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This paper examines a class of general optimal stopping problems in which reward functions depend on initial points. Two points
of view on the initial point are introduced: one is to view it as a constant, and the other is to view it as a constant process starting
from the point. Based on the two different views, two versions of the generalized high contact principle are derived. Finally, we
apply the generalized high contact principle to one example.

1. Introduction

The “high contact principle,” first introduced by Samuelson
[1] and McKean [2] and developed in greater depth by
Øksendal [3] and Brekke and Øksendal [4], is a very useful
tool to verify if a given function ℎ(𝑥) is a solution to the
following optimal stopping problem:

𝑢 (𝑥) = sup
𝜏

𝐸 [𝑔 (𝑋
𝑥

𝜏
)] , (1)

where 𝑔 is a bounded continuously differentiable function in
𝑅
𝑘, 𝑋𝑥
𝑡
is an Ito process satisfying the following stochastic

differential equation:

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜎 (𝑋

𝑡
) 𝑑𝐵
𝑡
, 𝑋

0
= 𝑥, (2)

𝑏 : 𝑅
𝑘

→ 𝑅
𝑘 and 𝜎 : 𝑅

𝑘

→ 𝑅
𝑘×𝑚 are Lipschitz conti-

nuous functions with at most linear growth, and 𝐵
𝑡
is an 𝑚-

dimensional standard Brownian motion.
Generally, it is very hard to solve optimal stopping

problem (1) directly.The usual way used in practice to finding
a solution is to use the following two-step procedure. First,
guess a solution based on some economic principles and
common senses and second verify if it is indeed the solution
using the high contact principle.

It is noted that the reward function 𝑔 in optimal stopping
problem (1) is assumed to be independent of the initial point
𝑥. That is, the existing high contact principle can only be
applied to such a restricted case. However, there are many
optimal stopping problems in economics and finance in
which the reward functions do depend on the initial points.

More generally, a typical general optimal stopping prob-
lem has the following form:

𝑢 (𝑥) = sup
𝜏≥0

𝐸 [𝑔 (𝑋
𝑥

𝜏
, 𝑥)] . (3)

The aim of this paper is to derive a generalized high
contact principle which can be used to check if a given
function ℎ is a solution to (3). We use two approaches
for deriving two versions of the generalized high contact
principle: one is more practical from applied perspective and
the other is more intuitive from theoretical perspective.

This paper is organized as follows. In Section 2, we review
the three basic questions of the classical optimal stopping
problems (1). Unfortunately, the answers to the same three
basic questions for the general optimal stopping problems (3)
are negative. Two counterexamples are provided in Section 3.
Our main results, the two versions of the generalized high
contact principle, are presented in Section 4. The application
of the generalized high contact principle to one example
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is examined in Section 5. In the final section, Section 6,
we discuss some remaining questions related to the general
optimal stopping problems.

2. The Reward Functions Not
Involving Initial Points

Following the Brekke and Øksendal approach [4], we begin
this section with the three basic questions of the classical
optimal stopping problem (1).

Question 1. If the optimal value 𝑢 is known, can we find the
continuation region𝐷?

The answer is “yes.” In this case, the continuation region
𝐷 can be defined as follows:

𝐷 = {𝑥 : 𝑢 (𝑥) > 𝑔 (𝑥)} . (4)

Thus, for any 𝑥 ∈ 𝐷,

𝑢 (𝑥) = 𝐸 [𝑔 (𝑋
𝑥

𝜏𝐷

)] , (5)

where 𝜏
𝐷
= inf{𝑠 > 0 : 𝑋

𝑥

𝑠
∉ 𝐷}.

Question 2. If the continuation region 𝐷 is known, can we
find the optimal value 𝑢?

Again the answer is “yes.” In this case, 𝑢(𝑥) is the solution
to the following Dirichlet problem:

A𝑢 (𝑥) = 0 for 𝑥 ∈ 𝐷

lim
𝑥→𝑦

𝑢 (𝑥) = 𝑔 (𝑦) ∀regular 𝑦 ∈ 𝜕𝐷,
(6)

where 𝑦 ∈ 𝜕𝐷 is called regular if 𝜏
𝐷
= 0 a.s. 𝑃𝑥, A is the

characteristic operator of𝑋 defined as follows:

A = ∑

𝑖

𝑏
𝑖
(𝑥)

𝜕

𝜕𝑥
𝑖

+
1

2
∑

𝑖𝑗

𝑎
𝑖𝑗
(𝑥)

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

, 𝑎 = 𝜎𝜎
𝑇

, (7)

and 𝑏 and 𝜎 are given in (2).

Question 3. If both the optimal value 𝑢 and the continuation
region𝐷 are not known, can we find them and how?

In this case, the optimal stopping is a problem of free
boundary. Therefore, an additional boundary condition is
needed to identify the boundary. The usual approach to
identifying the extra boundary condition is the “high contact
principle.”

3. The Reward Functions Involving
Initial Points

In this section, we consider a reward function 𝑔 which
depends not only on 𝑋

𝑡
but also on the initial point 𝑥. That

is, 𝑔 = 𝑔(𝑋
𝑥

𝜏
, 𝑥).

Similarly, we ask the same three questions as in Section 2.

Question 4. If the optimal value 𝑢 is known, canwe define the
continuation region the same as before? In other words, is

𝐷 = {𝑥 : 𝑢 (𝑥) > 𝑔 (𝑥, 𝑥)}? (8)

Unfortunately, the answer is “no.” Next is such a coun-
terexample.

Example 1. Suppose that

𝑢 (𝑥) = sup
𝜏≥0

𝐸𝑔 (𝐵
𝑥

𝜏
, 𝑥) , (9)

where the reward function is

𝑔 (𝐵
𝑥

𝑡
, 𝑥) = 𝑒

−(𝑥𝐵𝑡−𝑎)
2 (10)

and 𝐵
𝑡
denotes 1-dimensional Brownian motion starting at 𝑥;

𝑎 is a constant (𝑥 ̸= 𝑎).
Obviously, 𝑢(𝑥) = 1. If we follow the notion used in

the classical case, then the “continuation region” 𝐷 could be
defined as follows:

𝐷 = {𝑥 : 𝑢 (𝑥) > 𝑔 (𝑥, 𝑥)} . (11)

That is,

𝐷 = {𝑥 : 1 > 𝑒
−(𝑥
2
−𝑎)

2

} = {𝑥 : 𝑥
2

̸= 𝑎} ,

𝜏
𝐷
= inf {𝑡 ≥ 0 : 𝐵

𝑡
= ±√𝑎} .

(12)

However,

𝑢 (𝑥) ̸= 𝐸 [𝑒
−(𝑥𝐵𝜏𝐷
−𝑎)
2

] . (13)

Therefore, the classical notion of the continuation region
cannot be used here. In fact, the continuation region for this
example is

𝐷 (𝑥) = {𝑦 : 𝑦 ̸=
𝑎

𝑥
} (14)

and the optimal stopping time, accordingly, is

𝜏
∗

= 𝜏
𝐷
= inf {𝑡 ≥ 0, 𝐵

𝑡
=
𝑎

𝑥
} . (15)

It is noted that this example shows that both the con-
tinuation region and the optimal stopping time may depend
on initial point 𝑥. Thus, there does not exist a universal
continuation region for every initial point 𝑥 in general.

Question 5. If the continuation region 𝐷 is known, is the
optimal value 𝑢(𝑥) a solution to the following Dirichlet
problem for 𝑥 ∈ 𝐷?We have

A𝑢 (𝑥) = 0 for 𝑥 ∈ 𝐷

lim
𝑥→𝑦

𝑢 (𝑥) = 𝑔 (𝑦, 𝑦) ∀regular 𝑦 ∈ 𝜕𝐷,
(16)

whereA is the characteristic operator of𝑋 defined in (7).
Unfortunately, it is not true either. Next is such a coun-

terexample.

Example 2. Suppose that

𝑢 (𝑥) = sup
𝜏≥0

𝐸𝑔 (𝑋
𝑥

𝜏
, 𝑥) , (17)
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where the reward function is

𝑔 (𝑋
𝑥

𝑡
, 𝑥) = 𝑋

𝑡
+ 𝑥
2

, (18)

𝑋
𝑡
satisfies

𝑑𝑋
𝑡
= 𝑋
𝑡
𝑑𝐵
𝑡
, 𝑋
0
= 𝑥 > 0, (19)

and 𝐵
𝑡
denotes 1-dimensional standard Brownian motion.

Because {𝑋
𝑡
}
𝑡≥0

is a nonnegative martingale, then 𝑢(𝑥) =
𝑥 + 𝑥
2. The characteristic operator of process𝑋

𝑡
is

A (⋅) =
1

2
𝑥
2
𝜕
2

(⋅)

𝜕𝑥2
, (20)

andA𝑢(𝑥) = 𝑥
2

> 0. Therefore, 𝑢(𝑥) is not a solution of the
above Dirichlet problem.

Question 6. If both the optimal value 𝑢 and the continuation
region 𝐷 are not known, can the classical high contact
principle be used to solve for 𝑢?

Clearly, the classical high contact principle stated in [4]
cannot directly be used when the reward function depends
on initial point due to the negative answers to the first two
questions (Questions 4 and 5).

To solve the general optimal stopping problem (3), a new
high contact principle is needed. We call it the generalized
high contact principle whichwill be stated and proved in next
section.

4. The Main Results

We will state and prove our main results in this section. To
this end, we fix a domain 𝐺 (the “solvency” set) in 𝑅𝑘. Let

𝜏
𝐺
= inf {𝑡 > 0 : 𝑋

𝑡
∉ 𝐺} (the bankruptcy time) , (21)

where the process𝑋
𝑡
satisfies (2).

Let 𝜒 denote the set of all stopping times 𝜏 ≤ 𝜏
𝐺
. Consider

the following problem: find 𝑢(𝑥) and 𝜏∗ ∈ 𝜒 such that

𝑢 (𝑥) = sup
𝜏∈𝜒

𝐸 [𝑔 (𝑋
𝑥

𝜏
, 𝑥)] = 𝐸 [𝑔 (𝑋

𝑥

𝜏
∗ , 𝑥)] , (22)

where 𝑔(⋅, 𝑥) is a bounded continuously differentiable func-
tion in 𝑅

𝑘. For simplicity we also assume that the diffusion
process 𝑋

𝑡
in (2) satisfies ∑𝑎

𝑖,𝑗
𝜁
𝑖
𝜁
𝑗
≥ 𝛿∑ 𝜁

2

𝑖
(𝛿 > 0) with

𝑎 = [𝑎
𝑖,𝑗
] = (1/2)𝜎𝜎

𝑇.
Before stating the generalized high contact principle,

let us give a heuristic argument for the optimal stopping
problem.The argument is fairly intuitive, informal, and quite
constructive.

Given 𝑥, let us define a new function

V
𝑥
(𝑦) = sup

𝜏∈𝜒

𝐸 [𝑔 (𝑋
𝑦

𝜏
, 𝑥)] , (23)

where 𝐸 denotes the expectation with respect to the law 𝑃
𝑦

of 𝑋
𝑡
given that 𝑋

0
= 𝑦. Obviously, 𝑢(𝑥) = V

𝑥
(𝑥). For

function V
𝑥
(⋅), first of all, we can see that V

𝑥
(𝑥) ≥ 𝑔(𝑥, 𝑥).

Next we consider a small number 𝛿 > 0:

V
𝑥
(𝑥) ≥ 𝐸 [𝑔 (𝑋

𝑥

𝜏
, 𝑥)] , for 𝛿 ≤ 𝜏 ∈ 𝜒. (24)

Accordingly,

V
𝑥
(𝑥) ≥ sup

𝜏

{𝐸 [𝑔 (𝑋
𝑥

𝜏
, 𝑥)] : 𝛿 ≤ 𝜏 ∈ 𝜒}

= sup
𝜏
󸀠

{𝐸 [𝑔 (𝑋
𝑋
𝑥

𝛿

𝜏
󸀠
, 𝑥)] : 0 ≤ 𝜏

󸀠

∈ 𝜒}

= 𝐸V
𝑥
(𝑋
𝑥

𝛿
) ,

(25)

where the first equality comes from the strong Markov
property of the Ito diffusion process. That is,

𝐸 [𝑔 (𝑋
𝑋
𝑥

𝛿

𝜏
󸀠
, 𝑥)] = 𝐸 [𝑔 (𝑋

𝑋
𝑥

𝛿
,0

𝜏−𝛿
, 𝑥)]

= 𝐸{𝐸[𝑔 (𝑋
𝑦,0

𝜏−𝛿
, 𝑥)]
𝑦=𝑋
𝑥

𝛿

}

= 𝐸{𝐸[𝑔 (𝑋
𝑦,𝛿

𝜏
, 𝑥)]
𝑦=𝑋
𝑥

𝛿

}

= 𝐸 [𝑔 (𝑋
𝑥

𝜏
, 𝑥)] .

(26)

From the stochastic analysis

𝑋
𝑥

𝛿
≅ 𝑥 + 𝛿𝑏 (𝑥) + 𝜎 (𝑥) 𝐵

𝛿
. (27)

Therefore, we have (approximately)

V
𝑥
(𝑥) ≥ 𝐸V

𝑥
[𝑥 + 𝛿𝑏 (𝑥) + 𝜎 (𝑥) 𝐵

𝛿
] . (28)

Assuming that V
𝑥
(⋅) is smooth enough, by Taylor’s formula

and the properties of Brownian motion process,

V
𝑥
(𝑥) ≥ V

𝑥
(𝑥) + 𝛿∑

𝑖

𝑏
𝑖
(𝑥) 𝜕
𝑖
V
𝑥
(𝑥)

+
1

2
∑

𝑖,𝑗

𝐸[𝜎(𝑥)𝐵
𝛿
]
𝑖
[𝜎(𝑥)𝐵

𝛿
]
𝑗
𝜕
2

𝑖𝑗
V
𝑥
(𝑥) + 𝑜 (𝛿)

= V
𝑥
(𝑥) + 𝛿∑

𝑖

𝑏
𝑖
(𝑥) 𝜕
𝑖
V
𝑥
(𝑥)

+
𝛿

2
∑

𝑖,𝑗

𝑎
𝑖𝑗
(𝑥) 𝜕
2

𝑖𝑗
V
𝑥
(𝑥) + 𝑜 (𝛿) .

(29)

Consequently after cancellation and letting 𝛿 → 0, we get

∑𝑏
𝑖
(𝑥) 𝜕
𝑖
V
𝑥
(𝑥) +

1

2
𝑎
𝑖𝑗
(𝑥) 𝜕
2

𝑖𝑗
V
𝑥
(𝑥) ≤ 0. (30)

In this case, on the one hand, it is similar to the variational
inequality in the classical case; this suggests to us that this
problem can be solved by the “high contact principle”; on the
other hand, it is different from the classical case, because 𝑥 in
the reward function is fixed.

Next is our key result which rigorously justifies the above
idea.

Theorem 3. Let 𝑋
𝑡
,𝑔 be described as at the beginning of this

section. For any given initial point 𝑥, if there exist an open set
𝐷(𝑥) ⊂ 𝑅

𝑘 with 𝐶1-boundary and a function 𝑞
𝑥
(𝑦) on 𝐷(𝑥)



4 Mathematical Problems in Engineering

such that (i) 𝑞
𝑥
(⋅) ∈ 𝐶

1

(𝐷(𝑥)) ∩ 𝐶
2

(𝐷(𝑥)), 𝑔(⋅, 𝑥) ∈ 𝐶
2

(𝐺 \

𝐷(𝑥)),

𝑞
𝑥
(𝑦) ≥ 𝑔 (𝑦, 𝑥) , ∀𝑦 ∈ 𝐷 (𝑥) ,

A𝑔 (𝑦, 𝑥) ≤ 0, ∀𝑦 ∈ (𝐺 \ 𝐷 (𝑥)) ;

(31)

and (ii) (the second order condition) (𝐷(𝑥), 𝑞) solves the
following free boundary problem:

A𝑞
𝑥
(𝑦) = 0, ∀𝑦 ∈ 𝐷 (𝑥) ,

𝑞
𝑥
(𝑦) = 𝑔 (𝑦, 𝑥) , ∀𝑦 ∈ 𝜕𝐷 (𝑥) ,

∇
𝑦
𝑞
𝑥
(𝑦) = ∇

𝑦
𝑔 (𝑦, 𝑥) , ∀𝑦 ∈ 𝜕𝐷 (𝑥) ∩ 𝐺,

(32)

then extending 𝑞
𝑥
(𝑦) to all of 𝐺 by putting 𝑞

𝑥
(𝑦) = 𝑔(𝑦, 𝑥) for

𝑦 ∈ 𝐺 \ 𝐷(𝑥), one has

𝑞 (𝑥) = 𝑢 (𝑥) = sup
𝜏∈𝜒

𝐸 [𝑔 (𝑋
𝑥

𝜏
, 𝑥)] = 𝐸 [𝑔 (𝑋

𝑥

𝜏
∗ , 𝑥)] , (33)

where 𝑞(𝑥) = 𝑞
𝑥
(𝑥),

𝜏
∗

(𝑥) = {
𝜏
𝐷(𝑥)

= inf {𝑠 ≥ 0 : 𝑋
𝑥

𝑠
∉ 𝐷 (𝑥)} , 𝑖𝑓 𝑥 ∈ 𝐷 (𝑥) ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝐷 (𝑥) = {𝑦 : 𝑞
𝑥
(𝑦) > 𝑔 (𝑦, 𝑥)} .

(34)

Proof. Using the generalized Dynkin formula in [4] for the
diffusion process𝑋𝑦

𝑡
, we have

𝐸 [𝑞
𝑥
(𝑋
𝑦

𝜏𝑉

)] = 𝑞
𝑥
(𝑦) + 𝐸∫

𝜏𝑉

0

A𝑞
𝑥
(𝑋
𝑦

𝑢
) 𝑑𝑢 (35)

for all 𝑦 ∈ 𝐺, where 𝜏
𝑉
is the first exit time of 𝑉 ⊂ 𝐺.

According to conditions (i) and (ii) ofA𝑞
𝑥
(⋅), we get

𝐸 [𝑞
𝑥
(𝑋
𝑦

𝜏𝑉

)] ≤ 𝑞
𝑥
(𝑦) , ∀𝑦 ∈ 𝐺, (36)

and combine it with Theorem 12.16 in [5]; then, 𝑞
𝑥
(⋅) is

a superharmonic function. Owing to the condition that
𝑞
𝑥
(𝑦) ≥ 𝑔(𝑦, 𝑥), so 𝑞

𝑥
(⋅) is a superharmonic majorant of 𝑔.

We know that V
𝑥
(𝑦) in (23) is indeed the least superharmonic

majorant of 𝑔. So

𝑞
𝑥
(𝑦) ≥ V

𝑥
(𝑦) , ∀𝑦 ∈ 𝐺. (37)

When 𝑦 = 𝑥, 𝑞
𝑥
(𝑥) ≥ 𝑢(𝑥).

To the opposite inequality, we note by condition (ii) that

𝑞
𝑥
(𝑦) = 𝐸 [𝑔 (𝑋

𝑦

𝜏𝐷(𝑥)

, 𝑥)] , (38)

where 𝜏
𝐷(𝑥)

= inf{𝑠 > 0 : 𝑋
𝑦

𝑠
∉ 𝐷(𝑥)} and 𝐷(𝑥) = {𝑦 :

𝑞
𝑥
(𝑦) > 𝑔(𝑦, 𝑥)}. From the definition of the V

𝑥
(𝑦), then

𝑞
𝑥
(𝑦) ≤ V

𝑥
(𝑦) , ∀𝑦 ∈ 𝐺. (39)

When 𝑦 = 𝑥, 𝑞
𝑥
(𝑥) ≤ 𝑢(𝑥). Thus, we get (33) for all 𝑥 ∈ 𝐺 as

well as 𝜏∗ defined in (34).

It is noted thatTheorem 3 tells us how to solve the general
optimal stopping problem. First, fix 𝑥 in the reward function
and change the initial point of Ito diffusion process from
𝑥 to 𝑦; then, the optimal value function becomes a new
function V

𝑥
(𝑦) as (23) and get the form of V

𝑥
(𝑦) in terms of

the conditions (i) and (ii); second, find 𝑢(𝑥) by letting 𝑦 = 𝑥

in V
𝑥
(𝑦) and the optimal stopping time defined in (34).
Similar to [6], the case in Theorem 3 can be generalized

to the time-inhomogeneous case involving an integral.
So far we have introduced our first point of view on the

original initial point 𝑥, that is, to view it as a parameter or a
constant. Next, we will introduce our second point of view on
it. That is, instead of viewing it as a constant, we will view it
as a process starting from 𝑥.

To this end, we change the initial point of the Ito diffusion
process𝑋

𝑡
from 𝑥 to 𝑦:

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜎 (𝑋

𝑡
) 𝑑𝐵
𝑡
, 𝑋

0
= 𝑦, (40)

and define a constant Ito diffusion process 𝑍
𝑡
as follows:

𝑑𝑍
𝑡
= 0, 𝑍

0
= 𝑥. (41)

Put them together and we have a new Ito diffusion process
𝑌
𝑡
= 𝑌
(𝑦,𝑥)

𝑡
in 𝑅2𝑘 by

𝑑𝑌
𝑡
= (

𝑏 (𝑋
𝑡
)

0
) 𝑑𝑡 + (

𝜎 (𝑋
𝑡
)

0
) 𝑑𝐵
𝑡
= 𝑏̂ (𝑌

𝑡
) 𝑑𝑡 + 𝜎̂ (𝑌

𝑡
) 𝑑𝐵
𝑡
,

(42)

where

𝑏̂ (𝜂) = 𝑏̂ (𝜉, 𝑥) = (
𝑏 (𝜉)

0
) ∈ 𝑅

2𝑘×1

,

𝜎̂ (𝜂) = 𝜎̂ (𝜉, 𝑥) = (
𝜎 (𝜉)

0
) ∈ 𝑅

2𝑘×𝑚

(43)

with 𝜂 = (𝜉, 𝑥) ∈ 𝑅
𝑘

× 𝑅
𝑘.

Thus, 𝑌
𝑡
is an Ito diffusion process starting at (𝑦, 𝑥). Let

𝑃
(𝑦,𝑥) denote the probability law of𝑌

𝑡
and let𝐸(𝑦,𝑥) denote the

expectation with respect to 𝑃(𝑦,𝑥). In terms of 𝑌
𝑡
, (22) can be

rewritten as

𝑢 (𝑥) = 𝑢 (𝑥, 𝑥) = sup
𝜏∈𝜒

𝐸
(𝑥,𝑥)

[𝑔 (𝑋
𝜏
, 𝑥)]

= sup
𝜏∈𝜒

𝐸
(𝑥,𝑥)

[𝑔 (𝑌
𝜏
)] = 𝐸

(𝑥,𝑥)

[𝑔 (𝑌
𝜏
∗)]

(44)

which is a special case of the problem

𝑢 (𝑦, 𝑥) = sup
𝜏∈𝜒

𝐸
(𝑦,𝑥)

[𝑔 (𝑋
𝜏
, 𝑥)]

= sup
𝜏∈𝜒

𝐸
(𝑦,𝑥)

[𝑔 (𝑌
𝜏
)] = 𝐸

(𝑦,𝑥)

[𝑔 (𝑌
𝜏
∗)] ,

(45)

where the optimal stopping time associated with 𝑢(𝑦, 𝑥) is
denoted by 𝜏∗.

From the above, we have the second version of the
generalized high contact principle.
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Theorem4. Let𝑔 be described as the above, let𝑋
𝑡
be described

as in (40), and let𝐺 ⊂ 𝑅
𝑘 be an open set and denote𝑊 = 𝐺×𝐺.

For any given initial point (𝑦, 𝑥), if there exist an open set𝐷 ⊂

𝑅
2𝑘 with 𝐶1-boundary and a function 𝜙(𝑦, 𝑥) on 𝐷 such that

(i) 𝜙 (⋅, ⋅) ∈ 𝐶
1

(𝐷) ∩ 𝐶
2

(𝐷), 𝑔(⋅, ⋅) ∈ 𝐶2(𝑊 \ 𝐷),

𝜙 (𝑦, 𝑥) ≥ 𝑔 (𝑦, 𝑥) , ∀ (𝑦, 𝑥) ∈ 𝐷,

A𝑔 (𝑦, 𝑥) ≤ 0, ∀ (𝑦, 𝑥) ∈ (𝐺 \ 𝐷) ;

(46)

and (ii) (the second order condition) (𝐷, 𝜙) solves the following
free boundary problem:

A𝜙 (𝑦, 𝑥) = 0, ∀ (𝑦, 𝑥) ∈ 𝐷,

𝜙 (𝑦, 𝑥) = 𝑔 (𝑦, 𝑥) , ∀ (𝑦, 𝑥) ∈ 𝜕𝐷,

∇
𝑦
𝜙 (𝑦, 𝑥) = ∇

𝑦
𝑔 (𝑦, 𝑥) , ∀ (𝑦, 𝑥) ∈ 𝜕𝐷 ∩𝑊,

(47)

then extending 𝜙(𝑦, 𝑥) to all of𝑊 by putting 𝜙(𝑦, 𝑥) = 𝑔(𝑦, 𝑥)

for (𝑦, 𝑥) ∈ 𝑊 \ 𝐷 and letting 𝑦 = 𝑥, one has

𝜙 (𝑥, 𝑥) = 𝑢 (𝑥) = sup
𝜏∈𝜒

𝐸
(𝑥,𝑥)

[𝑔 (𝑋
𝜏
, 𝑥)] = 𝐸

(𝑥,𝑥)

[𝑔 (𝑋
𝜏
∗ , 𝑥)] ,

(48)

where

𝜏
∗

= {
𝜏
𝐷
= inf {𝑠 ≥ 0; (𝑋

𝑥

𝑠
, 𝑥) ∉ 𝐷} , 𝑖𝑓 (𝑥, 𝑥) ∈ 𝐷,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝐷 = {(𝑦, 𝑥) : 𝜙 (𝑦, 𝑥) > 𝑔 (𝑦, 𝑥)} .

(49)

Proof. Because𝑋
𝑡
is uniformly elliptic in𝐺 and by conditions

(𝑖), (𝑖𝑖), and (𝑖𝑖𝑖)󸀠 of Theorem 3 in [4], we get

𝜙 (𝑦, 𝑥) = 𝑢 (𝑦, 𝑥) = sup
𝜏∈𝜒

𝐸
(𝑦,𝑥)

[𝑔 (𝑋
𝜏
, 𝑥)]

= 𝐸
(𝑦,𝑥)

[𝑔 (𝑌
𝜏
∗)] , ∀ (𝑦, 𝑥) ∈ 𝑊,

(50)

where

𝜏
∗

= {
𝜏
𝐷
= inf {𝑠 ≥ 0; (𝑋

𝑦

𝑠
, 𝑥) ∉ 𝐷} , if (𝑦, 𝑥) ∈ 𝐷,

0, otherwise,

𝐷 = {(𝑦, 𝑥) : 𝜙 (𝑦, 𝑥) > 𝑔 (𝑦, 𝑥)} .

(51)

Let 𝑦 = 𝑥, and we get the result.

We will end this section with a comparison of the
two versions of the generalized high contact principle. In
Theorem 4 we view 𝑥 in the reward function as a degenerate
diffusion process and then the problem becomes the classical
case with two diffusion processes.Thismethod ismuch easier
to understand theoretically, but it leads to double the number
of the dimensions of the domain of the test function and
accordingly the continuation region. Generally, the higher
the dimension of the domain is, the more difficult it is to
guess the solution. Thus, the first version of the generalized
high contact principle, Theorem 3, is much easier to use than
the second version of the generalized high contact principle,
Theorem 4.

5. One Application

In this section, we apply the first version of generalized high
contact principle to one example: the perpetual American
put.

Example 5 (the perpetual American put). Suppose a stock
value process is as follows:

𝑑𝑆
𝑡
= 𝑟𝑆
𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝐵
𝑡
, 𝑆

0
= 𝑥, (52)

where 𝐵
𝑡
denotes 1-dimensional standard Brownian motion

and 𝑟, 𝜎 are constant.
The perpetual American put option is a contract signed at

time 0 which entitles the buyer to sell one unit of the stock at
any time 𝑡 ≥ 0 at a price 𝐾 = 𝑓(𝑥) > 0 (the exercising price
is a function of 𝑥). So his discounted reward is 𝑒−𝑟𝑡(𝑓(𝑥) −
𝑋
𝑡
)
+ if exercising the option at time 𝑡. To determine such an

optimal striking time 𝜏∗, wemust solve the following optimal
stopping problem:

𝑢 (𝑥) = sup
𝜏∈T

𝐸 [𝑒
−𝑟𝜏

(𝑓(𝑥) − 𝑆
𝑥

𝜏
)
+

𝐼
{𝜏<∞}

]

= 𝐸 [𝑒
−𝑟𝜏
∗

(𝑓(𝑥) − 𝑆
𝑥

𝜏
∗)
+

𝐼
{𝜏
∗
<∞}

] ,

(53)

whereT = {all stopping times that take value in [0,∞)}.
It is noted that the reward function

𝑒
−𝑟𝜏

(𝑓(𝑥) − 𝑆
𝑥

𝜏
)
+

𝐼
{𝜏<∞}

(54)

depends on the initial point 𝑥.Thus, the classical high contact
principle cannot be used to solve optimal stopping problem
(53).

Because no point can be exercised if 𝑆𝑥
𝜏
> 𝑓(𝑥),

𝑢 (𝑥) = sup
𝜏∈T

𝐸 [𝑒
−𝑟𝜏

(𝑓 (𝑥) − 𝑆
𝑥

𝜏
) 𝐼
{𝜏<∞}

] . (55)

First we fix 𝑥 in the reward function and change the initial
value of the diffusion process to 𝑦; that is,

V
𝑥
(𝑦) = sup

𝜏∈T

𝐸 [𝑒
−𝑟𝜏

(𝑓 (𝑥) − 𝑆
𝑦

𝜏
) 𝐼
{𝜏<∞}

] . (56)

From direct calculation, we get

V
𝑥
(𝑦) =

{{

{{

{

(𝑓 (𝑥) − 𝑦
∗

) (
𝑦

𝑦∗
)

−(2𝑟/𝜎
2
)

, ∀𝑦 ≥ 𝑦
∗

,

𝑓 (𝑥) − 𝑦, otherwise,
(57)

where 𝑦∗ = (2𝑟/(2𝑟 + 𝜎
2

))𝑓(𝑥). Let 𝑦 = 𝑥, and we get the
solution

𝑢 (𝑥) =

{{

{{

{

(𝑓 (𝑥) − 𝑦
∗

) (
𝑥

𝑦∗
)

−(2𝑟/𝜎
2
)

, ∀𝑥 ≥ 𝑦
∗

,

𝑓 (𝑥) − 𝑥, otherwise,

𝜏
∗

(𝑥) = {
𝜏
𝐷
= inf {𝑠 ≥ 0 : 𝑋

𝑥

𝑠
≤ 𝑦
∗

} , if all 𝑥 ≥ 𝑦,

0, otherwise,

(58)

where 𝑦∗ = (2𝑟/(2𝑟 + 𝜎
2

))𝑓(𝑥).
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6. Some Remaining Problems

We will end the paper with some comments on some
remaining questions.

It is well known that it is very hard to solve a typical
partial differential equation in general. However, as we know,
function 𝑢(𝑥) = 𝐸[𝑔(𝑋

𝑥

𝑡
)] is the solution of the following

partial differential equation:

A𝑢 = 0. (59)

That is, solving the classical optimal stopping problem (1)
provides a method for solving a class of partial differential
equations (59).

Moreover, (59) plays a key role in the “high contact
principle” since it sets up the connection between optimal
stopping problem and free boundary problem. Equation (59)
provides a general method for guessing a solution to the
classical optima stopping problem (1) since the solution to (1)
must be a solution to (59).

Likewise, we also want to know what kind of partial
differential equation 𝑢(𝑥) = 𝐸[𝑔(𝑋

𝑥

𝑡
, 𝑥)] should satisfy.

Unfortunately, we have not succeeded in finding such a PDE
yet. Similar to the classical case, there are also two reasons
why we are interested in the PDE. One is that it provides
a method for guessing a solution candidate to the general
optimal stopping problem (3) since the solution to (3)must be
a solution to the PDE if it exists. The other one is that solving
the general optimal stopping (3) would provide a method for
solving a class of such PDEs.
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