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Abstract 

Zero inflation and over-dispersion issues can significantly affect the predicted probabilities as well as lead 

to unreliable estimations in count data models. This paper investigates whether considering this issue for German 

Socioeconomic Panel (1984-1995), used by Riphahn et al (2003), provides any evidence of misspecification in their 

estimated models for adverse selection and moral hazard effects in health demand market  The paper has the 

following contributions: first, it  shows that estimated parameters for adverse selection and moral hazard effects are 

sensitive to the model choice; second, the random effects panel data as well as standard pooled data models do  not 

provide reliable estimates for health care demand (doctor visits); third, it shows that  by appropriately accounting 

for zero inflation and over-dispersion there is no evidence of adverse selection behaviour and that moral hazard 

plays a positive and significant role for visiting more doctors. These results are robust for both males and females’ 

subsamples as well as for the full data sample.  

Key words: Over-dispersion, zero-inflated distribution, adverse selection, moral hazard, health demand  
JEL classifications: C46, C52, I11, I13. 
 
  

1. Introduction and literature review 
 
Pauly (1968), Rothschild and Stiglitz (1976), and Bundorf et al.( 2005), respectively, delineate the effect 

of moral hazard, adverse selection, and income effect in health insurance markets. A number of studies 

have investigated these effects, though sometimes different econometric methodologies led to different 

interpretations about the effects of similar data. 

Following the model developed by Cameron et al. (1988), Rephahn et al (2003) we estimate the 

demand for doctor and hospital visits for the German Socioeconomic Panel data (GSOEP, 1984–1995). 

The findings of this study suggest that adverse selection, where a high-risk individual buys more insurance 

coverage, affects positively the number of doctor and hospital visits for only the males’ hospital demand. 
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Moral hazard, where an insured individual uses more health care services because of its lower cost, does 

not have any significant effect on any of the above health-care demands. Among other studies that looked 

at the effect of asymmetry information on health care demand are the studies of Chiappori and Salani 

(2000) that examined adverse selection using German data, while Geil et al. (1997) and Cameron et al. 

(1988) investigate moral hazard using Australian data. 

In their theoretical model, Wolfe and Goddeeris (1991) delineate that wealth can ambiguously 

affect health-care demand. Their empirical results, however, indicate that both “bequeathable” and “non-

bequeathable” wealth substantially increase the demand for both supplementary health care and health 

expenditure. Data reveals that those who enrolled for supplementary insurance, on average, had 50 percent 

higher wealth. They estimate the effect of moral hazard in a health expenditure model and use its estimated 

error term as a proxy for unexplained expenditure in their health care demand model. Its significant 

coefficient indicate the existence of selection effect. 

For U.S. data, Marvasti (2014) finds that the demand for services of doctors is neither income 

elastic nor price elastic. As Marvasti discusses, however, Bago d’Uva and Jones’ (2009) latent hurdle 

model confirms a positive income effect on the number of visiting doctors for European data. Amponsah 

(2013) confirms moral hazard and adverse selection for Ghanaian health care, and finds that an individual 

in a higher income group to be more likely to buy health insurance (income effect). His study confirms 

the income effect found in Asante and Aikins (2008) and Kirigia et al. (2005).  

Keane and Stavrunova (2016) use a simultaneous equation model to jointly investigate adverse 

selection and moral hazard for the U.S. supplemental health-insurance market, namely Medigap. They 

extend previous studies by employing a smooth mixture of the Tobit model to control for heterogeneity, 

and by capturing the correlation between unobservable factors that affect both health insurance demand 

and health expenditure. Although they find a negligible adverse selection into Medigap, the insurance 

coverage leads to a significant rise in health care utilization and its related costs (moral hazard).  

Conditional on the supplemental insurance and health status, income has a small effect on health 

expenditure (See Cardon and Hendel (2001) and Bajari et al. (2011, 2014) for other health market 

structural models). 

To deal with inflated zeros in health care demand variables, researchers rely on different 

approaches. Powell and Goldman (2016) control for zero medical care expenditure and its heavily-skewed 

distribution by employing a quantile treatment effect framework (see Powell (2014)). The framework 

estimates an unconditional distribution for health care expenditures by assuming no adverse selection. 



They compare this distribution with the observed health expenditure distribution to estimate adverse 

selection effects. After separating moral hazard and adverse selection, each factor almost explains half of 

the reason for higher medical expenditure of a most generous plan compared to a least one. 

With around 90% and 35% zeros for the number of doctor visits and hospital visits, the results of 

Rephahn et al (2003) can also suffer from over-dispersion by not taking them into account. To mitigate 

the random effects, they mix a Poisson distribution with log-normal distribution; however, the approach 

may not account for the over-dispersion. In this paper, we estimate different versions of generalized 

standard distributions and zero-inflated models discussed by Harris et al (2014) and Hilb (2011).   

We investigate how accounting for inflated zeros impacts the effects of moral hazard effects and 

adverse selection, which affects how individuals allocate their income to health care. We examine the 

importance of over-dispersion in the data, and select the model that results in more accurate predictions 

for the data from Rephahn et al (2003). Comparing with Rephahn et al (2003), the selected Zero-Inflated 

Negative Binomial2 (ZINB2) model estimates the impact of the adverse selection and moral hazard on 

health-care demand in a consistent way.  

A number of papers have extended the application of zero-inflated models.  Greene (1994) considers 

the zero-inflated negative binomial (ZINB). As Ainsworth (2007) argues, ZINB model is used by Neal 

and Gaher (2006) to study drug use issues among college students; Gupta et al (1996) and Famoye and 

Singh (2006) apply a zero-inflated Generalize Poisson model to study frequentist setting. Ainsworth 

(2007) points out that Zero-inflated models have been further developed, in Ecology, by Ridout et al 

(1998), Martin et al (2005) and Kuhnert et al (2005) to explain different kinds of zeros: those that are 

structural as well as those that depend on the study. Hill (2011) provides details of other papers, for 

example, Cohen (1960), Johnson et al (2005) for underscore zeros, Mekerssoon and Roth (2000), Li et al 

(2003) for situations where data have inflated zero1. 

The outline of the paper is as follows. Section 2 discusses the different methodologies that are 

employed in this paper. Section 3 describes the data used in the analysis, and section 4 provides the results 

of different model specifications. Section 5 evaluates the predictions of the employed models, and section 

6 reviews robustness checks. Section 7 concludes.  

                                                           
1 As will be discussed in following sections, recently various extensions of zero-inflated models have 
been emphasised by Haris et al (2014) and are incorporated in STATA. More details about some of 
these models are discussed in Hilb (2011). While, STATA is not able to provide panel data estimates for 
zero-inflated models, LIMDEP is able to estimate fixed effect and random effect models in this context. 



2. Methodology  

 

2.1   Discussion of Over Dispersion 

In what follows we discuss the importance of properly accounting for over dispersion when it is present 

in count data models such as the ones used to model doctor and hospital visits. As Hilb (2011) discusses, 

omitted variable, the existence of outliers, or clustering that results in correlation between responses can 

cause over-dispersion. Its presence in count data models raises the Pearson statistics adjusted with degree 

of freedom above one2.  The uncontrolled over-dispersion may results in unreliable hypothesis test. In 

what follows we present how over-dispersion can be taken into account for count data models through 

mixing the Poisson distribution with other distributions. 

 

2.2 Count data models 

A Poisson model with equal mean and variance, 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖, has no power in dealing with 

over-dispersion. To make it more flexible, the model can be augmented with other distributions. This is 

done by relating its mean to an individual unobserved effect (𝑢𝑢𝑖𝑖). We can obtain different extensions of 

the Poisson model depending on how we specify the distribution for 𝑢𝑢𝑖𝑖. Appendix B, Table B1, provides 

an extensive discussion about these extensions. A Generalized Poisson (GP) model can also accommodate 

both over-dispersion and under-dispersion. We use these distributions to discuss the robustness of the 

results in the analysed data.   

 

2.3  Zero-inflated count models 

Data with more zeros than what we expect from a particular distribution may be a suspect of over-

dispersion. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) models adjust 

for excessive zeros in the response.  Hilbe et al (2014) discuss different versions of zero-inflated models. 

The mixture framework of these distributions can explain more of over-dispersion in the data.  

Appendix B, Table B2,  presents different zero-inflated distributions that are used as robustness checks 

for our analysis. Following Hilbe (2011), a Vuong (1989) test3 for non-nested models is used to compare 

the suitability of a zero-inflated distribution against its standard distribution as in Table B1. If Vuong test 

                                                           
2 See Hilb, 2011, chapter 12. 
3 Vuong test is a likelihood ratio based test for selecting a specific model among non-nested models. 



is positive and significant, the zero-inflated model is preferred to its corresponding standard one. With 

negative and significant value, the standard model is the selected one. With a non-significant Vuong test, 

none of them is preferred to the other one. As an additional check, we look at the predictability of different 

model specifications. 

3. Data description 

We use the same data as in Rephahn et al (2003) that is “the first twelve annual waves (1984 through 

1995) of the German Socioeconomic Panel (GSOEP) which surveys a representative sample of East and 

West German households”. The data set is downloadable from the web site of Journal of Applied 

Econometrics4. The data is restricted to individuals aged between 25 and 65. Table A1 presents the 

descriptive statistics of the dependent variable by gender5. Following Rephahn et al (2003), the dependent 

variables are defined as “the number of visits to a doctor within the last quarter prior to the survey, and 

the number of inpatient hospital visits with at least one night spent in the hospital within a given calendar 

year”.  

Table 1 shows the presence of inflated-zeros in both hospital visits and doctor visits for both genders. 

Around 92% and 44% of males did not visit a hospital and a doctor. For females, the shares of zero hospital 

and doctor visit are around 90% and 30%, respectively. The abundance of zeros in both kinds of visits 

suggests that zero-inflated distributions might be better options rather than their standard versions for the 

purpose of examining doctor and hospital demands. Since the frequency of zeros for doctor visits is less 

than for hospital visits, this paper focuses on the demand equation for doctor visits. If the results for this 

equation confirm the superiority of zero-inflated distributions over their standard versions, the results can 

be extended to demand for hospital visits as well. Among the explanatory variables, Rephahn et al (2003) 

consider two different dummy variables for two types of insurance: whether an individual has public 

insurance or not, and, if yes whether he or she has an add-on insurance policy, which is an optional policy 

to cover some other costs. They argue that 90% of German people have mandatory insurance policy with 

only 1% without any insurance. 

 All the explanatory variables are the same as Rephahn et al (2003); see table A1 in the appendix. 

 

 

 

                                                           
4 See: http://qed.econ.queensu.ca/jae/ 
5 For more detail about the data see Table A1 in the appendix as well as Rephahn et al (2003). 



Table 1: Dependent variables: Descriptive statistics 
  (Share of total observation, %) 
  Hospital visit  Doctor Visit 

 Value   Males Females   Males Females 
0  92.21 90.18  44.05 29.51 
1  6.18 7.88  13.82 13.17 
2  1.09 1.28  11.63 13.42 
3  0.15 0.27  8.48 11.49 
04-Sep  0.21 0.25  15.29 21.83 
10 and more  0.16 0.14  6.73 10.58 
Mean  0.128 0.15  2.63 3.79 
Std dev.  0.93 0.83  5.21 6.11 
Median  0 0  1 2 
N  14243 13083  14243 13083 
Source, German Socioeconomic Panel (1984-1995) 

 

4. Discussion of the Results 

4.1 Panel Data Models 

On the demand side, Rephahn et al (2003) assume a bivariate model for the demands of doctor and hospital 

visits. These demands follow a Poisson distribution, and the unobservable heterogeneity and error terms 

follow lognormal and bivariate normal distributions, respectively: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ∼ 𝑃𝑃𝑃𝑃�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�     𝑔𝑔 = 1,2 (with 1 for doctor visits and 2 for hospital visits) 

ln(𝜇𝜇𝑖𝑖𝑖𝑖1) = 𝛽𝛽′𝑥𝑥𝑖𝑖𝑖𝑖1 + 𝑢𝑢𝑖𝑖1 + 𝜀𝜀𝑖𝑖𝑖𝑖1 ; 𝑢𝑢𝑖𝑖1~𝑁𝑁(0,𝜎𝜎𝑢𝑢12 ) ; (𝜀𝜀𝑖𝑖𝑖𝑖1, 𝜀𝜀𝑖𝑖𝑖𝑖2)~𝑁𝑁2(0,0,𝜎𝜎𝜀𝜀12 ,𝜎𝜎𝜀𝜀22 ,𝜌𝜌) ; 𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗ℎ� = 0  𝑖𝑖𝑖𝑖 𝑖𝑖 ≠

𝑗𝑗 ∨ 𝑔𝑔 ≠ ℎ 

ln(𝜇𝜇𝑖𝑖𝑖𝑖2) = 𝛽𝛽′𝑥𝑥𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑖𝑖2 + 𝜀𝜀𝑖𝑖𝑖𝑖2 ; 𝑢𝑢𝑖𝑖2~𝑁𝑁(0,𝜎𝜎𝑢𝑢22 ) ; 𝐸𝐸�𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗ℎ� = 0    ∀𝑖𝑖, 𝑡𝑡,𝑔𝑔, 𝑗𝑗,ℎ; 𝐸𝐸�𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑗𝑗𝑗𝑗ℎ� = 0   𝑖𝑖𝑖𝑖 𝑡𝑡 ≠

𝑠𝑠 𝑖𝑖 ≠ 𝑗𝑗 ∨ 𝑔𝑔 ≠ ℎ 

To integrate out the unobserved heterogeneity 𝑢𝑢𝑖𝑖𝑖𝑖, a Gauss- Hermite approximation was used, while to 

integrate the distribution of cross-equation errors �𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖� a modified Gauss-Legendre approach was 

applied.  

Rephahn et al (2003) use the public insurance dummy to check for moral hazard and the add-on 

insurance dummy to check for adverse selection. The results indicate no evidence of moral hazard for 

demands for doctor visits and hospital visits: the coefficient of public insurance dummy are statistically 

insignificant and negative for male’s hospital demand. Their model estimates positive coefficients for add-

ons for both demands, though it is statistically significant only for males’ hospital demand and confirming 



adverse selection for it. Also they found that self-employed females and males have fewer visits to doctors 

than other employees. 

4.2 Random effects model 

As mentioned above, Riphahn Overall  (2003) do control for unobserved effects by mixing Poisson 

distributions, however, their model lacks accounting for the inflated zeros in the data. Consequently, by 

taking into account this issue one can provide more reliable estimated parameters for add-on and public 

insurance variables.  

To reconcile our analysis with Rephahn et al (2003), we first estimate random effects models for 

doctor visits using a Gaussian distribution and a Gamma distribution to account for the unobserved 

heterogeneity. For the purpose of comparing our model with their model, we focus on the estimated 

coefficients for public insurance and add-on insurance dummies.  

Table 2 reports the doctor visits’ results for both females and males. Based on AIC and BIC 

criteria, we see that Gamma distribution is a better choice for the data. Also, with Gamma distribution the 

coefficient of public insurance is positive and statistically significant for both females and males while in 

the case of Gaussian distribution both of them are positive but insignificant. For both models, the 

coefficient of add-on is negative but not significant. The results show that, although it seems that Gaussian 

distribution is more flexible than Gamma, NB2 (a mixture of Poisson and Gamma) is a better option for 

this data.  

Table 2: Random effect model with Gaussian and Gamma distributions for the unobserved 
heterogeneity term 

 Males Females 
 RE Normal RE Gamma RE Normal RE Gamma 

Doctor visit equation     
Public Insurance 0.106 0.103*** 0.0638 0.0690* 

 (0.0844) (0.0388) (0.0733) (0.0360) 
Add-on Insurance -0.0334 -0.0340 -0.0260 -0.0317 

 (0.103) (0.0535) (0.0897) (0.0456) 
Lnsig2u 0.0138 

 
-0.248*** 

 

 (0.0393) 
 

(0.0391) 
 

Lnalpha 
 

-0.00860 
 

-0.277*** 
 

 
(0.0293) 

 
(0.0286) 

Observations 14243 14243 13083 13083 
AIC 65802.1774 65713.7349 70856.0950 70728.1257 
BIC 65976.1498 65887.7074 71028.1136 70900.1443 

Log lik. -32878.1 -32833.9 -35405.0 -35341.1 
Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 



4.3 Standard count models: 

Following Greene (2008), we use pooled data to select the best model between standard models. 

Table 3 presents the results for males’ visits to doctors when employing the models in Table B1: Poisson, 

Negative Binomial 1 (NB1), Negative Binomial 2 (NB2), Generalized Poisson (GPoisson),  Negative 

Binomial  Famoye  (NB Famoye), and  Negative Binomial Waring (NB Waring). 

Table 3: Standard Distributions for Doctor Visit for males 
 Poisson NB1 NB2 Gen Possion NBFamoy GNBWaring 
Doctor visit equation 

 
      

Public Insurance 0.100 0.0607 0.0934 0.0595 0.0934 0.0578 
 (0.0702) (0.0539) (0.0635) (0.0549) (0.0635) (0.0577) 
Add-on Insurance 0.0666 0.139* 0.0551 0.144* 0.0551 0.154* 
 (0.102) (0.0777) (0.0948) (0.0791) (0.0948) (0.0844) 
Constant 2.771*** 2.776*** 3.149*** 2.780*** 3.710*** 2.929*** 
 (0.336) (0.254) (0.329) (0.258) (0.330) (0.273) 
Lndelta  1.581***     
  (0.0365)     
Lnalpha   0.561***    
   (0.0270)    
Atanhdelta    0.726***   
    (0.0115)   
Lnphim1     -17.76***  
     (3.253)  
Lntheta     -0.561***  
     (0.0270)  
Lnrhom2      0.783*** 
      (0.0981) 
Lnk      2.303*** 
      (0.130) 
Observations 14243 14243 14243 14243 14243 14243 
AIC 85593.4779 54865.9120 55006.8616 54700.9022 55008.8616 54528.6162 
BIC 85759.8863 55039.8845 55180.8341 54874.8747 55190.3981 54710.1527 
Log lik. -42774.7 -27410.0 -27480.4 -27327.5 -27480.4 -27240.3 
Dispersion 6.67597 constant 1.998817    
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

The results for Poisson, NB1 and NB2 are the same as in Greene (2008). Based on the dispersion 

criteria which has a high dispersion value of 6.67, Poisson distribution is not suitable. NB2 defeats Poisson 

by reducing considerably the value of dispersion to 1.99. This can also be confirmed by ln(𝛼𝛼) = 0.561 

which measures the logarithm of the dispersion parameter (𝛼𝛼)  and based on the likelihood ratio test is 

statistically significant. The same conclusion is obtained for other distribution: NB1, Generalized Poisson, 

NB Famoye and NB.  Using AIC and BIC criteria, the NB Waring model is the best model for these data. 

It is followed by the Generalized Poisson, NB1, NB2, and NB Famoye.  



NB Waring model estimates a positive and significant coefficient for the add-on insurance. In 

addition this parameter is positive in all models but only significant in NB1 and Generalized Poisson and 

NB Waring models. The estimated parameter for public insurance is positive in all the models but 

statistically insignificant. Table A2 in the appendix A reports all parameter estimates.  

Table A3 in the appendix A, shows the same results for females. The results for dispersion and the 

ranking of the best models are the same as for males. Still, NB Waring is the best one and NB2 is in the 

second rank. The only difference is observed in add-on’s estimated parameter. This parameter is positive, 

and, as for males, statistically significant for NB1 and generalized Poisson but not for NB Waring. For 

public insurance, all the models provide positive values except for the Poisson model, which is a 

completely unreliable model, where it is statistically significant. This can be viewed as evidence of over-

dispersion, leading to underestimation of standard errors, making the coefficient statistically significant. 

To conclude this analysis, we can state that even if we ignore the zero-inflated nature of the data, 

we can designate NB family and Generalized Poisson as better choices than the simple Poisson model.  

Finally, Table 4 provides results for heterogeneous NB2. For this model, all the explanatory 

variables are used to explain its dispersion parameter. In comparison, AIC and BIC criteria indicates that 

this model is better than the simple Poisson for both males and females. Also, based on AIC criteria, this 

model has the lowest value compared to other specifications. In this model only the coefficient of public 

insurance for females is statistically significant. 

Table 4: Heterogeneous NB2 for Doctor Visit for Males and Females 
 Hete NB2 Male Hete NB2 Female  
Doctor visit equation    
Public Insurance 0.0940 0.105*  
 (0.0652) (0.0599)  
Add-on Insurance 0.0427 0.0347  
 (0.0927) (0.0754)  
Constant 2.977*** 2.874***  
 (0.318) (0.272)  
Lnalpha    
Public Insurance 0.0188 0.0190  
 (0.0985) (0.102)  
Add-on Insurance -0.397*** -0.495***  
 (0.153) (0.142)  
Constant -0.839* -1.217***  
 (0.452) (0.453)  
Observations 14243 13083  
AIC 54493.3321 60278.6270  
BIC 54826.1490 60607.7061  
Log lik. -27202.7 -30095.3  

Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 



4.3 Zero-inflated models (Pooled data) 

Following Greene (2008) again, we use pooled data to select the best model among zero-inflated 

models introduced in Table B2. Since for the zero inflated models it is necessary to specify the inflation 

function, all the explanatory variables are covariates in this function.  

Table 5 provides estimation results related to zero-inflated models for males. Based on the positive 

and statistically significant values of Vuong statistics (the test for non-nested models), there is a strong 

evidence to prefer the zero-inflated models to their corresponding standard models. Also, add-on 

contributes to the over-dispersion in the data as it is significant in the zero-inflated function. The Zero-

Inflated Negative Binomial (ZINB) Waring model has the lowest AIC and BIC values followed by ZINB2 

ZINB-Famoye and zero-Inflated Poisson (ZIP). The statistically significant estimated parameters related 

to dispersion in ZINB Waring and ZINB2 indicate that zero-inflated Poisson is not a good choice for these 

data and its significant coefficient for add-on is not reliable.  

Table 5: Zero-Inflated Models for Males 
 ZIP ZINB2 ZINBFamoye ZINBWaring 
Doctor visit equation     
Public Insurance 0.0794*** 0.0971* 0.0899 0.0565 
 (0.0247) (0.0571) (0.0560) (0.0623) 
Add-on Insurance -0.0839* -0.0388 -0.0694 -0.00574 
 (0.0430) (0.0962) (0.0933) (0.101) 
Constant 2.502*** 2.567*** -5.078 2.598*** 
 (0.108) (0.263) (154.3) (0.291) 
Inflate Equation     
Public Insurance -0.0226 0.0342 0.00727 -0.00330 
 (0.0755) (0.162) (0.124) (0.148) 
Add-on Insurance -0.423*** -0.651 -0.590* -0.637* 
 (0.157) (0.446) (0.316) (0.387) 
Constant -3.718*** -6.989*** -5.710*** -4.933*** 
 (0.371) (0.935) (0.670) (0.772) 
Lnalpha  0.154***   
  (0.0303)   
Lnphim1   6.560  
   (154.4)  
Lntheta   7.652  
   (154.3)  
Lnrhom2    0.866*** 
    (0.0550) 
Constant    0.897*** 
    (0.103) 
Observations 14243 14243 14243 14243 
AIC 70905.8533 54536.9885 54383.8199 54168.3164 
BIC 71238.6702 54877.3694 54731.7649 54516.2613 
Log lik. -35408.9 -27223.5 -27145.9 -27038.2 
Vuong statistic 31.546871*** 11.554577*** 14.015931*** 21.082627*** 

Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 



The estimated parameters for add-on are negative for all of the models but statistically insignificant 

except for ZIP. Moreover, the public insurance coefficient is positive and statistically significant ZIP and 

ZINB2. 

Table 6 provides the results of zero-inflated models for females. The results for females are similar 

to those for males. In the case of females, the coefficient for public insurance is statistically positive for 

ZINB2 model. 

Table 6: Zero-Inflated Models for Females 
 ZIP ZINB2 ZINBFamoy ZINBWaring 

Doctor visit equation     
Public Insurance 0.112*** 0.0788* 0.0674 0.0595 

 (0.0217) (0.0466) (0.0459) (0.0495) 
Add-on Insurance -0.0652* -0.0146 -0.0333 0.0649 

 (0.0337) (0.0768) (0.0758) (0.0753) 
Constant 2.307*** 2.586*** -5.259 2.663*** 

 (0.0922) (0.222) (134.6) (0.228) 
Inflate Equation     
Public Insurance -0.0857 -0.207 -0.149 -0.122 

 (0.0855) (0.194) (0.145) (0.165) 
Add-on Insurance -0.427** -0.913 -0.733 -0.459 

 (0.176) (0.887) (0.476) (0.416) 
Constant -4.329*** -8.360*** -6.726*** -5.556*** 

 (0.417) (1.218) (0.829) (0.883) 
Lnalpha  -0.0723***   

  (0.0258)   
Lnphim1   6.579  

   (134.7)  
Lntheta   7.879  

   (134.6)  
Lnrhom2    1.091*** 

    (0.0464) 
Lnk    1.142*** 

    (0.0868) 
Observations 13083 13083 13083 13083 

AIC 79784.3595 60296.0349 60130.3157 59863.0979 
BIC 80113.4386 60632.5930 60474.3529 60207.1351 

Log lik. -39848.2 -30103.0 -30019.2 -29885.5 
Vuong_statistic 31.52*** 8.80*** 12.18 *** 12.67*** 

Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
 

 

 



5. Model Evaluation  

5.1. Distribution comparisons 

In this section, we compare the predictions of Poisson, zero-inflated Poisson (ZIP), NB2, and 

ZINB2 for doctor‘s visit with the corresponding actual distribution6. Figure 1a and Figure 1b compare the 

predicted frequency of the number of doctor visits by Poisson and ZIP with their actual frequencies. Both 

figures show that Poisson and zero-inflated Poisson models underestimate the zeros and overestimate the 

ones. Figure 1c compares the distributions results from the Poisson and zero-inflated Poisson models. We 

see that zero-inflated Poisson increases the estimated frequency of zeros by almost 40%, which is a 

substantial improvement in terms of prediction. We observe also some improvements in the reduction of 

the estimated one and two visits. Regarding four and more visits, both models are nearly the same. 

Figures 1c, 1d and 1e compare the results for NB2 and zero-inflated NB2. The improvement in the 

number of zeros using zero-inflated NB2 is almost 20% compared with the standard NB2. This 

improvement is less than what we mentioned above comparing Poisson and zero-inflated Poisson. We can 

justify it since comparing with Poisson model the standard NB2 has more power in accounting for over-

dispersion, as we discussed before. This can also be seen in Tables A4 to A7 of the appendix A. For 

example, standard Poisson distribution predicts correctly 838 zeros while standard NB2 predicts correctly 

1170 zeros. With zero-inflated Poisson and zero-inflated NB2 these values increase to 1441 and 1446, 

respectively. In addition, the zero-inflated models provide some improvements on the estimation of other 

numbers of doctor visits. 

 

 

 

 

 

 

 

                                                           
6 Since the predicted values might not be integers, we convert them to the closest integer. 



Figure 1: Doctor visits (DV) and predicted DV by model specification 

  

Figure1a: Doctor visits (DV) and predicted DV (by 

Poisson) 

Figure 1b: DV and predicted DV (by ZIPoisson) 

 

Figure 1c: Predicted DV by Poisson and ZIPoisson 
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Figure 1d: DV and predicted DV (by NB2) Figure 1e: DV and predicted DV (by ZNB2) 

 

Figure 1f: Predicted DV by NB2 and ZNB2 

 

 

 
5.2 Predicted versus realizations comparisons 

Table 7 compares four models based on the maximum differences and mean absolute differences 

between predicted and actual counts. The results show that Poisson performs worst at predicting the 0s, 

and NB2 and ZIP perform worst at predicting the 1s, while ZINB2 is worst at predicting the 2s. However, 

the maximum difference and mean of absolute differences are much lower for ZINB2 which means this 

model is the best one in terms of overall prediction. The Pearson statistic equals 193.429 for this model 

(the lowest of all models), which confirms it is the best model in terms of prediction (see table A8 in the 

appendix A for more details). 
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Table 7: Comparing the mean of observed and predicted count 

Model Maximum 
Difference 

At Value Mean 
|Diff| 

Poisson 0.273 0 0.054 
NB2 -0.042 1 0.009 
ZIP 0.082 1 0.023 

ZINB2 0.017 2 0.006 
 

 
Figure 2 presents the density comparison between actual and predicted probabilities.  Again, we see that 

ZINB2 is superior to ZIP in predicting actual probabilities. Further, Figure 3 plots the residuals from the 

tested models.  Small residuals indicate a good fit, so the models with lines closest to zero should be 

considered as the suitable ones. We can see that the residuals line for ZINB2 is very close to zero when 

compared with the line of residuals for all the other models, confirming the results of all previous findings. 

Figure 2: Density comparison between actual and predicted probabilities 

 

  

Actual probabilities versus Zero Inflated Negative 
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Actual probabilities versus Zero Inflated Poisson 
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Figure 3: Residual plots of  PRM(Poisson Random Effect Model, NBRM (NB Random Effect 

Model), ZIP(Zero Inflated Poisson Model), ZINB(Zero Inflated NB Model)  

 

Finally, Table 8 provides tests for choosing the best model in terms of fit statistics such as AIC and BIC 
as well as Vuong statistic. The results also indicate that ZINB2 is the best model among the models under 
consideration. 

Table 8: Tests of fit statistics 
Poisson BIC=85759.8 AIC=85593.5 Prefer Over Evidence 
Vs NB2 BIC=55180.8 Diff=30579.1 NB2 Poisson Very strong 

 AIC=55006.8 Diff=30586.6 NB2 Poisson  
 LRX2=30588.6 Prob=0.000 NB2 Poisson P=0.000 

Vs ZIP BIC=71238.7 Diff=14521.2 ZIP Poisson Very strong 
 AIC=70905.8 Diff=14687.6 ZIP Poisson  
 Vuong=31.54 Prob=0.000 ZIP Poisson P=0.000 

Vs ZINB2 BIC=54877.4 Diff=30882.5 ZINB Poisson Very strong 
 AIC=54536.9 Diff=31056.5 ZINB Poisson  

NB2 BIC=55180.8 AIC=55006.8 Prefer Over Evidence 
Vs ZIP BIC=71238.7 Diff= - 16057.8 NB2 ZIP Very strong 

 AIC=70905.8 Diff= - 15898.9 NB2 ZIP  
Vs ZINB2 BIC=54877.4 Diff=303.4 ZINB2 NB2 Very strong 

 AIC=54536.9 Diff=469.8 ZINB2 NB2  
 Vuong=11.55 Prob=0.000 ZINB2 NB2 P=0.000 

ZIP BIC=71238.7 AIC=70905.8 Prefer Over Evidence 
Vs ZINB2 BIC=54877.4 Diff=16361.3 ZINB2 ZIP Very strong 

 AIC=54536.9 Diff=16368.8 ZINB2 ZIP  
 LRX2=16370.8 Prob=0.000 ZINB2 ZIP P=0.000 
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6. Robustness Checks  

6.1 Robustness results on pooled sample 

The results of previous sections show that zero-inflated NB2 could be considered a suitable model 

in terms of prediction for both female and male subsamples.  The model predicts that public insurance has 

a positive and statistically significant coefficient for both subsamples, which has implications on the 

income effects of individuals.  

Now, we check if we can get the same results as before by pooling males and females data. We 

add a dummy variable with value of 1 for females and value of 0 for males to the explanatory variables. 

Consequently, six different models for the whole sample are estimated: Poisson with Gaussian random 

effect, Poisson with Gamma random effect, NB2, NB Waring, zero-inflated NB2 as well as zero-inflated 

NB Waring.  

Table 9 reports the estimation results for the six models. In all of them the estimated coefficients 

for females are positive and statistically different from zero which confirms our focusing on two separate 

samples for males and females in the previous sections. It also means that on average, ceteris paribus; 

females will demand more visits for doctors than males. Between the random effect models, the one with 

Gamma distribution for the unobserved heterogeneity performs best (both AIC and BIC are predicting the 

same result).  However, all the pooled data models are preferred to random-effect models. Further, the 

Voung statistic used to compare non-nested models is positive and statistically significant for the zero-

inflated models, meaning that zero-inflated models provide better predictions than their standard 

counterparts. Furthermore, based on AIC and BIC, the zero-inflated Waring model, though less accurate 

in convergence, is preferred to the zero-inflated NB2. Finally, all the models estimate a positive coefficient 

for public insurance and are statistically significant except for the Gaussian random effect model. The 

results confirms the existence of moral hazard. 

 



Table 9: Full sample results 
 Gaussian RE Gamma RE NB2 NBW ZINB2 ZINB 

 Doctor visit equation       
Female 0.377*** 0.304*** 0.354*** 0.364*** 0.183*** 0.215*** 
 (0.0291) (0.0244) (0.0279) (0.0234) (0.0194) (0.0207) 
Public Insurance 0.0886 0.0896*** 0.1000** 0.0746* 0.0930** 0.0654* 
 (0.0557) (0.0264) (0.0458) (0.0393) (0.0361) (0.0389) 
Add-on Insurance -0.0299 -0.0327 0.0497 0.148*** -0.0193 0.0340 
 (0.0665) (0.0347) (0.0613) (0.0553) (0.0597) (0.0606) 
Lnsig2u -0.111***      
 (0.0277)      
Lnalpha  -0.136*** 0.370***  0.0243  
  (0.0205) (0.0189)  (0.0195)  
Lnrhom2    0.842***  0.984*** 
    (0.0652)  (0.0349) 
Lnk    2.280***  1.043*** 
    (0.0923)  (0.0665) 
Inflate equation       
Female     -1.216*** -0.830*** 
Public Insurance     -0.0469 -0.0477 
     (0.120) (0.107) 
Add-on Insurance     -0.682** -0.562** 
     (0.341) (0.269) 
Observations 27326 27326 27326 27326 27326 27326 
AIC 136878.2159 136666.2365 115861.5909 114914.2459 114881.7180 114051.5364 
BIC 137075.3902 136863.4108 116058.7651 115119.6357 115267.8509 114445.8849 
Log lik. -68415.1 -68309.1 -57906.8 -57432.1 -57393.9 -56977.8 
Vuong statistic     15.94*** 39.64*** 

Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
6.2 Accounting for correlation between doctor visits and hospital visits using the Bivariate 

Negative Binomial Model7 

We also jointly estimate both doctor visits and hospital visits using a bivariate NB model 

to account for potential correlation between the two events. As Riphahn et al (2003) explain, doctor 

visits and hospital visits are positively correlated. However, this correlation should be identified 

and tested.   

In the males sample we find a correlation between doctor visits and hospital visits of 

0.1477. Using only non-zero values, this correlation reduces to 0.1138. Cameron and Trividi 

(2013) show how to construct a statistic for testing the independency between two counts specific 

regressions (for doctor visits and hospital visits). The calculated test statistic for our sample are 

9.47, 1.05, 0.05, 0.94, respectively for (𝑗𝑗,𝑘𝑘) = (1,1), (1,2), (2,1), (2,2). Only the first value is 

statistically different from zero (with p-vale equal to 0.002). This shows that independency can 

                                                           
7 Codes for Bivariate NB2 model are found in Cameron, C., and Trividi, P. (2013) ( see page 336) 
 



only be rejected for the first statistics suggesting some evidence of weak dependency between the 

two count variables. This is in contrast to what Riphahn et al (2003) expected. Motivated by the 

first test value, however, a bivariate NB2 model is estimated for males using pooled panel data 

(see Table 10).  Here the parameter 𝛼𝛼 can capture both overdispersion as well as correlation 

between unobserved heterogeneity8.  

For females, the correlation between doctor visits and hospital visits for all data realizations 

(including the zeros) is 0.125 and when we look at only the positive values we get a correlation of 

0.079. The independency test statistic for females are 38.56, 0.087, 4.81, 0.225 corresponding to 

(𝑗𝑗,𝑘𝑘) = (1,1), (1,2), (2,1), (2,2), respectively. Based on the results, the first and second values of 

the test statistic are significant at 0.05 level. Motivated by the first two test values, a bivariate NB2 

is estimated for female. The results are presented in Table 10.  

We see that the 𝛼𝛼 parameters are significant in both male and female bivariate models. This 

result might confirm the previous results that NB2 based models are a better distribution for 

explaining real data, rather than Poisson distribution. Here we find that the estimated public 

insurance parameters for doctor visits are positive and statistically significant for both males and 

females while for hospital visits are negative and insignificant. Although estimated add-on 

parameters are positive for all males and females in two equations, they are statistically 

insignificant.  

Table 10: Bivariate Negative Binomial 2 for Doctor Visits and Hospital Visits 

    Males Females   
    Doctor visit Hospital visit Doctor visit Hospital visit  
   Public Insurance  0.0958* -0.173 0.105* -0.144  
    (0.0551) (0.235) (0.0545) (0.312)  
   Add-on Insurance 0.0605 0.550 0.0311 0.0501  
    (0.0863) (0.351) (0.0648) (0.164)  
   Alpha 1.698***  1.169***   
    (0.0367)  (0.0242)   
   Observations 14243  13083   
   Log Like -33090.1  -36174.5   
   Standard errors in parentheses 

     
 

         
7. Conclusion 

The high share of zeros for a dependent variable in a count data regression model can severely 

increase the over-dispersion issue and lead to unreliable estimators. We show that the German 

                                                           
8 For the estimating Bivariate NB2 by ML, initial values we find by estimating non-linear seemingly unrelated 
regression (NLSUR) and assuming initial value for 𝛼𝛼 equal to 2. For first stage, correlation between doctor visits 
and hospital visits for males and females are estimated as 0.125 and 0.078, respectively.  



Socioeconomic Panel (1984-1995) used by Riphahn et al (2003) for the demand of doctor visits 

suffers severely from over-dispersion issue and their estimation based on standard distributions 

might not be reliable. Results based on standard distributions are close to Riphahn et al (2003) and, 

overall, there is not enough evidence for moral hazard and adverse selection except for Waring 

NB2, which presents a positive effect from adverse selection on the number of doctor visits. 

However, this result might also not be reliable due to the over-dispersion that resulted in the high 

share of zeros in the data. Overall we show that within the class of random effect models, the 

model with a Gamma distribution for unobserved heterogeneity is more suitable than the one 

assuming Gaussian distribution for unobserved heterogeneity.  

Vuong test (1989) rejects the standard distributions in the favour of their corresponding zero-

inflated distributions. This means that over-dispersion due to the high share of zeros in the data 

cannot be explained by any complex and/or flexible mixture of Poisson distributions such as 

Negative Binomial 2, Generalized Poisson, Negative Binomial Famoy, Generalized Negative 

Binomial Waring models. All of these are inferior to the zero-inflated distributions models. 

Between zero-inflated distributions, ZINB Waring model has the lowest AIC and BIC values 

followed by ZINB2 Famoye and ZINB2. However, when ranking the predicted probabilities, 

ZINB2 model produces the closest probabilities to the actual probabilities.  A pooled (male-

female) sample estimation provides the same results as those obtained from subsample estimations.  

In contrast to Riphahn et al (2003), most of the zero-inflated distribution models predict a 

negative but insignificant coefficient for add-on insurance for both male and female subsamples.  

This results indicate a weak sign of adverse selection. We find a positive coefficient for public 

insurance in all the estimated models, but only statistically significant for ZINB2, the best model, 

for both genders. This result confirms the existence of moral hazard in the insurance market.  

Although we show that the correlation between the demand for doctor and hospital is weak in 

the data, our bivariate NB model finds a positive and significant coefficient for public insurance 

and a positive and significant for add-on insurance for doctor‘s visit. This is also in contrast with 

the results by Riphahn et al (2003), who do not find any significant coefficient for the public 

insurance for doctor‘s visit in their bivariate model. Overall, our results find a strong evidence for  

moral hazard for visiting more doctors. The results provide significant evidence of how 

considering the over-dispersion nature of the data in the estimation process can provide more 

precise estimations and reveal a better understanding about health demand components.  
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Appendix A: Additional Tables 

 

  

Variables Description  Malesa  Femalesa 
Docvis Number of doctor visits in 

   
 2.626  (5.21)  3.791  (6.11) 

Hos Number of hospital visit 
  

 0.128  (0.93)  0.150  (0.83) 
Age Age  42.653  (11.27)  44.467  (11.32) 
Hsat Health satisfaction code 0 

  
 6.924  (2.25)  6.634  (2.33) 

Handdum Person is handicapped (0/1)  0.227  (0.42)  0.200  (0.40) 
Handper Percentage degree of 

 
 8.134  (20.33)  5.791  (17.96) 

Married Person is married (0/1)  0.765  (0.42)  0.752  (0.43) 
Educ Years of schooling  11.729  (2.44)  10.876  (2.11) 
Hhninc Monthly household net 

 3  
 3.591  (1.74)  3.445  (1.80) 

Hhkids Children below age 16 in 
  

 0.413  (0.49)  (0.392)  (0.49) 
Self Person is self-employed 

 
 0.086  (0.28)  0.037  (0.19) 

Beamt Person is civil servant (0/1)  0.118  (0.32)  0.028  (0.16) 
Bluec Person is blue collar 

  
 0.340  (0.47)  0.139  (0.35) 

Working Person is employed (0/1)  0.850  (0.36)  0.488  (0.50) 
Public Insurance Person is insured in public 

   
 0.861  (0.35)  0.913  (0.28) 

Add-on 
 

Person is insured in add-on 
  

 0.018  (0.13)  0.020  (0.14) 
d85 Year=1985 (0/1)         
d86 Year=1986 (0/1)         
d87 Year=1987 (0/1)         
d88 Year=1988 (0/1)         
d91 Year=1991 (0/1)         
d94 Year=1994 (0/1)         
N Number of observations   14,243    13,083  
a mean, standard deviation in parentheses 
Source: German Socioeconomic Panel (1984–1995). 

 



Table A2: Standard Distributions for Doctor Visit for Males (complete table) 

 Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring 
Doctor visit       
Age -0.0239 -0.0477*** -0.0398*** -0.0496*** -0.0398*** -0.0533*** 
 (0.0164) (0.0114) (0.0153) (0.0114) (0.0153) (0.0120) 
Age2 0.369** 0.634*** 0.547*** 0.659*** 0.547*** 0.706*** 
 (0.184) (0.129) (0.176) (0.130) (0.176) (0.137) 
Hsat -0.225*** -0.189*** -0.239*** -0.188*** -0.239*** -0.203*** 
 (0.00767) (0.00585) (0.00745) (0.00587) (0.00745) (0.00657) 
Handdum 0.0690 0.0229 -0.0209 0.0183 -0.0209 0.0111 
 (0.0537) (0.0378) (0.0503) (0.0373) (0.0503) (0.0397) 
Handper 0.00286** 0.00414*** 0.00661*** 0.00430*** 0.00661*** 0.00505*** 
 (0.00121) (0.000848) (0.00116) (0.000835) (0.00116) (0.000917) 
Married 0.0583 0.130*** 0.0658 0.135*** 0.0658 0.139*** 
 (0.0606) (0.0408) (0.0535) (0.0409) (0.0535) (0.0432) 
Educ -0.0235*** -0.00955 -0.0262*** -0.00833 -0.0262*** -0.00971 
 (0.00873) (0.00672) (0.00910) (0.00688) (0.00910) (0.00725) 
Bhninc -0.0000222* -0.00000788 -0.0000192* -0.00000746 -0.0000192* -0.00000835 
 (0.0000121) (0.00000853) (0.0000105) (0.00000868) (0.0000105) (0.00000911) 
Bhkids -0.0760 -0.0743** -0.0844* -0.0766** -0.0844* -0.0792** 
 (0.0518) (0.0341) (0.0470) (0.0343) (0.0470) (0.0362) 
Self -0.211** -0.244*** -0.218*** -0.253*** -0.218*** -0.265*** 
 (0.0847) (0.0616) (0.0784) (0.0628) (0.0784) (0.0656) 
Beamt 0.0914 0.0278 0.0841 0.0273 0.0841 0.0254 
 (0.0809) (0.0623) (0.0766) (0.0630) (0.0766) (0.0664) 
Bluec 0.0178 -0.00948 0.0371 -0.0116 0.0371 -0.00956 
 (0.0486) (0.0374) (0.0458) (0.0379) (0.0458) (0.0398) 
Working -0.0554 0.0126 -0.0155 0.0175 -0.0155 0.0172 
 (0.0668) (0.0465) (0.0596) (0.0465) (0.0596) (0.0490) 
Public Insurance 0.100 0.0607 0.0934 0.0595 0.0934 0.0578 
 (0.0702) (0.0539) (0.0635) (0.0549) (0.0635) (0.0577) 
Add-on Insurance 0.0666 0.139* 0.0551 0.144* 0.0551 0.154* 
 (0.102) (0.0777) (0.0948) (0.0791) (0.0948) (0.0844) 
d85 0.0769 0.0615* 0.106* 0.0611* 0.106* 0.0669* 
 (0.0563) (0.0359) (0.0546) (0.0358) (0.0546) (0.0378) 
d86 0.215*** 0.156*** 0.226*** 0.155*** 0.226*** 0.163*** 
 (0.0597) (0.0365) (0.0581) (0.0365) (0.0581) (0.0386) 
d87 0.113 0.0967** 0.123** 0.0983** 0.123** 0.104** 
 (0.0690) (0.0439) (0.0613) (0.0433) (0.0613) (0.0458) 
d88 0.0530 0.111*** 0.0670 0.110*** 0.0670 0.115*** 
 (0.0558) (0.0360) (0.0544) (0.0361) (0.0544) (0.0379) 
d91 -0.00397 0.145*** -0.00366 0.152*** -0.00366 0.151*** 
 (0.0609) (0.0373) (0.0531) (0.0374) (0.0531) (0.0393) 
d94 0.247*** 0.268*** 0.244*** 0.278*** 0.244*** 0.289*** 
 (0.0613) (0.0407) (0.0548) (0.0409) (0.0548) (0.0430) 
Constant 2.771*** 2.776*** 3.149*** 2.780*** 3.710*** 2.929*** 
 (0.336) (0.254) (0.329) (0.258) (0.330) (0.273) 
Lndelta,   1.581***     
  (0.0365)     
Lnalpha   0.561***    
   (0.0270)    
Atanhdelta    0.726***   
    (0.0115)   
Lnphim1     -17.76***  
     (3.253)  
Lntheta     -0.561***  
     (0.0270)  
Lnrhom2      0.783*** 
      (0.0981) 
Lnk      2.303*** 
      (0.130) 
Observations 14243 14243 14243 14243 14243 14243 
AIC 85593.4779 54865.9120 55006.8616 54700.9022 55008.8616 54528.6162 
BIC 85759.8863 55039.8845 55180.8341 54874.8747 55190.3981 54710.1527 
Dispersion 6.67597  constant 1.998817   
Log lik. -42774.7 -27410.0 -27480.4 -27327.5 -27480.4 -27240.3 

Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 



Table A3: Standard Distributions for Doctor Visit for Females (complete) 
 Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring 
Doctor visit       
Age -0.0132 -0.0322*** -0.0312*** -0.0347*** -0.0321*** -0.0400*** 
 (0.0121) (0.00943) (0.0115) (0.00947) (0.0116) (0.0112) 
Age2 0.179 0.396*** 0.373*** 0.425*** 0.382*** 0.479*** 
 (0.138) (0.107) (0.131) (0.107) (0.132) (0.127) 
Hsat -0.203*** -0.171*** -0.208*** -0.170*** -0.208*** -0.218*** 
 (0.00641) (0.00507) (0.00631) (0.00506) (0.00636) (0.00609) 
Handdum 0.138** 0.106** 0.113** 0.102** 0.111** 0.119** 
 (0.0565) (0.0450) (0.0485) (0.0434) (0.0487) (0.0480) 
Handper 0.00241** 0.00254*** 0.00436*** 0.00254*** 0.00457*** 0.00418*** 
 (0.00108) (0.000867) (0.00106) (0.000846) (0.00110) (0.000998) 
Married 0.0272 0.0440 0.0282 0.0455 0.0284 0.0366 
 (0.0408) (0.0322) (0.0385) (0.0323) (0.0386) (0.0377) 
Educ 0.0147 0.0138* 0.00773 0.0136* 0.00740 0.0121 
 (0.00933) (0.00724) (0.00894) (0.00728) (0.00898) (0.00873) 
Bhninc -0.0000206** -0.0000111 -0.0000162* -0.0000103 -0.0000161* -0.0000128 
 (0.00000948) (0.00000740) (0.00000951) (0.00000746) (0.00000955) (0.00000916) 
Bhkids -0.134*** -0.108*** -0.124*** -0.108*** -0.124*** -0.122*** 
 (0.0416) (0.0311) (0.0376) (0.0311) (0.0375) (0.0367) 
Self -0.218** -0.223*** -0.242*** -0.229*** -0.244*** -0.280*** 
 (0.0978) (0.0705) (0.0875) (0.0707) (0.0872) (0.0849) 
Beamt -0.0711 -0.00922 -0.0198 -0.00859 -0.0183 -0.0499 
 (0.117) (0.0848) (0.128) (0.0859) (0.129) (0.107) 
Bluec -0.0354 -0.0718* -0.0401 -0.0772** -0.0406 -0.0730 
 (0.0555) (0.0392) (0.0497) (0.0392) (0.0495) (0.0471) 
Working 0.0149 0.0247 0.0305 0.0264 0.0313 0.0363 
 (0.0392) (0.0294) (0.0354) (0.0295) (0.0354) (0.0347) 
Public Insurance 0.131** 0.0790 0.0953 0.0715 0.0935 0.0787 
 (0.0599) (0.0489) (0.0639) (0.0499) (0.0643) (0.0598) 
Add-on Insurance 0.0207 0.126* 0.0309 0.138** 0.0312 0.111 
 (0.0888) (0.0682) (0.0769) (0.0687) (0.0769) (0.0794) 
d85 -0.0362 -0.0326 -0.0127 -0.0303 -0.0119 -0.0218 
 (0.0473) (0.0319) (0.0449) (0.0318) (0.0450) (0.0386) 
d86 0.0941** 0.0837** 0.102** 0.0836** 0.102** 0.114*** 
 (0.0449) (0.0329) (0.0430) (0.0328) (0.0433) (0.0383) 
d87 -0.0843 -0.0750 -0.0531 -0.0690 -0.0515 -0.0701 
 (0.0642) (0.0485) (0.0566) (0.0471) (0.0569) (0.0529) 
d88 -0.180*** -0.0677** -0.176*** -0.0670** -0.176*** -0.145*** 
 (0.0448) (0.0315) (0.0439) (0.0315) (0.0441) (0.0384) 
d91 -0.154*** 0.0108 -0.138*** 0.0202 -0.138*** -0.0688* 
 (0.0456) (0.0326) (0.0441) (0.0327) (0.0442) (0.0402) 
d94 0.197*** 0.186*** 0.221*** 0.191*** 0.222*** 0.252*** 
 (0.0481) (0.0370) (0.0464) (0.0371) (0.0466) (0.0433) 
Constant 2.547*** 2.731*** 3.024*** 2.777*** 3.184*** 3.190*** 
 (0.282) (0.224) (0.273) (0.227) (0.276) (0.267) 
Lndelta  1.549***     
  (0.0349)     
Lnalpha   0.188***    
   (0.0259)    
Atanhdelta    0.711***   
    (0.0108)   
Lnphim1     -4.580***  
     (0.762)  
Lntheta     -0.133***  
     (0.0443)  
Lnrhom2      1.014*** 
      (0.113) 
Lnk      0.283*** 
      (0.0764) 
Observations 13083 13083 13083 13083 13083 13083 
AIC 91844.4596 60731.5683 60570.6248 60521.2975 60569.0256 60307.5709 
BIC 92008.9991 60903.5869 60742.6434 60693.3160 60748.5232 60487.0686 
Log lik. -45900.2 -30342.8 -30262.3 -30237.6 -30260.5 -30129.8 
Dispersion 6.689348  1.487322    

Standard errors in parentheses 
Source, German Socioeconomic Panel (1984-1995) 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 



Table A4: Predicted and original numbers of doctor visits ( Standard Poisson) 

 

Table A5: Predicted and original numbers of doctor visits ( ZI Poisson ) 

 

Table A6: Predicted and original numbers of doctor visits (Standard NB2) 

 

Table A7: Predicted and original numbers of doctor visits (ZINB2 ) 

Doctor visit 0 1 2 3 4 5 6 
0 838 3,564 1,089 437 165 77 35 
1 183 976 424 205 85 36 19 
2 104 721 421 789 87 63 22 
3 56 441 289 158 103 74 25 
4 19 225 162 111 60 38 23 
5 12 135 124 72 56 42 18 
6 7 109 92 64 57 26 23 
7 3 60 49 36 22 15 5 
8 3 52 64 30 26 14 13 
9 1 22 15 16 16 7 5 
Total 1,226 6,305 2,729 1,318 677 392 188 

Doctor visit 0 1 2 3 4 5 6 
0 1,441 2,931 981 502 205 96 44 
1 294 845 378 239 100 48 24 
2 167 643 380 211 103 62 39 
3 94 390 256 175 114 79 39 
4 34 206 143 112 65 46 29 
5 21 122 112 68 66 43 29 
6 17 92 75 79 54 29 29 
7 10 50 38 46 23 14 9 
8 8 44 54 39 25 18 12 
9 3 18 18 18 16 9 8 
Total 2,089 5,341 2,427 1,489 771 444 262 

Doctor visit 0 1 2 3 4 5 6 
0 1,170 3,360 971 406 172 63 42 
1 242 954 386 199 73 39 23 
2 173 735 369 187 72 58 33 
3 77 442 266 147 91 96 35 
4 27 235 145 97 56 40 21 
5 18 139 116 60 60 38 23 
6 10 113 80 66 45 24 23 
7 7 59 44 38 21 12 4 
8 5 55 54 33 23 15 9 
9 1 22 13 16 15 7 4 
Total 1,694 6,114 2,444 1,249 628 365 217 

Doctor visit 0 1 2 3 4 5 6 
0 1,446 2,932 1,020 478 184 94 41 
1 289 860 385 238 85 40 27 
2 171 647 387 216 85 55 41 
3 97 388 266 177 102 68 44 
4 35 210 145 109 64 39 27 
5 20 126 110 81 53 40 28 
6 18 95 82 72 45 36 23 
7 8 54 39 42 23 13 7 
8 8 47 52 41 24 16 10 
9 3 18 9 19 12 14 5 
Total 2,095 5,377 2,495 1,473 677 415 253 



Table A8.1: (NB2) Predicted and actual probabilities 

Count Actual Predicted  |Diff| Pearson 
0 0.440 0.428 0.012 4.992 
1 0.138 0.180 0.042 136.630 
2 0.116 0.106 0.011 15.150 
3 0.085 0.069 0.016 52.273 
4 0.049 0.048 0.001 0.617 
5 0.036 0.034 0.001 0.800 
6 0.030 0.025 0.005 13.029 
7 0.016 0.019 0.004 9.693 
8 0.016 0.015 0.001 0.983 
9 0.007 0.012 0.005 25.303 
10 0.015 0.009 0.006 55.167 
Sum 0.948 0.944 0.103 314.635 

 

Table A8.2: (ZINB2) Predicted and actual probabilities 

Count Actual Predicted  |Diff| Pearson 
0 0.440 0.446 0.006 1.139 
1 0.138 0.145 0.007 5.034 
2 0.116 0.099 0.017 40.468 
3 0.085 0.071 0.014 40.148 
4 0.049 0.052 0.003 1.765 
5 0.036 0.038 0.003 2.878 
6 0.030 0.029 0.001 0.591 
7 0.016 0.022 0.007 28.703 
8 0.016 0.017 0.001 1.759 
9 0.007 0.014 0.006 44.089 
10 0.015 0.011 0.005 26.856 
Sum 0.948 0.945 0.070 193.429 

 

Table A8.3: (Poisson)Predicted and actual probabilities 

Count Actual Predicted  |Diff| Pearson 
0 0.440 0.441 0.000 0.000 
1 0.138 0.056 0.082 1724.211 
2 0.116 0.085 0.032 169.678 
3 0.085 0.093 0.008 10.143 
4 0.049 0.084 0.035 211.840 
5 0.036 0.068 0.033 222.485 
6 0.030 0.051 0.021 124.089 
7 0.016 0.037 0.021 175.386 
8 0.016 0.026 0.010 55.840 
10 0.015 0.012 0.003 9.078 
Sum 0.948 0.971 0.256 2796.77 

 

 

 

 



Appendix B: Model Specifications 

To account for over-dispersion and deviations from 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖 in the Poisson distribution, a new 

distribution is obtained by adding an individual unobserved effect (𝑢𝑢𝑖𝑖) to the log of the mean of the Poisson 

model, ln(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖) = ln (𝜇𝜇𝑖𝑖) + ln (𝑢𝑢𝑖𝑖). Thus, by defining different distributions for 𝑢𝑢𝑖𝑖, new versions of the 

Poisson distribution are created. Table B1 presents a list of those distributions, known as standard 

distributions in this paper, with their variances. A Gamma distribution for 𝑢𝑢𝑖𝑖, for example, gives a 

Negative Binomial 2 (NB2) distribution with mean 𝜇𝜇𝑖𝑖 and conditional variance 𝜇𝜇𝑖𝑖 + 𝛼𝛼𝜇𝜇𝑖𝑖2, with the 

constant parameter 𝛼𝛼 controlling for heterogeneity or dispersion among individuals. The additional 

parameter 𝑝𝑝 in the Power Negative Binomial (NB-P) distribution, introduced by Green (2008), provides 

NB1 or NB2 distributions when  𝑝𝑝 = 1  or 𝑝𝑝 = 2 , respectively. Also, the Heterogeneous NB2 model 

allows the heterogeneity explained by 𝛼𝛼 in the NB2 distribution to be a function of the individual’s 

characteristics (𝑧𝑧𝑖𝑖), 𝛼𝛼 = exp (𝑧𝑧𝑖𝑖𝛾𝛾). Thus, 𝛼𝛼 can vary among individuals. In special case, where 𝜙𝜙 → 1, 

the variance of Famoye’s (1995) distribution approaches to that of the NB. The Waring Negative 

Binomial distribution introduce by Irwin (1968) converges to NB if 𝑘𝑘 → 1
𝛼𝛼

,𝜌𝜌 → ∞. Also, if 𝛿𝛿 = 0, the GP 

distribution reduces to the usual Poisson distribution with parameter 𝜃𝜃𝑖𝑖. (See Hilbe (2011, 2014) for more 

details)  

Table B1: The list of standard distributions  
Distribution Variance 
Poisson 𝜇𝜇  (where ln 𝜇𝜇 = 𝑋𝑋𝛽𝛽) 
Negative Binomial 1 (NB1) 𝜇𝜇 + 𝛼𝛼𝜇𝜇 (where 𝛼𝛼 is the dispersion parameter) 
Negative Binomial 2 (NB2) 𝜇𝜇 + 𝛼𝛼𝜇𝜇2 
Generalized Negative Binomial (NB-P) 𝜇𝜇 + 𝛼𝛼𝜇𝜇𝑝𝑝 
Heterogeneous Negative Binomial (NB-H) 𝜇𝜇 + 𝛼𝛼𝑖𝑖𝜇𝜇2 ( where 𝛼𝛼𝑖𝑖 = 𝑧𝑧𝑖𝑖𝛾𝛾) 
Generalized Negative Binomial (Famoy) 𝜃𝜃𝜇𝜇(1 − 𝜙𝜙𝜇𝜇)(1− 𝜙𝜙𝜇𝜇)−3 
Waring Negative Binomial   (NBW) 

𝜇𝜇 + 𝜇𝜇 �
𝑘𝑘 + 1
𝜌𝜌 − 2

� + 𝜇𝜇2{
𝑘𝑘 + 𝜌𝜌 − 1
𝑘𝑘(𝜌𝜌 − 2) } 

Generalized Poisson,  (GP) 1
(1 − 𝛿𝛿)2

𝜇𝜇 

 

Zero-inflated count models 

As Hilbe (2011) discuss, the framework of zero-inflated models are based on separating zero outcomes 

and positive ones. The probability of zero outcomes results from the group of individuals who are not the 

subject of an event (𝑄𝑄(0) for those who do not have physician to visit), and those who are the subject of 



the event but with zero outcome (P(0) for those who do not visit their physicians). The two part of the 

model is written as: 

The probability of a zero outcome for the system is given by9: 

Pr(𝑦𝑦 = 0) = 𝑄𝑄(0) + {1 − 𝐵𝐵(0)}Pr (0) 

And the probability of a nonzero count is10: 

Pr(𝑦𝑦 = 𝑘𝑘; 𝑘𝑘 > 0) = {1 − 𝐵𝐵(0)}Pr (𝑘𝑘) 

 A Probit or logit model estimates 𝑄𝑄(0) while one of the standared models in Table (1) estimates 

Pr(𝑘𝑘) ,𝑘𝑘 = 0, 1, …𝑚𝑚. The mixture model have more power in explaining over-dispersion in the data (see 

also Hilbe and Greene (2008)). 

. Table B2 presents different zero-inflated distributions that are used in the next sections for the 

purpose of estimation and comparison.  

 

   
Zero-inflated Poisson (ZIP) 
Zero-inflated Negative Binomial 1 (ZINB1) 
Zero-inflated Negative Binomial 2 (ZINB2) 
Zero-inflated Generalized NB (ZINB-P) 
Zero-inflated Poisson Inverse Gaussian,  (ZIPIG) 
Zero-inflated Generalized Poisson,  (ZIGP) 
Zero-Inflated 3-parameter Waring NB     (ZINBW) 
Zero-inflated 3-parameter Famoye NB    (ZINBF) 
 

 

                                                           
9 Stata gives this probability using the command: predict f0, pr(0) 
10 Stata gives this probability using the command: predict fk, pr(k) 
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