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Abstract Aim of this work is to characterise and compute the set of initial
conditions for a system of controlled diffusion processes which allow to reach a
terminal target satisfying pointwise state constraints with a given probability of
success. Defining a suitable auxiliary optimal control problem, the characterization
of this set is related to the solution of a particular Hamilton-Jacobi-Bellman
equation. A semi-Lagrangian numerical scheme is defined and its convergence to
the unique viscosity solution of the equation is proved. The validity of the proposed
approach is then tested on some numerical examples.
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1 Introduction

We consider the control of stochastic differential equations in R
d of the following

form{
dX(s) = b(s,X(s), u(s))ds + σ(s,X(s), u(s))dB(s), ∀s ∈ [t, T ]
X(t) = x

. (1)

Given a fixed time horizon T > 0, we aim to characterize the set of initial states
from which, with an assigned level of probability, it is possible to reach a target set
at time T satisfying some state constraints along the whole interval [t, T ].
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More precisely, let C and K be two non-empty subsets of R
d representing

respectively the target set and the set of state constraints and let ρ ∈ [0, 1). We
define the state constrained backward reachable set under probability of success ρ as
the set, hereafter denoted by Ω

ρ
t , of initial points x ∈ R

d for which the probability
to steer the system (1) towards C maintaining the dynamics in the set K is higher
than ρ, i.e.

{
x ∈ R

d : ∃u ∈ U, P
[
Xu

t,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xu
t,x(T ) ∈ C

]
> ρ

}
,

whereXu
t,x(·) represents the strong solution to (1) associated with the control u ∈ U.

Assumptions on the coefficients in (1) and on the set of controls U will be made
clear in the next section. Such backward reachable sets play an important role
in many applications, as the set Ω

ρ
t can be interpreted as a “safety region” for

reaching C remaining in the set K, with confidence ρ. It turns out that the set Ω
ρ
t

can be characterized by means of the so-called level set approach. At the basis
of this approach there is the idea to look at the set of interest, the set Ω

ρ
t in our

case, as the level set of a certain function solution of a suitable partial differential
equation (PDE). Such a characterization of the set is particularly useful in view of
its numerical approximation, since it opens the way to the use of a wide choice
of numerical methods designed for PDEs. Originally introduced in [25] to model
front propagation problems, this approach immediately resulted in a very powerful
method for studying backward reachable sets of continuous non-linear dynamical
systems under very general conditions. In [16, 24] this idea is used to describe
the reachable sets for deterministic problems. The link between stochastic target
problems and level set approach is established in [26]. More recently, the level
set approach has been extended to the case of state-constrained controlled systems
[9, 10] and probabilistic reachability problems [6].

In our case, we will show that it is straightforward to see that

Ω
ρ
t =

{
x ∈ R

d : ϑ(t, x) > ρ

}
, (2)

where ϑ is the value function associated to the following optimal control problem:

ϑ(t, x) := sup
u∈U

E

[
1C(Xu

t,x(T ))
∧

min
θ∈[t,T ]1K (Xu

t,x(θ))

]
, (3)

with the standard notation a ∧ b := min(a, b). In particular, equality (2) charac-
terises the set Ωρ

t for t ∈ [0, T ] by means of the function ϑ .
We point out that, in the discrete time setting, a similar approach has been consid-

ered in [1, 2, 22]. In this case, the value function is obtained recursively by solving
the dynamic programming principle. In the present paper, we are interested in the
approximation of the probabilistic backward reachable sets for time-continuous
stochastic processes by PDE techniques. In the non controlled framework, an alter-
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native numerical algorithm consist in using Monte Carlo simulations to generate a
set of trajectories starting from a given initial position. The percentage of trajectories
reaching the target without violation of the state constraints gives an approximation
of the probability of success when starting from this position. On the other hand,
for linear stochastic systems, a bound for the probability of hitting a target can
be obtained by using the enclosing hulls of the probability density function for
time intervals, see [3, 4]. However, it is worth noticing that these approaches are
used to calculate the probabilities of success but do not allow to define the entire
set of points that have the same given probability. In addition, Monte-Carlo based
methods often require a large number of simulations to obtain a good accuracy. We
will use such simulations in Sect. 5 as a comparison to validate our approach. In
the context of financial mathematics, the problem of characterizing the backward
reachable set with a given probability was first introduced by Föllmer and Leukert
[18]. This problem was also studied and converted into the class of stochastic target
problems by Touzi, Bouchard and Elie in [12]. However in these references the
possible presence of state constraints is not taken into account.

In order to apply a dynamic programming approach and characterize the value
function ϑ as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB)
equation we face two main difficulties. First, the discontinuous cost functional
given by the presence of the indicator functions would require to make use of
the notion of discontinuous viscosity solutions. Establish uniqueness results in
such a framework is usually a very hard task, so we propose here to work on
a regularized version of problem (3). Second, the non commutativity between
expectation and maximum operator makes problem (3) not satisfying the natural
“Markovian structure” necessary to apply the dynamic programming arguments.
We here follow the ideas in [8, 10, 19, 21] and define an auxiliary optimal control
problem in an augmented state space and derive the HJB equation for this problem
recovering the value function ϑ solution of the original problem at a later stage. The
obtained HJB equation is defined in a domain and completed with mixed Dirichlet
and oblique derivative boundary conditions. Derivative conditions (to be considered
in the viscosity sense, see Definition 1) typically arise dealing with running maxima
in the cost functional (see also [8, 10]), while the Dirichlet condition will be
naturally satisfied pointwise by our value function. We discuss the numerical
approximation of the obtained HJB equation. We introduce a semi-Lagrangian (SL)
approximation scheme which incorporates the aforementioned boundary conditions
and we prove its convergence to the viscosity solution following the framework in
[7]. We recall that SL scheme for second order HJB equations have been introduced
by Menaldi in [23] and then studied by Camilli and Falcone [13]. We refer to [15]
and the references therein for an overview. Derivative boundary conditions have
been added to the scheme in [10], while the case of mixed Dirichlet-derivative
conditions has been recently studied in [21].

The paper is organised as follows. In Sect. 2 we present the problem and
give some preliminary results. The regularized problem is introduced in Sect. 2.2.
Section 3 is devoted to the development of the dynamic programming arguments
and the HJB characterization. In Sect. 4 we discuss the numerical aspects and state
the main convergence result. Numerical tests are presented in Sect. 5.
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2 Formulation of the Problem and Preliminary Results

2.1 Problem Formulation

Let {Ω,Ft , {Ft }t≥0,P} be a filtered probability space and B(·) a given p-
dimensional Brownian motion. Let T > 0. We denote by U the set of all
progressively measurable processes valued in U ⊂ R

m, U compact set. For any
u ∈ U, let us consider the following system of stochastic differential equations
(SDEs) in Rd :

{
dX(s) = b(s,X(s), u(s))ds + σ(s,X(s), u(s))dB(s), ∀s ∈ [t, T ]
X(t) = x.

(4)

The following classical assumptions will be considered on the coefficients b

and σ :

(H1) σ : [0, T ]×R
d ×U → R

d×p and b : [0, T ]×R
d ×U → R

d are continuous
functions and there exists constant L > 0 such that

|b(t, x, u) − b(t, y, u)| + |σ(t, x, u) − σ(t, y, u)| <= L|x − y|.

for any t ∈ [0, T ], x, y ∈ R
d and u ∈ U .

It is well known that, under assumption (H1), for any u ∈ U there is a unique strong
solution to (4) [27, p. 42, Thm. 6.3]. We denote by Xu

t,x(·) such a solution.
Let C and K be nonempty open sets in R

d , representing respectively the target
set and the set of state constraints. Let ρ ∈ [0, 1) an assigned value of success
probability.We define the backward reachable set under probability of success ρ, as
the set Ωρ

t of initial points x ∈ R
d from which it starts a trajectory Xu

t,x(·) such that
the probability to reach the target C at the final instant T satisfying the constraintK
in the interval [t, T ] is grater than ρ, i.e.:

Ω
ρ
t :=

{
x ∈ R

d : ∃u ∈ U, P
[
Xu

t,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xu
t,x(T ) ∈ C

]
> ρ

}
.

For a given set O ⊆ R
d we will denote by 1O its indicator function, i.e.

1O(x) :=
{
1 if x ∈ O

0 otherwise.
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One can easily verify that

1C(Xu
t,x(T ))

∧
min

θ∈[t,T ]1K (Xu
t,x(θ)) =

⎧⎨
⎩1 if Xu

t,x(θ) ∈ K ∀θ ∈ [t, T ] and Xu
t,x(T ) ∈ C

0 otherwise,
(5)

i.e. the expression on the left hand side of (5) is an indicator function for the event

Xu
t,x(θ) ∈ K ∀θ ∈ [t, T ] and Xu

t,x(T ) ∈ C.

It follows that, for any u ∈ U, P
[
Xu

t,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xu
t,x(T ) ∈ C

]
can be expressed by

E

[
1C(Xu

t,x(T ))
∧

min
θ∈[t,T ]1K (Xu

t,x(θ))

]
.

As a consequence, it is possible to describe the set Ω
ρ
t using optimal control tools

just looking at the evolution of the level sets of the following value function:

ϑ(t, x) := sup
u∈U

E

[
1C(Xu

t,x(T ))
∧

min
θ∈[t,T ]1K (Xu

t,x(θ))

]
. (6)

Proposition 1 Let assumption (H1) be satisfied. Then, for t ∈ [0, T ], we have:

Ω
ρ
t = {x ∈ R

d : ϑ(t, x) > ρ}.

Proof If x ∈ Ω
ρ
t , thanks to equality (5)

E

[
1C(Xu

t,x(T ))
∧

min
θ∈[t,T ]1K (Xu

t,x(θ))

]
> ρ

for some control u ∈ U and it follows ϑ(t, x) > ρ.
Let us now suppose that ϑ(t, x) > ρ. By the definition of the supremum and the

fact that U is a non empty set, one has that, for some control ū ∈ U,

E

[
1C(Xū

t,x(T ))
∧

min
θ∈[t,T ]1K (Xū

t,x(θ))

]
> ρ

and then, using again (5), x ∈ Ω
ρ
t .

Motivated by this result, we are going to focus on the characterization and
numerical approximation of the function ϑ . Problem (6) is an optimal control
problem with a discontinuous cost in a “minimum form”. This is not a standard
formulation in optimal control theory for two main reasons: first, the discontinuity
of the cost functional prevents the characterization of (6) as the unique viscosity
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solution of a HJB equation, second the loss of Markovian structure in the cost, due
to the presence of the minimum operator inside the expectation, makes the dynamic
programming arguments not directly applicable. We discuss the first issue in the
next section.

2.2 Regularized Problem

The discontinuity introduced by the presence of the indicator functions and the
consequent necessity of dealing with the notion of discontinuous viscosity solutions
(see for instance [17, Section VII.4] for their definition) pose nontrivial issues
when attempting to establish uniqueness results for the associated HJB equation.
To overcome this difficulty, from now on we will work with a regularized version
of the cost functional in (6). In particular, observing that the indicator functions 1C
and 1K can be written as

1C(z) =
{
1 if d∂C(z) < 0

0 if d∂C(z)≥0
, 1K(z) =

{
1 if d∂K(z) < 0

0 if d∂K(z)≥0

where d∂C and d∂K are respectively the signed distance function to ∂C and ∂K, we
consider the following regularized functions φε

C and φε
K (see Fig. 1):

φε
C(x) := min(1,max(0,−1

ε
d∂C(x))), φε

K(x) := min(1,max(0,−1

ε
d∂K (X)))

and the optimal control problem

ϑε(t, x) := sup
u∈U

E

[
φε
C(Xu

t,x(T ))
∧

min
θ∈[t,T ] φ

ε
K(Xu

t,x(θ))

]
. (7)

Fig. 1 Regularization of the
indicator function in the case
O = (−∞, 0)
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Remark 1 Note that the choice of φε
. is such that φε

. ≤ 1. which implies

ϑε(t, x) > ρ ⇒ ϑ(t, x) > ρ.

Hence if we are able to find a numerical approximation ϑ̃ε of ϑε such that |ϑ̃ε −
ϑε | ≤ η for some η ≥ 0, we will have ϑ̃ε(t, x) > ρ + η ⇒ ϑε(t, x) > ρ ⇒
ϑ(t, x) > ρ.

This regularization allow us to deal with a continuous cost and also to obtain the
following regularity result for the associated value function:

Proposition 2 Let assumption (H1) be satisfied and let ε > 0. The value function
ϑε is Lipschitz continuous with respect to x and 1

2 -Hölder continuous with respect
to t , i.e. there exists a constant Lε > 0 such that

|ϑε(t, x) − ϑε(s, y)| ≤ Lε

(|x − y| + |t − s| 12 (1 + |x| + |y|))
for any t, s ∈ [0, T ], x, y ∈ R

d .

Proof Let 0 ≤ t ≤ s ≤ T , x, y ∈ R
d . Thanks to the property of minimum operator

|(a ∧ b) − (c ∧ d)| ≤ |a − c| ∨ |b − d|, one has:

|ϑε(t, x) − ϑε(t, y)| (8)

≤ sup
u∈U

E

[∣∣(φε
C(Xu

t,x(T ))
∧

min
θ∈[t,T ] φ

ε
K(Xu

t,x(θ))
) − (

φε
C(Xu

t,y(T ))
∧

min
θ∈[t,T ] φ

ε
K(Xu

t,y(θ))
)∣∣]

≤ sup
u∈U

E

[∣∣φε
C(Xu

t,x (T )) − φε
C(Xu

t,y(T ))
∣∣ ∨ max

θ∈[t,T ]
∣∣φε

K(Xu
t,x(θ)) − φε

K(Xu
t,y (θ))

∣∣]

and

|ϑε(t, x) − ϑε(s, x)| (9)

≤ sup
u∈U

E

[∣∣φε
C(Xu

s,Xu
t,x(s)

(T )) − φε
C(Xu

s,x(T ))
∣∣∨ max

θ∈[t,s]
∣∣φε

K (Xu
t,x(θ)) − φε

K (X)
∣∣

∨
max

θ∈[s,T ]
∣∣φε

K (Xu
s,Xu

t,x(s)(θ)) − φε
K (Xu

s,x(θ))
∣∣].

It can be easily verified that φε
C and φε

K are Lipschitz continuous functions with
Lipschitz constant 1/ε. Then by (8) and (9) we get

|ϑε(t, x) − ϑε(t, y)| ≤ 1

ε
sup
u∈U

E

[
max

θ∈[t,T ]
∣∣Xu

t,x(θ) − Xu
t,y(θ)

∣∣]

and

|ϑε(t, x) − ϑε(s, x)| ≤ 1

ε
sup
u∈U

E

[
max

θ∈[t,s]
∣∣Xu

t,x(θ) − x
∣∣ ∨ max

θ∈[s,T ]
∣∣Xu

s,Xu
t,x(s)

(θ) − x
∣∣].
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Under assumption (H1), there exists some constantC > 0 such that for any 0 ≤ t ≤
s ≤ T , x, y ∈ R

d the unique strong solution to Eq. (4) satisfies

E

[
sup

θ∈[t,s]

∣∣∣Xu
t,x(θ) − Xu

t,y(θ)

∣∣∣2 ]
≤ C|x − y|2, (10)

E

[
sup

θ∈[t,s]
∣∣Xu

t,x(θ) − Xu
s,x(θ)

∣∣2 ]
≤ C(1 + |x|2) |t − s| (11)

(see for instance [27, Theorem 6.3]).
Hence, the result follows just taking Lε := C/ε.

Remark 2 It has been proved in [6, Theorem 3.1] that, if K = R
d and C is a

non empty, convex set with a C1 regular boundary, under the uniform ellipticity
condition, for some α > 0, ∀(t, x, u) ∈ (0, T ) × R

d × U ,

σ(t, x, u)σ (t, x, u)T ≥ α1d , (12)

where 1d is the identity matrix, the following holds:

|ϑ(t, x) − ϑε(t, x)| ≤ C
1 + |x|2 + | log ε|

(T − t)d
ε (13)

for some constant C depending only on α and the constants in assumption (H1). We
conjecture that analogous estimates can be obtained in the general case K �= R

d ,
but a rigorous proof of this fact is still material of ongoing research.

3 Dynamic Programming and Hamilton-Jacobi-Bellman
Equation

Aim of this section is to characterize the function ϑε as a (viscosity) solution to a
suitable HJB equation. For doing this, we closely follow the dynamic programming
arguments recently developed in [10, 19] for optimal control problems with a cost
depending on a running maximum. Therefore, in order to directly use those results
in our framework, we will rewrite the optimal control problem (7) by means of the
cost functional

J (t, x, u) := E

[
− φε

C(Xu
t,x(T ))

∨
max

θ∈[t,T ] −φε
K(Xu

t,x(θ))

]
(14)

such that the following holds

ϑε(t, x) = − inf
u∈U

J (t, x, u).
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The presence of the maximumoperator inside the expectation,makes the cost in (14)
non-Markovian preventing the direct use of the Dynamic Programming Principle
(DPP), which is the first fundamental result towards the HJB characterisation. A
classical strategy to overcome this difficulty consists in adding an auxiliary variable
y that, roughly speaking, gets rid of the non-Markovian component of the cost. This
has been originally used in [8] where an approximation technique of the L∞-norm
is used, whereas in [10, 19] the HJB equation is derived without making use of any
approximation.

Let us introduce the following value function:

wε(t, x, y) := inf
u∈U

E

[
− φε

C(Xu
t,x(T ))

∨
max

θ∈[t,T ] −φε
K(Xu

t,x(θ))
∨

y

]
. (15)

Defining the process

Yu
t,x,y(.) := max

s∈[t,.] −φε
K(Xu

t,x(s))
∨

y,

the value function (15) can also be written as

wε(t, x, y) = inf
u∈U

E

[
− φε

C(Xu
t,x(T ))

∨
Yu

t,x,y(T )

]
.

Observe that the following property holds:

ϑε(t, x) = −wε(t, x,−1), (16)

so from now on only the optimal control problem (15) will be taken into account,
since the corresponding value of the function ϑε can be derived by the previous
equality. The following property is satisfied:

Proposition 3 Let assumption (H1) be satisfied. Then, there exists a constant C >

0 such that for any ε > 0, t, s ∈ [0, T ], (x, y), (x ′, y ′) ∈ R
d+1 one has

|wε(t, x, y) − wε(s, x ′, y ′)| ≤ C

ε

(
|x − x ′| + |y − y ′| + |t − s| 12 (1 + |x| ∨ |x ′|)

)
.

Moreover, for any family of stopping times {τu, u ∈ U} with values in [t, T ] one has

wε(t, x, y) = inf
u∈U

E

[
wε(τu,Xu

t,x(τ
u), Y u

t,x,y(τ
u))

]
(17)

for any (t, x, y) ∈ [0, T ] × R
d+1.

Proof The regularity ofwε with respect to t and x can be proved as in Proposition 2,
while the Lipschitzianity with respect to y is trivial.
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Thanks to the regularity ofwε , the DPP (17) follows by arguments similar to [11]
observing that for the couple of variables (Xu

t,x(·), Y u
t,x,y(·)) the following property

holds: (
Xu

t,x(s)

Y u
t,x,y(s)

)
=

(
Xu

θ,Xu
t,x (θ)

(s)

Y u
θ,Xu

t,x (θ),Y u
t,x,y (θ)

(s)

)
a.s.

for any t ≤ θ ≤ s ≤ T ( with θ possibly a stopping time). We remand to [10] for a
sketch of the proof showing how the arguments in [11] adapt to our case.

3.1 HJB Equation

Proposition 3 is the main tool for proving the next result that characterizeswε as the
unique solution, in the viscosity sense, of a suitable HJB equation. In the sequel we
will restrict our domain to

D := {(x, y) ∈ R
d+1 : −φε

K (x) < y < 0}.

Indeed, the knowledge of wε in D is sufficient to characterize it everywhere thanks
to the following relation:

wε(t, x, y) = y for any y ≥ 0

wε(t, x, y) = wε(x,−φε
K (x)) for any y ≤ −φε

K (x).
(18)

Based on this observation, it is sufficient to characterisewε in the domainD. Letting

Γ1 := {(x, y) ∈ D : y = 0}; Γ2 := {(x, y) ∈ D : y = −φε
K (x)}, (19)

we are going to prove that wε is the unique solution (in the weak sense specified in
Definition 1 below) of the following HJB equation with mixed derivative-Dirichlet
boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

−∂tw + H(t, x,Dxw,D2
xw) = 0 [0, T ) × D

w = 0 [0, T ) × Γ1

−∂yw = 0 [0, T ) × Γ2

w(T , x, y) = w0(x, y) D

(20)

with

H(t, x, p,Q) := sup
u∈U

{
−b(t, x, u)p − 1

2
T r[σσT ](t, x, u)Q

}
(21)
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and

w0(x, y) := −φε
C(x)

∨
−φε

K(x)
∨

y.

We point out that the derivative boundary condition −∂yw = 0 on Γ2 is typically
obtained in presence of a running maximum cost, see [8, 10], while the Dirichlet
condition wε = 0 on Γ1 is obtained by the very definition of wε . Observe also
that the constant Dirichlet condition on Γ1 is compatible with the homogeneous
derivative condition on Γ2. This prevents possible problems related with mixed
boundary conditions at the junctions where different components of the boundary
cross.

The fully nonlinearity and degeneracy of the equation requires to consider
solutions in the viscosity sense (see [14] for an overview on the subject). This notion
of solution requires also to specify in which sense boundary conditions are satisfied.
In particular, we ask the Dirichlet conditions on Γ1 to be satisfied in the strong sense,
whereas the derivative conditions onΓ2 are considered in the (weak) viscosity sense.

Definition 1 AUSC functionw (resp. LSC functionw) on [0, T ]×D is a viscosity
sub-solution (resp. super-solution) of (20), if for every function ϕ ∈ C1,2([0, T ] ×
D), at each maximum (resp. minimum) point (t, x, y) of w − ϕ (resp. w − ϕ) the
following inequality holds

⎧⎪⎪⎨
⎪⎪⎩

−∂tϕ + H(t, x,Dxϕ,D2
xϕ) ≤ 0 [0, T ) × D

w ≤ 0 [0, T ) × Γ1

min
(−∂yϕ,−∂tϕ + H(t, x,Dxϕ,D2

xϕ)
) ≤ 0 [0, T ) × Γ2

w(T , x, y) ≤ w0(x, y) D

(
resp.

⎧⎪⎪⎨
⎪⎪⎩

−∂tϕ + H(t, x,Dxϕ,D2
xϕ) ≥ 0 [0, T ) × D

w ≥ 0 [0, T ) × Γ1

max
(−∂yϕ,−∂tϕ + H(t, x,Dxϕ,D2

xϕ)
) ≥ 0 [0, T ) × Γ2

w(T , x, y) ≥ w0(x, y) D.
)

A continuous function w on [0, T ] × D is a viscosity solution of (20) if it is both a
sub- and super-solution.

Theorem 1 Let assumption (H1) be satisfied. Then, wε is the unique bounded and
continuous viscosity solution of the HJB equation (20).

Proof TheDirichlet and terminal conditions are ensured by the very definition ofwε

and its continuity. In particular, the continuity allows the conditions to be considered
in the strong sense. The proof of sub- and supersolution properties in [0, T ) × (D ∪
Γ2) follows quite straightforward by the the arguments in [10, Theorem 3.2] and
[21, Theorem 4.1].
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Uniqueness of the solution relies on comparison results for sub and super
solution. The proof can be found in [19, Appendix A]. We point out that the fact
of considering Dirichlet conditions in a strong sense is an important requirement for
the proof of the comparison principle.

4 Numerical Approximation

In this section we discuss an approximation scheme for the unique continuous
viscosity solution wε to the equation

∂tw + H(t, x,Dxw,D2
xw) = 0 −φε

K (x) < y < 0, t ∈ (0, T ] (22a)

w = 0 y = 0, t ∈ (0, T ] (22b)

−∂yw = 0 y = −φε
K (x), t ∈ (0, T ] (22c)

with initial data

w(0, x, y) = wε
0(x, y) −φε

K (x) ≤ y ≤ 0 (22d)

(the convenient change of variable t → T − t has been here applied).
In [10, Section 4.1] a general convergence result for numerical schemes approx-

imating HJB equations under oblique derivative boundary conditions such as (22c)
is provided. Those arguments can be easily modified in order to prove convergence
also in presence of the additional Dirichlet boundary condition (22b) (see also
[21]). Following the ideas introduced in [10], we present here a semi-Lagrangian
(SL) scheme for the approximation of (22). The same scheme will be used in the
numerical experiments in Sect. 5.

Let N ≥ 1 be an integer (number of time steps), and let

h := T

N
and tn := nh

for n = 0, . . . , N . Let Δx = (Δx1, . . . ,Δxd) ∈ (R∗+)d and Δy > 0, and let Gη

(where η ≡ (Δx,Δy)) be the space grid

Gη :=
{
(xi, yj ) = (iΔx, jΔy), for (i, j) ∈ Z

d × Z

}
.

The grid is considered uniform for simplicity of presentation. We also assume that
the discretization in the y coordinate is aligned with the boundary of the domain,
this allows us to get the Dirichlet condition exactly.

We look for a fully discrete scheme for the viscosity solution of (22) on the time-
space grid {t0, . . . , tN } × (Gη ∩ D). Following the ideas in [10, 21] the numerical
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scheme is defined starting from a standard scheme for (22a), which is then mixed
with a step of “projection” on Γ2 and the use of the Dirichlet condition on Γ1. The
approximation of equation (22a) we consider is the SL scheme proposed by Camilli
and Falcone [13] and also used in [15]. We recall that first schemes of this type have
been introduced by Menaldi in [23].

Let σu = σ(·, ·, u) and bu = b(·, ·, u), and let (σu
k )k=1,...,p denote the column

vectors of σu. We consider the following operatorT:

T(ϕ)(t, x, y) := min
u∈U

1

2p

( ∑
k=1,...,2p

[
ϕ(t, ., y)

](
x + hbu(t, x) + √

hσ̄ u
k (t, x)

))
(23)

with the following vector definition in R
d :

σ̄ u
2k−j := √

p (−1)jσu
k (24)

for k = 1, . . . , p and j ∈ {0, 1}. Now [·] ≡ [·]x stands for a monotone, P1
interpolation operator on the x-grid (xi), satisfying in particular:

⎧⎨
⎩

(i) [ϕ](xi) = ϕ(xi), for any i ∈ Z
d ,

(ii) |[ϕ](x) − ϕ(x)| ≤ C|Δx|2‖D2
xϕ‖∞ for any ϕ ∈ C2(Rd,R),

(iii) for any functions ϕ,ψ : Rd → R, ϕ ≤ ψ ⇒ [ϕ] ≤ [ψ].
(25)

We point out that (23), if considered without interpolation, is a discretization in
time of the Dynamic Programming Principle. In particular, such an approximation
uses an Euler-Maruyama scheme (see [20] for instance) coupled with a finite state
discretization of the Gaussian distribution to approximate the dynamics Xu

t,x(·).
The numerical scheme is defined as follows:

Algorithm Initialization step, for n = 0, for all i, j :

W 0
i,j = wε

0(xi, yj ).

Then, for n = 0, . . . , N − 1:

Step 1 Compute Wn+1
i,j = T(W)(tn, xi, yj ), for all (xi, yj ) ∈ Gη ∩ D;

Step 2 Assign Wn+1
i,j = Wn+1

i,jxi
, for all (xi, yj ) : yj ≤ −φε

K (xi);

Wn+1
i,j = yj , for all (xi, yj ) : yj ≥ 0;.

where for every x ∈ R
d , jx ∈ Z is defined by

jx := min
{
j ∈ Z : jΔy ≥ −φε

K (x)
}

and we used the following short notation

Wn
i,j = W(tn, xi, yj ).
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Hereafter we will denote by W = (Wn
ij )

n=1...N
(i,j)∈Zd+1 the solution of the numerical

scheme defined by the algorithm above on {t0, . . . , tN } × Gη. We point out that the
necessity of defining W also at mesh points outside D comes from the fact that the
SL scheme involves values outside the domain. However, this is not a issue in virtue
of (18) (see Step 2 above).

We also denote by Wη,h the continuous extension of W to [0, T ] × R
d × R

obtained by linear interpolation.

Remark 3 The numerical solution Wη,h is Lipschitz continuous in y with Lipschitz
constant independent of η and h. This can be derived by the very definition of the
operatorT in (23). Indeed, given Wn L−Lipschitz continuous in y one can observe
that

|Wn+1
i,j − Wn+1

i,j ′ | = |T(W)(tn, xi, yj ∨ yjxi
) − T(W)(tn, xi , yj ′ ∨ yjxi

)|
≤ L|(yj ∨ yjxi

) − (yj ′ ∨ yjxi
)| ≤ L|yj − yj ′ |.

Hence, being W 0 Lipschitz continuous, the same property holds for Wn for all n =
1 . . .N . Then, since the linear interpolation (used to pass fromW to Wη,h) preserve
Lipschitz constants, we can obtain the desired property.

Remark 4 The core of the scheme in Step 1 can be written as

S(t, x, y,Wn+1
i,j ,W) := Wn+1

i,j − T(W)(tn, xi, yj ) = 0.

It is immediate to verify that S is monotone in the sense of Barles and Souganidis
[7], i.e. for every h, η > 0, r ∈ R, for all function φ,ψ such that φ ≥ ψ , inequality

S(t, x, y, r, φ) ≤ S(t, x, y, r, ψ)

holds.
The choice of σ̄ u

k in (24) leads to the following consistency estimate, for any
ϕ ∈ C2,4((0, T ) × R

d × R):∣∣∣∣1hS(t, x, y, ϕ(t, x, y), φ) −
(

∂tϕ + H(t, x,Dxϕ,D2
xϕ)

)∣∣∣∣
≤ C1

(
|bu(t, x)|2‖D2

xϕ‖∞ + |bu(t, x)||σu(t, x)|2‖D3
xϕ‖∞ + |σu(t, x)|4‖D4

xϕ‖∞

‖∂2t tϕ‖∞
)

h + C2 ‖D2
xϕ‖∞

|Δx|2
h

.

These are classical properties of SL schemes, see [15] for instance. In particular, the
error term in |Δx|2/h comes the interpolation error estimate (ii) (observe that we
do not need to interpolate with respect to y) and the term in h from classical Taylor
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expansions. Then, in order to ensure consistency of the scheme, Δx and h have to
be chosen so that |Δx|2/h → 0 as Δx, h → 0. This usually leads to the choice
Δx ∼ h in numerical simulations.

Moreover, it is easy to verify that the scheme admits a bounded solution in
{t0, . . . , tN } × (Gη ∩ D), so that the scheme is also stable.

We recall that monotonicity, consistency and stability are the fundamental prop-
erties necessary for proving convergence of numerical schemes in the framework of
viscosity solutions, see [7].

Theorem 2 Let assumption (H1) be satisfied. Let Wη,h be the solution of the
scheme defined by the Algorithm above, where T is the SL scheme (23)–(24). Then,
if

|Δx|2
h

→ 0 as Δx, h → 0 (26)

Wη,h converges to wε in [0, T ] × D as η, h → 0.

Proof The proof follows the strategy in [7] and [10]. Let us define for (t, x, y) ∈
[0, T ] × D

W(t, x, y) := lim sup
[0,T ]×D�(s,ξ,γ )→(t,x,y)

η,h→0

Wη,h(s, ξ, γ ),

W(t, x, y) := lim inf
[0,T ]×D�(s,ξ,γ )→(t,x,y)

η,h→0

Wη,h(s, ξ, γ ).

One clearly has W(t, x, y) ≤ W(t, x, y) for any (t, x, y) ∈ [0, T ] × D.
Convergence follows by the comparison principle once shown that W and W

are respectively a sub- and supersolution of the HJB equation in the sense of
Definition 1.

We sketch the proof of the subsolution property, the supersolution part can be
proved in a similar way. Given a smooth test function ϕ, let (t̄, x̄, ȳ) be a maximum
point for (W −ϕ), with (W −ϕ)(t̄ , x̄, ȳ) = 0, and let (ηk, hk, tk, xk, yk) be such that
(tk, xk, yk) ∈ [0, T ]×D, ηk, hk → 0, (tk, xk, yk) → (t̄, x̄, ȳ),Wηk,hk (tk, xk, yk) →
W(t̄, x̄, ȳ) and

(Wηk,hk − ϕ)(tk, xk, yk) = max(Wηk,hk − ϕ) = δk → 0

(the existence of such a sequence follows by classical arguments in viscosity
theory).

If (x̄, ȳ) ∈ D the result follows as in [7] using the properties of monotonicity
and consistency of the scheme in a sufficiently small neighborhood of (x̄, ȳ) still
contained in D.
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If (x̄, ȳ) ∈ Γ2 one can work under the condition −∂yϕ(t̄, x̄, ȳ) > 0, otherwise
the subsolution property is automatically satisfied. In this case the result follows
observing that, by the very definition of the scheme (see Step 2 of the algorithm)
and its monotonicity, one can derive

ϕ(tk, xk, yk) + δk ≤ T(ϕ)(tk, xk, yk ∨ yjxk
) ≤ T(ϕ)(tk, xk, yk)

so that the subsolution property follows again by the consistency of the scheme.
It remains to prove that W satisfies the Dirichlet condition pointwise on Γ1.

For this purpose it is worth to observe that Wη,h is Lipschitz continuous in y (see
Remark 3), i.e. there exists some constant L > 0 (independent of η, h, t, x) such
that

|Wη,h(t, x, y) − Wη,h(t, x, y ′)| ≤ L|y − y ′|

for any t ∈ [0, T ], x ∈ R
d, y, y ′ ∈ R. Therefore one has

|Wη,h(s, ξ, γ ) − (−1)| = |Wη,h(s, ξ, γ ) − Wη,h(s, ξ, 0)| ≤ L|γ |

so that on Γ1 (i.e. for ȳ = 0)

lim inf
[0,T ]×D�(s,ξ,γ )→(t̄,x̄,ȳ)

η,h→0

Wη,h(s, ξ, γ ) = −1.

5 Numerical Tests

In this section we present some numerical tests for probabilistic reachability
problems in presence of state constraints. To solve the HJB equation (22), we
use the fully discrete SL scheme introduced in Sect. 4 implemented on the ROC-
HJ solver available at the link https://uma.ensta-paristech.fr/soft/ROC-HJ/. The
minimum in (23) is performed on a subset of control values {u1, . . . , uNu } that
represents a discretization of U with a mesh size Δu. In all the simulations the
regularization parameter will be chosen to be ε = 1.E − 08.

5.1 Example 1

We consider the following controlled stochastic system:

dX(s) =
((−1 −4

4 −1

)
X(s) + u(s)

)
ds +

(
0.7 0
0 0.7

) (
dB1(s)

dB2(s)

)
(27)

https://uma.ensta-paristech.fr/soft/ROC-HJ/
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Fig. 2 (Example 1) Backward reachable sets at t = 0.75 for a time horizon T = 1.75 and ρ = 0.4
without (left) and with (right) obstacle. The target set, the obstacle and the backward reachable set
Ω0.4

0.75 are represented respectively by the green square, the red rectangle and the blue region

where u(s) =
(

u1(s)

u2(s)

)
, ui(s) ∈ [−0.1, 0.1], for i = 1, 2 and B1, B2 are two

independent Brownian motions.
The linear system (27) has been used in [6] to validate the HJB approach in

the characterization of an approximated probabilistic reachable set without state
constraints and in [5] to illustrate an approximation of the probability of reaching a
target by using enclosing hulls of probability density functions.

We set T = 1.75 and define the target C := (0.5, 1.5) × (−0.5, 0.5) (green
square in Fig. 2). The constraint is given by the presence of an obstacle, represented
in Fig. 2 (right) by the red rectangle, i.e. K := R

2 \ ([−6,−2] × [2, 4]). We
compute the set Ω

ρ
t (blue region) for t = 0.75 and ρ = 0.4 in presence (Fig. 2,

right) or not (Fig. 2, left) of the obstacle. To approximate the auxiliary function
wε solution to (22), the numerical simulation is performed on a computational
domain [−8, 8]2 ×[−1, 0]. The corresponding values of ϑε are then obtained using
relation (16).

Figure 3 (top) shows the set Ω
ρ
t for ρ = 0.4 at different time t ∈ {0.25; 0}

in presence of the obstacle. Then, in Fig. 3 (bottom) we simulate different optimal
paths starting from a given point of the backward reachable set using the algorithm
described below.

Algorithm (Trajectory Reconstruction) Initialization: Set X0 = x̄.
For k = 0 to N − 1:

Step 1 Compute optimal control at t = tk:

uk = argminu∈{u1,...,uNu }E[W(tk+1,X
u
k+1,−1)]
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Fig. 3 (Example 1). Top: backward reachable set (blue region) at times t ∈ {0.25, 0} for a final
time horizon T = 1.75 in presence of the obstacle (red rectangle). Bottom: reconstruction of some
optimal paths starting from point x̄ = (4, 1) (bottom, left) and x̄ = (3,−4) (bottom, right)

where for ui ∈ {u1, . . . , uNu }

Xk+1 := Xk + b(tk,Xk, ui)h + σ(tk,Xk, ui)
√

hξ,

here ξ := (ξ1, ξ2) with ξi (i = 1, 2) random variables following a N(0, 1)
distribution.

Step 2 Compute the point of the optimal trajectory:

Xk+1 := Xk + b(tk,Xk, u
k)h + σ(tk,Xk, u

k)
√

hξ

where again ξi ∼ N(0, 1) for i = 1, 2.
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Table 1 (Example 1)
Percentage p of M simulated
trajectories that reach the
target set without hitting the
obstacle, with a
corresponding confidence
interval (C.I.), and a Monte
Carlo error estimate
(MC-error)

M p C.I. MC-error

x̄1 6000 0.4630 (0.4504, 0.4756) 0.0126

12,000 0.4624 (0.4535, 0.4713) 0.0089

25,000 0.4603 (0.4541, 0.4664) 0.0062

50,000 0.4618 (0.4574, 0.4661) 0.0045

100,000 0.4628 (0.4597, 0.4659) 0.0031

x̄2 6000 0.3915 (0.3593, 0.4037) 0.0122

12,000 0.3991 (0.3705, 0.4078) 0.0087

25,000 0.4026 (0.3966, 0.4087) 0.0061

50,000 0.4016 (0.3996, 0.4081) 0.0043

100,000 0.4015 (0.3985, 0.4045) 0.0030

In order to validate our approach, we compare the value of the scheme in a
given point with the percentage of trajectories reaching the target without hitting
the obstacle. We consider the case t = 0.25 and two different starting points
x̄1 := (4.0, 1.0)T and x̄2 := (3.0, 0.0)T . The approximation of the level-set
function obtained by numerically solving the corresponding HJB equation on the
grid Δx1 = Δx2 = 0.0125,Δy = 0.1, h = 0.025 at points x̄1 and x̄2 is respectively
−W(t, x̄1,−1) � 0.459± 0.004 and −W(t, x̄2,−1) � 0.404± 0.009.

The results of Monte Carlo simulations are reported in Table 1. One can conclude
that the approximated value of the level set function belongs in each case to the
confidence interval.

5.2 Example 2

We now test our method on the same example used in [10, Section 6]. Let us
consider the following dynamics:

dX(s) = u(s)

(
1
0

)
ds + u(s)σ (X(s))dB(s), s ≥ t,

where B is a one-dimensional Brownian motion, U = [0, 1] ⊂ R and the volatility
σ(x) is given by

σ(x) := 5 dΘ(x)

(
0
1

)

where dΘ denotes the distance function to the set

Θ := {
(x1, x2), |x2| ≥ 0.3

}
.
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Fig. 4 (Example 2) Approximation of Ω
ρ
t at t = 0 for different levels ρ ∈ [0, 1, 0.9] (indicated

by the color bar) computed with Δx1 = Δx2 = 0.005,Δy = 0.1, h = 0.01 (same mesh
parameters used in [10])

The target set is C = (0, 0.4) × (−0.5, 0.5) (green rectangle in Fig. 4) and the
state constraint isK = R

2 \ ([−0.4, 0.2]× [−0.1, 0.1]) (i.e. the entire space except
the red square obstacle in Fig. 4). We fix T = 0.5 and consider the computational
domain [−1, 1]2 × [−1, 0].

The strong degeneracy of the diffusion term in this example allowed in [10] to
obtain the “almost sure” backward reachable set, corresponding here to the limit
case ρ = 1. Figure 4 shows the approximation of Ω

ρ
t for t = 0 and different levels

ρ ∈ [0, 1, 0.9]. The black region corresponds to the exact backward reachable set for
ρ = 1. Indeed, due to the simple dynamics considered it is possible for this example
to infer the exact set Ω1

0 , i.e. the set of points from where the target is reached and
the constraint satisfied with probability one, see [10] for a further discussion. One
can observe that as ρ approaches the value 1, we recover the results obtained in [10].
A loss of precision appears at corners. This was already noticed in [10] and it is due
to the smoothing effects of the diffusion term (see [10, Figure 2, Section 6]) which
can be reduced with the refinement of the mesh.

6 Conclusions

In this paper we have used the HJB theory for characterising the probabilistic
backward reachable set for a system of controlled diffusions in presence of state
constraints. We have shown that such a set is a level set of the value function
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associated to a suitable optimal control problem. To deal with the discontinuity
of the cost functional associated to this problem, arising from the use of indicator
functions for representing probabilities, we have defined a regularised problem.
Precise estimates of the error introduced by this regularisation are still object of
ongoing research.

Following the approach in [10, 19, 21], for the regularised problem we have
obtained a characterization by a HJB equation with mixed Dirichlet-derivative
boundary conditions. We have defined a fully discrete SL approximation scheme
and we have proved its convergence to the unique viscosity solution of the equation.
Then, we have used such a scheme in order to validate our approach on some
numerical tests. We focused on the examples studied in [6] and [10], adding state
constraints to the first one and variable levels of probability to the second one. More
complex tests on concrete models are a promising future direction of work.

Acknowledgements The authors are sincerely grateful to Olivier Bokanowski and Hasnaa Zidani
for their guidance at the early stage of this paper.
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