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ABSTRACT 

We present a method of segmenting video to detect cuts 
with accuracy equal to or better than both histogram and 
other feature based methods. As well, the method is faster 
than other feature based methods.  By utilizing feature 
tracking on corners, rather than lines, we are able to relia-
bly detect features such as cuts, fades and salient frames.  
Experimental evidence shows that the method is able to 
withstand high motion situations better than existing 
methods.  Initial implementations using full sized video 
frames are able to achieve processing rates of 10-30 
frames per second depending on the level of motion and 
number of features being tracked; this includes the time to 
generate the MPEG decompressed frames.  

1 INTRODUCTION 

Much work has been completed in the area of scene detec-
tion, shot detection and annotation and as a result, the 
methods and algorithms are quite mature. In 1965, Seyler 
[1] developed a frame difference encoding technique for 
television signals. The technique is based on the fact that 
only a few elements of any picture change in amplitude in 
consecutive frames. Since then much research has been 
devoted to video segmentation techniques based on Seyler. 
A variety of metrics have been suggested to work on either 
raw video or compressed data. These metrics are used to 
quantify the difference between two adjacent frames and 
can be further sub-classified into 3 major categories: 
 

• Pixel-Level/Histogram Change Detection [2,3,4] 
• DCT Change Detection [5,6,7] 
• Subband Feature Change Detection [8] 
 

The basic idea behind shot/scene detection is to evaluate 
the similarity of adjacent frames using one of the afore-
mentioned metrics.  When the similarity measure crosses a 
certain threshold, a scene change or shot boundary has 
been detected. Equations (1) and (2) below describe a 
pixel level change metric.  Histogram change metrics util-
ized histogram values of the pixel data rather than the 
pixel values themselves. 

 
    DIi(x,y) = 1 if |Ii(x,y)-Ii+1(x,y)| > t 

      0 otherwise      (1) 
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In (1), we compute the difference between pixel values 
between image i and i+1 and create a difference image DI, 
where t is a threshold signifying individual pixel differ-
ence. We then compute the overall image difference using 
(2). If the percentage of image change is greater than our 
threshold T, we declare a shot boundary.  Any of the 
aforementioned metrics is sufficient for this step, however 
they rely on certain types of video, MPEG compressed, for 
example. The pixel level detection metric displayed in (1) 
and (2) is the most basic form for raw, uncompressed 
video which is easily achieved regardless of the input. 
Suitable values for the thresholds t and T are 10 and 0.75 
respectively. Depending on the precision requirements, 
time requirements, and characteristics of the input data one 
may find another metric or threshold values to be more 
suitable.  We use this metric as a comparison baseline for 
the method presented in this work. 
 
An edge based feature approach was presented in [9] and 
further refined in [10].  While these methods provide ad-
vances in capabilities, they suffer greatly from the com-
plexity and increased runtimes.  A recent review [11] 
managed to get real time capabilities of the feature-based 
method presented in [10] but only on micro-frames of 
88x72 pixels.  When the frame sizes were increased to 
352x288 (standard resolutions) the frame-processing rate 
dropped to approximately 2 frames per second.  Our 
method, presented next, easily achieves frame rates of 10 
frames per second, including the MPEG decompression 
time on standard resolutions. 

2 MOTION ESTIMATION AND    
 FEATURE TRACKING 

We utilize a corner-based feature tracking mechanism to 
indicate the characteristics of the video frames over time.  
As we track corner features over time, we detect produc-
tion features within the video and annotate the sequence 
depending on the features that are successfully tracked 
over time versus those that are lost.  Feature tracking is 
performed on the luminance channel (grey map) for the 
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video frames.  The luminance channel is computed as fol-
lows: 
 
Luminance = Red*0.299 + Green*0.587 + Blue*0.114  (3) 
 
The feature tracker we use is based on the work of Lucas 
and Kanade in [12].  This work was further developed by 
Tomasi and Kanade in [13] of which Shi and Tomasi pro-
vide a complete description in [14]. Recently, Tomasi pro-
posed a modification to make the similarity measures 
symmetric with respect to adjacent images; the resulting 
equations are derived completely by Birchfield [15].  
 
Briefly, features are located by examining the minimum 
eigenvalue of a 2x2 image gradient matrix that is noticea-
bly similar to the Harris corner detector [16]. The features 
are tracked using a Newton-Raphson method of minimiz-
ing the difference between the two windows around the 
feature points. We continue by presenting a very brief out-
line of the work by Tomasi et al. 
 
Given a point p in an image I, and its corresponding point 
q in an image J, the displacement vector δ between p and q 
is best described using an affine motion field: 
 

δ = Dp + t            (4) 
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is a deformation matrix and t is the translation vector of 
the centre point of the tracked feature window. The trans-
lation vector t is measured with respect to the feature in 
question. Tracking feature p to feature q is simply deter-
mining the six parameters that comprise the deformation 
matrix D and the translation vector t.  In the case of pure 
translation, D will be the identity and thus 
 

δ = p + t            (6) 
 
Because of this, the case of pure translation is computa-
tionally simpler and thus preferable. Since the motion be-
tween adjacent frames of standard video is generally quite 
small, it turns out that setting the deformation matrix to 
identity is the safest computation [13], leaving us with the 
translation vector being exactly the displacement vector.   
While tracking features, it is possible, that large motion 
between frames does occur.  It has been noticed that in 
such cases the tracking mechanism begins to fail because 
the disparity between adjacent frames is too large. The 
result, features are lost and cannot be tracked any further. 
This fact indicates that some large shift in the adjacent 
frames has occurred and can be handled at the cost of sub-
stantially higher processing time or by removing the iden-
tity constraints of the matrix D. 
 
In the sections that follow, we present heuristics for the 
detection of production effects such as cuts, fades and sa-

lient frames for storyboarding.  Finally we note that C 
code for the Kanade, Lucas, Tomasi tracker can be found 
here [17] to simplify implementation of this algorithm. 

3 SEGMENTATION, SALIENT FRAME 
EXTRACTION AND ANNOTATION 

By tracking features, on a frame-by-frame basis, we are 
able to detect cuts, fades and salient frames.  Cuts are de-
fined as abrupt changes of content in adjacent frames, 
commonly termed razor edits.  Fades are gradual transi-
tions to or from a solid colour (usually black).  Finally 
salient frames are interim frames between cuts that help 
build a storyboard so that the content of the missing 
frames can be easily interpolated.  

3.1 Detecting Cuts 
Cuts are easily detected by examining the number of fea-
tures successfully tracked in adjacent frames, refreshing 
the feature list for each comparison.  In algorithmic form, 
cuts are detected as so: 
 
1. Select good features for frame 1,  
   place in feature list FLcut 
2. For each frame x in the video 
a. Track features from FLcut in current  
    frame x 

  b. Count number of lost features 
     i. If(features lost > t (75%))  
           Cut Detected 
  c. Refresh Flcut using frame x  
4. Endfor (2) 

3.2 Detecting Fades 
Fades are simply detected by a string of frames where all 
features are lost.  In the case of a fade to black (or white), 
the luminance of the frames increase or decreases enough 
to cause the similarity measured in the windows around 
corresponding features to fail.   
 

 
 

Figure 1. Fade to black indicated as a plateau in the first 
derivative map. 

 
As figure one shows, this manifests itself as a plateau at 1 
(100% feature loss) in the graph of frame differences, and 
can be simply computed when the 2nd derivative of the 
frame differences is 0 over a number of consecutive 
frames. 

3.3 Detecting Salient Frames 
Segmentation algorithms often ignore salient frames, how-
ever they represent important contextual information from 
the video stream.  Because of the contextual value of the 
salient frames, there is a relationship between the initial 
frame and the current frames tracked features.  As we 
track features from frame i to i+n, a salient frame is indi-
cated when enough features are lost between frames i and 



i+n plus those features that have moved a sufficient dis-
tance. 
 
 Algorithmically, salient frame extraction: 
 
1. Select good features for frame 1    
   place in feature list FLsal 
2. For each frame x in the video  
   a. Track features from FLsal in x 
   b. Count number of lost features 
   c. Count number of features passing  
      the distance threshold 
   d. If(lost + passing) > threshold  
      i. Signal salient frame 
      ii. Refresh FLsal using frame x 
3. Endfor(2) 

3.4 Annotating Video 
By examining the frame-to-frame feature loss, we can 
make determinations of how much motion or action is 
happening in the scene.  As a result, we can annotate the 
scenes between cuts as active or passive.  Annotations 
such as these will allow searching of video databases via 
action labels to further assist genre labelling and search-
ing.  In figure 2 we see a series of consecutive scenes 
taken from the film True Lies. 

 
Figure 2. Action annotation for scenes from True Lies; 

annotations accurately describe the film content 
 
Annotations of action simply relate to the average magni-
tude of feature loss over a series of frames, the higher the 
average the more motion/action exist in the scene.  More 
sophisticated annotations are possible by looking at a 
smaller window, rather than between cuts. 

3.5 General settings to achieve good results  
The number of features to track, the lost feature and dis-
tance thresholds will vary depending on frame dimensions, 
content type and compression ratio and speed require-
ments, however a good rule of thumb is the following: 
Between 1.5 features for every 1000 pixels, the distance 
threshold should be 1/8 of the smallest dimension, and a 

sensitivity threshold of 75 percent. For example, a video 
that is 320x240 would have 96 features to track, a distance 
threshold of 30 pixels (240/8), and a sensitivity threshold 
of 75 percent.  

4 EXPERIMENTAL RESULTS 

In the experiments that follow, a selection of video clips 
that represent a variety of different video genres are used 
for cut detection.  In table 1, we present a list of data 
sources, the dataset that we have selected accentuates 
known trouble areas for feature-based scene detection al-
gorithms, namely[11]: 
 

• Close up moving scenes (F) 
• Zooming, Panning (Camera Motion) (C,F) 
• Animated video (A) 
• Fast motion, or high action (B,C,D) 
• An object occluding the majority of the scene (E) 
• Credits (C and F) 

 
Source 
Label Characteristics of video data 

A Cartoon clip.  Substantial object motion.  

B 
Action movie clip.  Action scenes inter-
mixed with scenes that have little action.  
From the film: True Lies 

C 
Movie credits with high motion, quick pans 
and zooms.  A very difficult example.  
From the film: The Santa Clause 

D 
Sports news, clips of very high action with 
clips of commentary with no action. 

E 
Commercial, no cuts, quick motion, many 
production effects. 

F 
Film (Groundhog Day), no production ef-
fects, just cuts.  Easiest test case in the set. 
Table 1: Experimental data set 

 

D
ata 

# of 
cuts 

True 
+’ves 

False 
+’ves 

False 
–‘ves 

P
recision 

R
ecall 

A 7 7 0 0 1 1 
B 8 8 6 0 .57 1 
C 35 35 142 10 .198 1 
D 40 38 15 2 .717 .95 
E 01 01 7 0 0 0 
F 39 39 23 0 .629 1 

Table 2: Results of pixel-based algorithm 
 
For a comparison metric, we choose precision and recall 
rates on the detection of cuts.  We compare a pixel-based 
method against our presented feature-based method.  In 
our experiments, we set the thresholds for both methods to 
be equivalent, allowing for a comparison of methods that 
would be unaffected by threshold settings.   

                                                        
1 We use 1 when computing the precision and recall. 



 

D
ata 

# of 
cuts 

True 
+’ves 

False 
+’ves 

False 
–‘ves 

P
recision 

R
ecall 

A 7 6 0 0 1 .857 
B 8 8 0 0 1 1 
C 35 35 53 5 .398 1 
D 40 40 10 0 .80 1 
E 01 01 0 0 1 1 
F 39 36 2 3 .947 .923 

Table 3: Results of feature-based algorithm 
 
To determine the effectiveness of the salient frame detec-
tion, we assembled a test group to examine the created 
storyboards and subsequently “re-tell the story” as best as 
they could.  In most cases the test subject’s explanation of 
the video content from a storyboard was accurate.  One 
notable area of confusion came from scenes where two 
characters from the video were engaged in a discussion 
and the storyboard resulted in a series of headshots of the 
characters.  In a few cases, the test subject recognized the 
content as a movie or commercial that they had seen be-
fore.    In figure 3, we present a sample storyboard gener-
ated from 191 frames (6.33 seconds) of a baseball game. 
 

1   2   3  
 

4   5   6  
Figure 3: Storyboard with salient frames.  Cut frames are 

1,3 and 4, salient frames are 2,5 and 6. 
 
It is clear from this short sequence (to baseball fans) that 
Biggio is up at bat, and the pitcher is receiving a signal 
from the coach.  Finally, fades in all test situations reliably 
hit a plateau at 100% feature loss in all test examples. 

5 SUMMARY 

We have presented a feature-based method of video seg-
mentation that greatly improves upon the time require-
ments of previous feature-based segmentation algorithms.  
While not yet real time, there are still areas for basic code 
optimisations that will increase the frame rate even further.  
By utilizing feature tracking and thresholding techniques, 
we were able to achieve recall and precision rates that 
match or exceed current methods for detecting cuts, yet 
also detects fades.  As well, the method allows for some 
basic automatic annotation of video content as well as the 
extraction of salient contextual information to be used for 
populating video database fields. 
Future areas of research that indicate promising results 
include a more sophisticated metric for segmenting the 
video that does not rely on a threshold technique.   As 

well, feature tracking also produced motion vectors for 
points within frames that may also be further used in the 
annotation process.  
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