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Abstract

The largest decile of commercial electricity customers comprises half of

commercial sector electricity usage. We quantify a substantial split incentives

problem that exists when these large �rms are on electricity-included prop-

erty lease contracts. Using exogenous variation in weather shocks, we show

that customers on tenant-paid contracts use 6-14% less electricity in summer

months. The policy implications are promising. Nationwide energy savings

from aligning incentives for the largest 10% of commercial customers exceeds

analogous savings from the entire residential electricity sector. It is also cost-

e�ective: switching to tenant-paid contracts via sub-metering has a private

payo� period of under one year.
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1. Introduction

In this paper we identify the alignment of landlord and tenant incentives as an op-

portunity for cost-e�ective pollution abatement. A principal agent problem arises

because of the separation between those who pay for energy usage and those who

make decisions about durable investments or consumption, leading to potential wel-

fare losses from excess energy use that even Pigouvian taxes are not well suited to

correct (Ja�e and Stavins (1994), Gillingham and Palmer (2014)). The welfare costs

may be particularly substantial in the commercial sector since these users account for

over 35 percent of end-use electricity consumption in the U.S., and about half of these

units are occupied by renters. Regulators and industry alike recognize the poten-

tial energy savings from tenant-paid utilities contracts, and have advocated for and

incorporated policies that would facilitate these contract types (NRDC (2011), IBE

(2011), ASHRAE (2012), USGBC (2009), USGBC (2013)), yet little direct evidence

exists in the commercial sector.

The possibility that misaligned incentives between a principal and an agent can

cause ine�ciencies has been raised in many settings, including the design of em-

ployment, credit, insurance and agricultural contracts (Stiglitz (1974), Grossman

(1983), Chiappori and Salanie (2000), Goodwin (2001), Finkelstein and McGarry

(2006), Karlan and Zinman (2009), Einav et al. (2013)). Energy economists have

also weighed in on this question by testing for principal agent problems in the residen-

tial energy space (Levinson and Niemann (2004), Gillingham et al. (2012), Elinder

et al. (2017)). In this setting a frequently studied split incentive principal agent

problem takes the form of a tenant paid contract and underinvestment in energy

e�ciency by the landlord. The logic, and one that has been corroborated by em-

pirical work, is that if tenants are not able to perfectly observe e�ciency levels and
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are thus unwilling to pay a rent premium for energy e�ciency, owners may forgo net

bene�cial energy conservation investments (Davis (2012), Myers (2014)). Our focus

is on split incentive problems created when energy bills are bundled into the monthly

rental contract. When a building occupant rents space and does not pay for their

monthly energy bill, they face a zero marginal cost for energy use, resulting in little

incentive to consider the impact of their energy consumption decisions.

Growing evidence points to modest energy savings from the introduction of

tenant-paid contracts for residential customers, but the literature has remained rel-

atively silent on the topic of commercial usage. The sparsity of empirical work in

this setting may be partly explained by the di�culty of disentangling the e�ect of

split incentives from sorting by either tenants or landlords on the basis of energy

characteristics (Kahn et al. (2014)). Understanding the split incentive problem for

commercial customers is important since relative to their residential counterparts

they are large in size but few in number, and may o�er an opportunity to achieve

energy conservation at a lower cost. This paper aims to �ll this gap by taking ad-

vantage of a unique empirical setting and rich data to test for the e�ect of split

incentives in the commercial sector, as well as explore heterogeneity in response to

contract type.

Our empirical approach uses variability in billing periods across �rms to generate

exogenous di�erences in local weather within a calendar month. Local weather is

measured as the number of cooling degree days and heating degree days within a

given zip code and billing month. We combine these data with monthly billing

data from 1,126 �rms serviced by a Connecticut electric utility between October

2007 and May 2011, and property-level information on �xed observables including

whether the tenant or landlord pays the electric bill (we refer to this as �contract

type� throughout the manuscript). Endowed with panel data on both weather and
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usage, we then examine the di�erential impact of a local weather shock on electricity

usage across tenant-paid versus owner-paid contract types, controlling for aggregate

time shocks and �rm �xed e�ects.

To interpret our results as the causal e�ect of contract type on electricity usage

changes, we address two primary identi�cation challenges. First, we establish a com-

mon basis of comparison - a response gradient to a stimulus that in�uences demand

for electricity and that is exogenously experienced by �rms of both contract types.

We use weather exposure within a given billing-cycle zip code as the exogenous elec-

tricity demand shifter. While �rms in our sample are located within a relatively small

geographic region, their billing cycles are substantially non-overlapping. Variation

in temperature across days means that �rms in di�erent billing cycles will experi-

ence di�erent temperature exposure based on the start- and end-dates of their billing

month. The di�erential temperature exposure allows us to compare the electricity-

temperature response gradient across �rms that pay for their electricity and those

that do not.

Second, we address concerns that �rms may select into contract type based on

unobservable characteristics that are correlated with the response gradient. Firms

with elastic electricity demand may be more inclined to select a tenant-pays rental

contract than those with inelastic demand. Ultimately, causal interpretation of our

results relies on an assumption that there is no such selection on unobservable �rm

characteristics. We present three pieces of empirical evidence in support of this

assumption. First, we show that contract type is not systematically correlated with

a rich set of observable characteristics. If �rms were strategically selecting into

contract type, we would expect to see low-demand (high-demand) �rms selecting

into tenant-pay (owner-pay) contracts. We do not, and it is therefore unlikely that

they are self-selecting based on response gradient, a second-order attribute. Second,
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we exploit a change to an important energy metering regulation in Connecticut that

altered building owners' ability to select utility contract types in their buildings. This

change provides us an opportunity to test if changes in contract choice at the building

level are correlated with �rm-level energy consumption characteristics. We �nd that

they are not. Further we show that `switchers', or �rms located in buildings whose

owners chose to select di�erent contracts after the regulatory change, do not exhibit

di�erential responses to the temperature gradient relative to the other �rms in the

sample. Third, we assess the e�ect of potential correlations between any remaining

unobservable characteristics and the treatment, as described in Oster (2016), to

identify bounds on our treatment e�ect. The bounds implied by this technique

provide evidence that our conclusion is robust to such concerns. Collectively, these

tests support the assumption that di�erential sorting in response to the temperature

gradient is unlikely to confound the relationship between contract type and electricity

usage in our setting.

Our main result suggests that among the largest consumption �rms, tenant-

paid contracts induce substantial energy savings. For the top decile of electricity

users switching from an owner-paid to tenant-paid utilities contract would reduce

electricity usage by about 1.4 percent per average daily cooling degree day. Over

the course of the year, the electricity savings from a tenant-paid contract among

top users amounts to roughly 3 percent, and in the summer months up to a 13

percent. The coe�cient bounds analysis proposed by Oster (2016) yields a lower

bound on savings of 0.7 percent per cooling degree day. Interestingly, for the other

90 percent of commercial customers contract type does not impact consumption

decisions. This behavior is consistent with a setting in which the bene�ts from

changing consumption, in the form of bill savings, do not cover the adjustment costs

for small �rms.
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Given the size of the responsive �rms, the estimated treatment e�ect translates

into signi�cant private and public bene�ts (or costs) from the choice of contract

type. Using the Oster bounds, the private average annual utility bill savings from

a tenant-paid utilities contract among high usage �rms is between 1.3-2.5 percent.

These e�ects are large when aggregated. The private savings per �rm are almost �f-

teen times larger than the private household savings attributable to building energy

codes, and over �fty times larger than the private savings from tenant-paid heating

in apartment buildings in the northeastern US (Jacobsen and Kotchen (2013), Levin-

son and Niemann (2004)). Were incentives to be aligned among all large commercial

�rms nationwide, total energy saving would exceed those produced by solving the

split incentives problem for the entire residential electricity sector. Environmen-

tally, our estimates imply greenhouse gas savings of between 615-1200 thousand tons

of CO2 per year, or roughly 3.3 to 6.6 times the average annual savings achieved

from Weatherization Assistance Program retro�ts performed in a given year. These

savings come at a relatively low cost - retro�tting units with sub-meters to allow

switching to tenant-paid utility bills amongst the highest decile of electricity users

has a payback period of less than one year.

Our work makes three contributions to the current dialogue on the design and

implementation of energy conservation programs, and may help guide policymakers

in their e�orts to conserve energy and combat climate change. First, relative to the

residential setting where a growing literature points to the potential and limitations

of energy conservation and e�ciency programs (Gillingham et al. (2012), Hassett

and Metcalf (1999), Fowlie et al. (2015)), little is known about the transferability

of these instruments to commercial users. We provide a well identi�ed counterpart

to existing residential estimates on the split incentives problem. Second, our results

reveal substantial heterogeneity in �rm responsiveness to contract type and point

6



to the importance of looking beyond average treatment e�ects. The targeting of

contract restructuring based on a readily available observable (�rm size) could yield

energy savings and cost e�ectiveness comparable to oft-deployed behavioral energy

conservation tools (Allcott (2011), Allcott and Mullainathan (2010)). Lastly, our

results suggest that a targeted prescriptive policy of tenant-paid contracts would

be a net bene�cial addition to the portfolio of greenhouse gas abatement strategies

utilized by policymakers.

The rest of the paper is organized as follows. Section 2 discusses past literature

and our empirical setting. Section 3 describes the data used in our analysis. Section

4 presents our empirical speci�cation. Section 5 discusses our identi�cation strategy.

Section 6 describes our empirical results, presents our external and aggregate bene�t

estimates, and provides further context by discussing the private net bene�ts of

energy conservation in the commercial sector. Section 7 concludes.

2.Background

Separating the party who pays for energy from the one making decisions about

usage has been frequently cited as creating incentives for energy over-consumption

(Prindle et al. (2007), Murtishaw and Sathaye (2006), Blumstein et al. (1980)).

Given that about 50 percent of o�ce and retails buildings are tenanted, or non-

owner-occupied, the commercial sector has the potential to be a primary contributor

to this agency problem (EIA (2012)). However, this is also the sector for which the

least empirical evidence exists on the magnitude of the problem.

In the commercial and industrial sector, a reduction in the incentive to conserve

may lead to energy overconsumption along multiple dimensions. One end use that

can be a�ected is air conditioning. Many buildings are over-cooled in the summer

months, leading to an increase in commercial electricity consumption of up to 8
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percent (Derrible and Reeder (2015)). O�ce equipment and miscellaneous electronics

usage may also increase if there are poor incentives to conserve. Sanchez et al. (2007)

�nd that o�ce equipment and miscellaneous equipment such as computers, personal

space heaters and fans account for up to 20 percent of annual electricity consumption

in the commercial sector. In retail settings, keeping doors open in the summer

months may also increase consumption by up to 9 percent (Basarir (2010)). Finally,

there may simply be inattention to electricity decisions in the commercial customer

population. This explanation is consistent with Jessoe and Rapson (2015), who

show that commercial customers are price inelastic when exposed to time-varying

electricity prices.

While the engineering literature has identi�ed several channels through which

split incentives may a�ect commercial sector consumption, a gap remains in our

understanding of its precise magnitude. One exception is Kahn et al. (2014). This

study notes that energy consumption by tenants who pay their own energy bills is 20

percent lower compared to owner-paid units, though this estimate re�ects the e�ect

of both contract type and sorting into buildings based on preferences for energy use.

In the residential sector, the consensus thus far is that the split incentive e�ect on

aggregate consumption is likely modest. Levinson and Niemann (2004) �nd that

energy bills are 1.7 percent higher when apartment dwellers do not pay for heat, and

Gillingham et al. (2012) �nd occupants who pay for heating are 16 percent more

likely to change their heat settings at night.1 Note that aligning �nancial incentives

does not a priori guarantee that agents will exhibit price-sensitivity in their decisions.

In the residential electricity setting, consumers have been shown to be inattentive

1Another dimension to the principal agent problem is less than e�cient turnover from oil-�red to
gas-�red boilers used for residential heating in the northeastern U.S (Myers (2014)). This outcome is
consistent with tenant asymmetric information about heating costs when they pay for heat. Myers
(2014) �nds that this led to 37 percent higher annual heating costs in the 1990-2009 period, which
is a considerable e�ect.
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to their electricity bills (see, for example, Jessoe et al. (2014)). This is potentially

a result of the relatively small �nancial rewards at stake. Casual observers of the

commercial space may conjecture that the pro�t motive and higher usage levels will

lead to more attention and also a larger split incentives problem, and one would

expect that to be true in the absence of adjustment costs.

The regulations surrounding metering in Connecticut make it an advantageous

setting in which to study the split incentives problem. To get a sense for the regu-

latory landscape, consider the owner of a multi-tenanted building. Monitoring each

tenants individual electricity usage would require the installation of a sub-meter.

However, prior to the summer of 2013 the state prohibited the retro�tting of com-

mercial and multi-family buildings with sub-meters. As a result, only buildings con-

structed with sub-meters could charge individual tenants for energy consumption.

In all other buildings electricity consumption was monitored at the building level,

and thus tenants signed landlord-pay contracts. Since our analysis focuses on the

time period 2007 to 2011, the presence of sub-meters in buildings is predetermined

from the perspective of current owners and tenants. While tenants are still able to

choose buildings based on electricity contract type, doing so limits their choice set

to sub-metered buildings, an implicit cost.

In 2013, new legislation passed by the Connecticut General Assembly eliminated

this prohibition (Hartford Business Journal (2013), Murtha Cullina LLC (2013)).

While we cannot directly test the e�ect of this change on electricity use, the legislative

change enables us to gain further insights into selection on contract type based on

�rm and building-level energy preferences. We obtain data on contract �switchers� in

the post-2013 period, where switchers are de�ned as �rms located in buildings that

changed their contract type from owner-paid to tenant-paid utilities, or vice versa.

Altogether 65 �rms were located in one of these buildings.
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We evaluate our research questions within the jurisdiction of United Illuminating

(UI), an investor owned electric utility in Connecticut that services customers in 17

Connecticut counties. Figure 1 shows its service territory. Most UI customers heat

their homes with natural gas or fuel oil rather than electricity (EIA (2016)), leading

us to hypothesize that electricity use will be most responsive to weather conditions

in the summer months, when air-conditioning use is high.

3 Data

We combine three data sets to form a panel of of 40,962 observations from 1,126

�rms that we use in our analysis. The �rst data set is monthly billing data provided

by UI that reports account-level electricity consumption (in kWh), peak monthly

throughput (in kW), and expenditure. These data also contain information on the

industrial classi�cation number, or NAICS code of each account. The second source

is the CoStar Group, a commercial sector multiple listing service and database that

includes property-level information on utility contracts and hedonic characteristics

such as building size, stories and year of construction. Third, we obtained daily tem-

perature data from the National Oceanic and Atmospheric Administration (NOAA).

Table 1 identi�es the property types that make up our sample. The predominant

share of accounts are located in o�ce buildings (72 percent), followed by industrial

buildings (22 percent), then by retail and �ex buildings, which combine o�ce and

retail functions (6 percent). Table 2 presents sample summary statistics on usage,

location and industry by contract type. In our sample, about 84% of �rms pay their

own electricity bill. The average customer (across contract types) spends about $675

a month on electricity, the average building is approximately three stories, and the

primary industry is `Finance, Real Estate and Management', which makes up about

50 percent of the sample among both contract types. The sample in both contract
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types is also evenly regionally distributed, with about 30 percent of observations in

central cities, and the rest located in more suburban areas.2

3.1 Weather

In our study, weather is measured as the number of cooling degree days and heating

degree days in a zip code billing-month. To arrive at this observational unit, we

begin by using daily temperature data collected from ten local weather stations to

construct daily cooling degree days (CDD) and heating degree days (HDD) at each

weather station. CDD are obtained by subtracting 65 from the average Fahrenheit

temperature on a given day with temperatures above 65 and HDD are obtained by

subtracting the average Fahrenheit temperature on a given day from 65 on days with

temperatures below 65.3 These daily weather station measures are used to compute

daily zip code level weather using inverse distance weighting, and are then summed

across billing-month in each zip code to obtain monthly CDD and HDD. Finally, for

ease of coe�cient interpretation, we divide cumulative CDD and HDD in each billing

period by total days in that (roughly monthly) billing period to arrive at average

daily CDD and HDD.

This observational unit provides both cross-sectional and temporal variation in

weather. One source of cross-sectional variation arises from temperature di�erences

across the 32 zip codes in UI's service territory. This is made clear in Figure 2 which

2The last column of Table 2 presents the normalized di�erence, which is measured as the di�er-
ence in averages for each variable, by treatment status, scaled by the square root of the sum of the
variances. Mathematically, the formula for the normalized di�erence is X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes

the mean of a given covariate by utility contract status i = 0, 1, and S2
i denotes the sample variance

of Xi. The normalized di�erence is preferable as a measure of overlap than a t-test, since this latter
measure depends on the sample size, whereas overlap in any given sample is a concept independent
of sample size (Imbens and Wooldridge (2009)).

3CDD measure demand for space cooling services such as air conditioning since as temperature
rises above 65 cooling demand increases. HDD measure demand for space heating services since
heating demand increases as temperature falls under 65.
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displays the daily temperature by zip code between October 2007 and May 2011.

Despite the relatively small region, there is visible cross-sectional variation in daily

temperatures with summer temperatures varying between 5 to 10 degrees across zip

codes. Variation in weather also occurs because of di�erences in billing cycles - which

denote the start date and end date of a billing period - across �rms. In our sample,

there are 16 unique billing cycles, where �rm assignment to a billing cycle is based

on geography. The staggering of billing cycles throughout a month provides a second

source of cross-sectional variation in weather due to the fact that a hot day may be

included in di�erent billing �months� for �rms on di�erent bill cycles.

4.Empirical Speci�cation

Using the dataset described in Section 3, we estimate the responsiveness of energy

consumption to weather variation by contract type across consumption deciles in our

sample. We seek to retrieve the dose response function of temperature on electricity

use, and to measure how it di�ers across tenants as a result of exposure to di�erent

contract types.

Our basic empirical model is summarized by equation (1):

Yit = βd[Czt × 1id, Hzt × 1id] + θdTenanti × [Czt × 1id, Hzt × 1id]

+ ηit+ αt + γi + εit (1)

where Yit is the logarithm of monthly energy consumption for tenant i in billing

month t, Czt andHzt are average daily cooling and heating degree days for a �rm with

billing month t in zip code z. A vector of indicator variables is denoted by 1id and

set equal to 1 if tenant i has electricity demand in decile d (i.e. d = {1, ..., 10}), and

zero otherwise. The indicator variable for whether a tenant i pays their own utility

bills is interacted with each of the weather variables, Tenanti× [Czt×1id, Hzt×1id].
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Additional controls include ηit, an account-speci�c time trend, γi, an account �xed

e�ect, and αt is a calendar month-by-year �xed e�ect. We can condition on this

latter �xed e�ect since our identifying variation utilizes billing-month weather and

consumption rather than calendar month variation. To adjust for serial correlation,

standard errors are clustered at the building level.

Our empirical approach identi�es the di�erential impact of weather shocks on

energy usage across customers who pay and do not pay their own electricity bill, and

is similar to the approach deployed in Jacobsen and Kotchen (2013). If the e�ect of

tenants paying the utility bills (rather than owners) decreases energy use, we would

expect to observe a negative coe�cient on the interaction between Tenanti and Czdt

across each consumption decile. The e�ect of cooling degree days is the primary

variable of interest because it is a strong predictor of air conditioning utilization,

and therefore highly correlated with electricity consumption in the summer months.

5. Identi�cation

Since contract type is not randomly assigned in our empirical setting, the main con-

cern from the perspective of identi�cation is that �rms on a landlord-pay contract

are selected in some unobservable way that relates to their latent dose-response func-

tion. An unbiased estimate relies on our main identifying assumption: conditional

on observables and �xed e�ects, the dose response function di�ers only by contract

type, and does not di�er as a result of a reaction to the temperature gradient that

correlates with unobservable �rm attributes. Since this assumption is not directly

testable, our strategy is to expose it to many opportunities to fail. This section

describes the tests that we perform as well as the empirical evidence that allows us

to proceed with con�dence in a causal interpretation of our estimates.
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5.1 Selection into Contract Type

We present three approaches to assess the possibility that tenants are able to select

into a rental space with their desired contract type. Our �rst approach evaluates

covariate balance among tenant-paid and owner-paid contracts in the full sample,

which we implement both by examining summary statistics in the data and more

formally by estimating logistic regressions of contract type on observables. Second,

we exploit a policy change in Connecticut that relaxed restrictions on sub-metering

retro�ts after the end of our sample period. This enables us to (i) identify and

(ii)investigate the characteristics and behavior of �rms located in buildings that

subsequently switched contract types. The third method is a deployment of Oster

(2016) that places bounds on potential selection bias.

Balance on Observables: We begin by comparing owner and tenant-paid con-

tracts, both in the full sample and for the top decile of users, across a number of

observables that we hypothesize may be related to contract type. The last column of

Table 2 presents the normalized di�erence in means between the two contract types

in the full sample, where a normalized di�erence lower than 0.25 in absolute value is

typically considered good overlap (Imbens and Wooldridge (2009)). As shown, the

covariates are balanced along the rich set of covariates we observe. Since our main re-

sult will focus on the tenant-paid contract e�ect in the top consumption decile, Table

3 presents covariate balance for these users. While the consumption variables main-

tain good overlap in this sample, the number of stories has a normalized di�erence of

-0.55 and the industry classi�cations for Finance, Education and Entertainment are

slightly out of balance. Di�erences in building height and the lack of balance in the

Finance category are driven by a small number of owner-paid buildings that are over

nine stories and occupied by �nancial tenants. We later address these imbalances

in a robustness test. Education and Entertainment each make up a small share of
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the sample, with 9 percent and 15 percent of �rms in each industry, respectively.

Notably, the most energy intensive industrial classi�cations display balanced shares

of tenant-paid contracts.

Along the same lines, we estimate a logistic regression to examine the relationship

between contract type and observable characteristics. Column (1) of Table 4 presents

the results of a logistic regression of a tenant-paid utilities dummy, set equal to one if

tenants pay their own utility bills, on �rm-level observables in the full sample. Peak

load and bill length are signi�cant in predicting contract type. As shown in column

(2), the e�ects of bill length and peak load on contract type are driven by outliers.

After the omission of two �rms with excessively high peak load and a few observations

with abnormally long bill lengths, no observables are signi�cant in predicting contract

type. Column (3) restricts the sample to the top consumption decile and column (4)

further restricts the sample by excluding buildings with more than nine stories. We

�nd that with the exception of the number of stories, no observable is signi�cant in

predicting contract type, and that this e�ect is no longer present once we remove

very tall buildings. The covariate overlap and logistic regression results suggest no

fundamental relationships between the observables and contract type, and while this

does not imply that unobservables are balanced across contract type, it provides a

�rst line of evidence to support the plausibility of our main identifying assumption.

Finally, we examine the robustness of our results to concerns about sorting along

a number of observables by augmenting equation (1) to incorporate other covariate

interactions with CDD and HDD. This is re�ected in equation (2),

Yit = βd[Czt × 1id, Hzt × 1id] + θdTenanti × [Czt × 1id, Hzt × 1id]

+ψXi × [Czt, Hzt] + Bit + ηit+ αt + γi + εit, (2)
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where ψXi × [Czt, Hzt] is the covariate vector interacted with heating and cooling

degree days, Xi includes indicator variables for building type and �rm NAICS code,

and Bit measures the number of days in the billing month (bill length) for �rm i in

billing month t.

Contract Switchers: Our second approach takes advantage of a policy change

that occurred after the end of our sample period. Within our sample period, a ban

on sub-metering retro�ts in Connecticut made sorting by customers and building

owners along contract type very costly, if not impossible. Customers that desired at-

tributes of a building not sub-metered may have preferred to pay their own electricity

and landlords may have preferred to o�er tenant-paid utilities. However retro�tting

buildings with unit-level electricity meters, a prerequisite for tenant-paid contract-

ing, was not permitted. In 2013, about two years after our sample period ended, this

restriction was lifted and landlords were allowed to retro�t buildings with sub-meters.

We use building-level tenancy contract information collected a year and a half

after the Connecticut legislative change, in early 2015, to assess whether sorting based

on energy consumption preferences might have occurred once sub-metering retro�ts

were allowed. Since the legislative change allowed a more �exible re-matching of

tenants into contract type, this presents an opportunity to observe who switched,

and to examine whether controlling for their identity changes our baseline results.

Under the null hypothesis of �no selection�, conditioning on the identity of these

switchers should not alter our estimated treatment e�ect.

Roughly six percent of customers switched contract types, with 34 owners mov-

ing to a tenant-paid contract by early 2015 and 31 transitioning to an owner-paid
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contract.4 In Table 5 we show that total consumption, peak usage, and total bill is

balanced across switchers and non-switchers.5 The balance in energy consumption

characteristics across these groups suggests that controlling for these users may not

substantively change the results. Still, to test our null hypothesis directly, we build

on our baseline speci�cation and interact two �switcher� indicator variables - one for

�rms switching to tenant-paid contracts and a second for �rms switching to owner

paid contracts - with cooling and heating degree days.

Oster Bounds: Our �nal approach to testing our identifying assumption uses

a new technique proposed by Oster (2016). This method requires the assumption

that the relationship between treatment and unobservables can be recovered from the

relationship between treatment and observables. If true, movements in the coe�cient

of interest and R-squared levels from the inclusion of control variables inform us about

selection on unobservables. We retrieve the bounds in a post-estimation procedure

and present these results in Section 6.

5.2 Time-Varying Unobservables

The assignment of bill cycles based on geography and our decision to exploit variation

in weather across billing cycles raises the possibility that bill cycle might be correlated

with the dose response function across contract type. We investigate this by testing

if a systematic relationship between bill cycle and weather exists. A regression of

weather on bill cycle �nds that that the sixteen billing cycles are neither jointly nor

individually signi�cant in explaining cooling degree days or heating degree days.6

4Given the long-term nature of building ownership and commercial sector contracts, it's unlikely
that ownership of these buildings or the tenants occupying them changed over time. Mean lease
length in the industries in our sample is over 4 years, with a 60% renewal rate (Fisher and Ciochetti
(2007)).

5Interestingly, buildings that switch to a tenant-paid contract tend to be larger and taller, which
suggests economies of scale to sub-metering.

6Results available from authors upon request.
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Still, our empirical approach explicitly addresses this concern by conditioning on bill

cycle in all our empirical speci�cations.

A related concern is that the dose response function to weather partly re�ects

di�erences in bill length (i.e. the number of a days in a billing month) across �rm-

months. This will confound our interpretation of the treatment e�ect if bill length is

systematically related to contract type. We control for this possibility by including

bill length as a control in equation (2), as noted above.

6.Results

Our �ndings suggest contract type induces economically and statistically signi�cant

impacts on consumption choices for the largest electricity consumers. The reduced

form relationship between contract type, �rm size, temperature and electricity con-

sumption is presented in Figure 3. It plots electricity consumption against average

temperature within 1-degree bins, across both contract types, for the bottom nine

decile of �rms in panel (a), and the top consumption decile in panel (b). Super-

imposed on each scatter plot is a lowess �t of consumption on temperature. This

�gure provides a preview to our formal regression results and points to three in-

teresting patterns of �rm behavior. First, as shown in panel (a), on average there

is almost no discernible di�erence in consumption by contract type across the dis-

tribution of temperatures in the bottom nine consumption deciles. Second, in the

top consumption decile, shown in panel (b), we observe a signi�cant divergence in

usage across contract types, with �rms under owner-paid utility contracts exhibiting

higher usage, relative to tenant-paid �rms. Third, this di�erence in usage becomes

more pronounced when air-conditioning demand rises. Consumption levels begin to

diverge more sharply once temperature increases beyond approximately 65 F, the

temperature at which demand for cooling typically begins (EPA (2014)).
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Table 6 presents our formal regression results. Column (1) shows the e�ect of

a regression comparing the di�erential impact of a weather shock on �rms with a

tenant-paid contract type relative to an owner-paid contract, controlling for �rm,

month-year �xed e�ects and �rm-speci�c time trends. We �nd that without condi-

tioning on consumption decile there is no di�erence in the e�ect of weather shocks

on consumption among tenant-paid versus owner-paid contracts. In the remainder

of Table 6, we report results from the estimation of equations (1) and (2). Column

(2) reports results from our base speci�cation as shown in equation (1), where we

introduce tenant-paid contract interactions with CDD and HDD across all ten con-

sumption deciles; column (3) controls for the di�erential e�ect of temperature shocks

on switchers and column (4) further conditions on the interaction of CDD and HDD

with building and industry type, as shown in (2). Column (5) presents a robustness

check which excludes outliers from the sample, leaving us with a sample in which

all observables for �rms in the top consumption decile are balanced across contract

type.7

Our results indicate that a split incentive problem leads to overconsumption of

energy among the top decile of electricity consumers. This e�ect is quantitatively

and qualitatively robust to several speci�cations, suggesting that �rms on a utilities

included contract exhibit a di�erent dose response function to weather than �rms

who pay their own utility bills.8 Focusing on our preferred speci�cation in column

(4), we �nd that a tenant-paid contract leads to about a 1.4 percent decrease in

kWh per average daily CDD for the top decile of electricity consumers. Over the

course of the year, which has an average daily CDD of 2.1, this translates into a 2.9

7We exclude two �rms with high peak load, four buildings with ten or more stories and bill
length outliers in the sixth decile.

8Note that the switchers interaction coe�cients are not reported for space considerations, but
they are insigni�cant in all speci�cations in which they appear.
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percent decrease in annual electricity usage among the top decile of users. Framed

di�erently, for �rms on a tenant-paid contract a one standard deviation increase

in daily CDD leads to a 5 percent reduction in monthly usage relative to utilities

included �rms. In contrast, contract type does not statistically impact consumption

decisions for the other 90 percent of commercial �rms. This large divergence in

response to contract type based on �rm size points to a �rst source of heterogeneity

in response to treatment, and potentially large savings from the targeted deployment

of a policy instrument.

A second source of heterogeneity results from seasonal variation in the treatment

e�ect. We �nd that the split incentive can lead to signi�cant increases in electricity

usage but only during the hot summer months. This can be seen in Figure 4, which

illustrates the estimated di�erence in usage across contract type for each month in

our sample. It is obtained by multiplying the treatment e�ect reported in column (4)

of Table 6 by average daily CDDs in a given month. In August, switching from an

owner to a tenant-paid contract would reduce electricity consumption by about 13%.

The summer response is consistent with a framework in which demand for electric

AC during these hot months drives the divergence in the dose response function

across owner and tenant-paid contracts. 9

Though contract type only in�uences electricity choices for a narrow set of cus-

tomers during a concentrated period of time, restructuring contract type has mean-

ingful implications for aggregate electricity usage. This is because the responsive

�rms are the largest electricity consumers and are quite sensitive to hot tempera-

tures. A policy that switched the largest decile of electricity consuming �rms from

an owner to tenant-paid contract would result in annual electricity savings per �rm

9The coe�cients on heating degree days (not reported) are not statistically signi�cant in any
speci�cation. Since most �rms in Connecticut use natural gas or fuel oil for heating, it is not
surprising that the dose response function for heating does not vary across contract type.
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of roughly 19,200 kWh. Comparing these savings to the total quantity of electricity

consumed by all commercial �rms in our sample, we �nd that this policy change

would lead to a 1.4 percent reduction in total electricity usage.

We also estimate the e�ect of contract type on electricity expenditure by esti-

mating (2), the fully controlled speci�cation, with log monthly bill as the dependent

variable; results are shown in Table 6 column (6). The estimated treatment e�ect

in the top decile is a 1.2 percent decrease in monthly bill per CDD. The value of

total bill savings among these high consumers is approximately $315 per summer

month. In the month of August the savings represent a 10% reduction in electricity

expenditures.

To further gauge the robustness of our results to potential selection on unob-

servables, we apply the bounds analysis proposed by Oster (2016). We make an

equal selection assumption which implies that any residual omitted variable bias is

a function of (i) the treatment coe�cient after the inclusion of covariates and (ii)

R-squared values before and after the inclusion of covariates. Given our rich set of

controls, the equal selection assumption is likely conservative, as it assumes that any

remaining unobservables are at least as important as the observables in explaining

the treatment (Oster (2016) and Altonji et al. (2008)). Table 7 reports the identi�ed

set estimates from two di�erent speci�cations with log usage and log bill as the de-

pendent variables, respectively, in the full sample. They assume that the maximum

possible R2 is 0.98, given the estimated 2 percent measurement error in electricity

meter readings (Dong et al. (2005), Reddy et al. (1997)). As shown in Table 7 we

continue to detect a split incentives e�ect after accounting for any remaining selection

on unobservables. A tenant-paid contract induces at minimum a monthly electricity
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and bill saving of 0.7 and 0.6 percent per CDD, respectively.10

6.1 Social bene�ts and payback period

In this section we estimate the avoided emissions, decline in environmental dam-

ages and payback period from shifting to a tenant-paid utility contracts in our sample.

We begin by identifying the per kWh emissions rates and marginal damages of four

pollutants regulated by the federal government: NOx, SO2, PM2.5 and CO2. We

choose these four because of their links to human health damages and contributions

to climate change. For NOx, SO2 and CO2, the Environmental Protection Agency's

eGRID database provides 2009 emission rates for the New England subregion, mea-

sured as tons emitted per MWh of electricity produced.11 The PM2.5 emission rate

estimate is obtained from Connors et al. (2005). Marginal damage estimates for

NOx, SO2 and PM2.5 come from Muller and Mendelsohn (2007), and marginal CO2

damages represent an average of the estimates presented in IWGSCC (2015) and

IWGSCC (2010).12

We then combine the above marginal damages and emissions rates with our es-

timated treatment e�ects to bound the social bene�ts of switching from an owner

to tenant-paid contract. For the top decile of electricity consumers, we use the per

CDD coe�cient from column (4) of Table 6, our preferred speci�cation, as an upper

bound estimate (this is also the Oster upper bound), and the Oster lower bound

savings estimate reported in Table 7. We multiply these by the average CDD in the

summer months for each �rm with a tenant-paid utility contract to arrive at a per

10All the energy and bill savings ranges reported in the paper are based on these Oster identi�ed
set estimates.

11The eGRID database is available at the EPA's website at www.epa.gov/energy/egrid.
12IWGSCC (2015) presents an updated social cost of carbon estimate relative to IWGSCC (2010),

and is a better re�ection of the scienti�c consensus on climate change impacts. However the 2010
report coincides with our sample period which is why we also choose to include it.
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�rm annual electricity savings of 9,700 to 19,200 kWh. These consumption savings

are used to form our bounds for avoided damages from the four pollutants.

The upper and lower bound estimates for avoided pollution-related external costs

are presented in Table 8. Annually, the per �rm value of avoided damages ranges

from $111 to $221. If we add to this the private bill savings of $677 to $1265 per

�rm-year, the annual �rm-level social bene�t of switching from an owner to tenant-

paid contract amounts to $788 to $1709. For comparison, these savings are about

�fteen times larger than the household-level savings attributable to building energy

standards and over �fty times larger than the household bill savings from tenant-

paid heating in apartment buildings in the northeastern US (Jacobsen and Kotchen

(2013), Levinson and Niemann (2004)).

At the national level, restructuring rental contracts for the largest ten percent of

commercial �rms would produce energy savings exceeding those from restructuring

rental contracts for all residential users who don't pay for their utilities.13 It would

also save between 615-1200 thousand tons of CO2 per year or between 3.3 to 6.6

times the average annual savings achieved from Weatherization Assistance Program

retro�ts performed in a given year.14

Finally, we use data on the costs of sub-metering to calculate back-of-the enve-

lope estimates of the payback period from sub-metering individual units and shifting

to a tenant-paid contract. Sub-meter costs range from $250-$1000 per unit (Pike

13There are 131 million residential electricity customers in the US, of which 10.4 million are
rented with utilities included (EIA (2009)). Assuming they save 0.7% per household (Levinson and
Niemann (2004)), total savings are 141 million kWh per year. There are approximately 17.6 million
commercial sector electric customers in the US (EIA (2017)), 50 percent of which rent space, or
about 8.8 million customers. Suppose 20 percent (1.76 million) have an owner-paid utilities contract,
the same share as in Connecticut. The top consumption decile, 176,000 customers, save a total of
181 million kWh per year (1.3%) from a switch to tenant-pay contracts.

14An average of 175,000 WAP retro�ts are performed every year, which save approximately 1.06
tons of CO2 per household per year (Fowlie et al. (2015), DOE (2017), EIA (2010)). These retro�ts
therefore save 186,000 tons of CO2 every year.
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Research (2012), White (2012), Millstein (2008)). Given our average estimated an-

nual bill savings of $970 (the average of the bill savings obtained using the Oster

identi�ed set estimates), and assuming a unit-level sub-meter cost of $625, the pay-

back period is less than one year, well below the payback threshold for most �rms'

energy conservation investments (Anderson and Newell (2004)).15 These values also

compare quite favourably to other cost-e�ective energy e�ciency programs (Allcott

and Mullainathan (2010)). With a unit- or �rm-level sub-meter cost of $625 incurred

up-front and an average annual treatment e�ect of 14,500 kWh saved among high

consuming �rms, the cost e�ectiveness is 4.3 cents per kWh after the �rst year, 2.1

cents per kWh after two years, and 1.4 cents after 3 years, assuming the annual

electricity savings persist at the same level.

6.2 The Non-Response of Most Commercial Firms

While we estimate that contract type has a sizable e�ect on electricity usage for

the largest �rms, one unanswered question is why the remaining 90% of commercial

�rms do not respond to contract type. In our view, the most likely explanation is that

even when tenants face the costs of their energy consumption choices, the net bene�ts

of decreasing electricity consumption or investing in energy e�ciency are negative.

This is consistent with a growing strand of research that documents negative realized

net bene�ts from energy e�ciency investments (Hassett and Metcalf (1999), Fowlie

et al. (2015)). It is also consistent with (potentially rational) inattention that leads

commercial �rms to be unresponsive to some �nancial incentives (Jessoe and Rapson

(2015)). In this section we provide evidence for this hypothesis by performing a coarse

15In most states sub-meter system costs can be recovered through surcharges on tenant utility
bills. This enables owners to recover their investments costs. If the owner's surcharge doesn't
recover the full value of the savings, the payback period may be longer, but our estimates would
still represent a social payback period.
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cost-bene�t analysis for a common behavioral change �rms can undertake to save

energy. We then go on to document other potential explanations for why �rms may

not mitigate their energy consumption under a tenant-paid contract.

Let us consider the electricity choices of an o�ce building, the sector that makes

up the largest share of buildings in our sample. Building overcooling and overheating

are common in o�ce buildings, and some occupants' behavioral responses, such as

keeping personal heaters or fans on, also contribute to increasing energy consumption.

Derrible and Reeder (2015) suggest that overcooling increases electricity consumption

by 8 percent per year, and Sanchez et al. (2007) estimate portable heaters consume

329 kWh per year. Using these numbers, for the bottom nine deciles of our sample,

the combination of overcooling and space heating amounts to 4300 kWh of annual

electricity consumption, or $530 on an annual basis. Since addressing overcooling

would likely require hiring a property manager or engineer to monitor and adjust

air conditioner and chiller operation, and may compromise comfort among some

occupants, the total cost of avoiding overcooling may well exceed the $530 reduction

in expenditure.

Other explanations could also account for the lack of a treatment e�ect across

most �rms. One possibility is rational inattention. Comparing the $677 to $1265

annual bill saving from a tenant-paid contract to the average commercial unit size

in Connecticut, 14,000 square feet, suggests an average annual bill saving of about

4.8-9 cents per square foot. This represents about 0.2 percent of the average an-

nual revenues per square foot in o�ce and retail industries, and highlights that the

savings smaller �rms forego likely represent a very small share of their annual sales.

After accounting for the time and e�ort required to accurately assess the energy sav-

ings from di�erent energy e�ciency investments, �rms may be rationally inattentive

to potential energy savings since the savings are comparatively quite small (Sallee
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(2014)).

7. Conclusion

We measure the `split incentive' e�ect of tenancy contract type using a unique empir-

ical setting and novel dataset of tenancy contracts and energy use among commercial

sector clients. Our approach takes multiple steps to probe and address the empirical

challenge of separately identifying the split incentive problem from sorting. We show

that contract type is not systematically correlated with a rich set of observable char-

acteristics; that changes in contract choice at the building level are not correlated

with energy consumption; and that our result is robust to a conservative assump-

tion about any remaining correlation between unobservable characteristics and our

treatment.

Our results indicate heterogeneous returns to a tenant-paid contract, with a posi-

tive and signi�cant e�ect of contract type only in the top decile of electricity consum-

ing �rms. The results are consistent with privately optimal decision-making by �rms

since the bill savings from conservation behavior are relatively small across most

of the consumption distribution, likely not large enough to justify energy e�ciency

investments or behavioral changes.

This study is a rare contribution to the split incentive literature on commer-

cial customers that credibly addresses sorting. The result implies a strong case for

encouraging tenant-paid energy contracting among large commercial and industrial

customers. For the largest decile of electricity consumers, we �nd that �rms who pay

their own utility bills consume about 3% less electricity annually than tenants whose

utility bills are bundled into rents and save between $677 and $1265 on their annual

electricity bills. These reductions lead to a 1.4 percent saving in total electricity con-

sumed by all �rms in our sample, and generate annual external bene�ts of $111 and
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$221. The payback period from sub-metering and switching to a tenant-paid contract

is less than one year, and the cost-e�ectiveness among high consumers is compara-

ble to behavioural and other interventions that have recently received signi�cant

attention in the energy setting (Allcott (2011), Allcott and Mullainathan (2010)). A

targeted policy of sub-metering and tenant-paid contract promotion would likely be

a net bene�cial addition to the portfolio of mitigation strategies utilized by policy-

makers.

When compared to other locations, our estimated consumption and bill savings

may present a lower bound. We study the question of split-incentives in Connecti-

cut, a location where most consumers rely on natural gas for heating and where

summer temperatures may be relatively mild. In locations with a high penetration

of electric heating, we may �nd that contract type impacts demand for heating. In

the southwestern and southeastern states with warmer temperatures and higher air

conditioning usage, the savings from restructuring contract may also be larger.
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Figure 1: UI Territory

Notes: United Illuminating's service territory. It o�ers electricity distribution services to 17 counties
in Connecticut, an area totaling 335 square miles.
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Figure 2: Weather Data Variation
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Notes: Average daily temperature in UI's service territory between October 2007 and May 2011,
at the zip code level. Despite the relatively small region, there is visible cross-sectional variation in
daily temperatures, with summer temperatures varying between 5 to 10 degrees across zip codes.
Temperature variation within a zip code is also possible, due to di�erences in billing cycles across
�rms
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Figure 3: Consumption By Contract Type

(a) Bottom Nine Deciles
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(b) Highest Consumption Decile
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Notes: Each scatter plot presents monthly electricity consumption against average temperature
within 1-degree bins, for the bottom nine decile of �rms in panel (a), and the top consumption
decile in panel (b). The observations are color-coded by contract type, in both the bottom nine
deciles (panel (a)), and the top consumption decile (panel (b)). The solid lines are a lowess �t of
the same data.



Figure 4: Average Consumption Reduction Implied by Treatment E�ect (Montly,
Top Consumption Decile)
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Notes: The Figure shows average treatment e�ect on consumption in the top consumption decile,
shown as blue circles. It is obtained by multiplying the estimated treatment coe�cient by monthly
cooling degree days, in a regression that corresponds to column (4) in Table 6. The resulting
�rm-level monthly treatment e�ects are then averaged over each month in the sample. The red
hatched lines represent 95 percent con�dence intervals for the average consumption e�ect, obtained
by adding and subtracting s.e. × 1.96 from the top decile consumption e�ect, where s.e. is the
standard error of the top decile estimate in speci�cation (5).
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Table 1: Property Types

1

Customers Obs.

1 Office 805 29,846
2 Industrial 252 8,876
3 Retail + Flex 69 2,240

Property Type

Notes: Property type identi�es the primary use of the buildings in our sample. The predominant
share is made up of o�ce buildings (72 percent), followed by industrial buildings (22 percent),
and �nally by retail and �ex buildings, where �ex buildings combine o�ce and retail functions (6
percent).
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Table 2: Summary statistics and covariate balance in full sample

1

Norm. Diff.

Mean St. Dev. Mean St. Dev.

kW 27.3 42.9 33.5 61.4 -0.08

kWh (000s) 7.7 13.8 9.0 17.1 -0.06

Bill ($) 627 999 720 1220 -0.06

Bill Length 30.3 1.3 30.4 1.3 -0.05 -0.054184

Building S.F. (000s) 57.2 59.7 66.8 93.6 -0.09

Year Built 1974 26 1968 33  0.14

Building Stories 2.6 1.6 3.4 3.1 -0.23

Industry 0.12 0.33 0.10 0.31  0.04

Trade, Accommodation 0.15 0.36 0.12 0.33  0.06

Finance, Real Estate, Management 0.47 0.36 0.55 0.50 -0.13

Education, Health, Pub. Admin. 0.19 0.36 0.18 0.38  0.02

Entertainment, Recreation, Services 0.07 0.36 0.05 0.21  0.05

Northeast 0.27 0.44 0.31 0.45 -0.06

Southeast 0.20 0.40 0.22 0.42 -0.03

Northwest 0.13 0.34 0.06 0.23  0.17

Southwest 0.40 0.49 0.41 0.49 -0.01

Observations
Firms
The normalized difference measures the degree of overlap for each covariate across the treated
and control samples. A normalized difference lower than 0.25 is typically considered good overlap.

All Firms

6,658
  178

Owner Pays

34,304
948

Tenant Pays

Notes: The normalized di�erence measures the degree of overlap for each covariate across the
treated and control samples. A normalized di�erence lower than about 0.25 is typically considered
good overlap.
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Table 3: Summary statistics and covariate balance in top consumption decile

1

Norm. Diff.

Mean St. Dev. Mean St. Dev.

kW 132.4 71.2 164.2 120.9 -0.23 -0.1857615

kWh (000s) 40.6 24.1 44.5 34.1 -0.09 -0.0933982

Bill ($) 3002 1759 3276 2403 -0.09 -0.092008

Bill Length 30.4 1.3 30.4 1.3 -0.01 -0.0054808

Building S.F. (000s) 86.8 79.7 144.9 146.4 -0.35 -0.3485544

Year Built 1978 19 1973 24 0.16 0.16334288

Building Stories 3.0 2.4 6.1 5.1 -0.55 -0.5535325

Industry 0.22 0.41 0.18 0.39 0.07 0.07068859

Trade, Accommodation 0.09 0.28 0.04 0.20 0.15 0.14530955

Finance, Real Estate, Management 0.46 0.50 0.77 0.42 -0.47 -0.474737

Education, Health, Pub. Admin. 0.09 0.29 0.00 0.00  0.31 0.31034483

Entertainment, Recreation, Services 0.15 0.35 0.00 0.00  0.43 0.42857143

Northeast 0.28 0.45 0.27 0.44 0.02 0.01588904

Southeast 0.18 0.38 0.32 0.47 -0.23 -0.2316345

Northwest 0.12 0.32 0.00 0.00  0.38 0.375

Southwest 0.43 0.50 0.41 0.49  0.03 0.02856851

Observations
Firms
The normalized difference measures the degree of overlap for each covariate across the treated
and control samples. A normalized difference lower than 0.25 is typically considered good overlap.

91 19

Top Decile Firms

Owner PaysTenant Pays

3,202 703

Notes: The normalized di�erence measures the degree of overlap for each covariate across the
treated and control samples. A normalized di�erence lower than about 0.25 is typically considered
good overlap.
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Table 4: Logistic Regression

1

(1) (2) (3) (4)

 kW -0.006* -0.004 -0.006 -0.006
(0.004) (0.004) (0.004) (0.006)

 kWh 0.019 0.022 0.022 0.008
(Thousands) (0.021) (0.023) (0.019) (0.020)

 Bill -0.057 -0.229 -0.162 -0.049
(Thousands) (0.299) (0.311) (0.247) (0.313)

 Bill Length -0.023** -0.012 0.020 0.027
(0.009) (0.011) (0.022) (0.025)

 Stories -0.247 -0.247 -0.383*** -0.349
(0.152) (0.152) (0.147) (0.247)

 Building Size 0.004 0.004 0.019 0.019
(Thousands) (0.004) (0.005) (0.017) (0.017)

 Year Built 0.007 0.007 0.000 0.017
(0.006) (0.006) (0.015) (0.013)

 Property Type 0.048 0.072 0.246 0.339
(0.532) (0.526) (0.510) (0.415)

 Region 0.008 0.021 -0.257 -0.224
(0.165) (0.165) (0.289) (0.299)

 Industry 0.037 0.028 0.488 0.359
(0.159) (0.159) (0.377) (0.334)

 Mand. TOU 0.959 1.180 0.684 1.362
(0.987) (1.140) (1.809) (2.206)

 Vol. TOU -0.152 -0.155 -0.011 0.389
(0.270) (0.271) (1.425) (1.467)

Observations 40,962 39,829 3,905 3,664
Accounts 1,126 1,124 110 103
Pseudo R squared   0.04 0.04 0.19 0.17

Robust standard errors clustered at the building level in parentheses, ***p<0.01, ** p<0.05, * p<0.1

Dependent Variable: Tenant Pays
Full Sample Top Decile

Notes: Results of a logistic regression of a tenant-paid dummy on the observable variables. Column
(1) shows the full sample results; column (2) shows the full sample without two high-consuming
accounts and large bill length observations in the sixth decile; column (3) shows same logistic
speci�cation results in the top decile; and column (4) shows the top decile results without out-of-
balance stories observations (buildings greater than 9 stories). Robust standard errors clustered at
the building level in parentheses, ***p<0.01, ** p<0.05, * p<0.1.



Table 5: Covariate balance in switchers to tenant-paid utilities contract

1

No Switch Switch to 
Tenant-Paid

Norm. Diff. Switch to 
Owner-Paid

Norm. Diff.

Mean Mean Mean
(S.D.) (S.D.) (S.D.)

kW 27.7 31.4  0.05 41  0.17
(44.5) (67.3) (65.7)

kWh (000s) 7.8 9.8  0.08 10.7  0.13
(13.9) (22) (16.4)

Bill ($) 632 748  0.06 861  0.15
(1004) (1520) (1190)

Building S.F. (000s) 61.3 197.8  1.01 44.6 -0.20
(73.5) (113.6) (36.8)

Year Built 1973 1986  0.45 1974  0.03
(27.3) (9.5) (14.3)

Building Stories 2.84 13.01  1.23 2.38 -0.17
(2.55) (7.86) (0.97)

Industry 0.12 0.04 -0.22 0.06 -0.15
(0.32) (0.18) (0.24)

Trade, Accommodation 0.15 0 -0.43 0.32  0.29
(0.35) (0) (0.47)

Finance, Real Estate, Management 0.48 0.89  0.69 0.5  0.03
(0.5) (0.32) (0.5)

Education, Health, Pub. Admin. 0.19 0.03 -0.38 0.09 -0.21
(0.39) (0.17) (0.29)

Entertainment, Recreation, Services 0.07 0.05 -0.06 0.02 -0.15
(0.25) (0.22) (0.15)

Northeast 0.26 0.09 -0.32 0.79  0.88
(0.44) (0.28) (0.41)

Southeast 0.21 0.77  0.95 0.1 -0.22
(0.41) (0.42) (0.29)

Northwest 0.12 0.13  0.02 0.04 -0.21
(0.32) (0.33) (0.19)

Southwest 0.42 0.02 -0.8 0.08 -0.61
(0.49) (0.14) (0.26)

City 0.31 0.8  1.03 0.13 -0.42
(0.46) (0.4) (0.34)

Observations 39,544 1,271 1,145
Firms 1,086 34 31

Notes: The normalized di�erence measures the degree of overlap for each covariate across the
treated and control samples. A normalized di�erence lower than about 0.25 is typically considered
good overlap.
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Table 6: Split Incentive E�ect By Consumption Decile

1

Dependent variable: Log Bill
(1) (2) (3) (4) (5) (6)

Tenant x CDD 0.0001
(0.0001)

Tenant x CDD (10th Dec.)    -0.013**    -0.013**   -0.014**   -0.013**     -0.012***
(0.006) (0.006) (0.006) (0.005) (0.004)

Tenant x CDD (9th Dec.) 0.001 0.001 0.005 -0.006 -0.007
(0.009) (0.010) (0.010) (0.008) (0.007)

Tenant x CDD (8th Dec.) -0.001 -0.001 0.005 0.001 -0.001
(0.007) (0.007) (0.007) (0.008) (0.005)

Tenant x CDD (7th Dec.) -0.004 -0.004 -0.001 -0.002 -0.002
(0.007) (0.007) (0.008) (0.008) (0.006)

Tenant x CDD (6th Dec.) 0.010 0.010 0.014* 0.010 0.008
(0.008) (0.008) (0.007) (0.009) (0.006)

Tenant x CDD (5th Dec.) 0.003 0.003 0.005 0.004 0.003
(0.007) (0.007) (0.008) (0.008) (0.005)

Tenant x CDD (4th Dec.) 0.009 0.009 0.012 0.010 0.008
(0.011) (0.011) (0.011) (0.012) (0.007)

Tenant x CDD (3rd Dec.) -0.017 -0.017 -0.017 -0.021 -0.012
(0.014) (0.014) (0.014) (0.015) (0.009)

Tenant x CDD (2nd Dec.) 0.005 0.005 0.005 0.002 0.004
(0.010) (0.010) (0.010) (0.010) (0.005)

Tenant x CDD (1st Dec.) -0.010 -0.011 -0.009 -0.017 -0.007
(0.012) (0.012) (0.013) (0.012) (0.007)

Account & Time F.E.s, Acct. Trend YES YES YES YES YES YES
Switchers Controls YES NO YES YES YES YES
Other Covariate Interactions YES NO NO YES YES YES
Covariate Balance Robustness NO NO NO NO YES YES

Observations 40,962 40,962 40,962 40,962 39,153 39,153
Accounts 1,126 1,126 1,126 1,126 1,104 1,104
R-squared (within) 0.08 0.08 0.08 0.09 0.09 0.26

Robust standard errors clustered at the building level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

Log Usage

Notes: Column (1) presents results without decile interactions. Columns (2)-(4) presents results in
the full sample. Column (5) presents a robustness check with balanced building stories, bill length,
and peak consumption. Column (6) presents the same speci�cation as column (5) but with the
logarithm of monthly bill as dependent variable. Robust standard errors clustered at the building
level in parentheses, ***p<0.01, ** p<0.05, * p<0.1.



Table 7: Oster Bounds for Monthly Usage and Bill

Log Usage

Coefficient R-Squared

Uncontrolled -0.021 0.60

Controlled -0.014 0.90

Identified Set Estimate

Lower Bound -0.014 
-0.007Upper Bound

Log Bill
Coefficient R-Squared

Uncontrolled -0.021 0.70
Controlled -0.012 0.94

Identified Set Estimate

Lower Bound -0.012 
-0.006Upper Bound

�1

Notes: The Oster bounds present an identi�ed set of treatment e�ect coe�cients by accounting for
residual omitted variable bias through an equal selection assumption. The omitted variable bias is
assumed to be a function of the treatment coe�cient and R-squared values before after the inclusion
of covariates, as well as the maximum theoretically possible R-squared, namely from a regression
on consumption and all possible observable and unobservable controls. This maximum R-squared
may not be 1 if there is measurement error in the dependent variable.
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Table 8: External and Private Bene�ts Per Firm

Low $ High $    Low $    High $

SO2 8.21 16.33 685 1503

NOx 0.75 1.50 678 1489

PM2.5 0.38 0.76 677 1488

CO2 101.95 202.91 779 1690

Total 111.29 221.50 788 1709

Social'Benefits'Calculations:
New'England'(eGRID'NEWE'region)'emissions'factors,'tons'per'kWh Values

NOx 0.00000026
SO2 0.00000071
CO2 0.00036420

PM2.5 0.00000003

Total'emissions'saved'per'tenantSpaid'firm'during'summer'months,'in'tons,'using'Oster'boundsHigh Low
NOx 0.00500 0.00251
SO2 0.01361 0.00684
CO2 6.99706 3.51544

PM2.5 0.00064 0.00032

Total'damages,'using'Oster'bounds High Low
NOx 1.49937 0.75331
SO2 16.33161 8.20526
CO2 202.91482 101.94763

PM2.5 0.76283 0.38326
221.50863 111.28946

CO2'savings:
High Low

909618 457007

External + Private Benefits  External

Notes: External bene�ts measure the annual per-�rm reduction in pollution damages from lower
electricity consumption. External plus private bene�ts measure the sum of external and private
bene�ts, where private bene�ts are the annual bill savings noted in the text ($677-$1487). The low
and high values are from the Oster identi�ed set estimates of electricity saved, discussed in the text.
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