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Abstract.

For uncertainty quantification in many practical engineering problems, the stochastic finite
element method (SFEM) may be computationally challenging. In SFEM, the size of the
algebraic linear system grows rapidly with the spatial mesh resolution and the order of the
stochastic dimension. In this paper, we describe a non-overlapping domain decomposition
method, namely the iterative substructuring method to tackle the large-scale linear system
arising in the SFEM. The SFEM is based on domain decomposition in the geometric space
and a polynomial chaos expansion in the probabilistic space. In particular, a two-level
scalable preconditioner is proposed for the iterative solver of the interface problem for the
stochastic systems. The preconditioner is equipped with a coarse problem which globally
connects the subdomains both in the geometric and probabilistic spaces via their corner nodes.
This coarse problem propagates the information quickly across the subdomains leading to
a scalable preconditioner. For numerical illustrations, a two-dimensional stochastic elliptic
partial differential equation (SPDE) with spatially varying non-Gaussian random coefficients
is considered. The numerical scalability of the the preconditioner is investigated with respect
to the mesh size, subdomain size, fixed problem size per subdomain and order of polynomial
chaos expansion. The numerical experiments are performed on a Linux cluster using MPI and
PETSc parallel libraries.

1. Introduction

In modeling numerous engineering and physical systems, it is necessary to consider the random
heterogeneity of the model parameters for more realistic computer simulation. When sufficient
statistical information is available, the probability theory offers a rich mathematical framework
to represent uncertainty in terms of random variables and stochastic processes(e.g. [1, 2]). The
spectral stochastic finite element method [1] is a popular computational tool for uncertainty
quantification of SPDEs. For large-scale engineering problems of practical interest, the appli-
cation of SFEM becomes computationally challenging as the size of the algebraic linear system
grows rapidly with the spatial mesh resolution and the order of the stochastic dimension. To
address this issue, a non-overlapping domain decomposition approach (namely a substructur-

ing method) of SPDEs is introduced in [2] in the framework of SFEM. The methodology is
based on Schur complement based geometric decomposition and an orthogonal decomposition
and projection of the stochastic processes using the polynomial chaos expansion [1]. To tackle
the interface problem of the stochastic system using the substructuring method, a parallel pre-
conditioned conjugate gradient method (PCGM) adopted in [3] using a lumped preconditioner.
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Despite being superior to the direct solver (in terms of memory requirement and floating point
operations), the PCGM based iterative solvers equipped with the lumped preconditioner exhibit
performance degradation as the number of subdomains increases. Consequently, a one-level
Neumann-Neumann domain decomposition preconditioner is introduced in [4] which demon-
strates a fairly good scalability for moderate number of subdomains. As already demonstrated
for deterministic PDEs, the one-level preconditioners do not scale well for large number of sub-
domains as their convergence rates depend on the subdomain size and thus a number of two-level
preconditioners containing coarse grids are proposed (see, e.g. [5, 6, 7, 8, 9]). A two-level pre-
conditioner consists of local (fine) and global (coarse) components leading to the convergence
rate of the iterative solver independent of the problem size, subdomain size and fixed problem
size per subdomain(e.g. [5, 6, 7, 8, 9]). In this paper, a two-level scalable preconditioner is
proposed for stochastic PDEs.

Previously, the authors have reported a two-level preconditioner for SPDEs[10] based on
the domain decomposition method [2]. As a continuation of our previous work, we propose a
new two-level preconditioner for iterative substructuring methods for SPDEs. In the context
of SPDEs, the proposed preconditioner may be viewed as an extension of the Balancing
Domain Decomposition by Constraints (BDDC) [9, 7] in the context of stochastic PDEs. The
preconditioner involves construction of a stochastic coarse problem that enforces the global
exchange of information across the subdomains . At each iteration of the PCGM solver, the local
problems are solved on each subdomain in parallel which collectively construct the fine level of
the preconditioner. Additionally the coarse grid accomplishes the global exchange of information
which makes the preconditioner scalable. The parallel performance of the algorithm is studied for
two-dimensional stochastic elliptic PDE with spatially varying non-Gaussian random coefficients.
PETSc [11] and MPI [12] parallel libraries are used for efficient parallel implementation of the
proposed algorithm. The graph partitioning tool METIS [13] is used for optimal decomposition
of the finite element mesh. The numerical experiments are performed on a Linux cluster consists
of 22 nodes with an InfiniBand interconnect (2 Quad-Core 3.0 GHz Intel Xeon processors and
32 GB of memory per node).

2. Uncertainty representation by stochastic processes

This section provides a brief review of the theories of stochastic processes relevant to the
subsequent developments of the paper [1, 2]. We assume the data induces a representation
of the model parameters as random variables and processes which span the Hilbert space HG.
A set of basis functions {ξi} is identified to characterize this space using the Karhunen-Loeve
expansion. The state of the system resides in the Hilbert space HL with basis functions {Ψi}
being identified with the Polynomial Chaos expansion (PC). The Karhunen-Loeve expansion of a
stochastic process α(x, θ) is based on the spectral expansion of its covariance function Rαα(x, y).
The expansion takes the following form

α(x, θ) = ᾱ(x) +
∞

∑

i=1

√

λiξi(θ)φi(x), (1)

where ᾱ(x) is the mean of the stochastic process, θ represents the random dimension, and
ξi(θ) is a set of uncorrelated (but generally not independent) random variables, φi(x) are the
eigenfunctions and λi are the eigenvalues of the covariance kernel which can be obtained as the
solution to the following integral equation

∫

D

Rαα(x, y)φi(y)dy = λiφi(x). (2)
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where D denotes the spatial dimension over which the process is defined. The covariance function
of the solution process is not known a priori. Hence the Karhunen-Loeve expansion cannot be
used to represent it. Therefore, a generic basis, that is complete in the space of all second-order
random variables will be identified and used in the approximation process. Since the solution
process is a function of the material properties, nodal solution variables, denoted by u(θ) can be
formally expressed as some nonlinear functional of the set ξi(θ) used to represent the material
stochasticity. It has been shown that this functional dependence can be expanded in terms of
polynomials in Gaussian random variables, namely Polynomial Chaos [1, 14] as

u(θ) = a0Γ0 +

∞
∑

i1=1

ui1Γ1 (ξi1(θ))

+
∞

∑

i1=1

i1
∑

i2=1

ui1i2Γ2 (ξi1(θ), ξi2(θ)) + . . . . (3)

In this equation, the symbol Γn(ξi1 , . . . , ξin) denotes the polynomial chaos ([15, 1]) of order n
in the variables (ξi1 , . . . , ξin). Introducing a one-to-one mapping to a set with ordered indices
denoted by {Ψi(θ)} and truncating the polynomial chaos expansion after the N th term, Eq.(3)
can be rewritten as,

u(θ) =
N

∑

j=0

Ψj(θ)uj . (4)

These polynomials are orthogonal in the sense that their inner product 〈ΨjΨk〉, defined by the
statistical average of their product, is equal to zero for j 6= k.

3. Review of Schur complement based domain decomposition method of SPDEs

In this section, we provide a brief review of the domain decomposition method for SPDEs based
on [2, 3, 4, 10]. For an elliptic SPDE defined on a domain Ω with a prescribed boundary
conditions on ∂Ω, the finite element discretization leads to the following linear system

A(θ)u(θ) = f , (5)

where A(θ) is the stiffness matrix with random coefficients, u(θ) is the random vector
representing the response vector and f is the external force. For large-scale system, Eq.(5)
can be solved efficiently using domain decomposition methods [2, 3, 4, 10].

In the non-overlapping domain decomposition method (for example, see [5, 6, 7, 8, 9]), the
spatial domain Ω is partitioned into ns non-overlapping subdomains {Ωs, 1 6 s 6 ns} such
that Ω =

⋃ns

s=1
Ωs, Ωs

⋂

Ωr = 0, s 6= r and Γ =
⋃

s=1
Γs where Γs = ∂Ωs\∂Ω. For a typical

subdomain Ωs the nodal vector us(θ) is decomposed into the interior unknowns us
I(θ) associated

with the nodes in the interior of Ωs and the interface unknowns us
Γ
(θ) corresponding to the nodes

shared among two or more subdomains. This decomposition leads to the following equilibrium
equation for the subdomain

[

As
II(θ) As

IΓ (θ)
As

ΓI(θ) As
ΓΓ

(θ)

] {

us
I(θ)

us
Γ
(θ)

}

=

{

f s
I

f s
Γ

}

. (6)

Enforcing the transmission conditions (compatibility and equilibrium) along the subdomain
interfaces and expanding the solution vector by the polynomial chaos (as in Eq.(4)) and then
performing Galerkin projection, the following block linear systems of equations express the global
equilibrium equation of the stochastic system ([2, 3, 4, 10]):
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〈
L

∑

i=0

Ψi(θ)
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Ψk(θ)〉, k = 0, ..., N. (7)

The restriction operator Rs is a Boolean rectangular matrix of size (ns
Γ
× nΓ) that maps the

global interface vector uΓ (θ) to the local interface vector us
Γ
(θ) as us

Γ
(θ) = RsuΓ (θ). In parallel

implementation, Rs represents a scatter operator while RT
s acts as a gather operator. Compactly,

Eq.(7) can be expressed as

















A1
II . . . 0 A1

IΓR1

...
. . .

...
...

0 . . . Ans

II Ans

IΓRns

RT
1 A

1
ΓI . . . RT

ns
Ans

ΓI

ns
∑

s=1

RT
s A

s
ΓΓRs



































U1
I
...

Uns

I

UΓ



















=































F1
I
...

Fns

I
ns
∑

s=1

RT
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, (8)

where

[As
αβ]jk =

L
∑

i=0

〈ΨiΨjΨk〉A
s
αβ,i , Fs

α,k = 〈Ψkf
s
α〉,

Um
I = (um

I ,0, . . . ,um
I ,N )T , UΓ = (uΓ ,0, . . . ,uΓ ,N )T .

The subscripts α and β represent the index I and Γ . The restriction operator Rs for the
stochastic problem in Eq.(8) takes the following form: Rs = blockdiag(R0

s, . . . ,R
N
s ), where

{Rj
s, j = 1, .., N} are the restriction operators that map the polynomial coefficients of the

global interface vector to those of the local interface vector. Performing a Gaussian elimination
in Eq.(8), we obtain the global extended Schur complement system for the interface variable UΓ

as

S UΓ = GΓ , (9)

where the global extended Schur complement matrix S is given by

S =

ns
∑

s=1

RT
s [As

ΓΓ −As
ΓI (A

s
II)

−1As
IΓ ]Rs, (10)

and the corresponding right hand side vector GΓ is defined by

High Performance Computing Symposium 2011 IOP Publishing
Journal of Physics: Conference Series 341 (2012) 012033 doi:10.1088/1742-6596/341/1/012033

4



GΓ =

ns
∑

s=1

RT
s [Fs

Γ −As
ΓI (A

s
II)

−1Fs
I ]. (11)

For clarity, the global interface solution UΓ of Eq.(9) relates to the interface nodes shown
schematically in Fig(1).

Figure 1. The interface boundary (�).

4. Iterative Solutions of the interface problem

For a large-scale system, the solution of the interface problem in Eq.(9) using direct solvers
becomes impractical due to overwhleming memory requirements and poor scalability to
large number of processors and thus iterative solution techniques are generally adopted [16].
In domain decomposition approach the Schur complement system is typically solved using
preconditioned Krylov subspace method such as preconditioned conjugate gradient method
(PCGM). The preconditioned Krylov subspace methods circumvents the need to construct the
Schur complement matrix explicitly. Instead only the action of a vector on the Schur complement
matrix is needed while using preconditioned Krylov subspace methods. Such matrix vector
product can be obtained by solving Dirichlet problem in each subdomain and gathering the
resulting vectors at each iteration (e.g. [5, 6]). Non-overlapping domain decomposition method
or iterative substructuring can be viewed as a preconditioned iterative method to solve the Schur
complement system with a parallel preconditioner[5, 6]

S UΓ = GΓ . (12)

For symmetric positive-definite system such as Schur complement system, the Conjugate
Gradient Method (CGM) is generally used. The performance of CGM mainly depends on the
spectrum of the coefficient matrix. However, the rate of convergence of the iterative method
can generally be improved by transforming the original system into an equivalent system that
has better spectral properties (i.e. lower condition number κ(S)) of the coefficient matrix. This
transformation is called preconditioning and the matrix used in the transformation is called the
preconditioner. In other words, the transformed linear system becomes:

M−1S UΓ = M−1GΓ , (13)
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where M−1, the preconditioner, is a symmetric and invertible matrix that approximates S−1,
the coefficient matrix, in the sense that the condition number of the preconditioned system
κ(M−1S) is much smaller than that of the original system κ(S) and the eigenvalues of the
preconditioned system M−1S are clustered near one. This procedure known as Preconditioned
Conjugate Gradient Method (PCGM). In practice, the explicit construction of M−1 is not
needed. Instead, for a given vector rΓ, a system of the the following form is solved

MZ = rΓ. (14)

The combination of a good parallel preconditioning technique and the CGM solver makes the
iterative solver well-suited to tackle large-scale systems in parallel computers [16].

5. Preconditioners For Stochastic PDEs

As mentioned previously, an efficient scalable preconditioner is required to enhance the
convergence rate, reliability and performance of the PCGM iterative solver used to tackle
the stochastic Schur complement system. Next we delineate the procedure to construct such
preconditioners.

5.1. One-Level Stochastic Neumann-Neumann Preconditioners

A one-level Neumann-Neumann domain decomposition preconditioner is presented in [4] in
the context of stochastic PDEs. This preconditioner approximates the inverse of the global
extended Schur complement matrix by a weighted sum of the inverse of the local extended Schur
complement matrices [5, 17, 6]. The implementation of the algorithm requires a local solve of
a stochastic Dirichlet problem followed by a local solve of a stochastic Neumann problem in
each iteration of the PCGM solver. The stochastic one-level Neumann-Neumann preconditioner
formally takes the following form

M−1

NN =

ns
∑

s=1

RT
s D

T
s [Ss]−1DsRs, (15)

where
Ds = blockdiag(D0

s, · · · ,DN
s ), (16)

and D
j
s represents a diagonal scaling matrix that derives from the partition of unity as

ns
∑

s=1

RT
s Dj

sRs = I. (17)

The diagonal entries of D
j
s are the reciprocal of the number of subdomains that share the bound-

ary nodes [5, 17].

In practice, the local extended Schur complement matrix Ss is not constructed explicitly, and
therefore the inverse of the matrix Ss is not available. Instead the effect of the inverse of the
Schur complement matrix on the residual vector is computed by solving the following subdomain
level stochastic Neumann problem

[

As
II As

IΓ

As
ΓI As

ΓΓ

] {

X s

Us
Γ

}

=

{

0

rs
Γ

}

. (18)

For the case of floating subdomains (subdomains without enough essential boundary
conditions), the solution to the local stochastic Neumann problem defined in Eq.(18) exists only
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if the right hand side vector satisfies the compatibility condition (i.e. the right hand side vector
is orthogonal to the null space of the coefficient matrix). A computationally expensive Moore-
Penrose pseudo-inverse can be used to obtain a solution to this singular system. Alternatively a
small value can be added to the diagonal entries of the local stochastic stiffness matrix to ensure
the solvability of this singular system. Such regularization does not change the problem, but
only alters the preconditioner.

5.2. Two-Level Stochastic Neumann-Neumann Preconditioner

For a moderate range of subdomains the stochastic Neumann-Neumann preconditioner
demonstrates a fairly good scalability [4]. However, the convergence rate of the one-level
Neumann-Neumann preconditioner degrades with increasing the number of subdomains. This
performance degradation can be attributed to the lack of global exchange of information. For the
one-level preconditioner, the information is transferred only among the neighboring subdomains.
In the two-level preconditioner, the coarse problem provides a mechanism for global propagation
of information across the subdomains to effectively enhance the convergence rate of the PCGM
solver.

In this section, we formulate a novel two-level preconditioner for stochastic PDEs. The pre-
conditioner is equipped with a coarse problem constructed using a collection of corner nodes.
The coarse problem connects the subdomains globally via the corner nodes and thus provides
a mechanism to propagate the information quickly across the subdomains leading to a scalable
preconditioner. Following a version of the Balancing Domain Decomposition by Constraints
(BDDC) [9, 7], we formulate a two-level preconditioner for stochastic PDEs. The methodology
is detailed next.

In the one-level Neumann-Neumann preconditioner in Eq.(15), a stochastic Neumann prob-
lem (see Eq.(18)) is solved to calculate the preconditioned residual for each iteration of PCGM
solver. To ensure the solvability of the Neumann problem (defined in Eq.(18)), the artificial
Dirichlet boundary conditions are imposed to remove the singularity from the local stiffness
matrix of the floating subdomains.

Similar to the dual-primal domain decomposition methods [9, 8, 10], the boundary nodes
can be partitioned into two subsets: remaining nodes (boundary nodes shared only between
two adjacent subdomains) and corner nodes (boundary nodes shared between more than two
subdomains plus the nodes on the ends of interface edges). The corner nodes serve the following
purposes: (a) they impose artificial Dirichlet boundary conditions to remove the singularity from
the local Schur complement matrix, (b) they introduce a coarse grid that provides a mechanism
to propagate information globally.

For a typical subdomain Ωs, the local unknown vector consists of the interior X s
i , remaining

(fine) Us
r and corner (coarse) Us

c unknown vectors as schematically shown in Fig.(2). Therefore
the local interface unknown vector Us

Γ
is given by

Us
Γ =

{

Us
r

Us
c

}

, (19)

where

Us
r = Rr

sU
s
Γ , (20)

Us
c = Rc

sU
s
Γ . (21)
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The stochastic Boolean splitting operators Rr
s and Rc

s are defined by

Rr
s = blockdiag(Rr,0

s , . . . ,Rr,N
s ),

Rc
s = blockdiag(Rc,0

s , . . . ,Rc,N
s ),

where N is the number of the polynomial chaos basis, and R
r,j
s and R

c,j
s are defined by

us
r,j = Rr,j

s us
Γ ,j ,

us
c,j = Rc,j

s us
Γ ,j .

Figure 2. Partitioning the subdomain nodes into: interior (�), remaining (�) and corner(•)

Performing partial assembly, the following linear system is obtained











As
ii As

ir As
icB

s
c

As
ri As

rr As
rcB

s
c

ns
∑

s=1

Bs
c
TAs

ci

ns
∑

s=1

Bs
c
TAs

cr

ns
∑

s=1

Bs
c
TAs

ccB
s
c

















X s
i

Us
r

Uc







=



















0

Fs
r

ns
∑

s=1

Bs
c
TFs

c



















, (22)

where

Fs
r = Rr

sr
s
Γ ,

Fs
c = Rc

sr
s
Γ .

The restriction operator Bs
c in Eq.(22) is a Boolean rectangular matrix that maps the global

coarse (corner) unknown Uc into the local coarse unknown Us
c as

Us
c = Bs

cUc,
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where

Bs
c = blockdiag(Bs

c,0, . . . ,B
s
c,N ),

and Bs
c,j is defined by

us
c,j = Bs

c,juc,j .

Consequently we obtain the following extended Schur complement system







Ss
rr Ss

rcB
s
c

ns
∑

s=1

Bs
c
TSs

cr

ns
∑

s=1

Bs
c
TSs

ccB
s
c







{

Us
r

Uc

}

=











Fs
r

ns
∑

s=1

Bs
c
TFs

c











, (23)

where

Ss
αβ = As

αβ −As
αi[A

s
ii]

−1As
iβ,

the subscripts α and β represent the index r and c.

Due to the artificial Dirichlet boundary conditions imposed by corner nodes, the local Schur
complement matrix Ss

rr in Eq.(23) is positive-definite and invertible for the floating subdomains.
One could concurrently obtain Us

r for each subdomain as

Ss
rrU

s
r = Fs

r − Ss
rcB

s
cUc. (24)

For the global corner node unknown Uc, the following extended Schur complement system is
obtained

FccUc = dc, (25)

where

Fcc =

ns
∑

s=1

Bs
c
T (Ss

cc − Ss
cr[S

s
rr]

−1Ss
rc)B

s
c ,

dc =

ns
∑

s=1

Bs
c
T (Fs

c − Ss
cr[S

s
rr]

−1Fs
r ).

The coarse problem defined in Eq.(25) couples the subdomains by the corner nodes in order
to transfer information globally. Although the size of the coarse problem is relatively small com-
pared to that of the fine problem, it is still computationally expensive to construct the coarse
extended Schur complement system explicitly. Therefore we solve the coarse problem iteratively
in parallel without constructing the coarse extended Schur complement matrix explicitly.

Next, the local interface unknowns can be recovered as

Us
Γ = RrT

s Us
r + RcT

s Us
c . (26)
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After some algebraic manipulations, the two-level Neumann-Neumann preconditioner for the
stochastic system can be obtained as

M−1

CNN =

ns
∑

s=1

RT
s D

T
s (RrT

s [Ss
rr]

−1Rr
s)DsRs + RT

0 [Fcc]
−1R0, (27)

where the fine to coarse space restriction operator is defined by

R0 =

ns
∑

s=1

Bs
c
T (Rc

s − Ss
cr[S

s
rr]

−1Rr
s)DsRs. (28)

Clearly, the two-level stochastic Neumann-Neumann preconditioner expressed in Eq.(27)
consists of local problems [Ss

rr]
−1 in order to construct a subdomain level preconditioner, and a

coarse problem [Fcc]
−1 for global information propagation. This global exchange of information

leads to a scalable preconditioner.

5.3. Parallel Implementation

The parallel PCGM iterative solver is used to tackle the extended Schur complement system
defined by

M−1

CNNS UΓ = M−1

CNNGΓ . (29)

The procedure is listed in Algorithm(1) [10].

Algorithm 1: The Parallel PCGM Procedure

input : (UΓ0
)

1 compute : rΓ0
= GΓ −

s=ns
∑

s=1

RT
s SsRsUΓ0

2 precondition : Z0 = M−1

CNNrΓ0

3 compute : P0 = Z0

4 compute : ρ0 = (rΓ0
,Z0)

5 for j = 1, 2, · · · , until convergence:

6 do

7 compute : Qj =

s=ns
∑

s=1

RT
s SsRsPj

8 compute : ρtmpj
= (Qj ,Pj)

9 compute : αj = ρj/ρtmpj

10 update : UΓj+1
= UΓj

+ αjPj

11 update : rΓj+1
= rΓj

− αjQj

12 precondition : Zj+1 = M−1

CNNrΓj+1

13 compute : ρj+1 = (rΓj+1
,Zj+1)

14 compute : βj = ρj+1/ρj

15 update : Pj+1 = Zj+1 + βjPj

output : (UΓ )
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The vector Qj in steps 1 and 7 of Algorithm (1), which represents the action of the extended
Schur complement matrix on a vector, is computed in parallel by three matrix vector products
and one direct solve of a local Dirichlet problem (with non-homogeneous boundary condition)
on each subdomain [10] as shown in Algorithm (2).

Algorithm 2: Dirichlet-Solver Procedure

input : (P)
1 for s = 1, 2, · · · , ns in parallel:

2 do

3 scatter : Ps = RsP
4 compute : v1 = As

IΓP
s

5 solve : As
IIv2 = v1

6 compute : v3 = As
ΓI

v2

7 compute : v4 = As
ΓΓ

Ps

8 compute : Qs = v4 − v3

9 gather : Q =

ns
∑

s=1

RT
s Q

s

output : (Q)

The two-level preconditioner effect on the residual vector in steps 2 and 12 of Algorithm (1)
defined by

Z = M−1

CNNrΓ , (30)

can be implemented in parallel as outlined in Algorithm(3)

High Performance Computing Symposium 2011 IOP Publishing
Journal of Physics: Conference Series 341 (2012) 012033 doi:10.1088/1742-6596/341/1/012033

11



Algorithm 3: Two-Level Neumann-Neumann Preconditioner Effect Procedure

input : (rΓ )
1 for s = 1, 2, · · · , ns in parallel:

2 do

3 scatter : rs
Γ

= DsRsrΓ

4 compute : Fs
r = Rr

sr
s
Γ

5 compute : Fs
c = Rc

sr
s
Γ

6 solve : Ss
rrv

s
1 = Fs

r

7 update : ds
c = Fs

Γc
− Ss

crv
s
1

8 gather : dc =

ns
∑

s=1

Bs
c
T ds

c

9 solve : FccZc = dc

10 for s = 1, 2, · · · , ns in parallel:

11 do

12 scatter : Zs
c = Bs

cZc

13 update : vs
2 = Fs

Γr
− Ss

rcZ
s
c

14 solve : Ss
rrZ

s
f = vs

2

15 update : Zs = RrT

s Zs
f + RcT

s Zs
c

16 gather : Z =

ns
∑

s=1

RT
s DsZ

s

output : (Z)

The local solve in steps 6 and 14 of Algorithm (3) constitutes a subdomain level stochastic
Neumann problem which can be tackled using Algorithm (4) as follows

Algorithm 4: Neumann-Solver Procedure

input : (Fs
r )

1 solve :

[

As
ii As

ir

As
ri As

rr

] {

X s
i

Us
r

}

=

{

0
Fs

r

}

output : (Us
r )

The coarse problem in step 9 of of Algorithm (3) is solved iteratively in parallel using PCGM
solver equipped with a parallel lumped preconditioner as

M−1
c FccZc = M−1

c dc, (31)

where

M−1
c =

ns
∑

s=1

Bs
c
TAs

ΓΓB
s
c . (32)
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6. Numerical Results

For numerical illustration, we consider a two dimensional Poisson PDE with randomly
heterogeneous permeability coefficient defined by

∇ · (κ(x, θ)∇u(x, θ)) = f(x), x ∈ Ω, (33)

u(x, θ)) = 0, x ∈ ∂Ω. (34)

The coefficient κ(x, θ) is modeled as a lognormal stochastic process obtained from the underlying
Gaussian process with an exponential covariance function given by

Cαα(x,y) = σ2 exp

(

−
|x1 − y1|

b1

−
|x2 − y2|

b2

)

. (35)

The lognormal process is approximated using the four-dimensional third order polynomial chaos
expansion (L = 34). The maximum size of the finite element mesh considered consists of 494, 322
elements and 247, 159 nodes. The non-Gaussian response is expressed using the third order poly-
nomial chaos expansion (N = 34) leading to a linear system of order 8, 650, 565.

In PCGM implementation, the forcing term is taken to be the initial residual. The iterations
are terminated when the ratio of L2 norms of the current and the initial residual is less than
10−6 defined by

‖Gk
Γ
− SUk

Γ
‖2

‖G0
Γ
‖2

6 10−6. (36)

Numerical experiments are performed in a Linux cluster having 22 nodes (2 Quad-Core 3.0
GHz Intel Xeon processors and 32 GB of memory per node) with InfiniBand interconnect using
Message Passing Interface (MPI) [12] and PETSc [11] parallel libraries.

6.1. Stochastic features

Fig.(3-a) shows the physical domain and Fig.(3-b) represents a typical partitioned mesh using
METIS graph partitioner [13]. METIS performs mesh decomposition using the criteria of load
balancing among the CPUs and minimum interface boundary among subdomains.

(a) FEM mesh (b) Decomposed mesh

Figure 3. FEM mesh and typical mesh decomposition
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The mean and standard deviation of the non-Gaussian solution process are shown in Fig.(4-
a) and Fig.(4-b) respectively. The maximum value of the coefficient of variation (CoV ) of the
solution field is about 21% highlighting the effect of uncertainty.

(a) Mean (b) Standard deviation

Figure 4. The mean and standard deviation of the solution process

6.2. Scalability study

Next we investigate the numerical scalability of the two-level Neumann-Neumann preconditioner
(CNN) with respect to mesh size (h), subdomain size (H) and fixed problem size per subdomain
(h/H) as discussed in the following subsections. In order to demonstrate the usefulness of the
coarse grid, we contrast the performance of the one-level (NN) and two-level Neumann-Neumann
(CNN) preconditioner.

6.2.1. Scalability with respect to mesh size: For this scalability test we fix the number of sub-
domains to 128 while increasing the mesh resolution in the geometric dimension. Fig.(5) shows
the results for both NN and CNN preconditioners for the first, second and third polynomial
chaos (PC) expansions while Fig.(6) shows the same results for NN and CNN preconditioners
separately for various order of PC expansions. Unlike NN preconditioner, increasing mesh res-
olution does not deteriorate the performance of the CNN preconditioner as the iteration counts
of PCGM solver remains nearly constant. For NN preconditioner the iteration counts increases
as the problem size grows indicating the dependency of the NN preconditioner on the problem
size. While increasing the order of PC expansions does not affect the performance of CNN pre-
conditioner, it degrades the performance of NN preconditioner. For a given spatial problem size
(n), the first and third order PC expansions lead to a total problem size of (5× n) and (35× n)
respectively. These performance results suggest that the CNN preconditioner is numerically
scalable with respect to the problem size and order of PC expansion.
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Figure 5. Iteration counts for fixed number of subdomains
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Figure 6. Iteration counts for fixed number of subdomains

6.2.2. Scalability with respect to subdomain size: Next we fix the problem size in the spatial
dimension to 151, 179 and increase number of subdomains to solve the problem. In Fig.(7)
and Fig.(8), the results are reported, respectively, for the first, second and third order PC ex-
pansions for both NN and CNN preconditioners. These performance results suggest that the
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CNN preconditioner is numerically scalable with respect to number of subdomains. Clearly, NN
preconditioner requires much more number of iterations to converge compared to CNN precon-
ditioner.
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Figure 7. Iteration counts for fixed problem size

16 32 64 128 176 256
0

50

100

150

200

250

No. of subdomains

N
o.

 o
f i

te
ra

tio
ns

1st
2nd
3rd

(a) NN preconditioner

16 32 64 128 176 256
0

2

4

6

8

10

12

14

16

18

20

No. of subdomains

N
o.

 o
f i

te
ra

tio
ns

1st
2nd
3rd

(b) CNN preconditioner

Figure 8. Iteration counts for fixed problem size
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6.2.3. Scalability with respect to the fixed problem size per subdomain: Fig.(9) and Fig.(10)
demonstrate the performance of NN and CNN preconditioners for the fixed problem size per
subdomain while increasing the overall problem size by adding more subdomains. The results are
shown for the first, second and third order PC expansions for both NN and CNN preconditioners.
In contrast to NN preconditioner, these performance results suggest that CNN preconditioner
is scalable with respect to the fixed problem size per subdomain.
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Figure 9. Iteration counts for fixed problem size per subdomain
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Figure 10. Iteration counts for fixed problem size per subdomain

7. Conclusions

A novel two-level scalable domain decomposition preconditioner is described for the iterative
solutions of large-scale linear systems arising from the stochastic finite element method. The
preconditioner is equipped with a coarse grid to propagate information globally across the
subdomains both in geometric and stochastic dimensions. The proposed preconditioner may
be viewed as an extension of the Balancing Domain Decomposition by Constraints (BDDC)
method for stochastic PDEs. For the specific illustrations considered in the paper, the
numerical experiment demonstrates that the preconditioner is numerically scalable with respect
to the problem size, subdomain size and fixed problem size per subdomain. Furthermore, the
preconditioner shows a convergence rate nearly independent of the order of the polynomial chaos
expansion (namely the order of stochastic dimension).
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