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SUMMARY

Loss of synchrony between geophysical time and in-
sulin action predisposes to metabolic diseases. Yet
the brain and peripheral pathways linking proper in-
sulin effect to diurnal changes in light-dark and
feeding-fasting inputs are poorly understood. Here,
we show that the insulin sensitivity of several meta-
bolically relevant tissues fluctuates during the 24 h
period. For example, in mice, the insulin sensitivity
of skeletal muscle, liver, and adipose tissue is lowest
during the light period. Mechanistically, by perform-
ing loss- and gain-of-light-action and food-restric-
tion experiments, we demonstrate that SIRT1 in ste-
roidogenic factor 1 (SF1) neurons of the ventromedial
hypothalamic nucleus (VMH) convey photic inputs to
entrain the biochemical andmetabolic action of insu-
lin in skeletal muscle. These findings uncover a crit-
ical light-SF1-neuron-skeletal-muscle axis that acts
to finely tune diurnal changes in insulin sensitivity
and reveal a light regulatory mechanism of skeletal
muscle function.

INTRODUCTION

The balance between hormonal secretion and action is key for

maintaining organismal homeostasis (Bass and Takahashi,

2010; Coppari et al., 2009; Vianna and Coppari, 2011). Secretion

of several hormones (e.g., insulin) varies during the 24 h period

(Czech, 2017; Gamble et al., 2014), and altered synchronization

between geophysical time and hormonal action predisposes to

metabolic diseases (e.g., diabetes) (Buxton et al., 2012; Masri

and Sassone-Corsi, 2013; Scheer et al., 2009). Yet whether the

responsiveness of hormones’ target tissues also fluctuates

around the clock and the mechanism(s) underlying this effect
Cell
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are poorly understood. In principle, a combination between

abundance and appropriate tissues responsiveness could guar-

antee that the correct hormonal effect is achieved at the precise

time and that metabolic homeostasis is preserved.

Diurnal changes in hormonal (as well as mRNA, protein, and

metabolite) levels are synchronized to external inputs: zeitgeber

times (ZTs) or time givers (e.g., light-dark and feeding-fasting cy-

cles) (Asher and Sassone-Corsi, 2015; Eckel-Mahan et al., 2012;

Yang et al., 2006). For example, insulin links carbohydrate and

lipid metabolism to nutrient intake (Brenachot et al., 2017), and

its circulating level varies during the 24 h period (Czech, 2017).

Another hormone, melatonin, which is best known as a regulator

of daily rhythms, has been suggested to influence insulin secre-

tion and glucose balance (Garaulet et al., 2015; Rubio-Sastre

et al., 2014). Tissue diurnal rhythms have been suggested to in-

fluence insulin signaling as altered core-clock gene expression

(in either a whole-body or a tissue-specific manner) causes insu-

lin resistance (Carrasco-Benso et al., 2016; Dyar et al., 2013;

Marcheva et al., 2010; McDearmon et al., 2006; Paschos et al.,

2012; Shi et al., 2013). Clinically, the rate of blood glucose

decline after an intravenous glucose or insulin administration is

highest in the morning compared with the afternoon (Carroll

and Nestel, 1973; Gibson and Jarrett, 1972; Service et al.,

1983; Van Cauter et al., 1991; Whichelow et al., 1974). In addi-

tion, exposure to photic input at the wrong time negatively af-

fects glucose metabolism (Cheung et al., 2016; Opperhuizen

et al., 2017; Versteeg et al., 2017). Together, these results sug-

gest that responsiveness of target organs to insulin might vary

around the clock and be influenced by changes in photic inputs.

Nevertheless, whether tissue insulin sensitivity of key metabolic

tissues fluctuates across the 24 h cycle and/or is affected by light

inputs is unknown. Understanding these mechanisms will pro-

vide novel insights into mammalian physiology and be of great

medical importance. For example, insulin resistance or severe

hypoinsulinemia causes diabetes, a condition affecting about

450 million people worldwide (Anderson et al., 2015; Coppari

and Bjørbæk, 2012). Many of these patients require daily insulin
Reports 27, 2385–2398, May 21, 2019 ª 2019 The Author(s). 2385
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Figure 1. Sirt1 Deletion in SF1 Neurons Alters Diurnal Magnitude of Insulin Action Selectively in Gastrocnemius

(A and B) Immunoblots from tissues of control mice (A) and relative protein quantifications (B).

(C and D) Immunoblots from tissues of Sf1-Cre; Sirt1loxP/loxP mice (C) and relative protein quantifications (D).

(E) Relative comparison of insulin-induced p-AKT/AKT between Sf1-Cre; Sirt1loxP/loxP mice and their controls.

(legend continued on next page)
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administration (Coppari and Bjørbæk, 2012; Detournay et al.,

2005; Koro et al., 2004). However, in part because of insulin-

induced hypoglycemia (a potentially fatal event), insulin therapy

is sub-optimal (Coppari and Bjørbæk, 2012; Cryer, 2004, 2006,

2008; Swinnen et al., 2009). In practice, the amount of adminis-

tered insulin is strictly functional to carbohydrate intake, but the

time of day at which insulin is delivered is poorly considered.

However, if insulin sensitivity varies around the clock, the time

of insulin administration must also be taken into account.

Mammalian diurnal rhythms are driven by internal clocks coor-

dinating the cyclic expression of 10%–20% of genes (Masri and

Sassone-Corsi, 2010). Positive (CLOCK/BMAL1 and NPAS2/

BMAL1) and negative (PER1/2 and CRY1/2) arms constitute

the circadian clock core loop. They generate molecular rhythms

that are influenced by nuclear receptors REV-ERBs and RORs,

which maintain rhythm stability and strength (Zhang and Kay,

2010). These oscillations can be self-sustained and cell autono-

mous (Nagoshi et al., 2004). However, in mammals, the periph-

eral clocks are robustly entrained by light-dark cycles through

central mechanisms. These include photic inputs registered by

retinal neurons, which are then conveyed to the suprachiasmatic

nucleus of the hypothalamus (SCN) via the retinohypothalamic

tract (Takahashi, 2017). In a hierarchical manner, SCN cells

compute these inputs and relay this information to an ill-charac-

terized downstream neurocircuitry coordinating diurnal oscilla-

tions in peripheral tissues (Brancaccio et al., 2019; Takahashi

et al., 2008). Neurons within the ventromedial hypothalamic nu-

cleus (VMH) are known to control sympathetic nervous system

(SNS) outputs to, and insulin sensitivity in, skeletal muscle in

mice (Minokoshi et al., 1999; Ramadori et al., 2011; Shiuchi

et al., 2009; Toda et al., 2013). Of note, via polysynaptic path-

ways, the activity of these VMH neurons is governed by the

SCN (Takahashi, 2017; Takahashi et al., 2008; Todd et al.,

2018). Also, by targeted ablation of Bmal1 (a core-clock gene)

only in a sub-set of VMH neurons, namely, the steroidogenic fac-

tor 1 (SF1) neuron, we have shown that these neurons coordinate

diurnal energy expenditure (Orozco-Solis et al., 2016). Hence,

although the relevance of these non-SCN brain neurons in main-

taining synchronization between external ZTs and endogenous

diurnal rhythms is still poorly understood (Asher and Sassone-

Corsi, 2015), VMH SF1 neurons appear to exert an important

function.

Here, we hypothesized that the insulin sensitivity of key meta-

bolic tissues (e.g., skeletal muscle, adipose tissue, liver) varies

across the 24 h daily cycle and that VMH SF1 neurons regulate

this rhythm in peripheral insulin action. To test this idea, we first

performed a comprehensive assessment of insulin action in

metabolically relevant tissues and found ample diurnal oscilla-

tion in its magnitude. Next, we generated genetically engineered

mice lacking eitherBmal1 orSirt1 (whose protein product deace-

tylates BMAL1 to affect core-clock function; Nakahata et al.,

2008) specifically in VMH SF1 neurons. By performing loss-

and gain-of-light-action and food-restriction experiments and
Data represented in (A)–(E) were obtained from 10-week-old male mice (n = 3 of ea

mice) and were littermates of Sf1-Cre; Sirt1loxP/loxP mice. Tissues were collecte

analyses were done using two-tailed unpaired Student’s t test (*p < 0.05, **p < 0

See also Figure S1.
by assessing the biochemical (e.g., phosphorylation of protein

kinase B and glycogen synthase kinase 3 beta) and metabolic

(e.g., tissue glucose uptake) consequences of insulin administra-

tion, we unraveled a key role of light input in affecting insulin

sensitivity in skeletal muscle. Our work reveals that light entrains

diurnal changes in clock gene expression and insulin sensitivity

in skeletal muscle via SIRT1 in SF1 neurons, an effect that ap-

pears to be independent of the VMH-SCN core clock.

RESULTS

To directly test whether tissue insulin sensitivity fluctuates

across the daily cycle, mice were kept in a cycle of 12 h light

and 12 h dark (LD), and tissue insulin sensitivity was measured

at different time points. Phosphorylation of protein kinase B

(AKT) and glycogen synthase kinase 3 beta (GSK3b) is a well-es-

tablished event following the activation of the insulin receptor

(Manning and Cantley, 2007; Ramadori et al., 2015). Thus, insulin

sensitivity was assessed by quantification of the phosphoryla-

tion status of these proteins after an intraperitoneal bolus of

the hormone. In gastrocnemius, soleus, and liver, the basal

levels of p-GSK3b/GSK3b were not different around the clock

(Figures S1A and S1B). In the aforementioned tissues and peri-

gonadal white adipose tissue (pWAT), the basal levels of

p-AKT/AKT did not display changes around the clock (Figures

1A and 1B). Insulin administration increased the p-AKT/AKT

and p-GSK3b/GSK3b ratios (Figures 1A, 1B, S1A, and S1B).

However, the magnitude of insulin-induced phosphorylation of

AKT and GSK3b displayed a diurnal pattern, with large differ-

ences between times around the clock (Figures 1A, 1B, 1E,

S1A, S1B, and S1H). Interestingly, tissue insulin sensitivity was

lowest during the resting period (e.g., ZT6) (Figures 1A, 1B, 1E,

S1A, S1B, and S1H), which in rodents, in contrast to humans,

is throughout the light cycle. Thus, our data demonstrate that

in metabolically relevant tissues, the magnitude of insulin action

varies around the clock.

The circadian machinery is coupled to metabolism through a

mechanism involving the NAD+-dependent deacetylase SIRT1

that by changing the acetylation status of BMAL1 and PER2 af-

fects their activity and stability, respectively (Asher et al., 2008;

Nakahata et al., 2008). Interestingly, although the role of SIRT1

in regulating the circadian clock in a cell-autonomous fashion

is established (Asher et al., 2008; Nakahata et al., 2008) whether

SIRT1 can affect the circadian clock in a cell-non-autonomous

fashion and at distant sites is unknown. We previously showed

that mice with altered SIRT1 in VMH SF1 neurons display insulin

resistance restrictedly in gastrocnemius skeletal muscle, a

defect favoring the development of diabetes (Ramadori et al.,

2011). Thus, we hypothesized that SIRT1 in VMH SF1 neurons

is part of the underlying molecular mechanism regulating diurnal

changes in insulin action in skeletal muscle. To directly test this

hypothesis, we generated mice lacking SIRT1 in SF1 neurons

by breeding a Cre-conditional Sirt1-null allele (Sirt1loxP) with a
ch genotype). Control mice were homozygous for a Sirt1loxP allele (Sirt1loxP/loxP

d 20 min after an intraperitoneal bolus of insulin (3 U/kg) or saline. Statistical

.01, and ***p < 0.001).
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Figure 2. SIRT1 in SF1 Controls the Diurnal Transcriptome in Skeletal Muscle
(A) RNA-seq analysis was performed using total RNA from gastrocnemius of 10-week-old male Sf1-Cre; Sirt1loxP/loxP mice and controls (Sirt1loxP/loxP mice) (n = 4

per group) at ZT 0, 6, 12, and 18. Using the BIO_CYCLE algorithm, genes selected to be diurnal at a p value < 0.05 are displayed as heatmaps for controls andSf1-

Cre; Sirt1loxP/loxP mice.

(B) Pie chart indicating actual numbers of diurnal genes that oscillate exclusively in controls, Sf1-Cre; Sirt1loxP/loxP mice, and both groups.

(C) Phase analysis of transcripts oscillating in both controls and in Sf1-Cre; Sirt1loxP/loxP mice. Left pie chart represents percentage of oscillating transcripts with

phase-shift change between Sf1-Cre; Sirt1loxP/loxP mice and controls of at least 1 h; right pie chart represents percentage of phase delay and phase advance

among transcript with phase shift between Sf1-Cre; Sirt1loxP/loxP mice and controls.

(legend continued on next page)
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Sf1-Cre transgene expressing Cre recombinase only in SF1 cells

(Ramadori et al., 2011). Genotyping PCR analysis of several tis-

sues of Sf1-Cre mice homozygous for the Sirt1loxP allele (here-

after referred to as Sf1-Cre; Sirt1loxP/loxP mice) indicated the

presence of the Cre-deletedSirt1 allele only in VMH (Figure S1C).

In addition, real-time qPCR assay revealed reduced Sirt1mRNA

content in micro-dissected VMH tissue of Sf1-Cre; Sirt1loxP/loxP

compared with Sirt1loxP/loxP control mice (Figure S1D). Further-

more, immunohistochemistry analyses showed that although

SIRT1 abundance is unchanged in VMH-neighboring nuclei

(e.g., the arcuate nucleus of the hypothalamus [ARH] and dorso-

medial nucleus of the hypothalamus [DMH]), it is restrictedly

diminished in the VMH of Sf1-Cre; Sirt1loxP/loxP mice compared

with controls (Figure S1E). These results are in line with previous

reports demonstrating that Sf1-Cre; Sirt1loxP/loxP mice lack

SIRT1 only in SF1 neurons (Orozco-Solis et al., 2015; Ramadori

et al., 2011).

Similar to controls (Figures 1A, 1B, S1A, and S1B), we found

that in gastrocnemius, soleus, liver, and pWAT of Sf1-Cre;

Sirt1loxP/loxP mice, basal levels of p-AKT/AKT and p-GSK3b/

GSK3b remained constant around the clock (Figures 1C, 1D,

and S1F–S1H). Furthermore, in soleus and pWAT of Sf1-Cre;

Sirt1loxP/loxP mice, insulin administration elevated p-AKT/AKT

and p-GSK3b /GSK3b, with a pattern of diurnal oscillation and

levels similar to controls (Figures 1E and S1H). In liver of Sf1-

Cre; Sirt1loxP/loxP mice, insulin administration increased p-AKT/

AKT and p-GSK3b /GSK3b, with a pattern of fluctuation and

level quasi-similar to controls, as at ZT6 this effect was

slightly enhanced (Figures 1E and S1H). Interestingly, Sf1-Cre;

Sirt1loxP/loxP mice displayed blunted insulin-induced p-AKT/

AKT and p-GSK3b/GSK3b in gastrocnemius skeletal muscle,

and this defect was selective to the light phase (e.g., ZT1 and

ZT6) (Figures 1E and S1H). Of note, this light phase- and gastroc-

nemius-restricted insulin resistance was independent of differ-

ences in body weight or diurnal pattern of glycemia, insulinemia,

corticosteronemia, and locomotor activity, as these parameters

were similar between genotypes (Figures S1I–S1K) (Orozco-

Solis et al., 2015; Ramadori et al., 2011). Together, our data sug-

gest that diurnal changes in insulin sensitivity in gastrocnemius

skeletal muscle is remotely controlled by SIRT1 in SF1 neurons.

To gain insight into the mechanism underlying this VMH-

gastrocnemius daily axis, mice were sacrificed every 6 h over

the 24 h cycle, and gastrocnemius transcriptomic analysis

was performed. Global gene expression analysis using the

BIO_CYCLE algorithm (Agostinelli et al., 2016) revealed a

striking difference in sets of oscillating genes between Sf1-Cre;

Sirt1loxP/loxP mice and their controls (Figure 2A; Table S1). In

gastrocnemius of controls, we found 1,241 oscillatory tran-

scripts, of which only 221 were rhythmic also in Sf1-Cre;

Sirt1loxP/loxP mice (Figure 2B; Table S1). However, 40% of these

commonly oscillating transcripts exhibited a shift in phase (52%

were delayed while 48% were advanced in phase) in Sf1-Cre;
(D and E) Top ten Gene Ontology (GO) terms for biological processes on the bas

(F and G) Number of oscillating genes containing promoter region recognized by

Sf1-Cre; Sirt1loxP/loxP mice, analyzed using MotifMap (see STAR Methods): top te

of 0.01.

See also Figure S2 and Table S1.
Sirt1loxP/loxP mice (Figure 2C; Table S1). Interestingly, we also

found that 593 transcripts acquired de novo diurnal rhythmicity,

as they were exclusively oscillatory in gastrocnemius of Sf1-Cre;

Sirt1loxP/loxP mice (Figure 2B; Table S1). Gene Ontology (GO)

analysis revealed that in controls, the oscillating genes were en-

riched for a number of metabolic processes and inflammatory

signaling (Figure 2D; Table S1). On the other hand, in Sf1-Cre;

Sirt1loxP/loxP mice, the oscillating geneswere selectively enriched

for a completely different set of pathways (Figure 2E; Table S1).

Of note, a number of mRNA changes identified by RNA

sequencing (RNA-seq) transcriptomic analysis were indepen-

dently confirmed by qPCR assay. For example, genes that

were found to be specifically oscillating in controls (e.g., Vegf,

Hes1, Myh2) or in Sf1-Cre; Sirt1loxP/loxP mice (e.g., Pik3, Prkca,

Pten) were confirmed by qPCR assay (Figures S2A and S2B).

Of note, we also found that the acquired diurnal transcriptome

rhythmicity in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice was

tissue specific. Indeed, genes that were found to oscillate only

in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice (Figure 2B) dis-

played normal expression in soleus, liver, and pWAT of Sf1-

Cre; Sirt1loxP/loxP mice (Figure S3A). Next, we performed a

transcription factor motif analysis in order to determine the

frequency of specific transcription factor binding sites on the

promoters of genes that were specifically oscillating in gastroc-

nemius of control or Sf1-Cre; Sirt1loxP/loxP mice (Figures 2F and

2G). These data revealed that only one of the ten most repre-

sented transcription factors is shared between genotypes (Fig-

ures 2F and 2G). In gastrocnemius of Sf1-Cre; Sirt1loxP/loxP

mice, the diurnal mRNA content of core-clock (Bmal1, Cry2,

Per2, and Rev-erba) and clock-controlled (Pgc-1a and Sirt1)

genes as well as the protein content of BMAL1 and PGC-1a

were significantly anomalous (Figures 3A–3C, S3B, and S3C).

On the other hand, the same transcripts were oscillating normally

in soleus, liver, and pWAT of Sf1-Cre; Sirt1loxP/loxP mice (Fig-

ure 3B). Collectively, our data demonstrate that SIRT1 in SF1

neurons remotely coordinates circadian clock function selec-

tively in gastrocnemius skeletal muscle.

To understand how SF1 neurons control circadian clock func-

tion in gastrocnemius, we focused on the SNS, as activation of

beta-adrenergic receptors (b-ARs) has been shown to regulate

metabolic pathways in skeletal muscle (Shiuchi et al., 2009,

2017). Of note, phosphorylation of beta-2-adrenergic receptor

(b-2AR) at serine residues 355 and 356 (Ser355/356) has been

used as a readout of increased SNS action (Fan et al., 2016).

Therefore,weexaminedwhether theactivationof SNS ingastroc-

nemius is altered inSf1-Cre;Sirt1loxP/loxPmice. Our data shown in

Figures 3D and S3D indicate that phosphorylation of b-2AR at

Ser355/356 is significantly reduced in Sf1-Cre; Sirt1loxP/loxP mice.

These results suggest thatSF1neurons coordinate clock function

in gastrocnemius skeletal muscle in part via the SNS.

SIRT1 deacetylates BMAL1, which is a key component of the

core-clock mechanism (Nakahata et al., 2008). Hence, one
is of a p value cutoff of 0.01 in (D) controls and (E) Sf1-Cre; Sirt1loxP/loxP mice.

the indicated transcription factors in gastrocnemius of (F) control mice and (G)

n transcription factors on the basis of major number of hits and p value cutoff
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Figure 3. SIRT1 in SF1 Controls the Diurnal Clock Specifically in Skeletal Muscle

(A) Diurnal mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1 in gastrocnemius, soleus, liver, and pWAT of 10-week-old Sf1-Cre; Sirt1loxP/loxP male

mice and their Sirt1loxP/loxP controls in LD (n = 6–8 of each group/ZT).

(B–D) Relative protein quantification of (B) BMAL1, (C) PGC1a, and (D) phosphorylated b-2AR Ser355/356/b-2AR in gastrocnemius of 10-week-old Sf1-Cre;

Sirt1loxP/loxP male mice and controls in LD (n = 3 of each group).

Error bars represent SEM. Statistical analyses were done using two-tailed unpaired Student’s t test (*p < 0.05, **p < 0.01, and ***p < 0.001).

See also Figures S3–S5.
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cellular mechanism by which SIRT1 in SF1 neurons could influ-

ence diurnal changes in gastrocnemius skeletal muscle function

is via regulation of BMAL1 in SF1 neurons. Therefore, if BMAL1 is

required for SIRT1 in SF1 neurons to govern diurnal rhythms in

gastrocnemius, then lack of BMAL1 in SF1 neurons should

lead to altered rhythms in this tissue. To test this hypothesis,

we performed experiments in mice lacking BMAL1 in SF1 neu-

rons. SF1 neuron-specific deletion of the core-clock component

Bmal1 was achieved by generating Sf1-Cre; Bmal1loxP/loxP mice

(Orozco-Solis et al., 2016). These mice and their Bmal1loxP/loxP

controls were maintained with food and water available ad

libitum, kept on a normal LD cycle, and sacrificed at different

ZTs. As previously shown in Figure 3A, diurnal expression of

core-clock genes Bmal1, Cry2, Per2, and Rev-erba and clock-

controlled genes Pgc-1a and Sirt1 was significantly altered in

gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice. However, expres-

sion of these same genes was normal in gastrocnemius of Sf1-

Cre; Bmal1loxP/loxP mice (Figure S4A). Furthermore, the diurnal

oscillation in BMAL1 and PGC-1a protein content found to be

slightly blunted in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice

(Figures 3B, 3C, S3B, and S3C) was normal in Sf1-Cre;

Bmal1loxP/loxP mice (Figure S4B). These data demonstrate that

BMAL1 in SF1 neurons is dispensable for normal diurnal varia-

tion in gene expression in gastrocnemius.

One of the major outputs of the core clock in SF1 neurons is

regulation of daily thermal oscillation in interscapular brown ad-

ipose tissue (iBAT) (Orozco-Solis et al., 2016). Thus, to determine

whether SIRT1 deletion in SF1 neurons alters core-clock func-

tion in SF1 neurons, we measured iBAT temperature every 6 h

over the 24 h cycle. As expected, iBAT temperature displayed

diurnal oscillation in control mice, and this rhythmicity was

normal in Sf1-Cre; Sirt1loxP/loxP mice (Figures S5A and S5B).

In addition, deletion of SIRT1 in SF1 neurons did not alter

the expression of core-clock genes in VMH and SCN, as

mRNA levels of Bmal1, Cry2, Per2, and Rev-erba in these

micro-dissected nuclei were not different between Sf1-Cre;

Sirt1loxP/loxP mice and their controls (Figures S5C and S5D). Alto-

gether, these data suggest that the core clock in SF1 neurons

and in SCN is unaffected by SIRT1 deletion in SF1 neurons

and that SIRT1 in SF1 neurons remotely governs diurnal rhythms

in gastrocnemius skeletal muscle in a VMH-SCN-core-clock-in-

dependent manner.

To determine the signal(s) coordinating gastrocnemius circa-

dian clock, we focused on feeding and photic inputs, as they

are major ZTs. In rodents, feeding activity occurs mostly during

the dark cycle, and feeding inputs can robustly reshape periph-

eral clocks independently of light-dark cycles (Asher and Sas-

sone-Corsi, 2015). Thus, we tested the effect of restricted

feeding during the 12 h light phase in mice housed in the normal

12 h light and 12 h dark cycle (LD-RFL) (Figure 4A). Of note,

6 days of LD-RFL reshaped diurnal expression and phase distri-

bution of core-clock genes (e.g., Bmal1, Cry2, Per2, and Rev-

erba) and clock-controlled genes (e.g., Pgc-1a and Sirt1) in

gastrocnemius of control mice, as these parameters were

changed compared with the ad libitum feeding condition (Fig-

ures 3A and 4B–4D). For example, whereas Bmal1 and Cry2

mRNA levels normally peak at ZT21 and ZT9, LD-RFL shifted

these peaks to ZT16 and ZT2, respectively (Figure 4C). This is
5–7 h of phase delay compared with the ad libitum condition.

Of note, LD-RFL reshaped diurnal expression and phase distri-

bution of core-clock and clock-controlled genes in gastrocne-

mius of Sf1-Cre; Sirt1loxP/loxP mice compared with the ad libitum

feeding context and to a level similar to control mice with LD-RFL

(Figures 3A and 4B–4D). For example, LD-RFL shifted the peaks

of Bmal1 and Cry2 mRNA levels from ZT0/ZT1 and ZT18/19 to

ZT16 and ZT3, respectively (Figure 4C). These results demon-

strate that feeding inputs reshape diurnal expression in gastroc-

nemius of Sf1-Cre; Sirt1loxP/loxP mice similarly to controls. Thus,

SIRT1 in SF1 neurons is not required for relaying feeding inputs

to clock function in gastrocnemius skeletal muscle.

Next, to determine the role of light inputs, we performed loss-

and gain-of-function experiments. Housing mice in constant

darkness (DD) achieved loss of photic input. As we have shown

previously (Orozco-Solis et al., 2016), Sf1-Cre; Sirt1loxP/loxP mice

display normal wheel-running activity in LD and in DD (Fig-

ure S6A). Thus, because the activity phase shift induced by DD

was similar between Sf1-Cre; Sirt1loxP/loxP and control mice (Fig-

ure S6B), we performed direct comparative analysis between

these groups. Thirty days of DD reshaped circadian expression

and phase distribution of several core-clock (e.g., Bmal1, Cry2,

Per2, and Rev-erba) and clock-controlled (e.g., Pgc-1a and

Sirt1) genes in gastrocnemius of control mice (Figures 3A and

5A–5C). For example, whereas Cry2 and Per2 mRNA levels nor-

mally peak at ZT9 and ZT11, DD shifted these peaks to circadian

time [CT] 12 and CT14/15, respectively (Figure 5B). This is

3–4.5 h of phase delay. Of note, DD reshaped circadian expres-

sion and phase distribution of core-clock and clock-controlled

genes in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice compared

with the ad libitum feeding condition and for core-clock genes

(Bmal1, Cry2, Per2, and Rev-erba) to a level similar to control

mice in DD (Figures 3A and 5A–5C). For example, DD shifted

the peaks of Cry2 and Per2 mRNA levels from ZT18/ZT19 and

ZT11 to CT12 and CT15, respectively (Figure 5B). Because light

removal rescued the core-clock defect observed in gastrocne-

mius, our data suggest that SIRT1 in SF1 neurons relays photic

inputs to gastrocnemius circadian clock. To further address

this possibility, photic gain-of-function experiments were per-

formed by exposing mice to 1 h light input in the middle of the

dark cycle for 30 days (LDL) (Figure 5D). Although LDL did not in-

fluence the free-running period, it changed the activity pattern

during the light-off period compared with the LD context; yet

this activity pattern change was similar between Sf1-Cre;

Sirt1loxP/loxP mice and their controls (Figure S6C). Also, LDL did

not have an impact on body weight and food intake, and these

parameters were not different between genotypes (Figures

S6D and S6E). Interestingly, LDL reshaped the diurnal expres-

sion and phase distribution of several core-clock (e.g., Bmal1,

Cry2, Per2, and Rev-erba) and clock-controlled (e.g., Pgc-1a

and Sirt1) genes in gastrocnemius of control mice (Figures 3A

and 5E–5G). For example, whereasBmal1 andCry2mRNA levels

normally peak at ZT21 and ZT9, LDL shifted these peaks to ZT16

and ZT6, respectively (Figures 4C and 5E–5G). This is 3–7 h of

phase advance. Of note, the ability of light to reshape the circa-

dian clock in gastrocnemius was significantly blunted in Sf1-Cre;

Sirt1loxP/loxP mice (Figures 5E–5G). In fact, phase distribution of

core-clock and clock-controlled genes was similar between
Cell Reports 27, 2385–2398, May 21, 2019 2391
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Figure 4. SIRT1 in SF1 Neurons Is Not Required for Feeding Entrainment of Skeletal Muscle Diurnal Clock

(A) Timetable describing LD-RFL cycle: mice were exposed to a 12 h light, 12 h dark cycle with food available only during the 12 h light phase.

(B) Diurnal mRNA levels ofBmal1,Cry2, Per2,Rev-erba, Pgc1a, and Sirt1 in gastrocnemius of 10-week-old Sf1-Cre; Sirt1loxP/loxP male mice and their Sirt1loxP/loxP

controls on LD-RFL (n = 7–9 per group).

(C) Diagrams representing phase distribution of mRNA levels ofBmal1,Cry2,Per2,Rev-erba,Pgc1a, and Sirt1 in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP and their

Sirt1loxP/loxP controls in LD (fed ad libitum) and LD-RLF.

(D) Heatmap representing phase shift (phase delayed and phase advanced) of gastrocnemius mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1

between the represented mouse groups in LD fed either ad libitum or RLF.

Error bars represent SEM. Statistical analyses were done using two-tailed unpaired Student’s t test and showed no differences.
gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice in LD and in LDL,

hence demonstrating the inability of Sf1-Cre; Sirt1loxP/loxP mice

to respond to photic input (Figures 5F and 5G). Collectively,

our data indicate SIRT1 in SF1 neurons is required for light-

induced entrainment of the circadian clock in gastrocnemius

skeletal muscle.

To test whether photic inputs are required for normal insulin

sensitivity, we exposed mice for 2 days to DD (2DD) and as-

sessed their tissue insulin sensitivity. Surprisingly, light removal

caused insulin resistance in gastrocnemius and soleus skeletal

muscle, as insulin-induced p-AKT/AKT and p-GSK3b/GSK3b in

2DDmice was reduced compared with their LD controls (Figures
2392 Cell Reports 27, 2385–2398, May 21, 2019
6A–6D). Of note, light removal caused a similar deleterious effect

in soleus skeletal muscle of Sf1-Cre; Sirt1loxP/loxP mice, as insu-

lin-induced p-AKT/AKT and p-GSK3b/GSK3b in soleus of Sf1-

Cre; Sirt1loxP/loxP mice kept for 2 days in DD was reduced

compared with Sf1-Cre; Sirt1loxP/loxP mice housed on a normal

LD cycle (Figures 6C and 6D). On the other hand, light removal

did not affect insulin sensitivity of gastrocnemius skeletal muscle

in mice lacking SIRT1 in SF1 neurons, as insulin-induced p-AKT/

AKT and p-GSK3b/GSK3b in Sf1-Cre; Sirt1loxP/loxP mice kept for

2 days in DD was undistinguishable from Sf1-Cre; Sirt1loxP/loxP

mice housed in normal LD cycle (Figures 6A and 6B).

Importantly, the action of light removal on insulin action in
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Figure 5. Light Inputs Entrain Circadian Clock in Gastrocnemius via SIRT1 in SF1 Neurons

(A) Circadian mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1 in gastrocnemius of 10-week-old Sf1-Cre; Sirt1loxP/loxP male mice and their

Sirt1loxP/loxP controls in DD (n = 5 or 6 per group).

(B) Diagrams representing phase distribution of mRNA levels ofBmal1,Cry2,Per2,Rev-erba,Pgc1a, and Sirt1 in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP and their

Sirt1loxP/loxP controls in LD and DD.

(C) Heatmap representing phase shift (phase delayed and phase advanced) of gastrocnemius mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1

between the represented mouse groups.

(D) Timetable describing LDL cycle.

(legend continued on next page)
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gastrocnemius skeletal muscle was similar to the effect of SIRT1

deletion in SF1 neurons. In fact, insulin-induced p-AKT/AKT and

p-GSK3b/GSK3b in gastrocnemius of 2DD control mice was

similar to that found in Sf1-Cre; Sirt1loxP/loxP mice kept on a

normal LD cycle (Figures 6A and 6B).

To further assess the effect of photic loss or gain of function on

tissue responsiveness to insulin, measurement of insulin-

induced glucose uptake in vivo was performed. Interestingly,

light removal (2DD) or 1-hour light input in the middle of the

dark cycle (LDL) negatively affected insulin-induced glucose up-

take in gastrocnemius skeletal muscle of control mice. Indeed,

the ability of insulin to stimulate glucose uptake in this tissue of

2DD or LDL mice was reduced compared with LD controls (Fig-

ure 6E). Of note, the defect in insulin-induced glucose uptake

caused by either 2DD or LDL was similar to that caused by

SIRT1 deletion in SF1 neurons. Indeed, there was no difference

in insulin-induced glucose uptake in gastrocnemius skeletal

muscle of control mice housed in 2DD or LDL conditions and

Sf1-Cre;Sirt1loxP/loxPmice housed in LD cycle (Figure 6E). Impor-

tantly, neither 2DD nor LDL affected insulin-induced glucose

uptake in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice, hence

indicating that SIRT1 in SF1 neurons is required for light-induced

entrainment of insulin sensitivity in skeletal muscle (Figure 6E).

Collectively, these data demonstrate that altering photic inputs

dampens skeletal muscle responsiveness to insulin and that

SIRT1 in SF1 neurons is required for light-induced changes in in-

sulin sensitivity in gastrocnemius skeletal muscle.

DISCUSSION

Virtually all physiological functions (e.g., nutrient processing,

cardiovascular output, renal filtration, heat production) must be

coordinated with light-dark cycles and tied to geophysical time

(Bass, 2012; Bass and Takahashi, 2010). These functions are

in part orchestrated by diurnal oscillation in hormonal action,

and it is common wisdom that daily variation in hormonal secre-

tion is the main driver for achieving changes in hormonal effect.

Here we show that diurnal variation in hormonal sensitivity is also

crucial for ensuring that the appropriate hormonal action is

achieved at the right time. For example, we show that skeletal

muscle, adipose tissue, and liver are very sensitive to insulin at

times when mice are active and eat (i.e., the dark period),

whereas these tissues are more resistant to the hormone when

mice are inactive (i.e., the light period). We suggest that these

data unveil a physiological mechanism bywhich the combination

of insulin abundance and appropriate tissue responsiveness

guarantees that the correct insulin effect is attained at the right

time. Specifically, the highest insulin sensitivity during the
(E) Circadian mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1

Sirt1loxP/loxP controls in LDL (n = 3–5 per group).

(F) Diagrams representing phase distribution of mRNA level of Bmal1, Cry2, Per2,

Sirt1loxP/loxP controls in LD and LDL.

(G) Heatmap representing phase shift (phase delayed and phase advanced) of g

between the represented mouse groups.

In (B) and (F), diagrams relative to phase distribution in LD are replicas from Figure

were done using two-tailed unpaired Student’s t test (*p < 0.05, **p < 0.01, and *

See also Figure S6.
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feeding period would guarantee that insulin-induced glucose up-

take is properly achieved during a phase of food intake. On the

other hand, the lowest insulin sensitivity during the resting period

would guarantee that insulin-induced suppression of endoge-

nous glucose production and free fatty acid secretion are damp-

ened during a fasting phase, when glucose and free fatty acid

secretion are needed (Rodgers et al., 2005). Our rodent data

are in line with clinical observations indicating that insulin sensi-

tivity is highest at the onset of the feeding period (Carroll and

Nestel, 1973; Gibson and Jarrett, 1972; Service et al., 1983;

Van Cauter et al., 1991; Whichelow et al., 1974). We propose

that diurnal variation in tissue responsiveness to hormonal action

is not restricted to insulin and is therefore a broader phenome-

non. Hence, further studies aimed at determining whether the

sensitivity of other hormones (whose content varies during the

24 h period, e.g., thyroid hormone, glucocorticoids) fluctuates

around the clock are warranted.

Here, we show that light inputs affect insulin sensitivity. For

example, altering the daily variation in photic inputs either by light

gain or loss of action leads to similar defects in insulin sensitivity

in skeletal muscle (Figures 6A–6E). These data are in keeping

with previous results indicating that exposure to light at the

wrong time negatively affects glucose homeostasis (Cheung

et al., 2016; Opperhuizen et al., 2017; Versteeg et al., 2017).

Mechanistically, we found that light governs insulin sensitivity

in gastrocnemius skeletal muscle through a pathway involving

SIRT1 in SF1 neurons. Of note, our results bring about new ques-

tions. For example, how do photic inputs reach VMH SF1 neu-

rons? First, photic inputs are registered by retinal neurons,

then conveyed to SCN neurons, which then relay this information

to a poorly characterized neurocircuitry (Takahashi et al., 2008).

We suggest that VMH SF1 neurons are part of this circuitry.

Indeed, SCN neurons could control VMH SF1 neurons via indi-

rect polysynaptic connections involving paraventricular and dor-

somedial hypothalamic nuclei and/or orexin neurons in the

lateral hypothalamic area (Ramadori et al., 2011; Saper et al.,

2005). Alternatively, because retinal cells project to other non-

SCN brain sites, it is possible that these cells project to VMH

neurons without the involvement of the SCN. In addition, how

do VMH SF1 neurons ‘‘communicate’’ specifically to gastrocne-

mius skeletal muscle? We suggest at least two possibilities: via

neuroendocrine circulating factor(s) and/or the autonomic ner-

vous system. The latter is more likely because it is supported

by results from recent studies showing that (1) VMH-centered

orexin-A delivery enhances insulin sensitivity in skeletal muscle

through increased sympathetic tone in this tissue (Shiuchi

et al., 2009), and (2) orexin-A’s anti-diabetic action is severely

impaired in mice lacking SIRT1 in SF1 neurons (Ramadori
in gastrocnemius of 10-week-old Sf1-Cre; Sirt1loxP/loxP male mice and their

Rev-erba, Pgc1a, and Sirt1 in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP and their

astrocnemius mRNA levels of Bmal1, Cry2, Per2, Rev-erba, Pgc1a, and Sirt1

4C added to this figure for clarity. Error bars represent SEM. Statistical analyses

**p < 0.001).
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Figure 6. Light Input Controls Skeletal Muscle Insulin Sensitivity through SIRT1 in SF1 Neurons

(A–D) Immunoblots from gastrocnemius (A) and soleus (C) of control mice (Sirt1loxP/loxP mice) and Sf1-Cre; Sirt1loxP/loxP mice. (B and D) Left panel: relative protein

quantifications showing p-AKT/AKT and p-GSK3bSer9/GSK3b. Right panel: relative values of fold increase of insulin-induced p-AKT/AKT and p-GSK3bSer9/

GSK3b over saline level. Immunoblots in (A) and (C) were obtained at ZT6 from 10-week-old male mice (n = 3 of each genotype). Tissues were collected 20 min

after an intraperitoneal bolus of insulin (3 U/kg) or saline.

(E) Tissue-specific insulin-stimulated glucose uptake.

Error bars represent SEM. Statistical analyses were done using two-tailed unpaired Student’s t test or two-way ANOVA (Tukey’s post test). In (B) and (D), left

panels: *p < 0.05 and ***p < 0.001, insulin versus saline of same genotype. In (B) and (D), right panels: *p < 0.05, **p < 0.01, and ***p < 0.001, 2DD versus LD of same

genotype. In (E), *p < 0.05 and **p < 0.01, all other groups versus control LD.
et al., 2011). Interestingly, in mice, orexin release in the hypothal-

amus follows a diurnal rhythm, with higher and lower levels

during dark and light phases, respectively, similar to the daily

variation of insulin signaling in gastrocnemius (Fenzl et al.,

2009). Further supporting a role of the SNS, we found reduced

phosphorylation status of b2-AR receptor in gastrocnemius of

Sf1-Cre; Sirt1loxP/loxP mice (Figures 3D and S3D). Future studies

are necessary to establish the underpinnings of this light-VMH-

gastrocnemius circuitry. Importantly, we found that other tissues

(i.e., soleus skeletal muscle, liver, and pWAT) display diurnal vari-
ation in insulin sensitivity and that this regulation is not controlled

by SIRT1 in SF1 neurons. Thus, additional work will be necessary

to understand the mechanisms underlying diurnal variation in in-

sulin sensitivity in these other tissues.

A further noteworthy aspect of our results is the concomitant

defect in diurnal insulin sensitivity and transcriptome oscillation

in gastrocnemius of Sf1-Cre; Sirt1loxP/loxP mice. We suggest

that these two defects are linked to each other, as an altered

circadian clock has been shown to impair insulin sensitivity in

skeletal muscle. For example, cyclic expression of the essential
Cell Reports 27, 2385–2398, May 21, 2019 2395



core clock component Bmal1 is severely blunted in gastrocne-

mius of Sf1-Cre; Sirt1loxP/loxP mice (Figures 3A and S3B). A pre-

vious study indicated that deletion of Bmal1 in skeletal muscle is

sufficient to cause insulin resistance in this tissue (Dyar et al.,

2013). Thus, these data would support a causative link between

changes in intrinsic circadian clock and reduced insulin

sensitivity.

The importance of proper synchronization between light-dark

cycles and hormonal action is demonstrated by the fact that

when this synchrony is disturbed, metabolic unbalance arises

(Masri and Sassone-Corsi, 2013). For example, altered sleep

and/or feeding cycles are associated with development of meta-

bolic diseases in humans (Buxton et al., 2012; Scheer et al.,

2009). Moreover, genetically engineered animal models bearing

an altered circadian clock in either a whole-body or a tissue-spe-

cific manner display insulin resistance (Marcheva et al., 2010;

McDearmon et al., 2006; Paschos et al., 2012; Shi et al., 2013).

Our data could explain, at least in part, why people exposed to

light at the wrong times (e.g., shift workers) are more prone to

develop diabetes (Masri and Sassone-Corsi, 2013). In fact, we

show that light, or the absence of it, can profoundly influence tis-

sue insulin sensitivity and that alteration in this mechanism, as in

Sf1-Cre; Sirt1loxP/loxP mice, is sufficient to favor development of

diabetes (Ramadori et al., 2011).

Our results are of important physiological relevance. Indeed,

we have previously shown that mice lacking SIRT1 in VMH SF1

neurons aremore prone to developmetabolic imbalance (Rama-

dori et al., 2011). Thus, our datamight have clinical relevance. For

example, in type 1 diabetesmellitus (T1DM), b-cells are totally (or

almost totally) lost (Wasserfall et al., 2017), while in type 2 dia-

betes mellitus (T2DM), chronic metabolic pressure causes

b-cell exhaustion, failure, and/or dedifferentiation (Butler et al.,

2007; Talchai et al., 2012). These defects trigger insulin defi-

ciency, an otherwise fatal condition that can be treated only

with insulin therapy. However, insulin therapy is unsatisfactory

because insulin-deficient patients are still at a much higher risk

for developing hypoglycemia (and many other comorbidities)

(Larsen et al., 2002; Orchard et al., 2003; Umpierrez and Koryt-

kowski, 2016). Although the amount of injected insulin is based

strictly on carbohydrate intake, the time of day when insulin is

delivered is poorly considered. Our data indicate that insulin

sensitivity varies around the clock. Currently insulin therapy is

prescribed to an estimated 100 million people; these include

virtually all T1DM patients and �20%–25% of T2DM patients

(Detournay et al., 2005; Koro et al., 2004). Hence, we suggest

that the time when insulin is delivered to these patients must be

taken into meticulous consideration. In fact, our results suggest

that proper calculation, including carbohydrate intake and time

of day when insulin is administered, should reduce the risk for in-

sulin-induced hypoglycemia and overall improve diabetes care.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING
2396 Cell Reports 27, 2385–2398, May 21, 2019
d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHODS DETAILS

B Animal Experiments

B Circadian Behavior

B Real-Time Quantitative Polymerase Chain Reaction

(Real-Time qPCR)

B Western Blot

B Blood Chemistry

B Immunohistochemistry Analyses

B RNA sequencing and analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Quantification

B Statistical Analysis

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.04.093.

ACKNOWLEDGMENTS

We thank Ariane Widmer, Anne Charollais, and Carolyn Heckenmeyer in the

Coppari laboratory for their technical support and Drs. Ueli Schibler, Claes

Wollheim, and Charna Dibner for suggestions and critical reading of the manu-

script. We also thank Siwei Chen for helping with gathering the GEO number.

This work was supported in part by Coordenaç~ao de Aperfeiçoamento de Pes-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-Akt (Thr308) Cell Signaling Technology Cat# 4056, RRID:AB_331163

Akt Cell Signaling Technology Cat# 2920, RRID:AB_1147620

SIRT1 Merck Cat# 07-131, RRID:AB_2188349

pADRB2 (Ser355/Ser356) Thermo Fisher Scientific Cat# PA5-38403, RRID:AB_2555004

ADRB2 Thermo Fisher Scientific Cat# PA5-14117, RRID:AB_2225403

GAPDH Cell Signaling Technology Cat# 5014, RRID:AB_10693448

GSK-3b Cell Signaling Technology Cat# 9315, RRID:AB_490890

pGSK-3b Cell Signaling Technology Cat# 9336, RRID:AB_331405

BMAL1 Abcam Cat# ab93806, RRID:AB_10675117

PGC-1a Santa Cruz Cat# sc-13067, RRID:AB_2166218

Critical Commercial Assays

Avidin Biotin Complex Vector Laboratories PK-6100

Mouse Insulin ELISA Kit Crystal Chem. Inc. 90080

Deposited Data

Transcriptomics data this paper GEO:GSE129518

Experimental Models: Organisms/Strains

Sf1-Cre; Sirt1loxP/loxP This paper Ramadori et al., 2011

Sirt1loxP/loxP This paper Ramadori et al., 2011

Sf1-Cre; Bmal1loxP/loxP This paper Orozco-Solis et al., 2016

Bmal1loxP/loxP This paper Orozco-Solis et al., 2016

Software and Algorithms

Microsoft Office Excel 2010 Microsoft https://www.microsoft.com

GraphPad GraphPad Software Inc https://www.graphpad.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Roberto

Coppari (Roberto.coppari@unige.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sf1-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP mice were housed at the animal facilities of University of Geneva, in accordance with the an-

imal care and experimentation authorities of the Canton of Geneva, Switzerland (animal protocol numbers GE/22/15, GE/28/13, GE/

120/15). Sf1-Cre; Bmal1loxP/loxP and Bmal1loxP/loxP mice were housed at the animal facilities of the University of California, Irvine.

Animals and protocols used in this study were reviewed and approved by the Institutional Animal Care and Use Committee of the

University of California, Irvine.

METHODS DETAILS

Animal Experiments
Sf1-Cre; Sirt1loxP/loxP and control (Sirt1loxP/loxP) mice were housed in groups of 4-5 with a standard chow rodent diet and water avail-

able ad libitum in light- and temperature-controlled environments unless otherwise specified. LDmice were exposed to 12-hour light

and 12-hour dark cycles. They were sacrificed and tissues were collected every 6 hours. DD mice were exposed to darkness for

30 days. They were sacrificed subsequently around the clock every 4 hours. LDL mice were exposed to 12-hour light, 5-hour

dark, 1-hour light, and 6-hour dark cycles for 30 days with applied light stimulus was 400 lux (incandescent light) (Ishida et al.,
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2005). After the end of 30 days, they were sacrificed subsequently around the clock every 4 hours. For the insulin-stimulated exper-

iments, 2DD mice were exposed to darkness for 2 days. To avoid post-prandial confounding effects, insulin or saline administration

was performed in mice that had no access to food starting 3 hours prior to injection; yet, water was available ad libitum. For in vivo

insulin-induced glucose uptake experiments, animals were exposed to darkness for 2 days (2DD) of light in the middle of night for

30 days (LDL). in vivo insulin-stimulated glucose uptake in tissues was performed at ZT6 and determined by a 40 mCi bolus injection

of 2-deoxy-[1,2-3H]-glucose (ARC, St-Louis, MO) i.v. in the presence of insulin (Humulin, Lilly France) at 0.75 IU/kg i.p. Blood was

sampled from the tail vein 1, 7, 14, 21 and 28 minutes after injections. After 30 minutes, mice were rapidly sacrificed and tissues

removed and stored at �80�C until use. Glucose concentration in deproteinized blood samples was measured using the glucose

oxidase method (GLU, Roche Diagnostics, Rotkreuz, Switzerland). Measurements of [1,2-3H] deoxyglucose-6-phosphate levels in

deproteinized blood samples and individual tissues allowed calculation of the glucose utilization index in tissues. Sf1-Cre;

Bmal1loxP/loxP and control (Bmal1loxP/loxP) mice were maintained on a 12-hour light/dark cycle. Tissues were immediately flash frozen

in liquid nitrogen for subsequent processing.

Circadian Behavior
Wheel-running activity was continuously recorded and data was obtained every 5 min using Columbus Instruments Multi-Device In-

struments (Columbus, OH, USA). Data were analyzed using ActogramJ (NIH).

Real-Time Quantitative Polymerase Chain Reaction (Real-Time qPCR)
RNAs were extracted using Trizol reagent (Invitrogen). Complementary DNA was generated by Superscript II (Invitrogen) and used

with SYBR Green PCR master mix (Applied Biosystem, Foster City, CA, USA) for quantitative real time PCR (q-RTPCR) analysis.

mRNA contents were normalized to 18 s mRNA levels. All assays were performed using an Applied Biosystems QuantStudio� 5

Real-Time PCR System. For each mRNA assessment, q-RTPCR analyses were repeated at least 3 times.

Western Blot
Proteins were extracted by homogenizing samples in lysis buffer (Tris 20mM, EDTA 5mM, NP40 1% (v/v), protease inhibitors (P2714-

1BTL from Sigma, St. Louis, MO, USA). Generally, 30 mg of tissues was loaded on 10%poly-acrylamide gels and finally transferred to

a nitrocellulose membrane by electroblotting. Briefly, nitrocellulose membranes were blocked with Odyssey blocking buffer (Li-Cor

Biosciences) 1 hour at room temperature and successively incubated 12 hours at 4�C with the specific primary antibodies diluted

1:1000 in PBS-T buffer. PBS-T buffer is PBS buffer (27.6g Sodium Phosphate, dibasic + 160 g Sodium Chloride in 20L distilled

H2O at pH 7.4) and 0.5% Tween-20. Detection was obtained by using near-infrared secondary antibodies diluted 1:5000 in

PBS-T (IRDye 800CW and IRDye600RD; Li-Cor Biosciences) and a Clx Odyssey infrared scanner (Li-Cor Biosciences). List of anti-

bodies used for western blotting are as follows: pAKT - Phospho-Akt (Thr308) (244F9) (Rabbit Ab, Cell Signaling Technology), AKT -

Akt (pan) (40D4) (Mouse mAb, Cell Signaling Technology), GSK-3b (D5C5Z) (XP� Rabbit Ab, Cell Signaling Technology), Phospho-

GSK-3b (Ser9) (Cell Signaling Technology), BMAL1 (Abcam Ab93806), PGC-1a (H-300) (sc-13067, Santa Cruz), GAPDH (14C10)

(Rabbit Ab, Cell Signaling Technology), Phospho-beta-2 Adrenergic Receptor (Ser355/Ser356) (PA5-38403) (Rabbit Ab, Thermo

Fisher Scientific), Beta-2 Adrenergic Receptor (PA5-14117) (Rabbit Ab, Thermo Fisher Scientific).

Blood Chemistry
Fed hormones/metabolites levels were determined by collecting tail blood frommice that were without food for 3 hours. Fasted hor-

mones/metabolites levels were assessed in mice provided only with water ad libitum and without food for the indicated period. Time

at day at which blood was collected was the same between groups. Tail vein blood was assayed for glucose levels using a standard

glucometer (NovaBiomedical). Plasmawas collected by centrifugation in EDTA-coated tubes (Kent Scientific) and assayed for insulin

(Crystal Chem. Inc.) levels using the indicated commercially available kit.

Immunohistochemistry Analyses
Nissl staining and SIRT1 immunohistochemistry were performed using free-floating brain sections as previously described (Rama-

dori et al., 2010). Briefly, 25 mm thick sections were mounted on glass slides and treated in xylene and then PBS containing

decreasing concentration of ethanol (100%, 70%, 50% and 0%). All steps were performed at room temperature on an orbital shaker

at �50 rpm. Sections stored in PBS were first washed in PBS 3 times for 10 minutes each. Sections were then incubated in 0.3%

H2O2 for 30 minutes to block the endogenous peroxidase activity and subsequently rinsed in PBS 3 times for 10 minutes each.

All sections were then placed in blocking solution of 3% normal donkey serum in PBT-Azide (2.5mL of Triton X-100 in 1000mL of

PBS-Azide) for 2 hours. The sections were then transferred into SIRT1 1:5,000 primary antisera (Anti-Sir2 Antibody 07-131, Merck)

with 3% normal donkey serum in PBT-Azide overnight at 4�C. The sections were then rinsed with PBS 6 times for 10 minutes each.

Next, sections were transferred into 1:1,000 biotin-conjugated donkey anti-rabbit secondary antisera (Jackson Immuno Research)

with 3% normal donkey serum in PBT for 2 hours and subsequently rinsed in PBS 3 times for 10 minutes each. Avidin Biotin Complex

(Vectastain Elite PK-6100 ABC kit, Vector Laboratories) solution was prepared (1:500 in PBS) 30 minutes prior to incubating the

sections in it for 1 hour and subsequently rinsed in PBS 2 times for 10 minutes each. The sections were then incubated in 0.04%
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3,30-Diaminobenzidine and 0.01% H2O2 in PBS for 8 minutes. Finally, the sections were washed in PBS 2 times for 10 minutes each

and mounted on gelatin coated glass slides for visualization. Adjacent sections were used for Nills staining.

RNA sequencing and analysis
RNA sequencing

Total RNA was extracted at from skeletal muscle using methods previously described in preparation for RNA sequencing (RNASeq).

Quality control was done using the Agilent Bioanalyzer Nano RNA chip andNanodrop. Library construction was performed according

to the Illumina TruSeqmRNA stranded protocol. In total, 32 samples corresponding to 4 ZTs (ZT0, 6, 12, and 18) weremultiplexed into

4 libraries of 8 samples for both genotypes, and sequenced on an Illumina HiSeq 2500 instrument during two single-end 100 cycles

sequencing runs by the Genomics High-Throughput Facility at the University of California, Irvine. The resulting sequencing data for

each library were post-processed and demultiplexed to produce FastQ files using Illumina software CASAVA. Reads failing Illumina’s

standard quality tests were not included in the FastQ files. The quality of the remaining sequences was further assessed using the

PHRED quality scores produced in real time during the base-calling step of the sequencing runs. Filtered FastQ files were then pro-

cessed through the standard Tuxedo protocol (Trapnell et al., 2012). Briefly, reads were aligned to the UCSCmm10mouse reference

genome using TopHat and Bowtie2 with standard recommended parameters. Assembled transcripts were obtained via Cufflinks

with the mm10 reference annotation file. Genome assembly was obtained using Cuffmerge and expression levels (summarized to

genes) were calculated using Cuffquant and then normalized via Cuffnorm to FPKM values. For each condition, 24 hr. time series

data from 4 time points with 4-5 replicates each was collected. In total, expression levels of 24138 unique genes were considered

for further analysis. Data was further organized into two parallel circadian groups (one per condition) for comparative analysis.

Circadian Analysis

Gene expressions with low or sparse FPKM values (< 0.1 in at least half of the samples) were filtered, resulting in 16634 high quality

data rows for downstream analysis. Time series of expression levels were then used to determine circadian behaviors of transcripts

using BIO_CYCLE algorithm (Agostinelli et al., 2016) a modern circadian oscillation predicting method based on a neural network

approach, and corroborated using JTK-CYCLE (Hughes et al., 2010). A time series with p < 0.05 was considered significantly rhyth-

mic over the circadian cycle. False discovery rates were estimated using the Benjamini-Hochberg q (BHQ) values. Amplitude, phase

and period predicted by BIO_CYCLE was generated for all gene expressions passing this threshold. Distributions of phase and

amplitude of circadian genes were analyzed done using ‘sci-kit learn’ and ‘pandas’ in python. Amplitude distribution of oscillating

genes was analyzed by Mann-Whitney test. Evaluation of phase lag between conditions was carried out by Wilcoxon Signed

Rank Test where a phase difference of 1 hour or more was considered a phase change. Heatmaps of the rhythmic expressions

were generated by R package ‘gplots’.

Statistical and Bioinformatics Analysis

Differential analysis of expression levels between the conditions at a specific ZTs was done using Cyber-T (Kayala and Baldi, 2012), a

differential analysis program using a Bayesian-regularized t test. Fold change (FC) was calculated with FPKM values. An enrichment

analysis based on theGene Set Enrichment Analysismethodology was used to discover potentially enriched pathways and upstream

transcription factors or RNA-binding proteins (Subramanian et al., 2005). For pathway information, gene ontological data from

PathwayCommons was used, for TFs information predicted binding sites from MotifMap and MotifMap-RNA were used (Cerami

et al., 2011; Liu et al., 2017). Gene sets with FDR < 0.05 were considered significantly enriched and were ranked using fold changes

or the number of genes in the set. Most of the aforementioned analysis was done using pipelines implemented for the CircadiOmics

(Patel et al., 2012) database and web portal (http://circadiomics.ics.uci.edu) where all the transcriptomic data associated with this

work is publicly available on database link ‘‘MOUSE SKELETAL MUSCLE NA 2018.’’

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification
Western blots for pan acetylated lysine antibody were quantified using ImageJ (NIH).

Statistical Analysis
Datasets were analyzed for statistical significance using PRISM (GraphPad, San Diego, CA) for a two-tail unpaired Student’s t test

when two groups were compared or one-or two-way ANOVA (Tukey’s post-test) when more than two groups were compared.

DATA AND SOFTWARE AVAILABILITY

The accession number for the data reported in this paper is GEO: GSE129518 (Database: https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE129518).
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