such

1 http://line-solver.sourceforge.net/
2 https://github.com/layeredqueuing/V5/tree/master/lqns
3 http://www.eclipse.org/epsilon/
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as Hadoop. Lastly, DDSM enables the designer to specify deployment decisions
on cloud infrastructures. In the DICE framework, such decisions can be subse-
quently translated into a concrete deployment blueprint based on TOSCA [7].
Our tool mainly focuses on the DTSM and DDSM layers, which are appropriate
for performance evaluation.

3 Model Transformation
Comparing with our previous work in [6], Tulsa not only implements model
transformation for general distributed systems, but also supports Storm applica-
tions by leveraging DICE profile. The underpinning scripts are mainly written in
Epsilon Object Language (EOL) and Epsilon Transformation Language (ETL).
Tulsa supports complex workflow which is assembled by a set of ANT tasks.

3.1 Model Mapping
The source model accepted by Tulsa considers two types of UML diagrams:
deployment and activity diagram. The deployment diagram specifies the sys-
tem configuration, e.g., indicating the functional components, assigning key at-
tributes and defining constraints, and the activity diagram defines the behavior
of the system. Table 1 shows the corresponding mapping from UML model an-
notated with DICE and MARTE stereotypes to LQN model.

Table 1. Model Mapping: from UML+DICE+MARTE to LQN Element

UML Model Element DICE + MARTE Stereotype LQN Model Element

model None lqnmodel

Deployment Diagram

Device GaExecHost, DdsmVMsCluster processor

ExecutionEnvironment DdsmStormCluster None

Artifact Scheduler, DdsmBigDataJob,StormSpout,StormBolt task

Activity Diagram

AcceptEventAction GaStep entry

InitialNode GaWorkloadEvent entry

OpaqueAction,CallOperationAction,SendSignalAction GaStep activity

DecisionNode,MergeNode,JoinNode,ForkNode None precedence

ControlFlow StormStreamStep precedence,synch-call,asynch-call

DICE UML model uses Device to stand for a VM cluster or a single server.
DDSM provides a stereotype ≪DdsmVMsCluster≫ to capture characteristic-
s of the VM cluster, e.g., instances tag means the number of single server in
the cluster. ExecutionEnvironment represents the platform which is deployed
on the VM. DDSM provides a stereotype ≪DdsmStormCluster≫ to annotate
the Storm platform. The related single servers are nested in this ExecutionEnvi-
ronment. Tulsa transforms a single server (i.e., Device), which provides services
to Storm platform, to a Processor in LQN model. An Artifact is used or pro-
duced by a software development process or deployment and operation of a
system, e.g., software component. An Artifact can be transformed into a Task
which stands for the software component in LQN model. In Storm applications,
there are two types of Artifact called Spout and Bolt. DTSM defines stereotype-
s ≪StormSpout≫ and ≪StormBolt≫ for them respectively. These stereotypes
provide tags for specifying the level of parallelism and the execution time, e.g.,
parallelism (i.e., specifying the number of threads).

Due to space limitations, we only describes some core elements and stereo-
types which are mainly considered for Storm applications. More details on the
elements with MARTE stereotypes can be found in [6].



4 Authors Suppressed Due to Excessive Length

Fig. 2. Tool screenshots: fragment of the generated LQN model and performance re-
sults produced by the LQN solver

Tulsa is available at https://github.com/dice-project/DICE-Enhancement-APR.
Pre-requirements of running the Tulsa are to install JDK 8, Eclipse 4.6.1, the
DICE Profile4 and the Epsilon framework. Fig. 2 shows screenshots of the results
views of the Tulsa.

4 Conclusion
In this paper we have presented Tulsa, a tool for transforming a UML model
annotated with DICE profile into a LQN model. Tulsa is a part of the DICE
project, whose objective is to define a quality-driven framework for developing
data-intensive applications that leverage Big Data technologies hosted in private
or public clouds. Further development of the tool is expected to support other
DIAs such as Hadoop and Spark.
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