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Abstract
The Arctic net ecosystem exchange (NEE) of CO2 between the land surface and the
atmosphere is influenced by the timing of snow onset and melt. The objective of this study was
to examine whether uncertainty in model estimates of NEE could be reduced by representing
the influence of snow on NEE using remote sensing observations of snow cover area (SCA).
Observations of NEE and time-lapse images of SCA were collected over four locations at a
low Arctic site (Daring Lake, NWT) in May–June 2010. Analysis of these observations
indicated that SCA influences NEE, and that good agreement exists between SCA derived
from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into
the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using
observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over
Daring Lake and Ivotuk, Alaska (2004–2007) using VPRM formulations with and without
explicit representations of the influence of SCA on respiration and/or photosynthesis. Model
performance was assessed by comparing VPRM output against unfilled eddy covariance
observations from Daring Lake and Ivotuk (2004–2007). The uncertainty in VPRM estimates
of NEE was reduced when respiration was estimated as a function of air temperature when
SCA ≤ 50% and as a function of soil temperature when SCA > 50%.

Keywords: net ecosystem exchange, Arctic, snow, remote sensing, modeling, CO2,
cryosphere

1. Introduction

In low Arctic regions, the initial onset and final melt of
snow mark important transitions in net ecosystem exchange
(NEE) (Olsson et al 2003, Grogan et al 2004, Bokhorst et al
2010, Buckeridge and Grogan 2010), where NEE is defined

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

as the net biospheric flux of CO2 into and out of the land
surface (Lovett et al 2006). NEE can be described as the
sum of photosynthetic uptake by vegetation (GEE, or gross
ecosystem exchange) and ecosystem respiration (R): NEE =
−GEE + R. According to the sign convention used in this
study, uptake of CO2 from the atmosphere is represented as
negative NEE, and release of CO2 into the atmosphere is
shown as positive NEE.

Photosynthetic uptake by vegetation is maximized during
the growing season, when above-freezing air temperatures
(Tair) and sunny conditions support plant growth. During snow
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onset in autumn, the land surface is cooling (Zhang et al
1996), light availability is limited, and most plants are in
senescence, resulting in diminished rates of photosynthesis
and respiration (Billings and Mooney 1968, Carstairs and
Oechel 1978, Öquist and Huner 2003, Olsson et al 2003,
Euskirchen et al 2012). Snowpack development decouples Tair
and soil temperature (Tsoil) (Bonan 2002), allowing subnivean
respiration to persist at low Tair (Zimov et al 1993, Olsson et al
2003). Snow melt in the Arctic normally takes place within a
month of the solstice. Light availability is therefore high, and
melt is accompanied by warmer Tair, soil thaw and greater
availability of nutrients. As a result, snowmelt is accompanied
by rapid increases in rates of respiration (Zimov et al 1996,
Mikan et al 2002, Oelbermann et al 2008, Elberling et al
2008). Although the length of time between snowmelt and
green-up varies by species (Humphreys and Lafleur 2011),
the timing of snowmelt at a site influences the timing of
photosynthetic uptake by vegetation (Morgner et al 2010,
Buckeridge and Grogan 2010).

Landscape rates of photosynthesis and respiration during
snow onset and snow melt are also influenced by the
proportion of the land surface which is snow covered at any
given point in time (snow cover area, or SCA). Comparisons
of NEE at plots with differing quantities of snow have found
diminished rates of photosynthesis and respiration during
snow onset/melt at plots with greater SCA (e.g. Buckeridge
and Grogan 2010 and Morgner et al 2010). Representing SCA
in biospheric carbon flux models could therefore allow the
snow, transitional and growing seasons to be clearly delimited.
Model estimates of NEE during these time periods could then
be generated by simulating the differing seasonal drivers of
NEE for each period. Hence, uncertainty in model estimates
of Arctic NEE might be reduced by explicitly representing the
influence of SCA on NEE.

Although most model estimates of Arctic NEE do not
simulate snow season influences on NEE, several process-
based approaches (e.g. McGuire et al 2000, Wania et al
2009 and Gouttevin et al 2012) have represented snowpack
properties (e.g. density, diffusivity) mechanistically, and have
then generated estimates of subnivean respiration in light
of these snowpack properties. Findings from McGuire et al
(2000) indicate that model agreement with observations can
be improved by explicitly representing the influence of snow
on heterotrophic respiration. Since >50% of annual low
Arctic CO2 efflux can occur during the snow season (Mikan
et al 2002, Sullivan et al 2008), the resulting improvements
in model performance can have important implications for
accuracy in estimates of the Arctic carbon cycle.

To date, model estimates of NEE have not made use
of remote sensing observations of snowpack characteristics,
although a variety of remote sensing observations could
be used to represent different influences of snow on NEE
(Luus et al 2013). Specifically, estimates of SCA can be
made from visible and infrared remote sensing observations
from satellites such as Landsat (Dozier 1989, Rosenthal
and Dozier 1996) and MODIS (moderate resolution imaging
spectroradiometer) (Hall et al 2002, Hall and Riggs 2007,
Riggs and Hall 2011). Remote sensing observations of SCA

could be applied to represent the influence of snow on
decoupling soil and air temperatures (Olsson et al 2003,
Bonan 2002), and causing snow season respiration to be
driven by soil temperature rather than air temperature.
Similarly, rates of photosynthesis are greatly limited by the
presence of an overlying snowpack (Tieszen 1974), since
snow scatters incoming solar radiation and therefore limits the
amount of light that can reach subnivean vegetation (Warren
1982, Zhou et al 2003). Estimates of SCA from satellites such
as Landsat and MODIS could therefore be incorporated into
models of biospheric CO2 fluxes, and applied to improve the
representation of snow season (SCA > 0%) respiration and/or
photosynthesis.

Modeling the influence of snow on NEE using a
remote sensing approach offers several advantages over
a process-based approach. Incorporating remote sensing
observations of snow characteristics in a model of NEE limits
the propagation of meteorological biases into estimates of
snow characteristics, and allows spatial variability in snow
distributions to be captured without having to simulate the
many land surface influences on snow accumulation and melt
(i.e. topography, aerodynamic roughness). In order for SCA
to be included in models of NEE, it is important to first
address the challenges which have previously prevented their
inclusion in models of NEE. Specifically, uncertainty has
existed about the accuracy of remote sensing estimates of
SCA at high-latitude sites, whether the influence of snow on
NEE could be detected using SCA, and whether uncertainty
in model estimates of NEE could be reduced by incorporating
SCA. The research provided here therefore systematically
addresses these three challenges.

The central goal of this research was to explore the
potential for incorporating SCA and its effects on biospheric
carbon fluxes into the vegetation photosynthesis respiration
model (VPRM), a diagnostic, remote sensing assimilation
scheme designed to provide regional estimates of NEE
(Mahadevan et al 2008). The specific objectives were to
examine the feasibility of assimilating MODIS SCA into
a model of biospheric carbon fluxes, and to examine
whether uncertainty in VPRM estimates of NEE could
subsequently be reduced by simulating the influences of SCA
on photosynthesis and/or respiration.

2. Methodology

2.1. Study sites

The Daring Lake (DL) site is located in the southern portion
of the Northwest Territories at 64◦52N, 111◦34′W, ≈200 km
northeast of Yellowknife. Daring Lake receives an average of
200–300 mm in precipitation annually, and has a mean annual
temperature of −12.5 to −10.5 ◦C (Lafleur and Humphreys
2008). At this study site, four time-lapse cameras were
automated to capture thrice daily images of the land surface
in May–June 2010 from towers overlooking mixed tundra
(MT), fen (FN), low shrub mixed tundra (LK), and tall shrub
(SB) vegetation. Observations of NEE were simultaneously
acquired from eddy covariance towers at MT and FN in
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Figure 1. Camera images of fractional snow cover over four vegetation types at Daring Lake (from top to bottom: mixed tundra, fen, low
shrub mixed tundra and tall shrub) on 9 May (DOY 129), 31 May (DOY 151) and 3 June (DOY 154) 2010.

May–June 2010. Measurements of NEE and meteorological
variables have been collected at the Daring Lake MT site
since 2004. The MT site is underlain by sand to loamy sand
textured soil, and is composed of shrub tussock tundra and
mesic heath. The FN site is a wet sedge meadow with 40
to 70 cm of peat soil overlying silt loam textured soil. The
dominant vegetation is sedges, with minor amounts of dwarf
birch and a moss understory (Humphreys and Lafleur 2011,
Lafleur and Humphreys 2008).

In order to select a paired validation site for Daring
Lake mixed tundra (MT), all North American sites with eddy
covariance and meteorological observations (2004–2007)
were considered. Of these, Ivotuk (IV) was selected as the
validation site because it is the most similar to Daring Lake
MT in terms of vegetation, precipitation and temperature.
Ivotuk is an AmeriFlux site located on the north Slope of
Alaska at 68◦29N, 155◦44′, ≈300 km south of Barrow. The
average temperature and liquid precipitation at Ivotuk have
been reported within the −8.9 to −14.6 ◦C and 123–221 mm
ranges by Laskowski (2010). The Ivotuk site has been
classified as a moist, acidic, tussock tundra site dominated
by Eriophorum vaginatum and containing shrubs, mosses and
lichen (Thompson et al 2006, Laskowski 2010).

All eddy covariance observations of NEE were filtered
to remove periods of time with low frictional velocity and
time periods with sensor malfunction (e.g. when windows
on the open-path infrared gas analyzer were obscured). No
gap-filling was performed for observations from either site,

and no additional data points were removed. The same
non-gap-filled datasets were used throughout the entire study.

2.2. Calculating snow cover area

Snow cover area was estimated from visible and/or infrared
observations available at three resolutions, from three
different sources: time-lapse camera (<10 m), Landsat (30 m)
and MODIS (500 m). Although images from both 1 May–30
June 2010 and 30 August–7 December 2010 were examined,
we focus the analysis of snow-NEE associations on the
time period when camera images of SCA at DL MT
were acquired simultaneously with meteorological and eddy
covariance observations: 1 May–30 June 2010. All camera
images acquired during this two month time period were
individually classified in ENVI/IDL using a combination of
supervised parallelepiped and unsupervised isodata classifiers
in ENVI. Unsupervised isodata classifiers were first applied.
All images were then visually assessed to determine how well
the isodata classifications captured SCA. For images that were
not well classified using the isodata approach, a supervised
parallelepiped classification was instead applied. Figure 1
shows a selection of time-lapse images from the four locations
at Daring Lake at the start, middle and end of snow melt in
2010. From these analyses, a percentage of fractional snow
cover was calculated three times per day.

Landsat images were collected over the 2004–2007
and 2010 periods in May–June. These images were
classified in terms of snow presence/absence using the
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normalized difference snow index (NDSI). The NDSI has
been used to identify snow on the basis that snow reflects
less middle-infrared (rMIDIR, 1.55–1.75 µm) than visible
(rGREEN, 0.52–0.60 µm) radiation:

NDSI =
rGREEN − rMIDIR

rGREEN + rMIDIR
. (1)

Regions with NDSI > 0.4 and r0.76−0.90 µm > 11% were
classified as snow covered, whereas other regions were
classified as non-snow covered, as according to Hall et al
(1995). The MODIS 10A1 fractional SCA product was used
as the 500 m estimate of SCA. As MOD10A1 and Landsat are
available on 7–9 day intervals, basic linear interpolation was
used to generate three-hourly estimates of snow cover.

2.3. Incorporating the influence of snow cover in VPRM

VPRM has previously been used to simulate NEE over mid-
latitude (south of 56◦N) sites in North America (Mahadevan
et al 2008). Photosynthetic uptake by vegetation (gross
ecosystem exchange, GEE) has been calculated according
to incoming photosynthetically active radiation (PAR), the
fraction of PAR which can be absorbed by photosynthetically
active vegetation (FAPARPAV) and scalar values representing
the limiting influences of air temperature (Tscale), land surface
water (Wscale), and phenology (Pscale) on GEE. PAR0 and λ
have represented empirically calibrated parameters describing
vegetation light use efficiency (Mahadevan et al 2008).
In this formulation, snow implicitly limits GEE when air
temperatures, PAR and FAPARPAV decline.

GEE = (λTscaleWscalePscale)FAPARPAV
1

1+ PAR
PAR0

PAR. (2)

In VPRM, NEE has been calculated according to the
sum of GEE and respiration: NEE = −GEE + RESP, and
respiration has been calculated using a piecewise approach.
When air Tair has been warmer than a threshold temperature
(Tlow), respiration has been calculated as a linear function
of air temperature (RESP = αTair + β). When Tair < Tlow,
respiration has been set to a low, baseline value independent
of temperature. Tlow, α, and β have been calculated according
to the relationships found between NEE and Tair using
tower observations. In this original formulation, cold season
respiration has been assumed to remain at a constant rate
throughout the time period when Tair < Tlow, regardless of
fluctuations over time in snowpack properties or subnivean
temperatures.

VPRM driver data was composed entirely of remote-
sensing-based estimates of land surface characteristics and
meteorology by MODIS and North American regional
reanalysis (NARR). PAR, Tair,Tsoil, and Tscale were acquired
from NARR downward shortwave radiation, 0–10 cm Tsoil
and 2 m Tair datasets. NARR estimates were generated
by a model which assimilated a variety of meteorological
observations (Mesinger et al 2006). At Daring Lake
(2004–2007, 2010) and Ivotuk (2004–2007), NARR estimates
had good agreement (R2 > 0.8) with all meteorological tower
observations of air temperature, soil temperature at 5 cm,

and PAR (shortwave radiation). Preliminary investigations
indicated that NARR estimates of these variables had better
agreement with field observations than those generated by
other leading approaches. Wscale,Pscale and FAPARPAV were
derived from MODIS. MODIS offers established, moderate
resolution, estimates of land surface characteristics from
visible and infrared observations. MODIS observations have
been used extensively, including in previous versions of
VPRM (Mahadevan et al 2008). Both NARR and MODIS
inputs therefore represent the best available driver datasets for
VPRM at high latitudes.

In this study, daily estimates of NEE in 2004–2007 at
Daring Lake and Ivotuk were generated using six model
formulations based on VPRM, some of which represent the
influence of snow on photosynthesis (GEEs) and/or respiration
(RESPs) according to MODIS SCA (0–100%), and some
of which do not. The RESPs & GEE0 model formulation,
which calculates snow season respiration according to
NARR Tsoil and growing season respiration according to
NARR Tair, was found to have the best agreement with
eddy covariance observations. To determine whether this
benefit arose from the calculation of respiration according
to Tsoil rather than Tair alone (and not due to the use
of SCA), two model formulations that calculate respiration
year-round as a linear (RESPTsoil linear) or piecewise
linear (RESPTsoil pwl) function of soil temperature were also
evaluated. The α, β,Tlow, αs, and βs,TTsoil-low, αTsoil, and
βTsoil parameters were all individually calibrated to eddy
covariance observations collected at Daring Lake in 2005. In
all of the model formulations below, GEE0 refers to GEE as
calculated in equation (2), and NEE = −GEE+ RESP.

(i) RESP0 & GEE0:

GEE = GEE0

R =

{
Tair ≥ Tlow: αTair + β

Tair < Tlow: RESPlow

(ii) RESP0 & GEEs:

GEE = GEE0(100%− SCA)

R =

{
Tair ≥ Tlow: αTair + β

Tair < Tlow: RESPlow

(iii) RESPs & GEE0:

GEE = GEE0

R =

{
SCA < 50%: αTair + β

SCA ≥ 50%: αsTsoil + βs

(iv) RESPs & GEEs:

GEE = GEE0(100%− SCA)

R =

{
SCA < 50%: αTair + β

SCA ≥ 50%: αsTsoil + βs

(v) RESPTsoil linear & GEE0:

GEE = GEE0

R = αTsoilTsoil + βTsoil

4
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Figure 2. Fractional snow cover % over time (25 May–11 June
2010) from classified, thrice daily camera images from four sites at
Daring Lake, NWT: MT (blue), FN (green), LK (yellow), and SB
(red). Landsat derived estimates of SCA appear as straight undotted
lines. Landsat SCA is shown in red for the pixel containing SB, and
with a solid black line for FN, LK and MT. MODIS SCA is
indicated with a black dotted line for all four sites.

(vi) RESPTsoil pwl & GEE0:

GEE = GEE0

R =

{
Tsoil ≥ TTsoil-low: αTsoilTsoil + βTsoil

Tsoil < TTsoil-low: RESPTsoil-low

VPRM performance with these six model formulations
was assessed both qualitatively, and statistically. The error
ε, or difference between predicted (VPRM) and observed
(non-gap-filled eddy covariance) daily average values of NEE
(εi = predi−obsi), was evaluated using two metrics: the mean
absolute error (MAE) and root mean squared error (RMSE)
(Willmott and Matsuura 2005):

MAE = n−1
n∑

i=1

|εi| (3)

RMSE =

[
n−1

n∑
i=1

|εi|
2

] 1
2

. (4)

Results were evaluated over two time periods: 1 May–7 June
of 2004–2007 (MJ), and the portion of years 2004–2007 when
MOD10A1 reported >0% SCA (snow season, or SS).

3. Results and discussion

3.1. Landsat and MODIS estimates of local snow cover

Time-lapse camera observations of fractional SCA agreed
well with linearly interpolated Landsat NDSI and MODIS
observations of whether the pixel containing each camera
was snow covered or snow-free (figure 2). Time-lapse camera
observations and Landsat derived estimates of SCA showed
snow depletion to occur within a seven day time period,
with no substantial melts before snow depletion and no snow
accumulation following depletion.

To assess the agreement between time-lapse, Landsat,
and MODIS derived estimates of the timing of snowmelt,

Table 1. The ordinal date at which SCA is first below 50%
according to time-lapse camera observations and interpolated
estimates of SCA derived from Landsat and MODIS over four
vegetation types at Daring Lake.

FN LK MT SB

Camera 150 151 151 150
Landsat 155 155 155 148
MODIS 149 149 149 149

MODIS and Landsat SCA were linearly interpolated
between ≈weekly acquisitions. Comparisons indicated a
slight advance or delay of one to five days in Landsat
and MODIS estimates of depletion relative to time-lapse
camera observations 1. A slight (<7 day) discrepancy is
acceptable considering the ≈weekly temporal resolution of
Landsat and MOD10A1 SCA. Overall, these results indicate
good agreement between ground-based and remote sensing
observations of SCA.

3.2. Associations between NEE and SCA

Preliminary investigation of SCA, Tsoil,Tair and NEE over
time at the Daring Lake MT site indicated that SCA may
have several important effects on NEE (figure 3). Although
the low thermal conductivity of snow enables Tsoil to remain
warmer than Tair throughout midwinter (figure 4), in the time
period immediately preceding snow melt, air temperatures
are warmer than soil temperatures. As Tair rises, Tsoil slowly
follows to reach a temperature of 0 ◦C, at which point snow
melt begins.

A decline in SCA during snowmelt initially increases the
rate of respiration, causing an increase in CO2 efflux. Once
snow melt is complete, vegetation begins to green-up, leading
to an increase in the rate of photosynthetic uptake of CO2. Air
and soil temperatures also become more closely synchronized
following snow melt. In summary, these findings suggest that
the timing of snowmelt coincides closely with an increase
in respiration, and subsequent increase in photosynthesis, at
Daring Lake MT. It therefore appears feasible that remote
sensing observations of SCA could be incorporated into
VPRM to help describe the influences of SCA on respiration
and/or photosynthesis.

3.3. VPRM estimates of NEE with and without MOD10A1
SCA

All VPRM formulations which estimated growing season
respiration according to Tair generated reasonable estimates
of NEE over Ivotuk (IV) and Daring Lake MT (DL) in years
2004–2007 (MAE = 0.2–0.5 µmol m−2 s−1 and RMSE =
0.6–1.8 µmol m−2 s−1). MAEs were similar between DL and
IV. RMSE values tend to be greater at IV than DL because
a larger portion of observations at IV were collected in
midwinter, a time of year in which uncertainty in observations
of NEE is greatest (Amiro 2010).

Both the GEEs and GEE0 formulations accurately
represented the lack of photosynthesis during the long Arctic
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Figure 3. Landsat SCA, MODIS SCA, time-lapse camera SCA, NEE, 5 cm Tsoil and Tair from 25 May to 11 June 2010 at the Daring Lake
mixed tundra (MT) site.

Figure 4. Tair (green) and 10 cm Tsoil (yellow) over time at Daring
Lake MT (2005).

midwinter. Snow melt was accompanied by a slight increase in
photosynthesis (figure 3), which was best simulated by GEE0
models. An increase in photosynthetic uptake at the end of
the snow season was implicitly simulated by GEE0 according
to rising air temperatures, increased sunlight, and an eventual
slight increase in EVI. Simulating further reductions in
photosynthesis when 0% < SCA < 100% caused VPRM to
underestimate GEE. The RMSEs and MAEs from RESP0 &
GEEs and RESPs & GEEs therefore exceeded those from the
formulations which did not further suppress GEE as a linear
function of SCA (RESP0 & GEE0 and RESPs & GEE0).

It is possible that GEE0 outperformed GEEs because,
unlike GEEs, GEE0 does not explicitly specify that no
subnivean photosynthesis can take place. Indeed, subnivean
photosynthesis has been observed to occur prior to snowmelt
over a sub-Arctic moss-dominated heath (Larsen et al
2007). Similarly, when Tair ≈ 0◦ and snowcover is thin or
patchy, the following Arctic species have been observed
to conduct photosynthesis at <25% of the rate observed
in the peak of the growing season: Carex aquatilis,
Dupontia fisheri, Eriophorum angustifolium (Tieszen 1974);
Eriophorum vaginatum, Ledum palustre, Vaccinium vitis-
idaea and Cassiope tetragona (Starr and Oberbauer 2003). A
central reason why subnivean photosynthesis is a very gradual
process is because snowpacks act as an optical scattering
medium (Warren 1982); <5% of incoming solar radiation has
been observed to penetrate >10 cm snowpacks at Barrow,
Alaska (Tieszen 1974). Yet, an examination of snowpack
observations from Daring Lake (Nobrega and Grogan 2007,
Rees et al 2010) and surrounding regions (Derksen et al
2009) in relation to outputted thresholds from a penetration
depth model by Zhou et al (2003) indicates that a portion of
incoming light most likely penetrates thin (<5 cm) or patchy

snowpacks during snowmelt at DL. Presently, subnivean
photosynthesis has not been quantified over the vast majority
of Arctic vegetation species or low Arctic sites. The explicit
representation of subnivean photosynthesis within VPRM is
therefore beyond the scope of this study, especially since GEE0
describes snow and growing season GEE at both DL and IV
with low RMSEs and MAEs.

Uncertainty in VPRM estimates of NEE was reduced
when snow season respiration was calculated as a function
of Tsoil (RESPs) (table 2). When considering May–June
estimates of NEE, RESPs & GEE0 had mean MAEs and
RMSEs of 0.20 and 0.75 µmol m−2 s−1, whereas RESP0
& GEE0 had mean MAEs and RMSEs of 0.31 and
0.80 µmol m−2 s−1. Likewise, MAEs and RMSEs were
diminished throughout the snow season with RESPs & GEE0
relative to RESP0 & GEE0.

Modeling subnivean respiration as a function of Tsoil
rather than Tair prevented the magnitude of respiration from
being overestimated at the end of the snow season, when
Tair was consistently warmer than Tsoil (figures 3 and 5).
This is consistent with previous findings that freeze-thaw
temperature fluctuations accompanying snow melt do not
substantially influence effluxes of CO2 (Grogan et al 2004,
Buckeridge et al 2010). Calculating subnivean respiration as a
function of Tsoil allowed VPRM to simulate both the gradual,
steady increase in respiration accompanying snowmelt, and
midwinter declines in soil respiration (Bokhorst et al 2010).

However, when respiration was modeled year-round as
a function of Tsoil (RESPTsoil), the RMSE and MAE errors
were substantially larger than the errors in either RESP0 or
RESPs (table 3). The errors in RESPTsoil were largest when
SCA was<50%. As snow cover diminished, the contributions
of aboveground biomass to respiration increased accordingly.
The rate of respiration by vegetation is driven primarily by Tair
rather than Tsoil, and is therefore best modeled as a function
of Tair. As a result, unreliable estimates of growing season
NEE would likely be generated using RESPTsoil. Therefore,
although estimates of subnivean respiration were improved
when subnivean respiration was calculated as a function of
Tsoil, uncertainty in VPRM estimates of NEE at the start
and end of the growing seasons were reduced by calculating
respiration as a function of Tair (figure 6). These reductions
in model uncertainty are important because the cold season
is so long in the Arctic that even small biases in daily

6



Environ. Res. Lett. 8 (2013) 035045 K A Luus et al

Table 2. Uncertainty in 1 May–30 June (MJ) and snow season (SS) estimates of NEE by VPRM both with (s) and without (0)
representations of the influences of snow on respiration and GEE. Results are indicated for the Daring Lake MT calibration site, as well as
the Ivotuk validation site, for years 2004–2007. Mean absolute error (MAE) values are indicated first, followed by root mean squared error
(RMSE) values in brackets. All error rates were calculated by comparing daily average eddy covariance NEE to daily average model NEE.

Time Site VPRM form 2004 2005 2006 2007

MJ DL RESP0 & GEE0 0.320 (0.366) 0.408 (0.587) 0.415 (0.742) 0.212 (0.405)
MJ DL RESP0 & GEEs 0.356 (0.417) 0.594 (0.850) 0.422 (0.748) 0.566 (0.727)
MJ DL RESPs & GEE0 0.223 (0.278) 0.122 (0.392) 0.404 (0.737) 0.083 (0.501)
MJ DL RESPs & GEEs 0.240 (0.288) 0.303 (0.428) 0.413 (0.740) 0.209 (0.354)

MJ IV RESP0 & GEE0 0.201 (0.968) 0.194 (0.627) 0.517 (0.826) 0.228 (1.845)
MJ IV RESP0 & GEEs 0.247 (1.042) 0.315 (0.623) 0.502 (0.824) 0.103 (1.658)
MJ IV RESPs & GEE0 0.085 (0.913) 0.045 (0.589) 0.415 (0.741) 0.194 (1.832)
MJ IV RESPs & GEEs 0.141 (0.935) 0.137 (0.595) 0.417 (0.743) 0.195 (1.832)

SS DL RESP0 & GEE0 0.475 (0.672) 0.307 (0.791) 0.283 (0.603) 0.295 (0.597)
SS DL RESP0 & GEEs 0.517 (0.723) 0.341 (0.837) 0.350 (0.618) 0.364 (0.717)
SS DL RESPs & GEE0 0.425 (0.649) 0.251 (0.767) 0.258 (0.610) 0.206 (0.613)
SS DL RESPs & GEEs 0.433 (0.652) 0.286 (0.771) 0.260 (0.611) 0.269 (0.591)

SS IV RESP0 & GEE0 0.270 (0.722) 0.063 (1.163) 0.244 (0.789) 0.045 (1.840)
SS IV RESP0 & GEEs 0.207 (0.775) 0.269 (1.37) 0.229 (0.832) 0.139 (1.801)
SS IV RESPs & GEE0 0.179 (0.656) 0.185 (1.198) 0.178 (0.808) 0.055 (1.837)
SS IV RESPs & GEEs 0.193 (0.664) 0.175 (1.199) 0.179 (0.809) 0.055 (1.836)

Table 3. Uncertainty in 1 May–30 June (MJ) and snow season (SS) estimates of NEE by VPRM at Daring Lake and Ivotuk, using
formulations through which respiration is calculated year-round as a linear or piecewise linear (pwl) function of Tsoil. Mean absolute error
(MAE) values are indicated first, followed by root mean squared error (RMSE) values in brackets. MAE and RMSE were calculated from
daily average observations.

Time Site VPRM form 2004 2005 2006 2007

MJ DL RESPTsoillinear 0.662 (1.042) 0.558 (0.830) 0.806(1.126) 0.583 (0.800)
MJ DL RESPTsoilpwl 0.623 (0.991) 0.520 (0.754) 0.736(1.021) 0.532 (0.732)

MJ IV RESPTsoillinear 1.161 (1.753) 1.550 (2.310) 0.619(0.874) 1.510 (2.073)
MJ IV RESPTsoilpwl 1.110 (1.714) 1.536 (2.293) 0.598(0.864) 1.512 (2.076)

SS DL RESPTsoillinear 0.329 (0.476) 0.650 (0.883) 0.367(0.532) 0.457 (0.659)
SS DL RESPTsoilpwl 0.309 (0.475) 0.605 (0.820) 0.371(0.528) 0.423 (0.609)

SS IV RESPTsoillinear 0.438 (0.717) 0.802 (1.393) 0.527(0.819) 1.390 (2.000)
SS IV RESPTsoilpwl 0.422 (0.718) 0.785 (1.378) 0.512(0.809) 1.379 (1.993)

Table 4. Estimates of annual net carbon exchange (gC m−2 yr−1)
by different VPRM formulations.

Site VPRM form 2004 2005 2006 2007

DL RESP0 & GEE0 0.08 1.61 4.27 −0.86
DL RESPs & GEE0 −3.52 −2.37 0.57 −3.49

IV RESP0 & GEE0 5.37 5.22 4.19 4.89
IV RESPs & GEE0 1.36 1.49 0.63 1.03

average NEE can have a substantial effect on annual estimates
of net carbon exchange. Comparisons of the cumulative
carbon exchange for each site indicated that RESP0 & GEE0
consistently estimated greater quantities of net carbon efflux
than RESPs & GEE0 (table 4, figure 7).

Respiration was best simulated according to Tair during
the growing season because diurnal variability in Tair
influences the magnitude and timing of both photosynthesis
and respiration. Conversely, the low thermal conductivity
of an overlying snowpack decouples Tsoil and Tair, and
respiration persists throughout the snow season according

to Tsoil. Due to the rapidity of this transition, and the fact
that spring snowmelt usually occurs only once per year in
Arctic regions, the use of a 50% threshold did not introduce
any discontinuities in estimates of NEE. Differentiating the
snow and growing seasons according to SCA, and simulating
respiration as a function of the dominant temperature for each
season, therefore allowed for reduced uncertainty in estimates
of NEE at both sites (2004–2007).

4. Conclusions

In Arctic regions, the timing of snow onset and melt influence
the rates of photosynthesis and respiration. The importance
of snow cover transitions for NEE suggests that insights into
the northern carbon cycle and its response to changing snow
conditions may be gained by representing the influence of
snow on NEE. The feasibility of incorporating remote sensing
observations of snow into models of NEE was demonstrated
by findings showing: (1) good agreement between time-lapse
camera (<10 m) and remote sensing estimates of SCA from
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Figure 5. NEE from 1 May to 7 June of years 2004–2007 at Daring Lake MT (left) and Ivotuk (right) as observed using the eddy
covariance technique (black), and as estimated by the RESP0 & GEE0 (orange) and RESPs & GEE0 (blue). Within each plot, the date where
estimates from the two models appear to merge represents the day at which SCA initially decreases below 50%.

Landsat (30 m) and MODIS (500 m); and (2) associations
between in situ NEE and SCA at Daring Lake, NWT
(May–June 2010).

Uncertainty in VPRM estimates of NEE at two low
Arctic sites was reduced by representing the decoupling
effects of a snowpack on Tsoil and Tair. Estimating subnivean
respiration as a function of Tsoil prevented respiration from
being overestimated when it was limited by cool Tsoil at
the start/end of the snow season, and enabled variability
in cold season NEE to be simulated. The timing and
magnitude of photosynthesis at the start and end of the
snow season were best captured by GEE0, which used
an implicit approach to simulate the influences of cold
temperature, senescent vegetation and diminished sunlight on
hindering photosynthesis. The resulting VPRM formulation,
containing an implicit representation of the effects of SCA on

photosynthesis and an explicit representation of the influence
of SCA on respiration, had diminished RMSEs and MAEs
across both sites and all years.

Climate change is predicted to both increase Arctic
snow accumulation and diminish the length of the Arctic
snow season (AMAP 2011). Previous studies at Daring
Lake have found that natural inter-annual variability in snow
melt timing did not markedly affect early or total growing
season CO2 flux (Humphreys and Lafleur 2011), but that
plots with artificially increased snow depth and duration
showed altered CO2 fluxes upon snow melt (Buckeridge
and Grogan 2010). Incorporating satellite observations of
SCA into biospheric carbon flux models could therefore
allow the snow and growing seasons to be delineated, enable
snow season influences on respiration to be represented,
and permit reduced uncertainty in estimates of the Arctic
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Figure 6. Mean absolute error of all model formulations at Ivotuk
for the snow seasons of years 2004 (dark gray) to 2007 (light gray).

Figure 7. Net carbon (tC ha−1) predicted in years 2004 (dark gray)
to 2007 (light gray) by RESP0 & GEE0 and RESPs & GEE0.

carbon cycle. Insights could therefore be gained into the
regional scale response of the Arctic carbon cycle to altered
biological, meteorological and cryospheric conditions. Future
work will consist of applying the snow season formulation
to a variety of sub-Arctic, low Arctic and high Arctic sites
in order to determine if model error may be reduced in all
cases.
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