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Abstract 

Theoretically and numerically, we analyze the unemployment and income-distribution effects of 

economic growth, in a model with optimal saving (investment) and a minimum wage for 

unskilled labor.  Within this three-factor model (including skilled labor), an exogenous rise in the 

growth rate increases unemployment if capital and unskilled labor are complements (versus 

substitutes), implying a trade-off between (faster) growth and (lower) unemployment.  We also 

show how the growth rate affects the skill premium and factor shares of national income, 

providing little support for Piketty’s (2014) controversial thesis that capital’s share is higher 

when growth is slower. 
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1. Introduction 

       The specter of a slowdown in economic growth has recently caught the attention of 

economists and policymakers alike.  Possible reasons for such a slowdown are plentiful.  For 

example, Summers (2015) revives the idea of secular stagnation, whereby growth slows because 

of insufficient demand.  On the other hand, Gordon (2012) questions whether productivity-

enhancing innovations can continue on a scale observed in the past, and he identifies a host of 

other issues (such as demographics) that may further decrease the growth rate in the United 

States (and elsewhere).  In any case, the potential ramifications of slower growth are wide-

ranging and important.  For instance, unemployment may rise, as predicted by Okun’s Law, and 

the distribution of income may become severely skewed, as argued by Piketty (2014).   

In light of these concerns, the present paper analyzes how the level of unemployment and 

the distribution of income respond to changes in the rate of economic growth.  To abstract from 

the underlying determinants of this rate, we specify (and change) it exogenously.  Our analysis 

occurs within a one-good model, under perfect competition and constant returns to scale.  This 

model also includes physical capital arising from optimal savings, as well as fixed endowments 

of skilled and unskilled labor.  

       Within our analytic framework, some unskilled labor is unemployed because of a minimum 

real wage for this particular factor of production.  Although minimum wages hold a long-

standing place of prominence in the history of economic thought—dating back at least as far as 

Mill (1848)1— they appear to be scarce in the theoretical literature on optimal growth.  This 

                                                           
1 See his critique “Of Popular Remedies for Low Wages” (the title of his chap. XII on pp. 424-

438 in bk. II of vol. I), as well as Leonard’s (2000) section on the “History of Minimum-Wage 

Legislation and Its Economics”. 
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apparent scarcity might well result from an inherent problem of overdetermination, which is 

explained (and solved) below. 

       Although we assume that the minimum wage arises simply from government legislation, one 

could also interpret it as the result of some other institutional arrangement, such as social custom 

or labor unions.  Alternatively, workers may refuse to accept any job that pays less than some 

type of unemployment benefit (financed by lump-sum taxes), which could thus be viewed as 

analytically equivalent to a minimum wage.  In any case, within our model, the wage for 

unskilled labor is constrained to exceed the level required for full employment.  

There are two main reasons for assuming a third factor in the form of skilled labor, which 

remains fully employed because its wage is perfectly flexible.  First, it is realistic to recognize 

that a minimum wage usually applies to only part of the labor force.  Second, in an optimally 

saving economy with exogenous growth and constant returns to scale, a binding minimum wage 

would overdetermine the steady-state equilibrium if there were only two factors (capital and 

labor).2  Our three-input specification also allows us to consider the implications of factor 

substitutes versus complements (as defined below), and discover an additional determinant of the 

wage differential between the two types of labor. 

       Within our model, an exogenous rise in the rate of growth increases (decreases) the 

unemployment rate when capital and unskilled labor are complements (substitutes), in the sense 

that the marginal product of each of these two inputs depends positively (negatively) on the 

                                                           
2 The growth rate determines the rate of return on capital (via the household’s Euler equation), 

thereby pinning down the wage rate (in the two-factor case), which thus cannot be fixed also by 

the minimum wage.  For alternative (two-factor) solutions to this overdetermination problem, see 

Brecher, Chen and Yu (2013) and Brecher and Gross (2017). 
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quantity of the other input.3  In other words, if and only if capital and unskilled labor are 

complements, there is a trade-off between (faster) growth and (lower) unemployment. 

       Such a growth-unemployment trade-off has been studied previously under alternative 

assumptions about the labor market.  For example, Aghion and Howitt (1994) and Pissarides 

(1990, chap. 2; 2000, chap. 3) use search-and-matching models of frictional unemployment, 

whereas Brecher, Chen and Choudhri (2002) assume that unemployment arises for efficiency-

wage reasons.  The present paper contributes to this literature by analyzing the simpler but 

classic case of unemployment due to a minimum-wage constraint.  This case sheds new light on 

the relationship between growth and unemployment, by featuring the important role of factor 

substitutes/complements.             

       We also address the recent controversy over Piketty’s (2014, especially p. 233) thesis that a 

fall in the rate of growth implies a rise in capital’s share of national income.4  Although our 

minimum-wage analysis does not generally support his thesis, some support is provided under 

certain assumptions about depreciation of capital and elasticities of factor substitution (between 

capital and both types of labor).  

       Section 2 sets up our basic model of optimal growth with a minimum wage.  Using this 

model, section 3 explores the relationship between the rates of growth and unemployment.  

Section 4 analyzes how a change in the growth rate affects the distribution of income among the 

                                                           
3 Although various empirical studies suggest that capital is more complementary with skilled 

than with unskilled labor (as discussed by Violante, 2008), there appears to be no consensus on 

whether capital and unskilled labor are in fact complements rather than substitutes (as defined 

here).  We thus consider both of these alternative possibilities. 

4 For a detailed critique of this book and of some related work, see Rognlie (2015).  See also 

Fischer’s (2017) critique, within an optimal-growth model without a minimum wage. 
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three factors of production.  To estimate the magnitude of our theoretical results, section 5 

numerically simulates the effects of economic growth on unemployment and income distribution.  

Section 6 provides some concluding remarks. 

2. Basic Model 

       The economy produces a single good that can be consumed or added to the capital stock. 

The production function for this good is concave and linearly homogeneous with positive but 

diminishing marginal productivity, as follows: 

          ( , , ) ( , , ) ( , , )Y F K L S F K l s f k l s     ,  (1) 

where Y denotes aggregate output; K stands for the total stock of capital; l and s represent the 

economy’s inputs of unskilled and skilled labor, respectively, in natural units; λ is the number of 

efficiency units per natural unit of (skilled and unskilled) labor; while /k K  , L l  and 

S s .  Although all variables (above and below) are functions of time, the time argument t is 

suppressed for simplicity of notation, except where needed for clarity.   

       Identical firms maximize profits under perfect competition, thereby satisfying the usual 

marginal-productivity conditions, which are  

          ( , , )kr f k l s , (2) 

          ( , , )lw f k l s , (3) 

           [ ( , , ) ( , , ) ( , , )] /k lq f k l s kf k l s lf k l s s   , (4) 

where r denotes the real rental rate of capital; w and q represent the real wage rates per efficiency 

unit of unskilled and skilled labor, respectively; subscripts of functions denote partial derivatives 

(e.g., /kf f k    and /kk kf f k   ); and the right-hand side of (4) is equivalent to ( , , )sf k l s  

by Euler’s Theorem.  As explained below, (2) - (4) determine the steady-state values of k, l and 
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q—given w (fixed by the minimum wage), r (determined by the growth rate in the Euler equation 

for dynamic optimization), and s (equalling the perfectly inelastic supply of skilled labor).  

       For simplicity of exposition, skilled and unskilled labor have fixed endowments, equal to s  

and l , respectively.  Since q is perfectly flexible, skilled labor remains fully employed, with 

s s  at all points in time.  However, because w is subject to a binding minimum-wage 

constraint, l is variable, and unskilled labor has a rate 1 /l l  of unemployment.  

       Subject to their budget constraint, identical consumers competitively maximize the present 

discounted value of lifetime utility, in a way consistent with the behavior of a representative 

household.5  In particular, according to the usual specification, this household maximizes 

          1

0
[ / (1 )]dtV e C t  

    ,   (5) 

subject to 

          ( )X r X w l q s C       , (6) 

where ( 1)   is a strictly positive constant6, ρ stands for the constant rate of time preference, C 

                                                           
5 We could relax this one-household assumption—at the cost of complicating the exposition—

without affecting our theoretical results about steady states.  Furthermore, in the numerical 

simulations of section 5, the transitional paths between steady-state equilibria remain virtually 

unchanged for all aggregate variables (such as k and l) when the model is extended to include 

three representative households, each with the same utility function but different factor 

endowments. 

6 Under this formulation, the instantaneous utility function [namely, 
1 / (1 )C    ] has an 

elasticity of marginal utility equal to θ.  Alternatively, this elasticity would equal 1 if 

instantaneous utility were re-specified as lnC, in which case our analysis and results would be 

qualitatively unchanged.  In fact, for this log-utility case, simply replace θ by 1 in all applicable 

equations except (5), (8) and (10). 
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represents total consumption, X denotes aggregate wealth,   ( 0)  is capital’s constant rate of 

depreciation (and hence r   equals the rate of interest on assets), while an overdot indicates a 

time derivative (e.g., /X dX dt ). 

       The value of λ at time t is  

          ( ) (0)egtt  ,                                                                                                                    (7) 

where g (≥ 0) is the constant rate of labor-augmenting technical progress.  With this equation, as

well as the definitions that /x X   and /c C  , the household’s optimization problem can be 

restated as maximizing 

          1 [ (1 ) ] 1

0
(0) [ / (1 )]dg tV e c t    

      , (8) 

subject to 

          ( )x r g x wl qs c      ,                                                                                            (9) 

where (1 )g    is now the household’s effective discount rate, assumed to be greater than 

zero for well-known reasons (as discussed by Barro and Sala-i-Martin ,1995, pp. 73-74).  

       The current-value Hamiltonian for this maximization problem is 

          
1 / (1 ) [( ) ]H c r g x wl qs c           , (10) 

where (0) 1   by normalization (without loss of generality); and   is a co-state variable that 

can be interpreted as the shadow price of assets (x).  The necessary conditions for a maximum 

include

          / 0H c c       , (11) 

          [ (1 ) ] / ( )g H x g r                , (12) 

in addition to the wealth-accumulation constraint (9), as well as the usual initial and 

transversality conditions. 
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      Note that f wl rk qs    because perfectly competitive firms make zero profits under 

constant returns to scale, and that x k  since household wealth equals the stock of capital.  

Thus, (11) allows us to rewrite (9) as 

          1/( , , ) ( )k f k l s g k      .    (13) 

       The next two sections derive some key properties of the steady-state equilibrium, at which

0k   .  This equilibrium is saddle-path stable, as appendix A shows by examining the 

dynamic system corresponding to (12) and (13).  

3. Unemployment and Growth 

       This section derives a necessary and sufficient condition for a trade-off between 

unemployment and growth.  In deriving this condition, we compare the steady-state equilibrium 

levels of unemployment for two different rates of exogenous growth.   

       In steady state (where 0  ), the Euler equation (12) can be written as 

          r g     . (14) 

Substitute this equation into (2); and in (3), replace w by w , which is a constant representing the 

binding minimum wage (per efficiency unit of unskilled labor).7  Then, differentiate the resulting 

two equations totally with respect to g, after setting s s , and solve simultaneously for 

          / /lldk dg f  ,                (15) 

          / /lkdl dg f   , (16) 

where ll kk lk klf f f f   .    

                                                           
7 The minimum wage per natural unit of unskilled labor is thus w , which grows at the rate g, as 

required for balanced growth. 
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       To ensure that these expressions for /dk dg  and /dl dg  exist, so that k and l are (singled-

valued) functions of g, assume that   is non-zero.  Note also that   is non-negative, because it 

is a second-order principal minor of the Hessian matrix of a concave function (f).   Therefore, 

0  .8  We also have 0llf  , by diminishing marginal productivity.  Thus, / 0dk dg   

unambiguously in (15), while / 0dl dg




 as 0lkf




  in (16).9  

       In other words, we have the following result. 

Proposition 1.  There is a trade-off between growth and unemployment if and only if capital and 

unskilled labor are complements. 

       To understand this result intuitively, first note that the rise in g leads to an increase in r, in 

accordance with (14).  As usual, such an increase corresponds to a fall in k, given diminishing 

marginal productivity.  This fall is accompanied by a reduction (expansion) in l if capital and 

unskilled labor are complements (substitutes).  The possibility of substitutes is due to the 

presence of the third factor (skilled labor).  Without this factor, the two remaining inputs would 

necessarily be complements, since the marginal product of capital (unskilled labor) then would 

depend negatively (positively) on /k l . 

                                                           
8 This condition is satisfied in, for example, the case of a CES production function.  

Alternatively, 0   if the function ( , , )f k l s  is homogeneous in k and l, in light of Lancaster 

(1968, sect. 8.5, pp. 131-133).  A special case of this second example is the Cobb-Douglas 

production function. 

9 By an analogous derivation, for an exogenous increase in w  at constant g, / 0dl dw (and

/ 0dk dw




 as 0klf




).  See, however, Brecher and Gross (2017) for a two-good two-factor 

endogenous-growth model in which a minimum-wage hike might paradoxically increase total 

employment under perfect competition.    
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4. Income Distribution and Growth 

       The present section analyzes the steady-state relationship between the rate of growth and the 

distribution of income.  To measure this distribution, we initially examine factor shares of gross 

national income (including depreciation).  Then, the discussion turns to shares of net income 

(excluding depreciation).  Neither of these cases provides general support for Piketty’s (2014) 

thesis about capital’s share. 

       Before proceeding with this analysis, we need to determine how a change in g affects q.  For 

this purpose, substitute (2) and (3) into (4) to eliminate kf  and lf , while replacing w and s by w  

and s .  Then differentiate the resulting equation totally with respect to g, using (14).  Next, 

simplify terms by reusing (2) and (3), to verify that 

            / /dq dg k s  .                                                                                                       (17) 

Thus, q and g are inversely related.  Intuitively, since a rise in g increases r (while leaving w 

fixed at w ), q must decrease to prevent profits from falling below zero. 

       Incidentally, it is interesting to note that (17) implies an inverse relationship between the 

growth rate and the widely-discussed “skill premium”, represented here by /q w . This 

relationship suggests another possible determinant of the relative wages of skilled and  

unskilled labor, thereby providing a contribution to the literature [reviewed by Autor (2014)] on 

the skill premium and its various causes.  Contrary to what might be expected from some of this 

literature, a rise in the skilled-labor supply (s) within our model would not affect /q w  in the 

long run (but would simply raise k and l in the same proportion), since the marginal products of 

all three factors are homogeneous of degree 0 (in k, l and s). 

4.1. Gross Shares        

       Define / ( ) 1/ (1 / / )k rk rk wl qs wl rk qs rk       , which is capital’s  
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proportional share of gross national income (before subtracting depreciation).  Thus,  

          2/ [( 1) ( / ) / ( 1) ( / ) / ] /k kl ks kd dg ld w r dg sd q r dg k       ,       (18) 

where [( / ) / ( / )] ( / ) / ( / )kl w r k l d k l d w r   and [( / ) / ( / )] ( / ) / ( / )ks q r k s d k s d q r  , which 

are the total elasticities of  /k l  and /k s  with respect to /w r  and /q r , respectively.  Because 

these input-ratio elasticities let every variable—including output—change with g, they can differ 

from the standard elasticity of technical substitution along a given isoquant.   

       In examining the right-hand side of (18), note that ( / ) /d w r dg < 0 by (14), and that 

( / ) /d q r dg < 0 in accordance with (14) and (17).  Thus, / ( )0kd dg    if kl  and ks are both 

greater (less) than 1.10  This condition would be satisfied in (for example) the case of a regular 

CES production function, whose (constant) elasticity of technical substitution is equal to both 

kl  and ks .11  On the other hand, / 0kd dg   with a Cobb-Douglas production function, 

characterized by 1kl ks   .  Moreover, if 1kl   and 1ks   have opposite signs, then 

/kd dg is ambiguous in sign.        

       Similarly, 

          2/ [( 1) ( / ) / ( 1) ( / ) / ] /l lk ls ld dg kd r w dg sd q w dg l       , (19) 

          2/ [( 1) ( / ) / ( 1) ( / ) / ] /s sk sl sd dg kd r q dg ld w q dg s       , (20) 

                                                           
10 This result generalizes a well-known property of the standard two-factor one-good model, in 

which a rise in the wage/rental ratio increases (decreases) capital’s share if the elasticity of 

technical substitution is greater (less) than 1.  In the present three-factor model, we must consider 

two separate elasticities, each between capital and a different type of labor. 

11 From now on, we use the terms “regular CES” and “nested CES” to distinguish between the 

conventional type of CES production function and the two-level type introduced by Sato (1967). 
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where l  and s are the proportional national-income shares of unskilled and skilled labor, 

respectively, while ls  ( sl )  is analogous to kl  ( lk ) and ks  ( sk ) .  As these two 

equations show, /ld dg  and /sd dg  are generally ambiguous in sign, although the latter 

derivative is positive (negative) if both sk  and sl  are greater (less) than 1.             

       Nevertheless, the following two points can be made if the production function is of the 

regular CES type, in which case our input-ratio elasticities are all the same (and equal to the 

constant elasticity of technical substitution).  First, when (17) is substituted into (19), simple 

rearrangement of terms shows that / 0ld dg  .  Second, because unskilled labor’s share thus 

remains unchanged while the three factor shares sum identically to 1, / /s kd dg d dg   .12   

       Thus, we can now state the following result. 

Proposition 2.  With regular CES technology, a rise in the growth rate increases (decreases) 

capital’s proportional share of gross national income if the elasticity of technical substitution is 

less (greater) than 1, has the exact opposite effect on skilled labor’s share, and has no effect on 

the share of unskilled labor. 

       This constancy of unskilled labor’s share does not necessarily survive a relaxation of the 

regular CES specification, which requires every pair of factors to be complements.  For example, 

suppose instead that capital and labor are substitutes (in the sense that 0lkf  ).  Then, a rise in g 

increases /l s  (by Proposition 1) while raising /w q  [by (17)], thereby implying that 0ls  .  

By similar reasoning, 0lk   [(in light of (15) and (16)].  Given the signs of these two 

                                                           
12 The fact that /kd dg  and /sd dg  have opposite signs is easily reconfirmed, by comparing 

(20) with (18), while noting that / 0 /dr dg dq dg   from (14) and (17). 
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elasticities, and using (17), we can easily verify that the right-hand side of (19) is strictly 

positive.          

       Other common measures of income distribution are the relative (versus proportional) income 

shares, represented by / ( / )k l rk wl   , /k s   and /s l  .  If there were only two factors, 

each one’s relative and proportional shares would clearly have to change in the same direction.  

However, in the present three-input model, the two types of shares for each factor can instead 

change in opposite directions.       

       Proposition 2 immediately implies the following result about relative shares. 

Proposition 3.  In the case of regular CES technology with an elasticity of technical 

substitution that is less (greater) than 1, a rise in the growth rate increases (decreases) capital’s 

gross income relative to each type of labor’s income, while lowering (raising) skilled relative to 

unskilled labor’s income. 

       When the regular-CES restriction is relaxed, there are a few additional results about the 

relationship between the growth rate and relative income shares.  First, if we assume that capital 

and labor are substitutes (in the sense that 0lkf  ), then (16) and (17) imply that 

( / ) / 0s ld dg   .  Under the additional assumption that the production function has the nested 

CES form, it is straightforward (but tedious) to show that ( / ) / 0k ld dg    as well. 

Alternatively, if 0lsf  , then ( / ) / 0k ld dg    by a simple proof.13  

 

                                                           
13 Differentiate /wl rk  with respect to g, use (14) – (16), and note that ll lk lslf kf sf    (as 

implied by Euler’s Theorem).  Incidentally, this identity confirms that if 0lsf  , then 0lkf     

(because 0llf  ). 
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4.2. Net Shares 

       Since depreciation is substantial in relation to total output, capital’s share of gross income 

significantly overstates this factor’s potential contribution to consumption or investment.  For 

this reason, shares of net income (excluding depreciation) are arguably at least as important as 

gross shares.  Moreover, in examining the share of capital, Piketty (2014) focuses on the net 

(rather than gross) version of this share.  

       Thus, define ( ) / [( ) ]k r k r k wl qs       , which is capital’s proportional share of net 

national income.  Using this definition and the above one for capital’s gross share, 

straightforward manipulation shows that 

          1/ [1 (1/ 1) / (1 / )]k k r      .  (21) 

Similarly, the net shares of unskilled and skilled labor can be expressed as follows: 

          1/ (1/ / )l l k wl    ,  (22) 

          1/{1 [ (1 / ) ] / }s k l sr        . (23) 

       Using (21) – (23) and Proposition 2, while noting that ( / ) / 0d k l dg   if skilled and 

unskilled labor are complements14, we immediately obtain the following result. 

Proposition 4.  If the elasticity of technical substitution is less (greater) than 1 in the case of 

regular CES technology, an increase in the growth rate has a positive (ambiguous) effect on 

capital’s proportional share of net national income, and negative (ambiguous) effects on the net 

shares of both skilled and unskilled labor.   

       Since / ( / ) /s l s lqs wl     , Propositions 3 and 4 immediately imply the following 

result.  

                                                           
14 From (15), (16) and the identity in footnote 13, 2( / ) / / 0

ls
d k l dg sf l    . 
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Proposition 5.  For regular CES technology with an elasticity of technical substitution that is 

less (greater) than 1, an increase in the growth rate has a positive (ambiguous) effect on 

capital’s net income relative to each type of labor’s income, while lowering (raising) skilled 

relative to unskilled labor’s income. 

5. Numerical Analysis 

       This section conducts numerical simulations to provide rough estimates of the (above- 

derived) effects of economic growth on unemployment and income distribution.  For this 

purpose, we use a discrete-time version of our model as outlined in Appendix B.  In the 

experiment conducted, the economy starts on a path of balanced growth, and then the 

(exogenous) rate of (labor-augmenting) technical change falls permanently in period 51.  Here 

we consider a growth-rate decrease (as opposed to the increase discussed in our theoretical 

sections), since the public/academic debate currently appears to focus on a slowdown in growth 

(as noted in the introduction).   

5.1. Calibration 

       Following Trabandt and Uhlig (2011), we set the intertemporal elasticity of substitution  

equal to 0.5 (implying that our 2  ), the depreciation rate ( ) to 0.07, the initial rate of growth  

to 2%, and each time period to one year.  As for our new growth rate, it is arbitrarily specified as 

1%.  We also set the endowment of unskilled labor ( l ) equal to 1 by choice of units, while 

assuming that the relative supply of skilled labor ( / /1s l s ) is 1.14, which corresponds to the 

ratio of labor-force participants with a bachelor’s degree or higher to those with high-school or 
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less education in the United States population aged 25-64.15  

      Our production function is 1/( , , ) [ (1 ) ]f k l s az a s     , where 1/[ (1 ) ]z bk b l     .  The 

variable z can be interpreted as the quantity of a composite input, produced by capital and 

unskilled labor, for use with skilled labor; while a, b,   and    are parameters.  With this 

formulation, we consider two distinct scenarios.  The first one assumes that   , which 

corresponds to a regular CES function (characterized by 0lkf  ). The second scenario adopts a 

nested CES function with 0lkf  , implying that   .  

       In the regular CES case, we set the elasticity of technical substitution at 0.67, corresponding 

to 1 1/ 0.67    .  For the nested CES case:   1 1/1.67   , which implies that the elasticity 

of substitution between capital and unskilled labor is 1.67, in accordance with Krusell, Ohanian, 

Ríos-Rull and Violante (2000)16; while 1 1/ 0.67    as before, yielding 0.67 as the substitution 

elasticity for skilled labor and the composite input (of capital and unskilled labor).    

       In each case, we calibrate the parameters a, b and 𝑤̅ to achieve the following outcomes on 

the initial balanced-growth path: capital’s proportional share of gross national income is 0.35, the 

skill premium is 1.94, and the unemployment rate (1 / 1 /1l l l   ) for unskilled labor is 10%.17  

                                                           
15 This calculation uses seasonally adjusted data from the Bureau of Labor Statistics for January 

2016.  Excluded are workers with less education than a bachelor’s degree but more than high 

school, since the Bureau does not provide earnings data (see below) for this category. 

16 They use a different specification of the nested CES function, where capital and skilled (rather 

than unskilled) labor form the composite input. Their specification, however, does not allow for 

the present possibility of 0lkf  .  Unlike them, moreover, we do not distinguish between capital 

equipment and structures. 

17 More specifically: in the regular CES case, a = 0.6873, b = 0.8355 and w  = 0.52; while the 

nested CES case has a = 0.6228, b = 0.4922 and w  = 0.3573. 
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Although our unemployment rate may seem to be on the high side—according to the (U.S.) 

Bureau of Labor Statistics, the average rate in January 2016 for people with a high-school degree 

or less was only 5.7%— the low participation rate of this group (55.4%) presumably masks a 

higher effective rate of unemployment.  Moreover, if the unemployment rate were initially 5.7% 

in the regular CES case, the minimum wage would cease to bind along the new balanced-growth 

path and unemployment would completely disappear, thereby drastically strengthening the 

growth-unemployment trade-off reported below.  The skill premium corresponds to the ratio of 

median weekly earnings of people with a bachelor’s degree or more education to those with a 

high-school degree or less, in the data set indicated above.  The specified value of capital’s share 

is standard in the literature.  We also choose the household’s time-discount factor (   from 

Appendix B) so that the annual interest rate net of depreciation and growth ( r g  ) along the 

initial balanced-growth path is 4%.18 

5.2. Trade-off between Unemployment and Growth 

       For the case in which capital and unskilled labor are complements, our estimates show a 

clear trade-off between unemployment and growth, consistent with Proposition 1.  As Figure 1 

illustrates for regular CES technology (and hence for 0lkf  ), a drop in the growth rate (from 

2% to 1% after 𝑡 = 50) causes the steady-state rate of unemployment (1 l  given 1l  )  to 

decrease dramatically (from 10% to 2.2%). 

 

                                                           
18 This choice ensures that 1  , which is usually assumed in the literature with infinitely-lived 

dynasties.  In the discussion of robustness (below), we also consider the case where  0.04r  

and 1  , as assumed by Trabandt and Uhlig (2011).  Under these alternative assumptions, our 

results are even stronger. 
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Figure 1: Unemployment Over Time with Regular CES Technology 

 

              Notably, despite this strong labor-market improvement, the slowdown in growth reduces 

lifetime utility (V) of the representative household. This result continues to hold for a wide range 

of reasonable (and even unreasonable) parameter choices.  At the same time, moreover, the skill 

premium ( /q w ) rises substantially (by 13.3%). 

       When capital and unskilled labor are instead substitutes (with 0lkf  ), a drop in the growth 

rate then increases unemployment. In our parametrization of the nested CES case, the 

unemployment increase is relatively small (from 10% to 12.6%).  It is thus unsurprising that a 

slowdown in growth again reduces the lifetime value of household utility. The corresponding rise 

(13.7%) in the skill premium is comparable to the rise in the previous (regular-CES) case.   
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5.3. Evolution of Factor Shares 

       In accordance with the theoretical analysis (above) and as illustrated by Figure 2 for the 

regular CES case, the proportional share of unskilled labor in gross income remains constant (at 

19%), while skilled labor’s share increases (from 46% to 48%) and capital’s decreases (from 

35% to 33%). The movement in proportional shares of net income is more pronounced in Figure  

3, where the share of capital still drops (now from 20% to 15%), while unskilled labor’s share 

rises modestly (from 23% to 24%) and skilled labor’s again increases (from 57% to 61%).19 

 

      Figure 2: Proportional Shares of Gross Income Over Time with Regular CES Technology 

                                                           
19 Capital’s gross (net) income relative to the income of unskilled labor drops from 1.86 to 1.76 

(0.86 to 0.63), the corresponding drop for capital relative to skilled labor is from 0.76 to 0.69 

(0.35 to 0.25), and skilled relative to unskilled labor’s income rises from 2.46 to 2.56. 
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 Figure 3: Proportional Shares of Net Income Over Time with Regular CES Technology 

        

       Whereas these numerical results accord with our Propositions 2 and 4, they contradict 

Piketty’s (2014) thesis that a fall in the growth rate will raise the share of capital. The driving 

force for this contradiction is our (conventional) adoption of a less-than-unitary elasticity of 

technical substitution.  Larger values of this elasticity, however, are considered in the robustness 

exercises below. 

       For the nested CES case illustrated in Figure 4, capital’s proportional share of gross income 

remains almost unchanged (at approximately 35%), while unskilled labor’s share declines (from 

19% to 17%) and skilled labor’s grows (from 46% to 48%). In terms of net income shares, 

Figure 5 shows a substantial reduction for capital (from 20% to 16%), along with a decrease for 



20 
 

unskilled labor (23% to 22%) and an increase for skilled labor (57% to 62%).20  Thus, once again 

contrary to Piketty’s (2014) thesis, the share of capital fails to rise in response to slower growth. 

 

 

Figure 4: Proportional Shares of Gross Income Over Time with Nested CES Technology 

                                                           
20 Capital’s gross (net) income relative to the income of unskilled labor now drops from 1.86 to 

2.09 (0.86 to 0.75), the corresponding drop for capital relative to skilled labor is from 0.76 to 

0.73 (0.35 to 0.26), while skilled relative to unskilled labor’s income rises from 2.46 to 2.88. 
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Figure 5: Proportional Shares of Net Income Over Time with Nested CES Technology 

5.4. Robustness 

       This section investigates the robustness of our numerical results in three different ways.  

First, we consider the implications of changes in two key elasticities  that the literature does not 

tightly pin down.  In each case, when an elasticity is changed, other parameters are recalibrated 

to achieve the same targeted outcomes (e.g., initial values of the unemployment rate and skill 

premium) specified above.  Second, we examine the consequences of an alternative assumption 

about the rate of interest.  The third exercise is to explore the effects of relaxing the one-

household assumption.  Taken together, these three exercises confirm the robustness of our 

simulations. 

       Perhaps the most important finding relates to the elasticity of technical substitution in the 

case of regular CES technology.  More specifically, unless this elasticity is almost 2 or greater, a 

drop in the growth rate still lowers capital’s proportional net-income share (the type of capital 
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share examined by Picketty, 2014).  This threshold value, moreover, lies well above widely cited 

estimates.21   

       When we increase or decrease the intertemporal elasticity of substitution (IES), all responses 

to a change in the growth rate are respectively muted or magnified, because of how the IES 

( 1/ )  enters the Euler equation [(14) above or (B9) in appendix B].  In this regard, note that 

our baseline value of 0.5 for the IES is larger than Havranek’s (2015) point estimate of 0.33, but 

is still well within the range that he finds to be empirically relevant. 

       If we follow Trabandt and Uhlig (2011) in setting 0.04r    (implying 1.0004  ), the 

unemployment rate’s response to a change in the growth rate becomes even more pronounced, 

especially in the nested CES case.  In either CES case (nested or regular), a decrease in the 

growth rate then leads to a greater decline in capital’s proportional share of (gross and net) 

income, and to a larger rise in the skill premium.  

       To relax the single-household assumption, imagine instead that there are three (optimally 

saving) households. Suppose that one of these representative agents earns income from capital 

only, another has the entire endowment of unskilled labor, and the third supplies all of the skilled 

labor.  As long as all three households have the same utility function (and hence the same Euler 

equation), the steady-state relationships between the growth rate and national aggregates (such as 

k and l) remain the same as before.  Even the transitional paths of these aggregates are virtually 

unchanged in our numerical simulations.  Furthermore, in response to a decrease in the growth 

rate, the time paths of income shares for the three households (capital-only, unskilled and skilled) 

                                                           
21 Most of these estimates are less than 1 in the empirical literature surveyed by Chirinko (2008).  

However, some doubts about the validity of this consensus are raised by Palivos (2008) as well 

as Piketty and Zucman (2015, section 15.5.3).   
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are qualitatively the same as—but less pronounced than—the above-illustrated paths for the three 

factors (capital, unskilled labor, and skilled labor, respectively).22  This growth-rate reduction 

also lowers lifetime utility of every household—regardless of what happens to factor incomes— 

for the broad range of parameter values considered.    

6. Conclusion  

       Motivated by the specter of a slowdown in economic growth, this paper analyzes the effects 

that the growth rate has on unemployment and income distribution.  Our model assumes optimal 

saving and investment, as well as a minimum wage applied only to unskilled (versus skilled) 

labor.   

       Within this three-factor model, an exogenous rise in the growth rate leads to an increase or 

decrease in unemployment if capital and unskilled labor are respectively complements or 

substitutes, while skilled (flexible-wage) labor remains fully employed.  Thus, complementarity 

of this type is a necessary and sufficient condition for a trade-off between growth and 

unemployment.   

       In the special case of regular CES technology with an elasticity of substitution that is less 

(greater) than 1, the rise in the growth rate also causes an increase (decrease) in capital’s 

proportional share of gross national income and has the opposite effect on the share of skilled 

labor, while unskilled labor’s share remains unchanged.  Qualitatively similar results hold for 

shares in net income when the substitution elasticity is less than 1, except that unskilled labor’s 

share now falls in response to faster growth.  Thus, except under special assumptions about 

                                                           
22 This result holds under a wide range of assumptions about the initial distribution of wealth.  In 

our baseline specification, the capital-only, unskilled and skilled households respectively own 

50%, 10% and 40% of the initial wealth. 
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technology, the present analysis does not provide support for Piketty’s (2014) thesis, which 

predicts an inverse relationship between the growth rate and capital’s share. 

       To estimate the unemployment and income-distribution responses to a decrease in the rate of 

economic growth, we undertake numerical simulations, using a discrete-time version of our main 

(continuous-time) model.  As these simulations suggest, the effects of growth can be substantial, 

for a wide range of parameter values.   
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Appendix A: Saddle-Path Stability 

       We now show that the steady-state equilibrium is saddle-path stable.  For this purpose, 

consider Figure A, which is the phase diagram for the dynamic system described by (12) and 

(13). 

 

Figure A: Phase Diagram 

       By the following argument, the schedule for 0   is a horizontal line, at a height 

determined by the unique value of k in steady-state equilibrium.  Dividing (16) by (15) yields 

          / /lk lldl dk f f  .           (A1) 

Similarly, using (15) while noting that /dr dg  from (14), obtain 

          / / 0lldr dk f   , (A2) 



26 
 

where the inequality follows from the above assumptions that 0 llf   .  Thus, there is only 

one value of k that satisfies steady-state condition (14) for a given g. 

       Starting from any point on the schedule for 0  , a rise (fall) in k would lower (raise) r by 

(A2), and hence lead to ( )0    by (12).  Thus, at all points above (below) this line, the 

horizontal arrows of motion for   point to the right (left). 

       Setting 0k   while holding g and s (= s ) fixed, differentiate (13) totally with respect to k. 

Then use (A1) and (2) to show that 

          1 1// [( / ) ]l lk lld dk f f f g r        .        (A3) 

To sign this expression, suppose initially that 0lkf  .  Also note that r > g in steady-state 

equilibrium, to satisfy the transversality condition, as explained by Barro and Sala-i-Martin 

(1995, p. 71).  Then, at this equilibrium point E, the right-hand side of (A3) is negative, in which 

case the (generally non-linear) curve for 0k   is negatively sloped.  Although this curve could 

be positively sloped outside the neighborhood of point E, our analysis below would be 

qualitatively unaffected by this possibility. 

       In accordance with (13), / 0k    .  Thus, at any point to the right or left of the schedule 

for 0k  , the vertical arrows of motion for k  point upward or downward, respectively. 

       The saddle path is the dashed (and generally non-linear) curve.  At time 0,   jumps 

instantaneously to reach this curve. The economy then moves continuously along the saddle path 

toward the steady-state equilibrium, located at the point (E) where the three curves intersect. 

       Alternatively, if 0lkf  , the right-hand side of (A3) might be positive at the steady-state 

equilibrium, in which case the schedule for 0k   would slope upwards at point E.  Nevertheless, 
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this equilibrium would still be saddle-path stable, as could be readily verified by the same 

reasoning used above.   

Appendix B: Discrete-Time Model 

       The household maximizes 

          
1

0
0

/ (1 )t
t

t
V C  




  , (B1) 

 subject to 

          
1 ( )t t t t t t t ttX X r X w l q s C         , (B2) 

where  , a non-negative constant, is the subjective discount factor between any two contiguous 

periods; and all other symbols are as defined in the continuous-time model above, except that a 

time subscript is now used to denote a variable’s value in period t (or t + 1).  Since /t t tc C   , 

/t t tx X    and 
1 (1 ) tt g     now that g is the growth rate per period, the household’s 

optimization problem can be restated as maximizing 

          1 1 1
0 0

0

[ (1 ) ] / (1 )t
t

t

V g c    


  



   , (B3) 

subject to  

          
1 [( ) ] / (1 )t t t t t ttx x r g x wl q s c g         , (B4) 

where the effective discount factor is now 
1(1 ) 1g    , in accordance with Stokey, Lucas and 

Presott (1989, section 5.4).  

       The Lagrangian for this maximization problem can be written as                 

          1 1
1

0

[ (1 ) ] / (1 ) [(1 ) (1 ) ]t
t t t t t t t t

t

g c m r x wl q s c g x   


 




           , (B5) 

where tm  is a Lagrange multiplier, and 0 1   without loss of generality.  The first-order 
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conditions for a maximum include / 0tc    and 
1/ 0tx    , which respectively imply the 

following two equations for all 0t  : 

          1[ (1 ) ]tt tm g c   
 , (B6) 

          1 1(1 ) (1 )t t tm g m r      . (B7) 

Combining these two equations, we obtain 

          1 1(1 ) (1 )t t tc g c r     
     , (B8) 

which is the familiar condition for intertemporal optimality. 

       In steady-state equilibrium (with 1t tc c  , 1t tr r  , etc.), (B8) and the usual marginal-

productivity conditions imply  

          1(1 ) 1r g       ,                                                                                                   (B9) 

          ( , , )kr f k l s   , (B10) 

          ( , , )lw f k l s  , (B11) 

where asterisks indicate the (unchanging) values of variables in such an equilibrium.  These three 

equations allow us to compute r , k  and l .  Then, ( , , )sq f k l s   ; and 

( )c r g k wl q s          from (B4), since x k  .    Thus, for a given rate of growth, the 

steady-state equilibrium is independent of the initial stock of wealth (capital). 

       When we change the growth rate, the initial capital stock (
0k ) is given, and the transition 

path to the new steady state is determined (for 0t  ) by the following three equations in three 

unknowns ( tc , tl  and 
1tk 
): 

          ( , , )l t tw f k l s , (B12) 

           
1[1 ( , , ) ] ( , , ) (1 )t t t t s t t t tk

f k l s k wl f k l s s c g k         (B13)        
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          1 1 1(1 ) [1 ( , , ) ]t t k t tc g c f k l s     
      . (B14) 

Note that (B13) and (B14) are simply restatements of (B4) and (B5), respectively, after we use 

marginal-productivity conditions (for capital and skilled labor) and the fact that capital is wealth. 
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