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Abstract 

 

Aromatic amino acids decarboxylase and histidine decarboxylase (AADC and 

HDC) are two homologous enzymes responsible for the synthesis of 

dopamine/serotonin and histamine, respectively, and other minor signalling 

aromatic amines. All these molecules are main protagonists or regulators of several 

physiological pathways, which are fundamental both in central nervous system and 

in peripheral tissues. Alterations of their homeostasis, indeed, as well as of AADC 

and HDC functioning or expression, cause and/or participate in the development 

and progression of several often severe and disabling pathological conditions, such 

as AADC Deficiency and cholangiocarcinoma. Consequently, AADC and HDC 

characterization might be useful in the pathophysiological understanding of several 

diseases and in improving/developing new therapeutic strategies. However, the 

knowledge of the biochemical features of these two crucial enzymes is still rather 

limited. Thus, the aim of this thesis is to biochemically characterise human HDC, 

mostly unknown, and to individuate some possible regulative mechanisms for both 

HDC and AADC. In addition, a neuronal AADC Deficiency cell model, derived 

from patient induced pluripotent stem cells (iPSCs), was used to evaluate 

endogenous AADC features, as well as to research further alterations in 

dopaminergic pathway. 

Investigations on human recombinant HDC allowed to discover that, 

surprisingly, its conformation and catalytic efficiency are influenced by redox state: 

increasing oxidizing conditions, indeed, favour a more stable and active form of the 

dimeric enzyme, due to the presence of an intermolecular reversible disulphide 

bridge involving residue Cys180 of both subunits. Then, in solution analyses of a 

possible phosphorylation of AADC identified Ser193 as protein kinase A target site, 

and allowed the detection of an effect on enzyme kinetic parameters, in particular 

an increased affinity for its substrates. Finally, endogenous AADC levels analyses 

in dopaminergic neurons derived from AADC Deficiency patients suggested a 

possible positive feedback mechanism that could tend to increase AADC 

expression, and the same cell model showed alterations in other cell types besides 

neurons, in particular glia cells, suggesting that variations in neurons-glia cells 



Abstract 

5 
 

interplay could participate in the pathophysiology mechanisms of AADC 

Deficiency. Altogether, data and information obtained from the performed 

experiments have increased AADC and HDC knowledge, as well as paved the way 

for new hypothesis regarding possible efforts in the development of new disease 

treatments. 
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Thesis overview 

 

 

The main topic of this thesis deals with AADC and HDC, two homologues 

pyridoxal 5’-phosphate (PLP)-dependent decarboxylases, with the aim to 

characterise some of their peculiar features, as described in Chapter 4. This thesis, 

indeed, is divided into several chapters. 

The introduction part starts with an overall picture of PLP-dependent α-

decarboxylases features, reported in Chapter 1, followed by a focus on the thesis 

experimental investigation subjects of this family, AADC and HDC. A 

comprehensive overview of their physiological role and pathological implications 

in several diseases are proposed in Chapter 2. Chapter 3 exhaustively describes the 

highly innovative dopaminergic neuronal model derived from induced pluripotent 

stem cells, as well as its choice for the proposed research.  

The three results chapters are focused on the various identified features of 

AADC and HDC: Chapter 6 highlights a redox modulation of HDC activity, 

Chapter 7 mainly focuses on AADC phosphorylation, and, lastly, Chapter 8 reports 

investigations on endogenous AADC, as well as other dopaminergic pathway 

enzymes, in neurons of AADC Deficiency patients. Partial conclusions are reported 

at the end of each results chapter, and a comprehensive discussion is proposed in 

Chapter 9. Complete bibliography, as Chapter 10, and a list of attached 

publications, as Chapter 11, complete the thesis. 

Chapters 7 and 8 experiments were performed during two research periods in 

other Institutes, hosted by University of Georgia at Athens (USA) and University 

College of London Institute of Child Health (UK), respectively. 
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Chapter 1 

 

 

AADC and HDC are two homologous enzymes of human 

group II PLP-dependent α-decarboxylases family 

 

 

1.1. Human group II PLP-dependent α-decarboxylases 

 

The observations outlined in this chapter led to the drafting of attached 

Publication 2 (Chapter 11). 

 

1.1.1. PLP is a versatile cofactor 

 

PLP-dependent enzymes are found in all organisms, from prokaryotes to higher 

eukaryotes [1], and catalyse many essential reactions, mainly linked to amino acids 

and amines metabolism, like transamination, racemization, β- and α-

decarboxylation, β- and γ-elimination and β- and γ-substitution. This wide variety 

of reactions is possible due to the strongly electron withdrawing capability of PLP 

pyridinium ring, that stabilises β- or α- carbanions on the amine or amino acid 

portion of substrates, as proposed since the 1950s from Metzler and Snell [2- 4] and 

Braunstein and colleagues [5-7]. Thus, the general reaction chemistry is controlled 

by PLP, due to its ability to perform these reactions at a slow rate in solution, but 

protein environment is responsible for the reaction specificity towards different 

substrates and for the enormous acceleration rates typical of these enzymes.  

 

1.1.2. Human group II PLP-dependent α-decarboxylases 

 

The wide catalytic versatility of PLP-enzymes is accompanied by a limited 

structural diversity. On the basis of amino acid sequence comparisons, predicted 

secondary structures and published three-dimensional configurations since then, in 



1. AADC and HDC are two homologous enzymes of human  
group II PLP-dependent α-decarboxylases family 

14 

 

1995 PLP-enzymes were distributed into five different fold-types (from I to V) [8], 

followed by later updates with new structures information [9]. The most common 

fold type, i.e. fold-type I, is typical of aminotransferases, almost all α-

decarboxylases, and also enzymes which catalyse α- or γ-eliminations. Enzymes 

that catalyse β-elimination reactions belong to fold-type II, while alanine racemase 

and a minor subset of decarboxylases to fold-type III and D-alanine 

aminotransferase together with few other enzymes to fold-type IV. Lastly, fold-type 

V group comprises glycogen and starch phosphorylases. 

Regarding PLP-dependent α-decarboxylases only, another classification, based 

on evolutionary relationships derived by amino acid sequence comparisons [10], 

divides them into 4 groups. In particular, group II comprises AADC, HDC, 

glutamate decarboxylase (GAD65/67) and cysteine sulfinic acid decarboxylase 

(CSAD), from prokaryotic and eukaryotic organisms, sharing the PLP-binding 

motif of fold-type I. The hallmarks of these decarboxylases mainly include a 

glycine-rich motif upstream from the PLP-bound lysine residue and an invariant 

aspartate interacting with the cofactor pyridine nitrogen [9,10].  

 

1.1.3. Group II PLP-dependent α-decarboxylases show major structural similarities 

and slight differences 

 

The considerable increase in the knowledge of the structural features of group 

II PLP-dependent α-decarboxylases started in 2001, when the first crystal structure 

of a member of this family was solved, i.e. Sus scrofa AADC [11], sharing an about 

90% sequence identity with the human homologous enzyme. Since then, extensive 

research focused on the characterisation of their structure-function relationships has 

driven a substantial progress toward the understanding of their similar enzymatic 

activities, highlighting, at the same time, key differences responsible for substrate 

specificity, and, most importantly, of detailed pathological states 

phenotypes/molecular alterations associations regarding these enzymes [12]. 
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The overall topology 

 

Decarboxylase domains of AADC, HDC, GDC65/67 and CSAD share a 

number of structural features that remained invariant upon the long evolutionary 

history of this superfamily (Figure 1.1), as they maintained the structurally 

conserved region of the decarboxylase domain and the positioning of key residues 

for PLP binding (Figure 1.2) [13].  

 

 

Figure 1.1. Schematic representation of protein sequences of human group II  

PLP-dependent α-decarboxylases [14].  

The length of each sequence is indicated on the right of each bar. The position of the 

decarboxylase domain (PFAM ID: PF00282 [15]) relative to each sequence is also shown. 
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Figure 1.2. Multiple sequence alignment of human group II PLP-dependent  

α-decarboxylases [14].  

Amino acid one-letter code is used. Dashes represent insertions and deletions. Invariant 

positions are boxed in black. The secondary structures of human HDC (PDB code 4E1O) are 

reported in the first line of each block: α-helices and β-strands are rendered as squiggles and 

arrows, respectively. ESPript (http://espript.ibcp.fr; [16]) was used to render this figure. 

 

In particular, native PLP-dependent α-decarboxylases share a dimeric 

quaternary structure, which is necessarily required to generate a functional enzyme 

[17]. Each of the two monomers is composed of three distinct domains (Figure 

1.3). 

 

 

http://espript.ibcp.fr/
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Figure 1.3. Structural superposition of human group II PLP-dependent  

α-decarboxylases [14].  

The N-terminal, large and C-terminal domains are represented in green, cyan and pink, 

respectively. Chain B is represented as grey cartoons and surface. 

 

The “large” domain, which displays the α/β rearrangement typical of fold-type 

I enzymes and hosts the cofactor, consists of seven buried β-strands forming a β-

sheet surrounded by eight α-helices. The “large” domains are the main responsible 

for the dimeric interface that involves both electrostatic and hydrophobic 

interactions between the two monomers. The “C-terminal”, or “small” domain, 

positioned externally in the native structure, is composed by a four-stranded 

antiparallel β-sheet and three α-helices. Lastly, the “N-terminal” domain, composed 

by two helices linked by an extended strand, forms a clamp to the neighbouring 

subunit, with the first helix of one subunit aligning antiparallel to the equivalent 

helix of the other subunit, suggesting that the main function of this domain would 

be to extend and/or stabilise the interface between the two monomers. 

 

Active site residues interacting with cofactor 

 

The active sites, one for each monomer, are located at the dimer interface, and 

each of them is partially composed by residues belonging to the other monomer. 

PLP-interacting residues, in particular, are highly conserved among the four 

considered enzymes (Figure 1.4).  
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Figure 1.4. Homologous residues of human group II PLP-dependent α-decarboxylases 

interacting with cofactor [14].  

Protein residues are represented as white sticks, PLP is represented as cyan balls and sticks. 

 

The cofactor binds to an evolutionarily invariant ε-amino group of a lysine 

residue through a Schiff base linkage. A conserved aspartate electrostatically 

interacts, through its carboxylate group, with the protonated pyridine nitrogen of 

PLP, providing stabilization of the carbanionic intermediates during enzymatic 

catalysis, while the 3-oxygen atom of the cofactor ring is stabilized via a hydrogen 

bond with a threonine residue. In addition, PLP pyridine is positioned between a 

base-stacking with a histidine on the re face and a hydrophobic interaction with a 

conserved alanine residue on the si face. Lastly, the negative phosphate moiety 

interacts with the enzymes through an extended hydrogen bond network, as well as 

dipole interactions with the “large” domain α5-helix.  

 

Active sites residues interacting with substrates 

 

While AADC and HDC have been both crystallized in complex with their 

inhibitors L-α-methyl-α-hydrazino-3,4-2,3,4-trihydroxyphenylpropionic acid 

(carbiDOPA, MK485) [11] and histidine methyl ester (HME) [18], the structures 

of GAD65 and GAD67 have been determined with their reaction product γ-
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aminobutyric acid (GABA) [19]. The complexes data give therefore precious 

insights into the binding mode of inhibitors and substrates of human group II PLP-

dependent α-decarboxylases, suggesting, meanwhile, the reaction specificity and 

substrate selectivity determinants of each enzyme. 

The binding cleft is deeply buried into the active site cavity and extends beneath 

the si face of the PLP pyridine ring for all decarboxylases. In the case of 

GAD65/GAD67/CSAD, the need to bind and select an aliphatic chain instead of an 

aromatic one imposes a narrower binding cleft compared to AADC and HDC, 

achieved by a structural modification of the loop region connecting the N-terminal 

with the large domain. In particular, an aromatic residue in AADC and HDC (Phe80 

and Tyr81, respectively) twists the loop by making a stacking interaction with 

another Tyr residue of the large domain (Tyr274 and Tyr276, respectively) and 

creates the necessary space to bind aromatic ligands (Figure 1.5). 

 

 

Figure 1.5. Comparison of the substrate-specificity loop of human group II  

PLP-dependent α-decarboxylases [14]. 

The loops of AADC and HDC with PLP bound to carbiDOPA or HME, respectively, are 

colored in beige, while the loops of GAD65, GAD67 and CSAD are depicted in magenta. Residues 

are labelled according to PDB numbering and shown as sticks. CarbiDOPA (pink), HME (pink) 

and GABA (magenta) are shown as balls and sticks. 
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The mobile catalytic loop 

 

Human group II PLP-dependent α-decarboxylases are all characterized by the 

presence of a highly flexible loop for monomer, essential for the catalytic 

mechanism, that extends towards the active site of the other monomer in a “closed” 

conformation [17,18,20]. The loop “closed” conformation is well ordered and 

clearly assigned in HDC, CSAD and GAD67 [18,19] structures, whereas it was 

found mostly disordered, lacking electron density map, in AADC and GAD65 

[11,19] (Figure 1.6).  

 

 

Figure 1.6. Comparison of the mobile catalytic loop of group II PLP-dependent  

α-decarboxylases [14].  

The loop is located at the dimer interface and extends towards the active site of the other 

monomer. The coordinates of the loops of AADC and GAD65 are missing due to the high 

flexibility of this region. Tyr334 and Tyr434 of HDC and GAD67, respectively, are shown as 

sticks. 

 

Structural and mechanistic data strongly suggest that, before substrate binding, 

the loop adopts an “open” conformation that is more solvent-exposed and prone to 

proteases cleavage respect to the “close” conformation [21], while after substrate 

binding and during catalysis, it could occlude the active site cleft and act as a lid 

for solvent shielding, assisting the conversion of carboxylate to the more 

hydrophobic CO2 product [20]. Moreover, this loop is also known as “the catalytic 

loop”, as it has been demonstrated that some loop residues take part in catalytic 

mechanism: Tyr to Phe substitution, indeed, in AADC, HDC and GAD (Tyr332, 

334 and 434, respectively) resulted in an enzyme unable to produce amines, clearly 
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assigning to this residue a crucial role for decarboxylase activity, and identifying it 

as the putative proton donor to the negatively charged Cα atom of the carboanionic 

quinonoid reaction intermediate [18,19,20]. In addition, although the conserved Tyr 

residue of the loop is crucial for catalysis, other residues composing the loop have 

been demonstrated to be important for proper positioning of catalytic loop, since 

enzymatic studies on AADC and HDC have shown that also the alteration of the 

surrounding loop region affects the catalytic activity [22,23]. 

 

The open and close conformations 

 

An interesting aspect of group II PLP-dependent α-decarboxylases regulation 

recently emerged, forcing the reconsideration of PLP addiction mechanism and 

preferential degradation of the apo-decarboxylases (i.e. without cofactor bound to 

the active site). Human apo-AADC crystal structure determination [24] showed that 

the apo-enzyme presents an unexpected “open” conformation in which, compared 

with the holo-enzyme (i.e. with PLP bound to the active site), the dimer subunits 

move up to 20 Å apart through a rigid body quaternary rearrangement of the dimer 

around the N-terminal domain interface (Figure 1.7). 

 

 

Figure 1.7. Molecular surface representation of the closed and open dimers of AADC [14]. 

Protein is rendered as surface representation. The N-terminal, large and C-terminal domains are 

represented in blue, green and yellow, respectively. Chain B is represented as cyan cartoon. 
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The apo-AADC “open” conformation implies that a large part of the dimer 

interface, comprising the two active sites, is solvent-exposed, with the mobile 

catalytic loop of the active site even more flexible and unstructured. Considering 

that ubiquitin-ligases recognise unstructured regions of target protein or newly 

exposed surfaces, this “open bivalve shell” structure could explain why apo-AADC 

is degraded at least 20-fold faster than the holo-enzyme in rat brain cells [25]. 

Recently, using molecular dynamics simulations and normal mode analyses 

coupled with small-angle X-ray scattering and fluorescence spectroscopy, a similar 

conformational opening was also described for holo-GAD65 [26], enabling 

regulation of GABA synthesis based on PLP availability.  

 

1.1.4. Human group II PLP-dependent α-decarboxylases share a common catalytic 

mechanism 

 

The Schiff base linkage between the cofactor and the ε-amino group of a lysine 

residue located in the active site characterises all the active forms of PLP-enzymes. 

This structure, known as internal aldimine, converts, through transaldimination and 

a geminal diamine intermediate step with both enzyme and substrate amino groups 

bound to PLP-C4’, in an external aldimine, in which the α-amino group of the 

incoming amino acidic substrate has replaced the lysine ε-amino group in the 

linkage with the cofactor (Figure 1.8).  
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Figure 1.8. Catalytic intermediates and versatility of PLP-catalysed reactions [14]. 

 

The different type of reaction catalysed by a PLP-enzyme depends on which of 

the substrate α-substituents is lost: according to Dunathan’s hypothesis [27], the 

leaving group is the one that is positioned perpendicular to the coenzyme-imine π 

system by interactions between enzyme and substrate. This fundamental concept 

explains how reaction specificity is controlled and points on the role of the 

polypeptide chain in directing coenzyme intrinsic catalytic properties: the reaction 

catalysed, indeed, depends on which of the three bonds of the α-carbon is held in a 

correct position to be broken by the specific enzyme catalytic site structure 

interacting with the substrate. In any case, this event results in the formation of a 

quinonoid intermediate in which the substrate and the cofactor generate a coplanar 

structure. The only exception to this common catalytic mechanism is represented 

by PLP-dependent phosphorylases, where PLP phosphate group participates in 

proton transfer acid-base reactions [28].  
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In group II PLP-dependent α-decarboxylases, the carboanionic quinonoid 

intermediate is subsequently re-protonated at the α-carbon to form the amine 

product, that, through a second transaldimination reaction, is released from the 

active site, with the concomitant reconstitution of the internal aldimine enzymatic 

form. Figure 1.9 shows substrates and reaction products of the considered enzymes. 

 

 

Figure 1.9. Substrates and products of the human group II PLP-dependent  

α-decarboxylases [14].  

 

The most effective drugs targeting members of this family, mainly developed 

for active site interaction, are still lacking specificity, probably due to the common 

catalytic mechanism and the high active site homology between group II PLP-

dependent α-decarboxylases. In light of this, structural information gained on this 

sub-family in recent years provided us with a detailed description of key similarities 
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and differences that could be exploited for new therapeutic strategies. Indeed, the 

elucidation, from a molecular point of view, of their similar structural traits and of 

those underlying their individual substrate preference could help in facing the 

different diseases in which these decarboxylases are key players. In fact, residues 

of the mobile loop as well as those involved in the apo-to-holo transition could be 

envisaged as preferential targets for planning an oriented drug-design for finding 

more suitable drugs with therapeutic promise or for developing a pharmacological 

chaperone approach. 

 

 

1.2. AADC and HDC are highly homologous 

 

1.2.1. AADC and HDC form a subgroup in their family 

 

A detailed comparison of the available sequences and structures of 

decarboxylase domains of AADC, HDC, GAD65, GAD67 and CSAD suggests that 

this group of enzymes can be further clustered into two different evolutionary 

subgroups, comprising AADC and HDC in first subgroup (root mean-square 

deviation, RMSD ≈ 0.8 Å), and GAD65/GAD67/CSAD in the second one (mean 

RMSD ≈ 0.5 Å) [10]. Considering their mature forms, AADC and HDC, indeed, 

share a 52.1% identity and an up to 82.6% sequence similarity [29], classifying 

them as highly homologous enzymes (Figure 1.10).  
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Figure 1.10. Multiple sequence alignment of human AADC and HDC. 

Sequences were taken from the NCBI website (https://www.ncbi.nlm.nih.gov/). 

Amino acid one-letter code is used. Dashes represent insertions and deletions. Invariant 

positions are boxed in red and similar residues are written in red.  

ESPript (http://espript.ibcp.fr) was used to render this figure starting from a Clustal Omega 

alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

1.2.2. Actual enzyme-targeting compounds bind AADC and HDC active sites 

 

Many compounds have been already identified as possible AADC and HDC 

inhibitors, and almost all of them bind to enzymes active sites, which is the most 

conserved region between the two proteins. A structural comparison of the 

substrate-binding pocket of AADC and HDC, both crystallised in complex with one 

of their inhibitors, carbiDOPA [11] and HME [18], respectively, highlights, indeed, 

a highly similar conformation of the external aldimine (Figure 1.11).  
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Figure 1.11. Comparison of the active sites of A) AADC and B) HDC [14].  

Residues are labelled according to PDB numbering and shown as white sticks. CarbiDOPA 

and HME are shown as cyan ball-and-sticks.  

 

The catechol hydroxyl groups of carbiDOPA make hydrogen bonds with the 

side chain of Thr82, and with the phosphate moiety of PLP and imidazole ring of 

His302, while HME imidazole ring makes two hydrogen-bonds with the main-chain 

of Tyr81 and a structural water molecule. Interestingly, the latter and a second water 

molecule in the substrate binding pocket of HDC occupy the same position of the 

two hydroxyl groups of the catechol ring of carbiDOPA in AADC. 

The crucial, and distinctive, difference between the two substrate binding 

pockets is represented by the presence in HDC of a serine residue (Ser354) that is 

replaced by a glycine in AADC. The HME imidazole ring positioning at hydrogen 

bonding distance from Ser354 suggests that the latter could be a key residue for 

substrate specificity. The S354G mutation, indeed, resulted in a decreased affinity 

of HDC for its natural substrate, histidine, and an acquired ability to catalyze the 

decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), the AADC preferred 

substrate, suggesting that the mutation allows the binding of a six-membered ring 

enlarging the size of HDC substrate-binding pocket [14].  

CarbiDOPA together with benserazide (N-(DL-seryl)N’-2,3,4-

trihydroxybenzyl-hydrazine; Ro-4-4602), are the only two AADC inhibitors 

actually used as drugs, classically administrated in Parkinson’s disease therapy to 

prevent L-DOPA degradation by peripheric AADC and thus increasing its 

bioavailability for central nervous system (CNS) uptake. While carbiDOPA is a per 
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se AADC powerful irreversible inhibitor [30], benserazide behaves as a poor 

inhibitor [31], but is rapidly bioactivated to 2,3,4-triydroxybenzylhydrazine [32] 

(Figure 1.12).  

 

Figure 1.12. AADC inhibitors currently used in therapy [33].  

Chemical structure of (a) carbiDOPA, (b) benserazide and (c) 2,3,4-

trhydroxybenzylhydrazine 

 

However, both these inhibitors are not AADC selective and are able to react 

with free PLP, generating pyridoxal kinase hydrazone-derivatives inhibitors [34], 

but also with many other PLP-dependent enzymes, as showed for kynureninase and 

kynurenine aminotransferase [35].  

HME, a L-histidine analog, is the first discovered HDC inhibitor [36], 

identified through screening of substrate-derived compounds. Even if it is an 

efficient inhibitor, it is not actually used in therapy due to its fast degradation by 

plasmatic enzymes [37] that dramatically decrease its bioavailability. This is a 

common feature of methylated substrate analogues that could be potentially used 

as drugs, as for DOPA methyl ester (DME), the corresponding methyl analog of L-

DOPA, although in more recent years other delivering formulation were 

considered, like nasal powder preparations [38] and trans buccal delivery [39] that 

are expected to increase its bioavailability and be capable of maintaining better 

plasma levels of the drug, allowing DME to currently being in Phase III clinical 

trials with expected low adverse effects [40] (Figure 1.13). 
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Figure 1.13. Chemical structures of (a) HME and (b) DME. 

 

The substrate-analogues inhibitors group is, for both enzymes, more extensive, 

comprising also α-fluoromethyl derivatives like α-fluoromethylDOPA (2-

(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine, FMD) [41], and α-

fluoromethylhistidine (FMH) [42], both powerful irreversible inhibitors of the 

corresponding enzyme, acting by suicide mechanism through covalent linking to 

the active site following decarboxylation reaction. Even if fluorinated drugs and 

fluorine-containing compounds are already widely applied in medicine, like general 

anaesthetics, antibiotics, antiviral and antimalarial agents, anti-inflammatory drugs, 

antidepressants and antipsychotics, many epidemiological studies published during 

the last 50 years present a number of reasons for the serious assessment of the risks 

of fluoride to human body [43]. In particular, fluoride has been found to inhibit the 

activity of many important enzymes, both directly and/or through fluorinated 

metabolites, e.g.  fluoroacetate [44], and to form aluminofluoride complexes able 

to simulate phosphate groups in many biochemical reactions [45], representing a 

strong potential danger for living organisms [46].  

Natural compounds, like (-)-epigallocatechin-3-O-gallate (EGCG) and (-)-

epigallocatechin (ECG), show significant irreversible inhibition of AADC with a 

Ki in the micromolar range [47], but they lack of specificity since they were found 

to inhibit also HDC with the same affinity [48] (Figure 1.14).  
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Figure 1.14. Chemical structures of (a) EGCG and (b) ECG. 

 

Many other naturally occurring compounds, in particular plant-derived 

compounds, were found to have inhibitory activity on both enzymes: dimeric 

diarylpropanes from Euonymus glabra Roxb (E. glabra) active extract act on 

AADC [49], ellagitannins extract from Filipendula ulmaria petal show Ki values 

nearly equal to that of HME for HDC [50], and flower buds extracts from Lonicera 

japonica Thunb have inhibitory activity against HDC expression and histamine 

production [51]. However, no information is available about which kind of 

inhibition they exert and/or their inhibition mechanism. 

The resolution of AADC and HDC structures in complex with inhibitors 

[11,18] paved the way for bioinformatic screening and rational based drug design, 

using structural information to find higher selective and powerful inhibitors. This 

method recently led to the identification of a class of compounds with inhibitory 

activity toward AADC [52], and to the synthesis of an aminooxy analog of L-

histidine, i.e. 4(5)-aminooxymethylimidazole (O-IMHA) capable to form a PLP-

inhibitor complex (oxime) in HDC active site [53]. However, no investigation 

regarding their pharmacokinetic or toxicological properties has been carried out 

until now, implying that they are interesting candidates that need further 

optimization and in vivo validation. 

The highly AADC/HDC homology grade, in particular at the active site, 

together with the advantage of more generally modulation of their activity for 

clinical application, not only through inhibition, but in some cases also activation, 

of these two enzymes, suggest the need to focus on other enzymatic features rather 

than the only active site-directed inhibition. Based on this necessity, it would be 
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particularly interesting to identify and analyse enzymatic features like post-

translational modifications and cellular proteins equilibria, with the aim to explore 

other possible mechanisms for AADC and HDC modulation. 

 

 

1.3. Knowledge of AADC and HDC regulation mechanisms is 

incomplete and fragmented 

 

A great deal of information about AADC has accumulated since its first 

identification in extracts from mammalian kidney in 1938, thus 80 years ago.  

However, major questions remain regarding functional aspects of this important 

enzyme: despite its complex kinetics, indeed, which suggests that enzyme 

regulation could be useful, many evidences for the control of AADC reaction have 

been described, but they are, till now, fragmented, partial and/or not mechanistically 

detailed. On the other side, few studies were focused on HDC post-translational 

regulation mechanisms, with conflicting results as well.  

 

1.3.1. HDC is post-translational processed through proteolytic cleavage 

 

Comparisons between mature homologous amino acid decarboxylases indicate 

that the C-terminal 20-kDa region of HDC is deleted. The enzyme, indeed, is 

translated as a ~74 kDa form, which is subsequently subjected to a C-terminal 

proteolytic cleavage. Analysis of the recombinant 74-kDa species expressed in a 

baculoviral-insect cell expression system revealed that the mouse 74-kDa form is 

distributed in the insoluble fraction and exhibits lower enzyme activity in 

comparison with the C-terminal deleted 54-kDa form, which is localized in the 

cytosol [54]. In contrast to mouse HDC, human recombinant 74-kDa species 

exhibited comparable enzyme activity to its C-terminal deleted 54-kDa species 

[55]. These results suggested that the C-terminal 20-kDa region of HDC could be 

involved in regulation of both intracellular localization and enzymatic activity. 

In a rat basophilic/mast cell line, RBL2H3, the 74-kDa form showed to be very 

unstable and degraded through the ubiquitin–proteasome pathway [56], and found 
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to be localized in the cytosol, whereas the 54-kDa form was in the granule fraction 

upon sucrose density gradient fractionation [57]. In elicited mouse peritoneal 

neutrophils, granular localization of the 54-kDa form was also observed, but both 

fractions contained enzymatic activity of HDC, indicating that the post-translational 

cleavage determines the intracellular localization of HDC, rather than its enzymatic 

activation, in this cell line [58]. Transient expression of rat HDC in COS-7 cells 

indicated that recombinant HDC is associated to the endoplasmic reticulum (ER) 

through a 20 amino acid sequence (residues 588-607) at C-terminus [59], 

suggesting that HDC could be targeted to the ER in a singular manner, i.e. post-

translational targeting, the details of which remain unknown.  

Recently, caspase-9 was identified as one of the possible processing proteins 

responsible for enzymatic activation of mouse HDC in P-815 cells [60], and 

Caspase-9-mediated cleavage of HDC was accompanied by formation of the 54-

kDa species with a concomitant drastic increase in its enzymatic activity. In 

addition, in another type of cells, i.e. Sf9 cells, proteolytic cleavage of the 

recombinant 74-kDa protein, resulting in its enzymatic activation, was found to be 

mediated by elastase [61].  

These contradictory data about proteolytic activation of HDC show that it 

remains still unknown how the post-translational processing of this enzyme is 

regulated and what the physiological roles of the cleavage are. 

 

1.3.2. Evidence suggests that AADC could be regulated by phosphorylation 

 

AADC has classically been regarded as a post-translational unregulated 

enzyme. However, the first indication that this enzyme may be subjected to this 

type of regulation was provided around 30 years ago from an investigation in rat 

retina [62]: when light is turned off AADC activity drops rapidly at first and then 

more slowly, suggesting that at least two processes are responsible for the fall of 

enzyme activity, while exposure to short periods of dark followed by light results 

in a rapid increase of AADC activity. In addition, this effect is similar to that of 

dopamine receptor (DR) antagonists [63] or adrenergic receptor antagonists [64]. 

Interestingly, similar effects have also been shown to occur in several brain regions 
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in both rats and mice, and a number of DR1 and DR2 antagonists have been shown 

to increase AADC activity in rat and mouse striatum [65,66], and rat nucleus 

accumbens and olfactory tubercles [67]. On the contrary, DR agonists have been 

shown to result in a decreased enzymatic activity [66,67]. In addition, changes in 

AADC activity induced by DR antagonists have been shown to possess a biphasic 

time course: an early, short lasting (1 hour) activation, indeed, is followed by a 

second, later onset (3 hours) and longer lasting activation [65,66]. Moreover, the 

initial activation has been shown to be not sensitive to protein synthesis inhibitors, 

suggesting a post-translational activation mechanism [65], whereas the later onset 

activation is sensitive to protein synthesis inhibitors [66], suggesting that new 

protein synthesis is required.  

A likely mechanism by which this post-translational regulation of AADC could 

occur is phosphorylation. This hypothesis is supported by a number of observations. 

AADC primary structure contains a number of recognition motifs for 

phosphorylation by cyclic adenosine monophosphate (cAMP)-dependent protein 

kinase (PKA), protein kinase C (PKC), calcium/calmodulin-dependent protein 

kinase II (Ca-CM PKII), and proline-directed protein kinase [68]. Further, a number 

of treatments that tend to increase protein phosphorylation has been shown to 

increase AADC activity: intracerebroventricular injection of forskolin or 8-bromo 

cyclic AMP (8Br-cAMP) [69], which increase PKA mediated phosphorylation, 

phorbol 12-myristate-13-acetate (PMA) [66], a PKC activator, and okadaic acid 

[70], a protein phosphatase inhibitor, all result in an increase in AADC activity. 

There is therefore good evidence for a regulation of AADC at least by PKA and 

PKC.  

At present, few data are available concerning the effects of phosphorylation on 

purified AADC activity, and few papers have been published reporting that both 

recombinant and immunoprecipitated (from brain homogenates) AADC could be 

phosphorylated by the catalytic subunits of PKA, and that the enzymatic activity 

increases in both cases (70% for the recombinant and 20% for the 

immunoprecipitated enzyme) [71]. Moreover, interaction with α-synuclein, 

implicated in Parkinson's disease, has been reported to reduce phosphorylation 

levels of AADC (by 1.5-fold), probably by activation of a phosphatase such as 
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protein phosphatase 2 (PP2A), and, concomitantly, α-synuclein leads to inhibition 

of AADC activity, suggesting another possible compromised mechanism of 

dopamine homeostasis in Parkinson’s disease pathogenesis [72]. 

The above described regulation of AADC though PKA-dependent mechanisms 

may well underlie the regulation of AADC activity following changes in DR 

activation. The predominant DR in pre-synapsis, where AADC is localised, is DR2 

type family [73], that is mainly coupled to an inhibition of adenylate cyclase (AC), 

resulting in a decrease in cAMP production [74]. Compounds which block DR2 

activation will therefore disinhibit AC, increasing cAMP production and 

subsequent PKA activation. Activated PKA could then phosphorylate AADC, 

resulting in an increase in activity. Whilst the above hypothesis is an attractive 

explanation for many of the observed effects, there is evidence that the situation 

could be somehow more complex. As previously described, PMA administration, 

which increases PKC activity, has also been shown to regulate AADC activity [70]. 

Thus, DR2-AC-PKA pathway might represent only one of several possible post-

translational regulatory mechanisms for AADC, since AADC regulation by PKC-

dependent mechanisms was showed to be independent from DRs [75], suggesting 

that AADC might be regulated by at least one stimulus other than DR-dependent 

signalling.  

At present, no data are available concerning the effects of phosphorylation on 

AADC activity towards any substrate other than L-DOPA. Further, studies have 

rarely focused on brain regions other than those considered primarily dopaminergic. 

It would be interesting to unravel, therefore, whether different results can be 

obtained, for example, in primarily serotonergic brain regions, such as pineal gland, 

using L-5-hydroxytryptophan (L-5HTP) as substrate. Further, L-5HTP receptors 

are known to utilize the PKC pathway [76,77], and therefore it would be interesting 

to understand whether these receptors can modulate AADC activity similar to DRs, 

and whether any such effect involves a PKC-dependent processes. 
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1.3.3. Only hypothalamic HDC seems to be regulated by phosphorylation 

 

Few studies suggest that HDC, in particular the hypothalamic one, could be 

regulated through phosphorylation.  

Crude preparation of mouse mastocytoma HDC incubated with PKA showed a 

decreased activity, but this effect was not detectable for purified preparations, tested 

for radioactive phosphate incorporation during PKA and adenosine triphosphate 

(ATP) incubation [78]. Rat hypothalamic HDC seemed to be almost completely 

inhibited after homogenate incubation under phosphorylating conditions (ATP, 

cAMP, and Mg2+) in presence of PKA [79], and PKA-dependent inhibition of rat 

hypothalamic HDC was also showed to be reversed by addition of PKA inhibitors, 

as well as by stimulation of phosphoprotein phosphatases and incubation with 

calmodulin in presence of calcium ions [80]. 

However, incubation of rat gastric mucosal supernatant with various 

combinations of ATP, Mg2+, cAMP and PKA and endogenous phosphatases 

blocking compounds did not show to significantly alter HDC activity. In addition, 

a similar result was also achieved with the purified enzyme [81].  

These conflicting results, obtained starting from different preparations, i.e. 

hypothalamic or gastric HDC, are still waiting further research aimed to understand 

if and how this protein can be regulated by phosphorylation. 

 

1.3.4. AADC and HDC post-translational regulation mechanisms understanding 

can help diseases treatment 

 

It is now apparent that, contrary to classical view, AADC might be a post-

translational regulated enzyme, potentially involved in a constant temporal 

balancing of monoaminergic neurotransmission, although the importance of this 

regulation is at present not well understood, as well as the factors and elements 

controlling this activation/inhibition. On the other side, HDC regulation is almost 

unknown, with only few, and contradictory, results suggesting a phosphorylation-

based modulation. 
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Identification of these mechanisms may not only elucidate the physiological 

regulation of AADC and HDC, but also be of importance for understanding, 

managing and/or developing new therapies for many pathological conditions 

regarding dopamine and histamine homeostasis impairments. 
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Chapter 2 

 

 

AADC and HDC play a fundamental role in human 

physiology 

 

 

2.1. AADC: physiological role and implication in diseases 

 

2.1.1. AADC synthetises fundamental neurotransmitters 

 

AADC converts L-DOPA and L-5HTP to neurotransmitters dopamine (DA) 

and serotonin, respectively, which are also precursors of adrenaline/noradrenaline 

and melatonin, accordingly. Enzyme name derives from its ability to 

decarboxylate, although much less efficiently, also other aromatic amino acids 

such as tyrosine, tryptophan and phenylalanine to the corresponding amines 

(tyramine, tryptamine and phenethylamine, respectively), known as trace aromatic 

amines. Thus, as expected, AADC is found in catecholamine- and serotonin-

producing neurons and in other tissues of neuronal origin, such as adrenal and 

pineal glands and glial cells [82]. Interestingly, this enzyme is also present in non-

neuronal tissues, mainly in liver, kidneys, lung, spleen and pancreas, even if its 

function in these organs is not yet completely clarified [82]. 

DA exerts its functions through DRs binding, triggering the signalling cascade 

in target cells. There are at least five subtypes of DRs, which are divided into two 

families: the DR1-like family comprises DR1 and DR5 receptors, whereas the 

DR2, DR3 and DR4 receptors are members of the DR2-like family. The first 

family stimulate AC to produce cAMP, downstream increasing intracellular 

calcium among other cAMP mediated processes, while DR2 class exerts the 

opposite effect. In CNS, DR1-2 receptor subtypes are found at 10-100 times the 

levels of DR3-5 subtypes [83], but DR1 is also present in smooth muscles of 

blood vessels in most major organs, as well as in juxtaglomerular apparatus and 
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renal tubules, while DR2 in glomeruli, zona glomerulosa cells of adrenal cortex, 

renal tubules, and postganglionic sympathetic nerve terminals [84]. Pulmonary 

artery expresses DR1, DR2, DR4, and DR5 [85], which are also been discovered 

in epicardium, myocardium, and endocardium of heart [86].  

The fourteen known serotonin receptors (5-HTR) are divided into 7 classes of 

G protein-coupled receptors, except for 5-HTR3, which is a ligand-gated Na+ and 

K+ cation channel. In particular, they can activate an intracellular second 

messenger cascade to produce an excitatory (5-HTR2 through inositol 

trisphosphate and diacylglycerol, and 5-HTR4, 5-HTR6 and 5-HTR7 through 

cAMP) or inhibitory (5-HTR1 and 5-HTR5 through cAMP) response. Notably, all 

classes are expressed in CNS, while some of them are also expressed in other 

tissues: 5-HTR3 and 5-HTR4 in peripheral nervous system and gastrointestinal 

tract, 5-HTR1 in blood vessels, 5-HTR7 in blood vessels and gastrointestinal tract, 

while 5-HTR2 is widely expressed in all above mentioned tissues, and platelets 

and smooth muscle as well [87]. 

DA, serotonin and their derivative compounds are all metabolized by the 

same set of enzymes, i.e. both forms of monoamine oxidase (MAO-A/B), 

catechol-O-methyl transferase (COMT) and aldehyde dehydrogenase (ALDH), 

which act in different sequential breakdown pathways, but producing some main 

end-products [88], i.e. homovanillic acid (HVA) from DA and 5-

hydroxyindoleacetic acid (5-HIAA) from serotonin (Figure 2.1). In clinical 

research, measurements of these metabolites in plasma are commonly used to 

estimate levels of AADC activity in brain [89]. 
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Figure 2.1. Synthetic and metabolic pathways of serotonin and DA in neurons.  

BH4: tetrahydrobiopterin, ALDH: aldehyde dehydrogenase, MAO: monoamine oxidase, 5-

HIAA: 5-hydroxyindoleacetic acid, 3-OMD: 3-orthomethyldopa, VLA: Vanillylactic acid, DβH: 

dopamine β-hydroxylase, PNMT: phenolethanolamine N-methyltransferase, MHPG: 3-methoxy 4-

hydroxyphenylglycol, VMA: Vanillylmandelic acid, DOPAC: 3,4-dihydroxyphenylacetic acid, 

COMT: Catechol O-methyltransferase, HVA: Homovanillic acid. 
 

In addition, DA is susceptible to oxidation by direct reaction with oxygen 

[90], producing quinones and free radicals that cause cell toxicity and may 

contribute to cell death that occurs in some pathological conditions [91]. 

 

2.1.2. Dopamine is one of the main neurotransmitters but also a signal molecule 

outside central nervous system 

 

Dopaminergic neurons (DA neurons) are comparatively few in number [92], 

and their cell bodies are confined in groups to a few relatively small brain areas 

[93]. However, their axons project to many other brain areas, playing important 

roles in executive functions, motor control, motivation, arousal, reinforcement, 

and reward, as well as lower-level functions including lactation and sexual 

gratification.  

DA neurons are arranged in different nuclei: retrorubral field (RrF, group A8), 

substantia nigra pars compacta (SNc, group A9), ventral tegmental area (VTA, 

group A10), posterior hypothalamus (group A11), arcuate nucleus (group A12), 

zona incerta (group A13), and periventricular nucleus (group A14) [94], each of 

them projects to distinct CNS areas, and thus controls specific functions. In 
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particular, the midbrain area hosts nuclei that form the two major DA pathways: 

SNc neurons, which project to dorsolateral striatum, constituting the so-called 

nigrostriatal pathway and regulating motor function and learning of new motor 

skills, and VTA and RrF neurons, which project to ventromedial striatum (nucleus 

accumbens) and to parts of limbic system and prefrontal cortex, forming the 

meso-limbic and the meso-cortical systems, respectively, and regulating 

emotional behaviour and cognitive function (Figure 2.2) [95].  

 

 

Figure 2.2. Representation of midbrain DA neurons organization and projections in CNS.  

Red: nigrostriatal pathway; Green: meso-limbic pathway; Blue: meso-cortical pathway.  

 

The other DA neurons groups project to other nervous system areas, exerting 

specific functions: A11 group project to spinal cord, but its function is still not 

well established [96]; groups A12 and A14 form an important projection, the 

tuberoinfundibular pathway, which goes to pituitary gland, influencing the 

secretion of the prolactin hormone [97]; lastly, A13 group projects to several areas 

of hypothalamus, participating in the control of gonadotropin-releasing hormone, 

which is necessary to activate the development of male and female reproductive 

systems after puberty [97]. 
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DA does not cross the blood–brain barrier, so its synthesis and functions in 

peripheral areas are to a large degree independent of those in CNS. It is found in 

bloodstream, even if over 95% of DA in plasma is in form of dopamine sulphate, 

a conjugate with unknown biological functions, produced in the digestive system 

and thought to be the result of a mechanism for detoxifying DA that is ingested 

with food or produced by the digestive process [88]. The relatively small quantity 

of unconjugated DA in bloodstream may be produced by sympathetic nervous 

system, digestive system, or possibly other organs, and acts as a vasodilator 

through DRs located in arteries walls [98].  

Several peripheral systems use DA as exocrine or paracrine factor that exerts 

its function in a limited area and/or specialized tissues. The renal dopaminergic 

system, for example, composed by tubule DA-synthetizing cells that release the 

molecule into the tubular fluid, is the main responsible for the increasing in blood 

supply to kidneys, in glomerular filtration rate and in excretion of sodium in the 

urine [84]. Furthermore, the exocrine pancreatic part secretes DA into small 

intestine, where its function is not clearly established, but probably linked to 

intestinal mucosa protection and gastrointestinal motility reduction [99], while 

DRs were also found in beta cells of endocrine pancreas, where DA acts to reduce 

the amount of insulin they release [99], even if the source of modulator is still 

unknown. Lastly, not only DRs were found on immune cells, especially 

lymphocytes, but immune cells themselves were found to synthetise and release 

DA [100], reducing lymphocytes activation level [101]. 

 

2.1.3. Serotonin mainly acts outside central nervous system as modulator in many 

physiological processes 

 

Serotonergic neurons project from nine nuclei (designated B1-B9), located 

along the midline of the brainstem and centred on the reticular formation 

[102,103], to almost every part of the CNS: axons of neurons in lower raphe 

nuclei terminate in spinal cord, while axons of higher nuclei spread out in 

cerebellum and entire brain (Figure 2.3). 
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Figure 2.3. Representation of serotoninergic neurons organization and projections in CNS. 

 

Serotonergic neurons have been supposed regulating various functions, 

including appetite and sleep, but also cognitive ones, like memory and learning, 

mood, anxiety and psychosis, even if strong clarity has not been achieved 

[104,105].  

However, approximately 90% of the human body's total serotonin is secreted 

by enterochromaffin-like cells in gastrointestinal tract, where it regulates intestinal 

movements and motility through stimulation of myenteric neurons [106,107]. 

Serotonin is released in response to food intake in gut lumen but its secretion is 

even faster and quantitatively higher in presence of noxious substance or toxins, 

thus activating receptors in chemoreceptor trigger zone that stimulate vomiting 

[108]. In bloodstream, serotonin is actively taken up and stored by platelets, 

which release it during coagulation as a vasoconstrictor that directly or indirectly 

contracts endothelial smooth muscle cells [109], but also as a fibrocyte mitotic 

growth factor, aiding healing [110]. Serotonin, indeed, can also act as growth 

factor, stimulating, for example, cellular growth to repair liver damage [111] and 

regulating bone mass [112,113]. 
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2.1.4. Trace amines regulate neurotransmission 

 

Trace amines are monoaminergic neuromodulators [114], structurally and 

metabolically related to classical monoamine neurotransmitters [115], but present 

in trace concentrations compared to classical monoamines. They are found both in 

central and in peripheral nervous tissues, and play significant roles in regulating 

monoamine neurotransmitters quantity in synaptic clefts of monoaminergic 

neurons, preventing neurotransmitters reuptake as well as inhibiting neuronal 

firing [116]. Although trace amines can be synthesized within parent monoamine 

neurotransmitter systems, there is evidence that some of them might comprise 

their own independent neurotransmitter systems [114].  

 

2.1.5. Impaired dopamine homeostasis is linked to several neurological diseases 

 

Dopaminergic system plays a central role in several significant medical 

conditions, thus many drugs are used in order to regulate different aspects of DA 

physiology, for medical or recreational purposes [117]. 

A number of studies have reported a physiological age-related decline in both 

DA synthesis and DRs density in brain [118], mainly in striatum [119], probably 

linked to changes in cognitive flexibility and increased movement rigidity during 

aging [120]. One of the most studied age-related and chronic progressive 

neurological disorder, Parkinson's disease (PD), is caused by low levels of DA 

due to DA neurons degeneration and death in substantia nigra (A9 DA neurons 

group). The reasons of this cell lost, also accompanied by astrocytes death and 

significant increase in number of microglia [121], is poorly understood, and there 

is speculation of several mechanisms by which neurons could be damaged [122]. 

They include proteasomal and lysosomal system dysfunction, as well as reduced 

mitochondrial activity, even if the most reliable one seems to be an abnormal 

accumulation of protein α-synuclein, those insoluble aggregates form inclusions 

called Lewy bodies [123], also detected in many of the remaining neurons 

(Figure 2.4).  
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Figure 2.4. Overview of putative mechanisms involved in A9 DA neurons cell death and 

PD pathophysiology. 

 

Since A9 DA neurons form the nigrostriatal pathway, the most evident, and 

early-developed, symptoms mainly regard impaired motor functions, like tremors, 

slowness of movement, rigidity, difficulty with walking and postural instability 

[124], that worsen with disease progression. However, also cognitive disturbances 

can occur from the early stages of PD and can increase in prevalence with the 

duration of the disease [125], including, among the most commons, executive 

dysfunction, like problems on planning, cognitive flexibility, abstract thinking, 

inhibiting inappropriate actions, initiating appropriate actions, working memory, 

and control of attention [125], but also dementia [126] and mood alterations, like 

depression, apathy, and anxiety [124]. Research indicates that PD is the product of 

a complex interaction of both genetic and environmental factors [127], with 5–

10% of cases linked to mutation in one of several specific genes ("sporadic" or 

non-familial PD) [128], and in 15% of cases a first-degree relative already 

presented the disease [129]. The incomplete knowledge of PD pathophysiology, 

together with the complex factors interconnection in disease possible causes and 
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low rate of genetic established background, have prevented, till now, the 

development of a PD definitive cure, but different medications, surgery, and 

physical therapy are used as treatments directed at improving symptoms [129]. 

Initial treatment typically aims to find an optimal balancing between symptoms 

control and side-effects. L-DOPA, indeed, is the most effective treatment for the 

motor symptoms, as it can pass through blood-brain barrier (BBB) and be readily 

converted to DA, but its prolongated use leads to development of involuntary 

movements complications, called dyskinesias, together with fluctuations in 

medication response and long-term decreased effectiveness [130]. In addition, 

only a small amount of L-DOPA crosses BBB because it is rapidly metabolized to 

DA by extra-neuronal AADC, causing side effects including nausea, vomiting and 

orthostatic hypotension [131]. Thus, carbiDOPA or benserazide, two AADC 

inhibitors which do not cross the BBB, are usually administrated in combination 

with L-DOPA, improving the availability of the latter to brain passage. On the 

other side, L-DOPA therapy is often postponed in less severe cases and replaced 

by other medications, mainly dopamine agonists, to mimic DA function [132], in 

order to delay the onset of complications linked to L-DOPA use (Figure 2.5).  

 

 

Figure 2.5. Overview of PD standard therapy.  
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As the disease progresses and neurons continue to be lost, all these 

medications become ineffective and surgery, deep brain stimulation (DBS), 

subcutaneous apomorphine infusion and enteral L-DOPA pumps are used [133], 

until final stages of the disease, during which palliative care is provided to 

improve quality of life [134]. Since PD is the second most common 

neurodegenerative disorder [135], over recent years an active research was 

focused on finding and testing new and hopefully definitive therapies. Among 

these, investigations about neuroprotection lead to the proposal of several 

molecules, including anti-apoptotics (omigapil, CEP-1347), anti-glutamatergics, 

monoamine oxidase inhibitors (selegiline, rasagiline), pro-mitochondrials 

(coenzyme Q10, creatine), calcium channel blockers (isradipine) and growth 

factors, even if none of them conclusively demonstrated, so far, a reducing 

degeneration tendency [122]. Moreover, a promising α-synuclein vaccine that 

primes human immune system to destroy α-synuclein, PD01A, has entered 

clinical trials in humans [136].  Stem cell technology, lastly, is at the forefront of 

PD research, as stem cells transplanted into rodents’ and monkeys’ brains have 

been found not only to survive but also to reduce motor and behavioural 

abnormalities [137-139]. However, use of foetal stem cells is controversial, and 

particular efforts are nowadays put in the developing effective treatments using 

induced pluripotent stem cells derived from adult cells [140]. 

Altered dopaminergic neurotransmission is implicated in other neurological 

diseases, like for example the attention deficit hyperactivity disorder (ADHD), a 

condition associated with impaired cognitive control, mainly in regulating 

attention, inhibiting behaviours, and forgetting things or missing details. 

Alteration in neurotransmission regards genetic variants in DRs and DA 

transporter, but also in other neurotransmitter receptors and transporters [141], 

and is usually treated with psychostimulants, like methylphenidate (Ritalin, 

Concerta) and amphetamine (Adderall, Dexedrine), which increase both DA and 

norepinephrine levels in brain through indirect activation of DRs and 

norepinephrine receptors [142], in particular in prefrontal cortex [143]. 

In addition, DA plays a role in pain processing in CNS and its decreased 

levels and/or abnormalities in dopaminergic neurotransmission have been 
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associated with painful symptoms that frequently occur in several clinical 

conditions [144]. Moreover, nausea and vomiting are largely determined by 

activity in area postrema in medulla of brainstem, in a region known as 

chemoreceptor trigger zone, which contains a large population of DR2 type. 

Consequently, drugs that activate DR2 receptors, like agonists such as 

apomorphine, have a high potential to cause nausea [145], while, on the contrary, 

DR2 antagonists, such as metoclopramide, are useful anti-nausea drugs [146]. 

 

2.1.6. Impaired serotonin homeostasis is linked to both central nervous system and 

peripheral diseases 

 

Serotonin implication in mood and psychosis led to development of drugs that 

increase the low concentrations of neurotransmitter linked to depression and 

generalized anxiety disorder. These drugs, like tricyclic antidepressants (TCAs), 

inhibit the re-uptake of serotonin, making it stay in the synaptic cleft longer and 

allowing an increased neurotransmission signal, but they act also on 

norepinephrine receptors. Newer selective serotonin reuptake inhibitors (SSRIs) 

have been shown to induce fewer side-effects and to not interact with other drugs 

[147].  

Considering serotonin role in in digestive tract, other drugs are already 

applied as antiemetics. Enterochromaffin-like cells, indeed, not only react to toxic 

food but are also very sensitive to irradiation and cancer chemotherapy. Drugs 

that block serotonin receptors are very effective in controlling nausea and 

vomiting caused by cancer treatment, and are considered the gold standard for this 

purpose [148]. 

 

2.1.7. AADC deficiency is a genetic disease caused by mutations in AADC gene 

 

Mutations in AADC gene, both homozygous and compound heterozygous, 

lead to the synthesis of pathogenic variants with an impaired enzymatic activity 

and consequently to a rare autosomal recessive neurometabolic disorder called 

Aromatic Amino Acids Decarboxylase Deficiency (AADC Deficiency) (OMIM 
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608643). This deficiency typically manifests from earliest years through a 

multisystemic impairment, with severe delay in reaching milestones such as 

walking and talking (developmental delay), but also weak muscle tone 

(hypotonia), muscle stiffness, involuntary writhing movements of limbs 

(athetosis), and with autonomic dysfunctions, like inappropriate sweating, nasal 

congestion, drooling and gastroesophageal reflux, reduced ability to control body 

temperature, low blood pressure (hypotension) and blood sugar levels 

(hypoglycaemia), sometimes leading to fainting (syncope) and cardiac arrest. 

Many patients experience peculiar episode crises, called oculogyric crises, 

characterized by abnormal rotation of eyeballs, extreme irritability and agitation, 

pain, muscle spasms, and uncontrolled movements in particular of head and neck. 

Complications linked to many different aspects of this disease may lead, in some 

cases, to vegetative state and death [149]. AADC Deficiency is typically detected 

through detailed clinical assessment and a number of diagnostic tests, starting 

from the most common symptoms identification. When the diagnosis is clinically 

suspected, cerebrospinal fluid (CSF) analysis of neurotransmitters should be 

undertaken, in order to detect the characteristic HVA, 5-HIAA and 3-methoxy 4-

hydroxyphenylglycol (MHPG) reduction together with L-DOPA, 5-HTP and 3-

orthomethyldopa (3-OMD) increasing (Figure 2.6).  

 

 

Figure 2.6. Alteration of neurotransmitters levels in AADC Deficiency detected through 

CSF analysis [150]. 
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Furthermore, AADC activity can be measured in plasma, confirming a 

decreased or lost enzymatic activity, and finally, AADC genetic sequencing can be 

performed to definitely confirm the diagnosis [149]. Since the first case of AADC 

Deficiency has been published [151], only about other 100 people with this 

condition have been described in medical literature worldwide, and about 20% of 

these individuals are from Taiwan. However, new cases and new mutations are 

continuously detecting, both in homozygous and compound heterozygous states, 

mainly thanks to increase disease knowledge and use of CSF analyses and genetic 

screenings. In a recent paper many of the pathogenic homozygous mutations were 

characterized in purified recombinant form [152], revealing that structural 

changes of most of these variants are linearly related to catalytic changes. In 

particular, almost the totality of these mutations concerns residues belonging to 

relevant structural elements for the transition from the apo “open” to the holo 

“closed” and active form of the enzyme. More recently, in vitro biochemical 

characterizations and molecular investigations of enzymatic phenotypes of 

heterozygous variant were also started, revealing that some mutations can lead to 

interallelic complementation [153]. Different types of mutations, indeed, show 

different effects on AADC enzyme: while frameshifts, often resulting in 

premature stop codon codification, and nonsense mutations are more likely to lead 

to nonsense-mediated decay, missense mutations more likely result in an altered 

gene product, those features are linked to the specific position of the mutation in 

the protein, leading to decreased affinity for PLP and/or for L-DOPA, altered 

stability and/or impossibility to acquire the proper three-dimensional structure. 

These different biochemical features could be linked not only to the disease 

phenotype, as patients affected by AADC Deficiency show variable symptoms 

severity, but also to the choice of the better treatment, as patients present different 

treatments response. Indeed, there is currently no cure for AADC Deficiency, and 

different medications are used to help treating signs and symptoms of the disease, 

including by default pyridoxine (vitamin B6), dopamine receptor agonists, MAO 

inhibitors and calcium folinate (Figure 2.7), with a combination of other 

compounds depending on the symptoms of each individual (α-adrenergic agonists, 
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anticholinergic agents, selective serotonin reuptake inhibitors, gastrointestinal 

medications, melatonin) [149].  

 

 

Figure 2.7. Current treatment options for AADC Deficiency. 

 

Due to the variable, and in many cases low, response to available treatments, 

current studies and researches are trying to find alternative, and hopefully 

definitive, therapies. After previous not successful attempts to develop an AADC-

knock out mouse model, as foetal mice died in utero, in 2013 Lee et al. published 

a model with the common Taiwanese mutation IVS6+4A>T [154]. They 

subsequently rescued the phenotype of the AADC-knock in mouse with gene 

therapy, using an AAV9-CMV-hAADC vector by intracerebroventricular injection 

[155], a method already used in PD gene therapy trails [156]. In 2015, Lee, 

Muramatsu et al. used an yfAAV9/3-Syn-I-mAADC vector via intraperitoneal 

injection, with better results in neuronal transduction, possibly because the used 

promoter (synapsin) was better targeted for neuronal expression [157]. The first 

AADC Deficiency gene therapy trial started in 2012, one year before the AADC-

knock in mouse model was published, and was based on an adeno-associated viral 

vector-mediated gene transfer of human gene injected bilaterally into the putamen 

of four patients, all with the common mutation IVS6+4A>T [158]: motor 

improvements were observed, as well as AADC activity increase through 6-

[(18)F]fluorodopa imaging for substrate uptake evaluation and DA and serotonin 
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levels measurements in CSF; in addition, patients showed fewer oculogyric crises 

and improvement of emotional stability and sleep. More AADC gene therapy 

trials have been started recently, in Taiwan and USA in particular [159,160], and 

preliminary analyses show motor improvements with no severe side effects. 

Nevertheless, progress in motor functions are limited, and no amelioration of all 

the other disease symptoms is detected, possibly due to AADC wide diffusion 

outside CNS. 

 

 

2.2. HDC: physiological role and implication in diseases 

 

2.2.1. HDC is the only histamine synthetizing enzyme 

 

HDC is the enzyme responsible for histamine biosynthesis from L-histidine 

through decarboxylation. Even if the most well-known function of this biological 

amine is to be a key immune response modulator, histamine is also an important 

neurotransmitter and a modulator of cell growth. Thus, it is produced and released 

not only by basophils and mast cells, but also by histaminergic neurons and other 

specialised cells, in which histamine exerts specific functions.  

There are four different histamine receptors, named H1R through H4R 

according to the order in which they were discovered, all belonging to the G-

protein coupled receptors family [161]. They trigger different signalling pathways 

that specifically depend on both the receptor and the cell type expressing them. 

H1R leads to phospholipase C activation, producing inositol triphosphate and 

calcium mobilization, and, although it has been traditionally related to allergic 

response, it is also expressed in nerve cells, vascular smooth and endothelial cells 

among others. H2R is expressed in many immune cell types, parietal cells and 

nerve cells, and mediates its effects stimulating AC and increasing intracellular 

cAMP levels. H3R is mainly located in the presynaptic membrane of 

histaminergic neurons, where regulates the production of histamine in CNS, but it 

also regulates the release of many neurotransmitters, acting as a presynaptic 

heteroreceptor, since it inhibits cAMP accumulation. H4R inhibits cAMP 
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formation as well, but it is expressed in CNS and immune cells of haematopoietic 

origin. 

Once formed, histamine is either stored or rapidly inactivated by its primary 

degradative enzymes, histamine-N-methyltransferase (HNMT) or diamine oxidase 

(DAO). In CNS, histamine released into synaptic cleft is primarily metabolised by 

HNMT, while in other tissues both enzymes may play a role. Several other 

enzymes, including MAO and ALDH, further process the immediate metabolites 

of histamine for excretion or recycling (Figure 2.8). 

 

 

Figure 2.8. Metabolic pathways of histamine.  

DAO: diamine oxidase; FAD: flavin adenine dinucleotide; HNMT: histamine-N-

methyltransferase; MAO: monoamine oxidase; SAMe: S-Adenosyl methionine. 
 

A deeper knowledge of the multiple roles played by histamine has been 

achieved thanks to knock out animal models [162]. 

 

2.2.2. Histamine is a fundamental signalling molecule inside and outside central 

nervous system 

 

Histaminergic neurons cell bodies are located in a portion of the posterior 

hypothalamus known as tuberomammillary nucleus (TMN) and project widely 

throughout CNS, including cerebral cortex, hippocampus, neostriatum, nucleus 

accumbens, amygdala, and other parts of hypothalamus, as well as spinal cord 

(Figure 2.9). 
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Figure 2.9. Representation of histaminergic neurons organization and projections in CNS. 

 

The main role of histaminergic neurons is regulation of circadian rhythm and 

promotion of arousal when activated [163], especially in cortex region, as neural 

firing rate is strongly positively correlated with the individual's state of arousal, 

i.e. rapid firing during wakefulness periods and slow firing during periods of 

relaxation/tiredness, up to a state of no firing during REM and NREM (non-REM) 

sleep. Histaminergic neurons network, in particular through projections to basal 

forebrain and dorsal pons, is involved in control of learning and memory [164]. 

Outside CNS, enterochromaffin-like cells in gastric glands of stomach release 

histamine that stimulates nearby parietal cells: they uptake carbon dioxide, and 

water, from the blood converting it to carbonic acid that readily dissociates into 

hydrogen and bicarbonate ions, and extrude hydrogen ions into the stomach 

lumen, linking histamine release to decrease in stomach pH [165].  

Histamine, stored in granules and released by mast cells and basophils in 

connective tissue, is clearly involved in inflammatory response, stimulating 

vasodilatation and permeabilization of vessels [166], which results in net 

distribution of blood plasma from vessel into tissue space, allowing the transfer of 

white cells and inflammation mediators such as complement, lysozyme, 

antibodies, and the consequent inflammatory response development. Another 
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relevant biological function of histamine, both secreted by mast cells [167] and in 

its unstored diffusible form [168] appear to include tissue repair and angiogenesis 

stimulation. This hypothesis is supported by interesting observation about the 

induction of histamine synthesis in tissues undergoing repair or growth, since 

HDC high expression level was detected in rapidly proliferating sites, such as 

wound healing [169,170], embryonic tissues [171] and regenerating liver [172]. 

Although histamine association with cell growth regulation has been addressed as 

a potentially important role of this modulator, the underlying mechanism is not 

yet clear and still remains controversial.  

 

2.2.3. Impaired histamine homeostasis is linked to neurological as well as 

peripheral diseases 

 

Histaminergic neurons network is involved in maintaining vigilance and it is a 

key controller of memory and learning. Thus, it is not surprising that impairments 

in these functions are linked not only to sedating sides effects of antihistaminergic 

developed as allergic reactions medications, but also to inhibition of histamine 

biosynthesis or loss (i.e. degeneration or destruction) of histamine-releasing 

neurons.  

Cognitive impairments of Alzheimer’s disease (AD) are traditionally 

attributed to neurodegeneration of cholinergic system induced by extracellular Aβ 

plaque deposits and intracellular neurofibrillary tangle accumulation in learning 

and memories brain regions [173] (Figure 2.10).  
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Figure 2.10. Representation of pathophysiology mechanisms of AD [174]. 

 

The central hallmark of this progressive disabling disease, indeed, is the 

deterioration of learning and memory as well as other cognitive symptoms like 

problems with language, disorientation, mood swings, loss of motivation, not 

managing self-care, and behavioural issues [175], and it accounts for about 50-

75% of dementia cases, representing the most common cause of dementia among 

elderly [176], even if its exact cause is not still completely understood. 

Monogenetic causes of AD, indeed, represent only 5% of cases, usually early-

onset ones, while most of cases do not exhibit autosomal-dominant inheritance 

and are termed sporadic AD, in which many environmental and genetic 

differences may act as risk factors [177]. Current treatments, based on 

glutamatergic (NMDA-receptors antagonists) and acetyilcholinergic 

(acetylcholine esterase inhibitors) systems alterations, are limited, with several 

side-effects and/or only partially effectiveness in ameliorating cognitive 
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symptoms, mainly during early stages of the disease [178], while rescue attempts 

aimed to reduce amyloid load and/or to immunize against Aβ accumulation 

yielded so far mixed and essentially ineffectively results [178,179]. It is now 

increasingly recognized that alterations in neuronal histaminergic system 

contribute to cognitive impairments displayed by these patients [180-182]. AD 

patients, indeed, show alterations of histamine concentrations in brain and 

degeneration of histamine TMN neurons [183-185], as well as decreased quantity 

of H1R in frontal cortex and temporal cortex, which correlates with the severity of 

cognitive symptoms [186]. Given that H1R-deficient mice exhibits a dementia-

like behavioural phenotype [187], with many common human symptoms 

[188,189], cognitive deficits seen in AD patients may be linked to changes in H1R 

function and it is possible that histamine-related drugs might ameliorate cognitive 

symptoms. In addition, it has been shown that histamine can stimulate 

neurogenesis in vitro and in vivo [190,191] increasing the expression of fibroblast 

growth factor receptor 1, known to be involved in proliferation and differentiation 

of neural precursor cells, probably through activation of H1R [192], findings in 

line with the reduced adult neurogenesis in hippocampus of H1R-deficient mice 

[189]: thus, stimulation of adult neurogenesis with histamine-related drugs would 

be a possible strategy to counteract the progressive and irreversible global brain 

atrophy linked to neurogenesis alterations, already recognized as integral part of 

AD [193]. 

As fundamental mediator of immune system, histamine is involved in many 

immune system disorders and allergies caused by hypersensitivity of immune 

system to typically harmless substances in the environment. Activated mast cells 

and basophils undergo degranulation, releasing inflammatory chemical mediators, 

including histamine, and thus causing several systemic effects, such as 

vasodilation, mucous secretion, nerve stimulation, and smooth muscle contraction, 

leading to rhinorrhoea, itchiness, dyspnoea, and in some cases anaphylaxis. 

Depending on the individual, allergen, and mode of introduction, symptoms can 

be system-wide or localized to particular body systems, but they are all commonly 

treated with medications that block allergic mediators action or prevent activation 

of cells and degranulation processes, including, among others, generic anti-
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histaminergics. Inflammatory features of histamine in immune reactions have 

made it an important factor in pathogenesis of not only allergic reactions but also 

various autoimmune diseases. For example, it has been shown that histamine is 

implicated, even if with contrasting results, in pathophysiology of multiple 

sclerosis (MS) and its experimental model, experimental autoimmune 

encephalomyelitis (EAE). MS is the principal chronic inflammatory 

demyelinating disease of CNS with an immunopathological aetiology, depending 

on genetic as well as environmental factors [194], and consisting of BBB leakage, 

destruction of myelin sheaths, oligodendrocyte damage and cell death, axonal 

damage, glial scar formation and presence of inflammatory infiltrates that mainly 

consist of lymphocytes and macrophages (Figure 2.11).  

 

 

Figure 2.11. Representation of pathophysiology mechanisms of MS [195]. 

 

It has been shown that histamine can change the permeability of BBB, which 

leads to elevation of infiltrated cells in CNS and neuroinflammation, and that its 

level is associated with the onset of EAE [167,196]. On the contrary, it was also 

reported that EAE is significantly more severe in HDC-/- mice, with diffuse 

inflammatory infiltrates, including a prevalent granulocytic component, in brain 
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and cerebellum, and endogenous histamine appears to regulate the autoimmune 

response against myelin in EAE model, and to limit immune damage in CNS 

[197].  

It is an old clinical/pathological observation that areas of long-standing 

inflammation have an increased risk of development of cancerous processes, 

linking abnormal and persistent inflammatory responses to tumour development 

promotion. It has been demonstrated that inflammatory mediators, which under 

normal circumstances are activated only for a short time and then are rapidly 

down-regulated, can, when improperly regulated, support the development, 

invasiveness or angiogenic activity of some tumours. Large amount of data is now 

available regarding the effects of histamine on cell proliferation, together with 

observations that histamine can be induced and made available in an unstored 

diffusible form, and increased histamine content and HDC overexpression have 

been detected in a wide range of different carcinoma types and neuroendocrine 

tumours, in particular gastrointestinal cancers [198]. Recent information suggests 

that there are two main phases in the development of clinically manifested 

tumours, that are the malignant transformation of normal cells, and the subsequent 

tumorous progression of the transformed clones. In fact, the major driving forces 

of this process are the random mutations that cells accumulate during their 

individual life, modifying their genome, as well as constantly leading to the 

formation of newer mutant variants among the already cancerous cells, and the 

continuous clone selection, which sorts out from the numerous competing tumour 

cell variants the most resistant clones, which are able to escape from anti-tumour 

mechanisms activated against them, gradually independent from mechanisms 

controlling cellular growth, tissue integrity and homeostasis. In addition, tumour 

invasion and metastasis are closely dependent on cancer cells acquired capability 

to induce angiogenesis. Histamine derived from cells other than mast cells, like 

tumour-associates macrophages, was showed to play a significant role in 

angiogenesis through miming a “constant tissue inflammation” state [199], and 

many types of tumour cells can release histamine inducing HDC expression to 

increase angiogenesis and sustain its own growth and survival [200].  
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This aspect was studied in detail in recent years for cholangiocarcinoma, a 

relatively rare neoplasia, with an annual incidence rate of 1–2 cases per 100,000 in 

the Western world [201] but an increasing rising rate worldwide over the past few 

decades [202], regarding cholangiocytes, i.e. epithelial cells of the bile duct [203]. 

Cholangiocarcinoma is thought to progress from early hyperplasia and metaplasia, 

through dysplasia, to development of carcinoma [204], and chronic inflammation, 

together with obstruction of the bile ducts, resulting in an impaired bile flow, are 

thought to play a role in this progression. Even if a number of risk factors for 

development of cholangiocarcinoma have been described, indeed, the most 

common one is primary sclerosing cholangitis (PSC), an inflammatory disease of 

bile ducts [205,206], that also share its general symptoms with the neoplasia, like 

abnormal liver function, jaundice (yellowing of the eyes and skin), abdominal 

pain, generalized itching, weight loss and fever. Cholangiocarcinoma is 

considered to be an incurable and rapidly lethal cancer, with 5-year survival rate 

of 0% when disease is inoperable because distal lymph nodes show metastases 

[207], and less than 5% in general [208], unless both primary tumour and any 

metastases can be fully removed by surgery. No potentially curative treatment 

exists except surgery, indeed, and most people have advanced stage disease and 

are inoperable at the time of diagnosis, in particular for patients with PCS who 

develop cholangiocarcinoma [209]. Even if they are minor components of liver 

epithelia (3 to 5% of the endogenous liver cells) respect to the most common 

hepatocytes (70% of the nucleated liver population) [210], cholangiocytes coat 

intrahepatic and extrahepatic bile ducts, participating in several tissue processes 

and playing a key role in bile secretion via net release of bicarbonate and water, 

i.e. bile-acid independent bile flow driven by active transport of electrolytes 

(Figure 2.12). 



2. AADC and HDC play a fundamental role in human physiology 

60 

 

 

Figure 2.12. Schematic representation of cholangiocytes localisation and features [211]. 

 

Cholangiocytes proliferation is critical for homeostatic maintenance of biliary 

tree and secretory function during the pathogenesis of chronic cholestatic liver 

diseases and after liver injury, and is regulated by a variety of neuroendocrine 

factors [212], both stimulatory or inhibitory, through autocrine and paracrine 

mechanisms, including gastrointestinal hormones (secretin, somatostatin, and 

gastrin), neuropeptides, and neurotransmitters [213] (Figure 2.13).  
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Figure 2.13. Illustration of the neuroendocrine factors secreted by cholangiocytes that 

regulate their proliferation, secretory function, and known and/or postulated interactions with 

other cell types [211]. 

 

Cholangiocytes have low mitotic activity in normal state and also display a 

heterogeneous profile regarding proliferative/apoptotic responses to liver injury 

[214,215]: usually large but not small cholangiocytes proliferate in response to 

activation of cAMP-dependent signalling, leading to increased intrahepatic bile 

duct mass [216], but small cholangiocytes proliferate in response to HR1 

stimulation [217], and in pathologic conditions of damage of large cholangiocytes 

small ducts replenish the damaged biliary tree by de novo acquisition of large 

cholangiocyte phenotypes [218]. In cholangiocarcinoma, it has been detected an 

increased histamine content in vitro, due to enhanced HDC expression, and 

histamine behaves as a trophic factor increasing tumour growth through an 

autocrine mechanism via vascular endothelial growth factor (VEGF) expression 

stimulation [219]. Furthermore, the in vivo loss of HDC by pharmacological or 

genetic modification inhibits tumour growth, suggesting the potential therapeutic 

value of blocking histamine production by HDC targeting [220].  
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2.2.4. Premature termination of HDC is associated with Tourette syndrome 

 

In 9 affected members of a 2-generation family with Gilles de la Tourette 

syndrome (TS), Ercan-Sencicek et al. identified a heterozygous 951G-A transition 

in exon 9 of the HDC gene, resulting in a Trp317-to-ter (W317X) substitution, 

and consequently in a truncated protein lacking key segments of the active domain 

[221]. Even if HDC W317X mutation is considerably rare, two subsequent 

genetic studies support the possibility that histamine dysregulation contributes to 

TS more broadly [221,222]. TS is a neurobehavioural disorder characterized by 

chronic, sudden, brief, intermittent, involuntary or semi-voluntary motor tics, 

and/or phonic or vocal tics, sometimes associated with behavioural abnormalities. 

In general, tics are common, occurring in mild forms in approximately 20% of 

young people, and clinically significant cases occur in about 5%. Interestingly, 

approximately 75% of children with a clinically significant tic disorder improve to 

the point that they no longer have clinically significant tics by young adulthood 

[223]. Thus, TS usually begins in childhood and persists for at least a year, 

affecting around 1% of the population [224], more commonly males, with a sex 

ratio of about 3:1 [225]. However, ‘pure’ TS is uncommon, with up to 90% of 

cases carrying at least one additional diagnosis, most commonly autism spectrum 

disorder (ASD) [226], obsessive-compulsive disorder (OCD) or ADHD [227]. 

Given this high level of comorbidity, the pathophysiology of tics can be expected 

to overlap with that of some of these other conditions, all associated with 

dysregulation of cortico-basal ganglia circuitry. The first evidence is that TS 

patients show elevated DA tone in striatum [228,229], thus explaining why DR2 

blockers, besides numerous side effects, are the most efficacious pharmacotherapy 

for tics [230], while psychostimulant drugs and DR agonists can trigger 

stereotypic behaviours that have been interpreted as tic-like [231], supporting the 

idea that elevated DA levels may explain, or at least contribute to, the 

development of tics. To confirm that, the proposed pathophysiological process 

was investigated in HDC-knock out mouse model, focusing on DA modulation of 

striatum. In knock out animals, baseline striatal DA level is elevated [232], and 

also accentuated in animal dark phase, when histamine is normally elevated in 
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mice, consistent with negative regulation of DA by histamine, while 

intracerebroventricular histamine infusion reduces striatal DA levels [233]. Even 

if mechanistic work focusing on disease-relevant abnormalities in HDC-knock out 

model has just begun, like DA dysregulation and abnormalities in DA receptors 

[233] and abnormalities in histamine receptors, especially in H3R [234], the now 

clear association of histamine dysregulation with TS and related conditions 

emerged only recently, and many questions remain, in particular regarding 

histamine-DA interactions in basal ganglia as an important locus of pathology.  
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Chapter 3 

 

 

Induced pluripotent stem cells as model for investigation of 

physiological and pathological mechanisms  

 

 

Since first human embryonic stem cells (ESCs) were isolated in 1998 [235], 

pluripotent stem cells (PSCs) became a new reality in the study of human diseases. 

However, isolation and use of ESCs lines harbour ethical issues, and are strictly 

governed by laws in many countries due to the fact that their generation involve 

manipulation and destruction of pre-implantation stage embryo. It is with the 

discovery of cellular reprogramming that a fundamental step toward the in vitro 

modelling of human diseases has been done, theoretically allowing the study of all 

diseases starting from patient cells. Induced PSCs (iPSCs) generated from somatic 

cells share most of human ESCs characteristics, such as the ability to indefinitely 

proliferate and to potentially develop into all types of differentiated cells, providing 

a new source of patients-derived cells. Thus, iPSCs technology is, currently, the 

most faithful and closest to reality cell model available to study patient-specific 

phenotypes and investigate pathophysiological mechanisms of human diseases, in 

particular for those disorders affecting tissues of difficult sampling, such as CNS.  

 

 

3.1. Overview of iPSCs technology development 

 

iPSCs reprogramming was performed for the first time in 2006 by Takahashi 

and Yamanaka [236], awarded the 2012 Nobel Prize. Starting from the hypothesis 

that genes fundamental for ESCs function might be able to induce an embryonic 

state in adult cells, they chose twenty-four genes previously identified as important 

for PSCs phenotype and used retroviruses to deliver these genes into mouse 

fibroblasts. The produced ESCs-like colonies showed reactivation of FBX15, a 
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pluripotent stem cell-specific gene, and capacity of indefinite propagation. 

Sequential removal of factors from the original pool allowed the identification of 

four factors as necessary and together sufficient to generate ESCs-like colonies: 

these factors are OCT3/4, SOX2, KLF4 and cMYC, also known as Yamanaka 

factors. Even if these iPSCs were similar to ESCs in unlimited self-renewal and 

pluripotency, their molecular characterisation revealed that gene expression and 

epigenetic marks were somewhere between those of fibroblasts and ESCs, and, in 

addition, cells failed to produce viable chimeras when injected into developing 

embryos. A second-generation mouse iPSCs were developed in 2007 by three 

different research groups (Yamanaka's, together with a Harvard and a 

Massachusetts Institute of Technology group) [237-239]. These cells, which 

produced viable chimeric mice, were derived from mouse fibroblasts expressing the 

same four transcription factors but selected for NANOG, an ESCs functionally 

important gene. 

Human iPSCs were derived for the first time in 2007 by two independent 

research groups (Yamanaka of Kyoto University, Japan, and James Thomson of 

University of Wisconsin-Madison). While Yamanaka reprogrammed human 

fibroblasts with the same four genes set previously used in mouse through a 

retroviral system [240], Thomson employed a different set (OCT3/4, SOX2, 

NANOG and LIN28) using a lentiviral system [241]. After these first fibroblasts 

reprogramming, human iPSCs were successfully derived also from keratinocytes 

[242, 243], peripheral blood cells [244,245] and renal epithelial cells from urine 

[246]. 

 

3.1.1. Factors used for iPSCs generation are linked to pluripotency state 

 

Both Yamanaka and Thomson transcription factors sets include OCT3/4 and 

SOX2. OCT3/4 (octamer-binding transcription factor), a protein encoded by 

POU5F1 gene [247], is a homeodomain transcription factor critically involved in 

ESCs self-renewal [248] through a fine regulation of its expression level [249]. 

OCT3/4 is therefore a master regulator of pluripotency and it is often used as a 

marker of stemness, while differentiated cells show a reduced expression.  
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Changes in OCT3/4 levels do not independently promote differentiation, but 

are also controlled by levels of SOX2, a member of the Sox family of transcription 

factors, which have been shown to play key roles in many stages of mammalian 

development and in maintenance of embryonic and neural stem cells. SOX2 binds 

to DNA cooperatively with OCT3/4, with the primary role of controlling OCT3/4 

expression in ESCs, and they both perpetuate their own expression when 

concurrently present [250].  

Yamanaka transcription factors set is completed with KLF4 and cMYC. KLF4 

(gut-enriched Krüppel-like factor), a zinc-finger transcription factor [251], has been 

garnering attention in recent years because some of its functions are apparently 

contradicting. It is, indeed, highly expressed in non-dividing cells and its 

overexpression induces cell cycle arrest, in particular preventing cell division when 

DNA is damaged [252-256]. However, KLF4 has been shown to play multiple and 

different functions, that switch between pro-cell survival to pro-cell death factor 

[257-260]. cMYC, the first discovered member of MYC genes and proto-oncogenes 

family, regulates the expression of several target genes, resulting in numerous 

biological effects, like cell proliferation promotion, cell growth regulation, 

apoptosis inhibition and stem cell self-renewal stimulation. Since cMYC 

amplification occurs in several cancer types, including breast, colorectal, 

pancreatic, gastric, and uterine cancers [261], possible cMYC-induced iPSCs 

development of lethal teratomas leaded researchers to select other types of 

transcription factors for reprogramming. 

Thomson factors replace KLF4 and cMYC with NANOG and LIN28. NANOG 

is a transcription factor critically involved in self-renewal of undifferentiated ESCs 

[262]. It is thought to function in concert with OCT3/4 and SOX2, in a complex 

regulatory network in which OCT3/4 and SOX2 are capable of directly regulating 

NANOG by binding to its promoter, maintaining the self-renewing undifferentiated 

state of the inner cell mass of blastocyst, as well as of ESCs and iPSCs cells [263]. 

While differential up- and down-regulation of OCT3/4 and SOX2 has been shown 

to promote differentiation toward divergent developmental programs, down-

regulation of NANOG must occur for differentiation to proceed [264]. LIN28 is an 

RNA-binding protein that binds to and enhances the translation of IGF-2 (insulin-
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like growth factor 2) mRNA [265], and is thought to regulate self-renewal of stem 

cells, since it is highly expressed during early embryogenesis [266]. 

 

3.1.2. Different approaches for iPSCs generation can avoid insertional problems 

 

Methods pioneered by Yamanaka and others demonstrated that adult cells can 

be reprogrammed to iPSCs, but there are still many challenges associated with this 

technology, mainly linked to low reprogramming efficiency and risk of insertions 

into target cells genome due to integration of transcription factors delivering 

system. During the years that followed Yamanaka’s and Thomson’s demonstration 

of iPSCs reprogramming from somatic cells, other strategies and techniques were 

developed in order to avoid, or at least to limit, these two main problems. 

 

Alternate vectors 

 

One of the key strategies for avoiding problems like low efficiency and 

tumorigenesis has been the use of alternate vectors. In 2008, Hochedlinger et al. 

produced cells identical to ESCs using an adenovirus to transport transcription 

factors genes into skin and liver cells of mice. Adenovirus, contrary to other vectors 

like lentiviruses and retroviruses, does not incorporate any of its own genes into the 

targeted host, avoiding, therefore, the potential for insertional mutagenesis [267]. 

One year later, Freed et al. used the same technology to successfully reprogram 

human fibroblasts into iPSCs [268].  

Another method of delivering is based on plasmids: transfection with two 

plasmid constructs carrying reprogramming factors, the first plasmid codifying for 

c-MYC, while the second one for the other three Yamanaka factors, successfully 

reprogrammed mouse cells [269]. Although plasmid delivering avoids viruses, it 

still requires cancer-promoting genes, and, in addition, it is much less efficient 

compared to retroviral methods.  
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Chemical compounds 

 

Another strategy to improve low efficiency of reprogramming and avoid 

insertional problems is based on molecules and compounds that can mimic the 

effects of transcription factors, compensating for reprogramming factors that do not 

effectively target the genome and meantime avoiding genomic integration. Key 

studies using this strategy, based on histone deacetylase (HDAC) inhibitor valproic 

acid [270] and histone methyl transferase (HMT) inhibitor BIX-0129 [271], were 

conducted from 2008. In 2013 Deng at al. first created iPSCs without any genetic 

modification, using a cocktail of seven small compounds to induce mouse somatic 

cells into stem cells (CiPSCs) [272]. Although CiPSCs contributed to all major cells 

types when transferred into developing mouse embryos, proving their pluripotency, 

the reprogramming efficiency (about 0.2%) was comparable to those of standard 

iPSCs production techniques.  

 

MicroRNA 

 

Several mechanisms have been proposed about the addition of microRNAs to 

enhance iPSCs potential. ESCs-specific microRNA molecules have been 

demonstrated to enhance efficiency of induced pluripotency by acting upstream of 

OCT3/4, SOX2 and KLF4, but downstream of c-MYC [273]. In addition, 

microRNAs can induce reprogramming even without added transcription factors, 

and predict iPSCs differentiation potential [274]. 

 

 

3.2. iPSCs differentiation into dopaminergic midbrain neurons mimics 

neuronal development 

 

PSCs have the remarkable property of long-term self-renewal, and at the same 

time they can potentially give rise to any type of differentiate cells. To induce 

lineage differentiation from iPSCs, investigators use insights gained from 

development: therefore, in the majority of cases, differentiation protocols are based 
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on initial generation of embryoid bodies and subsequent step-wise addition of 

growth factors or their inhibitors and/or cytokines, known to play a role during 

certain steps of the particular cellular development, combined with monolayer 

culture systems. This has enabled the generation of a number of cell types, such as, 

for example, neural subpopulations, like glutamatergic cortical neurons [275], 

cholinergic neurons [276], DA neurons [277], oligodendrocytes [278], and 

astrocytes [279], but also cardiac muscle cells [280-283], and hepatocytes [284-

286], among many others. 

 

3.2.1. Neurodevelopment is a multi-step process 

 

 Even though not fully understood, many knowledges have been collected to 

describe the mechanisms involved in differentiation of PSCs. Based on acquired 

information, it is now possible to induce stem cells to differentiate into different 

cells types in vitro by changing physical and/or chemical conditions of growth, 

reproducing the development process leading to a fully differentiated phenotype. 

Neurodevelopment, based on a spatiotemporally regulation and a sequential, 

progressive restrictions in cell fate, is therefore retraced in vitro through 

development-based protocols that recapitulate the in vivo action of morphogens and 

signal molecules identified as key players during nervous system development. 

Following implantation of blastomere and during gastrulation, 3 distinct germ 

layers are formed: endoderm, which develops to internal organs, mesoderm, which 

gives rise to bone, muscle, and vasculature, and ectoderm, from which results in 

skins and nervous system specification (Figure 3.1). 
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Figure 3.1. Developmental stages of mouse and human embryos [287]. 

Timelines are given for mouse and human embryonic development. 

 

This 3-layered structure undergoes progressive morphological transformations, 

in which mesoderm and endoderm invaginate, and ectoderm forms an epithelial 

sheet [287]. Subsequently, neurodevelopment has been described to proceeds in 

three principal consecutive steps (Figure 3.2).  

 

 

Figure 3.2. Neural induction (A), neurulation (B), and neural patterning (C) overview [287]. 

Timelines are given for mouse and human embryonic development. 

 

Firstly, embryonic ectoderm forms a ticker layer on the dorsal axis: the neural 

plate (Figure 3.2A). Subsequently, neurulation of neural plate occurs through a set 

of morphological transformations, including changes in cells shape and cell-cell 

adhesion (Figure 3.2B), giving rise to the development of neural tube (Figure 
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3.2C). During early development of neural tube, two main signalling centres are 

formed: the isthmic organizer (IsO), which defines the midbrain-hindbrain 

boundary (MHB), and the floor plate (FP), which controls ventral identities. IsO 

and FP are the main responsible for the final neural patterning because they release 

transcription factors and morphogens that drive the expression of specific genes 

responsible for regional identity, specification and proliferation of progenitors. 

Such insights from developmental neurobiology provide a conceptual framework 

for the directed differentiation of iPSCs [288]. 

 

3.2.2. Dopaminergic neurons development is subjected to a complex spatiotemporal 

transcriptional regulation 

 

The ability to recreate human midbrain DA neurons in vitro is linked to the 

growing knowledge of how these cells develop in vivo. Understanding the 

spatiotemporal interdependence of molecular signalling pathways acting during in 

vivo neural development is essential in order to set up, and further refine, current 

protocols for generation of midbrain DA neurons. 

The formation of IsO starts through the coordinated expression and mutual 

repression of transcription factors OTX2 (orthodenticle homolog 2) in the midbrain 

and GBX2 (gastrulation brain homeobox 2) in the hindbrain (Figure 3.3A), which 

in turn regulate the cross-repression of two morphogens, WNT1 (wingless-int1) and 

FGF8 (fibroblast growth factor 8) (Figure 3.3B), respectively.  

 

 

Figure 3.3. Expression patterns of genes important for DA neurons development [288]. 

Sagittal view of an E11.5 mouse embryo, showing the expression of transcription factors and 

morphogens important for VM patterning in relation to Th expression. 
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WNT1 expression in the midbrain plays a crucial role in specification and 

differentiation of midbrain DA neurons progenitors, while FGF8 was demonstrated 

to be required [289] and sufficient [290] for the induction of IsO. Cells at the MHB 

are responsive to the concentration gradient generated by secretion of FGF8 in the 

IsO: high concentrations of FGF8 drive a hindbrain cell fate, while lower 

concentrations in the anterior tissue ensure that cells adopt a midbrain identity [291-

292] (Figure 3.3A). 

FP development is driven by FOXA2 (forkhead box protein A2), whose 

expression is initially induced by SHH (sonic hedgehog), secreted by the notochord 

(Figure 3.3A). When the FP itself starts expressing SHH, it becomes the secondary 

organizer of the neural tube, responsible for ventral/dorsal patterning: higher levels 

of SHH define a ventral stem cells phenotype (with expression of FOXA1/2), in 

contrast to lower levels which are essential to specify the dorsal area (Figure 3.3B). 

Consequently, information from both signalling centres, IsO and FP, are integrated 

in midbrain DA neurons progenitors development.  

Further to this initial patterning, FOXA1/2 [294] and OTX2 [295] regulate the 

expression of LMX1A and LMX1B, two LIM homeobox transcription factors. 

LMX1A is required for DA neurons specification in the FP, suppressing also the 

emergence of lateral fates [296-298], and LMX1B is necessary for DA neurons 

progenitors differentiation [299]. Therefore, the combined and coordinated action 

of SHH-FOXA2 and OTX2-WNT1-LMX1A networks is essential for the 

specification of midbrain DA neurons progenitors in FP and, concomitantly, for the 

suppression of alternative neural fates. 

Midbrain dopaminergic neurogenesis takes place in the ventricular zone (VZ) 

of the FP (Figure 3.4A and 3.4B)), where radial glial DA neurons progenitors, 

expressing MASH1 (mouse achaete-schute homolog 1) and NGN2 (neurogenin 2) 

(Figure 4C), divide to generate postmitotic cells, or neuroblasts.                 
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Figure 3.4. Coronal view of midbrain FP (A and B) and gene expression profile of 

midbrain DA lineage (C) [288]. 

 

The expression of MASH1 and NGN2 is directly or indirectly regulated by 

SHH-FOXA2 and OTX2-WNT1-LMX1A networks: FOXA2 dose-dependently 

controls dopaminergic neurogenesis [300,301] by directly regulating LMX1A, that 

increases the expression of NGN2 via MSX1 [296]. Moreover, FOXA2 increases 

the expression of FERD3l (Fer3-like), which in turn represses HES1 (hairy and 

enhancer of Split1), a suppressor of pro-neural genes MASH1 and NGN2. In 

addition, also WNT1 controls the expression of these genes in the midbrain FP, by 

undirected and directed regulation of LMX1A [302].  

Subsequently, neuroblasts migrate toward the intermediate zone (IZ) of 

midbrain FP (Figure 3.4B), where they progressively acquire DA neurons 

phenotype (Figure 3.4C), and express later transcription factors, such as NURR1 

(nuclear receptor related 1 protein) and PITX3 (pituitary homeobox 3). Expression 

of PITX3 is indirectly sustained by WNT1 [303], while LMX1A/B directly 

regulates NURR1 and PITX3 [302]. Migration, and differentiation, of DA neurons 

progresses from IZ to mantle zone (MZ) of midbrain FP (Figure 3.4B), where 
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neuroblasts mature and start to express the enzyme tyrosine hydroxylase (TH), 

involved in DA synthesis (Figure 3.4C). This process is regulated by some of the 

early factors described above, such as OTX2, LMX1A/B and FOXA1/2, together 

with the homeobox genes EN1/2 (engrailed 1/2), and late transcription factors, such 

as NURR1 and PITX3, which all remain expressed in postmitotic DA neurons 

(Figure 3.4C).  Thus, the morphogen-controlled gene networks in the midbrain FP 

WNT1-LMX1A and SHH-FOXA2 cooperatively regulate not only DA neurons 

specification and neurogenesis, but also differentiation and survival. For example, 

FOXA1/2 are required for the expression of NURR1, EN1 and AADC in DA 

neuroblasts and neurons, as well as the expression of TH in DA neurons [300,301]. 

NURR1 regulates the expression of several genes that define a mature DA neuron, 

including TH, SLC18A2/VMAT2 (solute carrier family-18 member-2/vesicular 

monoamine transporter-2), SLC6A3/DAT (solute carrier family-6 member-

3/dopamine transporter), AADC, BDNF (brain-derived neurotrophic factor) [304-

311]. PITX3 upregulates TH, DRD2 (dopamine receptor 2), VMAT and DAT 

[312,313]. In addition, NURR1 and PITX3 regulate each other [314,315], and are 

required for the maintenance of adult DA neurons [316,317], whereas EN1/2 

promotes the survival of adult DA neurons [318], together with BDNF [319,320] 

and glial cell-line derived neurotrophic factor (GDNF) [321-329].  

 

3.2.3. Dopaminergic neurons differentiation protocols have improved during last 

ten years 

 

These aforementioned developmental studies provide a conceptual framework 

to rationalise neural induction strategies for differentiation of human iPSCs into 

midbrain DA neurons. Numerous protocols describing differentiation of DA 

neurons from iPSCs, indeed, have been developed during the last decade. 

Initial approaches were adapted from mouse ESCs protocols, based on 

generation of embryoid bodies, use of stromal cells or astrocytes as feeders, and 

activation of a few key signalling pathways (SHH, FGF8, NURR1) to recapitulate 

some aspects of mouse embryonic development [330-333]. These ESCs 

differentiation protocols applied to human cells produced TH-positive neurons, but 
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none of them generated cells co-expressing the two transcription factors required 

for proper midbrain DA neuron specification, i.e. FOXA2 and LMX1A. In addition, 

they presented other problems, like incorrectly specified TH-positive cells [334], 

poor survival rate after transplantation [335] and overgrow with undesirable 

progeny [336,337]. The first attempt to overcome these limitations and derive 

human DA neurons from human ESCs was based on forced expression of LMX1A 

treating cells with SHH and FGF8 [338].  

Since then, a more rigorous temporal implementation and recapitulation of 

morphogenic signals important for midbrain DA neuron development improved 

differentiation protocols. Use of dual SMAD inhibitors (SB431542 and NOGGIN 

or LDN-193189) at the beginning of differentiation protocol, to inhibit transforming 

growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signalling 

pathways, improved neural induction, suppressing non-neuronal fates, and 

eliminated the need for feeder layers [339]. Moreover, high levels of SHH, as 

observed during neural induction, was showed to be crucial for midbrain 

specification [340], together with WNT signalling [302,303,341,342,343-346], 

implemented using GSK3β inhibitors (CHIR99021) [339]. Further improvements 

introduced the formation of embryoid bodies [347], followed by cell adhesion on 

laminin or differentiation as floating spheres [348]. 

These researches emphasise the importance of understanding the precise effects 

and time exposure to different signalling molecules in order to continuously refine 

current protocols. 

 

 

3.3. iPSC differentiation into dopaminergic neurons still needs 

improvements 

 

Differentiation methods quality is assessed through several criteria, including 

the simplicity of procedure, the efficiency of differentiation and the versatility 

across animal species. These methods are mainly based on chemically defined 

media and on ready-to-use products, whose compositions have been kept 

confidential, preventing the possibility to prepare and optimize them in individual 
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laboratories. In addition, these commercially available media widely vary in their 

ability to support neurons in culture [349], requiring cell- and procedure-specific 

analyses to monitor optimum conditions for differentiation results. Moreover, 

standard culture conditions constitute a major barrier in lineage differentiation: 

while they try to recreate the in vivo continuous and gradual changing in chemical 

factors concentrations, they do not provide all necessary environmental factors, in 

particular cell–cell and cell–extracellular matrix (ECM)-mediated signals, 

precluding the influence of neighbouring cells simultaneous maturation and 

interplay.  

To date, most emphasis has been put on forcing stem cells to a neural fate and 

then differentiating them into specific neuronal and glial types [350]. However, a 

common problem with these protocols is the difficulty in maintaining neural 

precursors in an immature, undifferentiated state, avoiding the spontaneous and 

premature differentiation that commonly occurs in these cultures. Whereas in 

embryo, proliferative, undifferentiated neural precursors can be maintained, it is 

rare to see this kind of cells in cultures. At the same time, the duration of many 

differentiation protocols does not reflect human development, showing a 

differentiated progeny that, not surprisingly, resembles foetal tissue more than adult 

tissue, and fails to show mature phenotype. In addition, the purity of neuronal cell 

population remains problematic [351], and it is still linked to protocol and cell line 

used for neural induction, together with experimental practice [352-354]. Strategies 

to improve protocols might involve cell sorting, incorporation of novel 

developmental factors to current differentiation protocols, as well as achieving the 

right signalling level or balance between different factors and pathways.  

 

 

3.4. iPSCs technology is particularly useful in neurological monogenic 

diseases modelling 

 

Human ESCs provide not only an effective tool to improve biological 

knowledge related to processes of cell differentiation but are as well a stable source 

of cells for cell-based therapies in the field of regenerative medicine. Their 
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indefinite propagation ability, as well as the possibility to differentiate into every 

other cell type, represent a source of cells that could be used to replace those lost 

due to damage or disease. Despite these biological advantages, the use of ESCs and 

their derivates involves enormous ethical and legal issues due to destruction of 

human embryos. The establishment of human iPSCs cells has overcome these 

ethical problems, as well as increased the applications of PSCs, since unlimited 

supplies of autologous cells could be used to generate transplants without any risk 

of immune rejection. Moreover, iPSCs are already used in personalized drug 

discovery efforts and understanding of patient-specific bases of diseases (Figure 

3.5). 

 

 

Figure 3.5. Overview of iPSCs technology applications. 

 

iPSCs derived from a patient, indeed, can be used to analyse the 

development/progression of the disease [238,243], capturing early stages which 

might be crucial for the development of therapies aimed at preventing, for example, 

neurodegenerative pathologies. Moreover, polygenic diseases result from the 

additive inheritance of multiple polymorphisms that culminate in an affected 

phenotype. Therefore, it is increasingly important to understand how specific risk 

variants functionally contribute to underlying pathogenesis, making the creation of 
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iPSCs libraries with defined polymorphisms and phenotypic data a useful resource 

to validate the effects of each identified gene variant and to facilitate mechanistic 

understanding of human physiological and pathological conditions. 

The maximum expression of iPSCs technology is probably into the field of 

monogenic diseases, caused by inheritance of a single defective gene. The number 

of diseases with known causal genetic loci has doubled in the last 10 years, as seen 

in Online Mendelian Inheritance in Man (OMIM) entry statistics, mainly thanks to 

improvements in genetic diagnostics and implementation of screening programs. 

As a result, rare genetic diseases affect 350 million people worldwide and the global 

prevalence of all single gene diseases at birth is approximately 1/100. Due to iPSCs 

features, it is not surprising that there has been an extraordinary expectation to 

utilise these cells to model human “diseases in a dish” [255,256]. Many studies have 

already shown that iPSCs derived from a variety of monogenic disorders can 

remarkably recapitulate disease phenotypes in vitro when differentiated into 

disease-relevant cell types. Even if in human monogenic disorders a single gene 

mutation is predominantly responsible for the phenotype of the disease, allowing 

the prediction of the consequences of a specific mutation on a particular protein 

function, not all clinical symptoms severity, therapies responsiveness and/or disease 

onset of patients correlate with biochemical protein alteration. iPSCs technology, 

indeed, represents a promising technology to identify patient-specific genetic 

background and possible non-genetic factors that influence disease-causing 

mutations, like alterations in other genes, haplotypes or polymorphisms associated 

with and/or influencing the development of the particular disease, together with 

epigenetic and/or environmental modulation. Therefore, iPSCs can be an useful tool 

for discovering and validating newly proposed disease mechanisms, but also for 

screening environmental factors/small compounds for disease phenotypes 

modulation, allowing researchers to conduct mechanistic studies and directly use 

these cells for patient-personalized drug screening.  
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Chapter 4 

 

 

Aims of the thesis 

 

 

The still incomplete knowledge of AADC and HDC biochemical features has 

driven the experimental work of this thesis, with the aim to: 

1. Produce and characterise human HDC wild-type, as well as artificial 

mutants, using in solution biochemical techniques, to detect 

structural/functional features and measure the kinetic parameters of the 

purified enzyme; 

2. Analyse a possible phosphorylation modification of AADC, using an in 

vitro phosphorylation assay, and identify the involved residue(s) as well 

as its functional effect; 

3. Use induced pluripotent stem cells-derived neurons from healthy 

control and AADC Deficiency patients as an innovative cell model to 

evaluate AADC features, as well as wider cellular effects of dopamine 

homeostasis alteration. 
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Chapter 5 

 

 

Materials and methods 

 

 

5.1. Materials 

 

All chemicals and reagents were purchased from international established 

companies and were of the highest purity available. 

 

 

5.2. Bioinformatic analyses 

 

5.2.1. Multiple sequence alignments 

 

For human group II PLP-dependent α-decarboxylases alignment, used 

sequences were taken from NCBI website (https://www.ncbi.nlm.nih.gov/) and are, 

in order, HDC, AADC, GAD65/67 and CSAD. 

For HDCs alignment, used sequences were taken from the NCBI website 

(https://www.ncbi.nlm.nih.gov/) and are, in order: Homo sapiens, Mus musculus, 

Rattus norvegicus, Bos taurus, Gallus gallus, Danio rerio, Drosophila 

melanogaster, Morganella morganii, Klebsiella aerogenes and Raoultella 

planticola. Secondary structures of human HDC (PDB code 4E1O) are reported in 

the first line of each block: α-helices and β-strands are rendered as squiggles and 

arrows, respectively. 

In both cases amino acid one-letter code is used and ESPript 

(http://espript.ibcp.fr) was used to render this figure starting from a Clustal Omega 

alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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5.2.2. Phosphorylation sites prediction 

 

Bioinformatic analyses of AADC and HDC possible phosphorylation sites were 

performed using NetPhos 3.1 free online server 

(http://www.cbs.dtu.dk/services/NetPhos) using the corresponding amino acid 

sequences of cloned genes. 

 

 

5.3. In solution materials and methods 

 

5.3.1. HDC and AADC plasmid constructs 

 

The gene encoding human HDC, carried in mammalian expression vector 

pCMV6, was purchased from ORIGENE and amplified in order to obtain the gene 

sequence codifying for amino acid sequence Met2-Cys479, corresponding to the 

proteolyzed active form of the enzyme, followed by thrombin protease cleavage 

site. In addition, restriction sites for enzymes NdeI and XhoI were inserted upstream 

and downstream, respectively, for subcloning the modified HDC gene sequence 

upstream of a 6xHis tag into the bacterial expression plasmid pET28a. The designed 

and synthetized (Eurofins Genomics) primers were 5’-

AGGGACCATGGGCATGGAGCCTGAGGAGTACAGA-3’ for primer forward 

and 5’-AT 

TTACTCGAGGGATCCACGCGGAACCAGACAGTGCTGACTCAGGAT-3’ 

for primer reverse (NdeI and XhoI restriction sites are underlined with a solid line 

in forward and reverse primer, respectively, while thrombin cleavage site is 

underlined with dotted line). Moreover, as the purchased gene was detected to 

correspond to a non-pathological minor isoform of HDC, harbouring a methionine 

residue at position 30, the gene was correcting introducing the more common 

threonine at this position. The modification was introduced in the construct 

described above by QuikChange site-directed mutagenesis kit (Agilent 

Technologies) using the oligonucleotide 5’ - 
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GAGAGACGTGTGACGCCAGACGTGCAGC - 3’ and its complement (the 

mutated codon is underlined) (Eurofins Genomics). 

C180S and C418S mutations of HDC were introduced in the construct 

described above using the same kit and oligonucleotides 5’ - 

GCTGATGAGTCCAGCCTAAATGCCCGA - 3’ and its complement and 

GGGTCCTAATAGTCTCACAGAAAATGTG and its complement for C180S and 

C418S, respectively (mutated codons are underlined) (Eurofins Genomics). 

AADC was produced starting from pDDChis construct that contains the 

complete open reading frame of thuman AADC including a C-terminal 6xHis tag 

into a pTrcHis2A expression vector [12].  

All corrected nucleotide sequences of constructs were confirmed by DNA 

sequencing (BMR Genomics). 

 

5.3.2. AADC and HDC expression and purification 

 

E. coli BL21(DE3) chemical competent cells were transformed by heat shock at 

42°C with the desired construct and grown in 4.5 L of Luria–Bertani (LB) broth 

supplemented with kanamycin (35 mg/mL) for HDC or with ampicillin (100 

mg/mL) for AADC. Cultures were grown at 37°C to an OD600nm of 0.4-0.6, and 

expression was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) 0.4 

mM for HDC and 0.1 mM for AADC, for 15 h at 30°C. Cells were harvested and 

resuspended in 20 mM sodium phosphate buffer pH 7.4, containing 0.5 M NaCl, 

20 mM imidazole, 50 μM PLP, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 

and protease inhibitor cocktail, with the addition of 10 mM β-mercaptoethanol (β-

ME) for HDC. Lysozyme was then added to a concentration of 0.2 mg/mL and 

incubated for 20 min at room temperature. After a freeze-thaw cycle, leupeptin and 

pepstatin (1μg/mL) were added and the suspension was centrifuged at 30,000 g for 

30 min. The cleared lysate was diluted to about 30 mg/mL and loaded on a HisPrep 

FF 16/10 column (GE Healthcare) equilibrated with 20 mM sodium phosphate 

buffer pH 7.4, containing 0.5 M NaCl and 20 mM imidazole, with the addition of 

10 mM β-ME for HDC. A linear gradient was then inserted (0-100% in 200 mL) 

with the same buffer containing 350 mM imidazole for HDC and 500 mM 
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imidazole for AADC. Run was performed at 2 mL/min flow rate with detection at 

280 nm. Soluble HDC or AADC elutes as a single symmetrical peak. After addition 

of 50 μM PLP, protein solution was concentrated, and imidazole and unbound 

coenzyme were removed by extensive washing with 0.1 M potassium phosphate 

buffer pH 7.4, with the addition of 10 mM β-ME for HDC (RedHDC), using 

Amicon Ultra 10 concentrators (Millipore). Enzymes concentration was determined 

by using an εM of 1.57x105 M−1cm−1 for HDC and 1.42x105 M−1cm−1 for AADC. 

PLP content was determined by releasing the coenzyme in 0.1 M NaOH using εM 

of 6600 M−1cm−1 at 388 nm. 

 

5.3.3. Denaturing, semi-denaturing and native polyacrylamide gel electrophoresis 

 

Purification procedure was evaluated by 12% denaturing Sodium Dodecyl 

Sulphate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) loading 3 µL of cell 

lysate and column flowthrought and 12 µL of column wash and eluted fractions 

during imidazole gradient, with the addition of 4X denaturing and reducing Sample 

Buffer (SB). After proteins concentration, their purity was detected by a single band 

corresponding to a molecular weight of about 55 kDa in denaturing SDS-PAGE 

loading 8 µg of protein with the addition of 4X denaturing and reducing SB.  

Semi-denaturing 8% SDS-PAGE was used to evaluate the presence of 

intermolecular disulfide bridges of 5 µg OxHDC (HDC in the fully oxidized form, 

see below) incubated with increasing concentrations of β-ME, 1,4-dithiothreitol 

(DTT) or reduced glutathione (GSH) for one hour and loaded with the addition of 

4X denaturing non-reducing SB. 

Native PAGE analysis was performed in the same sample conditions of semi-

denaturing SDS-PAGE but samples were loaded with the addition of 2X non-

denaturing non-reducing SB. 

 

5.3.4. Size-exclusion liquid chromatography 

 

Size-exclusion liquid chromatography was use to prepared OxHDC starting 

from the reduced one (RedHDC) purified in presence of 10 mM β-ME (see above). 
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RedHDC was loaded on a Sephacryl H-200 (16/60) (GE Healtcare) column 

equilibrated with 0.1 M potassium phosphate buffer pH 7.4 and 0.15 M NaCl on an 

Akta FPLC system (GE Healthcare). Run was performed using the same buffer at 

0.5 mL/min flow rate with detection at 280 nm. Soluble OxHDC elutes as a single 

symmetrical peak and was incubated with 100 μM PLP. Unbound coenzyme was 

removed by extensive washing with 0.1 M potassium phosphate buffer pH 7.4 and 

protein solution was concentrated in the same buffer using Amicon Ultra 10 

concentrators (Millipore). Enzyme concentration was determined by using an εM of 

1.57x105 M−1cm−1 at 280 nm and PLP content was determined by releasing the 

coenzyme in 0.1 M NaOH using εM of 6600 M−1cm−1 at 388 nm. 

Size-exclusion liquid chromatography was used to determine the molecular 

dimensions of HDC holoenzymes (300 µg) in both oxidized and reduced forms. 

Samples were loaded on a Sephacryl H-200 (16/60) (GE Healtcare) column 

equilibrated with 0.1 M potassium phosphate buffer pH 7.4, with the addition of 10 

mM β-ME for RedHDC, on an Akta FPLC system (GE Healthcare). Run was 

performed using the same buffer at 0.5 mL/min flow rate with detection at 280 nm. 

Three chromatography experiments were run per sample, and software Unicorn 

5.01 (GE Healthcare) was used to calculate the elution volume of each peak. 

Apparent molecular dimensions of eluting species were calculated as kDa using the 

linear equation: 

 

𝒙 =
𝐲 − 𝐭

𝐦
 

 

where y represents the peak elution volume, and t and m refer to intercept and 

slope, respectively, of the linear fitting calibration curve extrapolated from a set of 

molecular weight standards under the same experimental conditions.  

Curves fitting was performed using Origin® 8 Pro (OriginLab). 

 

5.3.5. Coenzyme binding affinity measurements 

 

Apoenzyme was prepared by incubating 10 µM enzyme with 50 mM phenyl 

hydrazine for HDC or 10 mM hydroxylamine for AADC at 25°C for 2 hours in 0.5 
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M potassium phosphate buffer pH 6.8, with the addition of 20 mM GSH for 

RedHDC. The solution was then loaded on a Desalting 26/10 column (GE 

Healtcare) preequilibrated with the same buffer without phenyl hydrazine or 

hydroxylamine. Eluted enzyme was then concentrated using Amicon Ultra 10 

concentrators (Millipore) and washed with 0.1 M potassium phosphate buffer pH 

7.4, with the addition of 20 mM GSH for apo-RedHDC. 

Equilibrium apparent dissociation constant for PLP, KD(PLP), was determined 

by measuring the quenching of intrinsic fluorescence of 0.03 µM HDC or 0.15 µM 

AADC apoenzyme in presence of PLP at concentrations ranging from 0.005 to 20 

μM in 0.1 M potassium phosphate buffer pH 7.4, with the addition of 1 mM GSH 

for apo-RedHDC. 

Data were fitted to the following equation: 

 

𝒀 = 𝒀𝒎𝒂𝒙

[𝑬]𝒕 + [𝑷𝑳𝑷]𝒕 + 𝑲𝑫(𝑷𝑳𝑷) − √([𝑬]𝒕 +  [𝑷𝑳𝑷]𝒕 + 𝑲𝑫(𝑷𝑳𝑷))
𝟐

− 𝟒[𝑬]𝒕[𝑷𝑳𝑷]𝒕

𝟐[𝑬]𝒕

 

 

where [E]t and [PLP]t represents the total concentrations of the enzyme and 

PLP, respectively, Y refers to the intrinsic quenching changes at a PLP 

concentration, and Ymax refers to the fluorescence changes when all enzyme 

molecules are complexed with coenzyme.  

Curves fitting was performed using Origin® 8 Pro (OriginLab). 

 

5.3.6. Spectroscopic measurements 

 

Absorption measurements were performed using Jasco V-550 

spectrophotometer at protein concentration of 1 mg/mL. Circular dichroism 

measurements were made with Jasco J-710 spectropolarimeter at protein 

concentration of 1 mg/mL for near-UV and visible spectra or 0.1 mg/mL for far-

UV spectra and denaturation curves. Fluorescence spectra were recorded using a 

FP-750 Jasco spectrofluorimeter with 5 nm excitation and emission bandwidths, 

following excitation at different wavelengths.  
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All the spectroscopic measurements were carried out in 0.1 M potassium 

phosphate buffer pH 7.4 at 25 °C, with the addition of 10 mM β-ME or 10 to 20 

mM GSH for RedHDC. 

 

5.3.7. Dynamic light scattering analyses 

 

The dynamic light scattering (DLS) analyses were performed using Zetasizer 

Nano S (ZEN1600) instrument (Malvern Instruments) with a constant 90° 

scattering angle and a 633 nm wavelength laser at 25 °C. Sample volume was 0.8 

mL at 2 μM enzyme concentration in 0.1 M potassium phosphate buffer (pH 7.4), 

with the addition of 10 mM β-ME for RedHDC. A total of 100 scans were obtained 

for each sample, after an equilibration time of 10 min, and all samples were 

analysed in triplicate. 

 

5.3.8. Enzyme activity assays 

 

The decarboxylase activity of enzymes was measured by a stopped 

spectrophotometric assay [12,357]. Enzyme was incubated for an appropriate 

incubation time (a time within which a linear product formation is observed) with 

different L-histidine, L-DOPA, L-5HTP or L-phenylalanine concentrations and 10 

μM PLP in a final volume of 250 μL of 0.1 M potassium phosphate buffer pH 7.4., 

with the addition of 1 mM GSH for RedHDC. The reaction was then stopped by 

boiling at 100 °C for 2 minutes. 2,4,6-Trinitrobenzenesulfonic acid (TNB) (1 mL 

of a 4.3 mM solution) and toluene (1.5 mL) were added and the extraction of 

trinitrophenyl-derivative was carried out at 42 °C for 45 minutes with continuous 

shaking. Concentration of trinitrophenyl-derivative in toluene layer was quantified 

using a calibration curve of absorbance at 340 nm as a function of trinitrophenyl-

derivative concentration. Kinetic parameters were determined by incubating 

enzymes in presence of different substrate concentrations under saturating PLP 

concentration. 

Concentrations of HDC and its variants were 0.3 µM and reaction times were 

10 min for both forms and all variants. Inhibitors, when present, were used at 1 or 
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100 µM. Concentrations of AADC were 0.1 µM for activity measurement using L-

DOPA, 0.3 µM using L-5HTP and 0.5 µM using L-phenylalanine, while reaction 

times were 6 minutes with L-DOPA and 10 minutes with L-5HTP and L-

phenylalanine. 

Obtained data were fitted to the Michaelis-Menten equation for kinetic 

parameters determination using Origin® 8 Pro (OriginLab). 

 

5.3.9. Glutathionylation assay and western blotting 

 

OxHDCwt and OxHDCC180S (25 ng/µL) were incubated at room temperature 

for 30 minutes in 50 mM HEPES pH 7.5 with 125 μM GSH alone. Moreover, 

combined treatments with 100 μM hydrogen peroxide (H2O2) or 100 μM diamide 

incubation for 30 minutes, followed by incubation of 125 μM GSH, were 

performed. Reaction was blocked adding denaturing non-reducing 4X SB and 

samples were run in an 8% SDS-PAGE. After electrophoresis, proteins were 

transferred to a PVDF membrane (Immobilon P, Millipore, Bedford, MA) and non-

specific binding was blocked by incubation in 5% bovine serum albumin (BSA) in 

Tris-buffered saline with 0.1% Tween 20 (TBS-T) at room temperature for 1 hour. 

Membranes were then probed with mouse primary monoclonal antibody against 

GSH-protein complexes (ViroGen), diluted 1:1000 in 5% BSA in TBS-T, overnight 

at 4 °C and, after 3 washing steps with TBS-T, blots were incubated with anti-

mouse horseradish peroxidase-conjugated antibody (Cell Signaling Technology), 

diluted 1:2000 in 5% Skim Milk Powder, at room temperature for 1 hour. After 3 

washing steps with TBS-T, S-glutathionylated proteins were detected with 

chemiluminescent detection system (Immun-Star™ WesternC™ Kit, Bio-Rad) 

using ChemiDoc XRS Imaging System (Bio Rad).  

 

5.3.10. Stopped-flow kinetic analyses 

 

Stopped-flow kinetics experiments were performed on an RSM-1000 

instrument from OLIS, Inc. (Bogart, GA), equipped with a stopped-flow cell 

compartment. This instrument has a dead time of 2 ms and can collect UV-visible 
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scans at speeds up to 1000 Hz. Stopped-flow experiments were performed at 25 °C 

in 0.1 M potassium phosphate buffer pH 7.4 with the addition of 10 mM GSH for 

RedHDC. Scans were collected from 250 to 800 nm for various periods of time and 

scanning rates after mixing an equal amount of 1 mg/mL HDC and 2 mM L-

histidine. Stopped-flow data were analyzed using Global Works software provided 

by OLIS, Inc. Data were fitted to models of either one or two exponentials as 

necessary to obtain reasonable fits. 

 

5.3.11. Phosphorylation assay 

 

Phosphorylation assay was performed at 37 °C for 30 minutes. Standard 

phosphorylation mix was composed by 50 mM Tris-HCl pH 7.5, 1 mM MgCl2, 1 

mM ATP and 1:10 ration between AADC or HDC and PKA (produced in the host 

laboratory), if not otherwise specified. Kinetic parameters of AADC and HDC were 

then calculated as previously described using aliquots from the phosphorylation 

mix. 

 

 

5.4. Cellular material and methods 

 

5.4.1. Cell lines 

 

For this study an age-matched control iPSCs, derived from an ICH Dubowitz 

Biobank (London) fibroblasts sample, and 2 iPSCs lines (Patient 1 and Patient 2) 

from 2 AADC Deficiency patients, that provided written informed consent for this 

study (REC reference 13/LO/0171), were used. A clinical and genetic summary of 

both patients are provided in Table 1.  
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Patient Clinical Phenotype 
Location of 

Mutation 
Type of Mutation 

Predicted 

protein  

1 

Hypotonia 

Neurodevelopmental delay 

Oculogyric crises 

Complex movement disorder 

Autonomic disfunctions 

Exon 11 

 

 

 

Missense 

 

 

(homozygosis) 

R347G 

 

 

 

2 

Hypotonia 

Neurodevelopmental delay 

Oculogyric crises 

Complex movement disorder 

Autonomic disfunctions 

Exon 2 

Exon 3 

 

 

Non-sense 

Missense 

 

(compound heterozygosis) 

Stop codon 

C100S 

 

 

Table 1. Clinical and genetic data of the two AADC Deficiency patients. 

 

5.4.2. iPSCs in culture 

 

iPSCs were cultured in sterile 6-wells plates on Corning® Matrigel®, prepared in 

KnockOut Serum Replacement (KOSR) full medium (1 vial in 25 total mL of 

KnockOut Dulbecco Modified Eagle Medium, i.e. DMEM, 1:5 KnockOut Serum 

Replacement, 1% L-Glutamine, 0.1% β-ME, 1% Non-Essential Amino Acids 

100X, 1:100 Basic Fibroblast Growth Factor 10 ng/mL), using mTeSR™1 

complete media (mTeSR basal media plus 5X mTeSR supplements, 1:100 

Penicillin/Streptomycin, i.e. P/S, 10,000 U/mL) with daily media change (2 

mL/well), and incubation at 37° C at 5% CO2. 

 

5.4.3. iPSCs passaging 

 

iPSC cells were passaged at 80-90% confluence with 

ethylenediaminetetraacetic acid (EDTA). Each well was washed with 2 mL of 1X 

Dulbecco's phosphate-buffered saline (DPBS) and then incubated with 1 mL EDTA 

0.02% solution for 3 to 5 minutes, checking cells detaching at bright field (BF) 

microscope. After complete aspiration of EDTA solution, cells were flushed and 

collected in 4 mL of mTeSR™1 complete media with 10 µM Thiazovivin, a Rho-

associated protein kinase (ROCK) inhibitor that blocks apoptosis of dissociated 

cultured human iPSCs, increasing their survival without affecting their 
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pluripotency. The 4 mL were plated in 2 new wells previously coated for at least 1 

hour with Corning® Matrigel® prepared as described above. 

 

5.4.4. iPSC spontaneous differentiation cleaning 

 

Spontaneous differentiation was removed taking advantage of different 

sedimentation velocity between iPSCs and differentiated cells. Each well that 

showed spontaneous differentiation spots was allowed to become confluent, 

washed once with 2 mL of 1X DPBS and incubated with 1 mL of 1X TrypLE™ 

Select for 3 to 5 minutes at 37° C, checking cells detaching at BF microscope. 

Reaction time was stopped through sample transfer in 8 ml of mTeSR™1 complete 

media, followed by centrifugation at 300 g for 5 minutes. Medium was aspirate, 

cells were resuspended in 2 mL of mTeSR™1 complete media with 10 µM 

Thiazovivin, and plated in a well previously coated with gelatine (from porcine 

skin, 0.1% in water). Cells were incubated for 20-30 minutes and then transferred 

to a new well precoated with Corning® Matrigel® without washing of any cell 

attached to gelatine, i.e. differentiated cells. 

 

5.4.5. iPSCs differentiation into midbrain DA neurons 

 

iPSCs were differentiated following Kirkeby protocol [347] with minor 

modifications. A visual representation of time plan, with media and factors used, is 

presented in Figure 5.1. 
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Figure 5.1. Timeline and media composition of differentiation protocol for midbrain DA 

neurons, adapted from the original protocol [347]. 

 

At day 0 confluent iPSCs (4 wells of a 6-wells plate) were washed once with 2 

mL/well of 1X DPBS and incubated with 1 mL/well of 1X TrypLE™ Select for 3 

to 5 minutes at 37° C, checking cells detaching at BF microscope. When detaching 

was complete, cells were harvested with 8 mL of mTeSR™1 complete media 

followed by centrifugation at 300 g for 5 minutes. Cells were resuspended in 11 mL 

of embryonic bodies (EBs) medium (DMEM/F12:Neurobasal 1:1, L-Glutamine 2 

mM, P/S 1%, B27 supplements 1:50, N2 supplements 1:100, LDN193189 100 nM, 

CHIR99021 3 µM, SHH C24 100 ng/mL, SB431542 10 µM and Thiazovivin 10 

µM) and plated on a 11 cm diameter non-adherent bacterial dish. 

At day 2 EBs were collected through centrifugation at 300g for 1 minute, 

resuspended in 11 mL of freshly prepared EBs medium with Purmophamine 0.5µM 

in place of Thiazovivin, and re-plated on the same non-adherent bacterial dish. 

At day 4 EBs were collected through centrifugation at 300g for 1 minute, 

resuspended in 6 mL of freshly prepared neural differentiation (ND) medium 

(DMEM/F12:Neurobasal 1:1, L-Glutamine 2 mM, P/S 1%, B27 supplements 

1:100, N2 supplements 1:200, LDN193189 100 nM, CHIR99021 3 µM, SHH C24 

100 ng/mL, SB431542 10 µM and Purmophamine 0.5 µM) and plated in 6 wells of 

a Poly-L-ornithine (PO), Fibronectin/Laminine (FN/Lam) pre-coated 12-wells 

plate. Plate was previously prepared: 0.75 ml/well of PO 15 µg/mL in 1X DPBS 

was leaved in incubation at 37° C for 2 days, then washed with 1 mL of 1X DPBS 
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before incubation with 0.75 ml/well of FN/Lam 5 µg/mL each in 1X DPBS for other 

2 days at 37 °C; plate is ready to use after final washing with 1 mL of 1x DPBS.  

Media was changed every 2 days. From day 6 ND medium without SB431542 

was used, while from day 9 also LDN193189, CHIR99021, SHH and 

Purmophamine were removed. 

At day 11 DA neurons progenitors were re-plated via drop plating for final 

differentiation. Cells were washed once with 1X DPBS and incubated with 500 

μL/well of Accumax™ solution at 37°C checking cells detaching at BF microscope. 

Enzymatic reaction was stopped harvesting cells with 6 mL of KOSR full medium 

and centrifugation at 300 g for 5 minutes. DA neurons progenitors were 

resuspended at 30.000 cells/μL concentration in Final Differentiation (FD) medium 

(Neurobasal, L-Glutamine 2mM, P/S 1%, B27 supplements 1:50, Ascorbic Acid 

0.2 mM and BDNF 20 ng/mL) and plated drop-by-drop in the centre of 6 wells of 

an air-dried PO-FN/Lam pre-coated 12-wells plate (see above for plate 

preparation). Cell drops were incubated at 37°C and 1 mL/well of FD medium was 

added after cells adhesion to the plate. 

Medium change was performed every 2 days, switching to FD medium with 

the addition of GDNF 10ng/mL and dibutyryl-cyclic adenosine monophosphate 

(db-cAMP) 0.5 mM from day 14.  

At day 30 drop plating were reperformed with the already described procedure 

using final FD medium including Tert-butyl difluorophenyl acetyamino 

propanoylamino 2-phenylacetate (DAPT) 10 µM. Cells were plated drop-by-drop 

in the centre of 5 wells of an air-dried PO-FN/Lam pre-coated 12-wells plate (see 

above for plate preparation) but also in the centre of 4 wells of a Lab-Tek™ slide 

previously PO-FN/Lam pre-coated and air-dried like plates (0.5 mL PO and 

FN/Lam solutions/well). Medium change was performed every 2 days till day 65, 

when Lab-Tek™ slide was fixed for immunocytochemistry analysis (see below) 

and cell on plate were detached through medium flushing and collected in a sterile 

1.5 mL tube/well through centrifugation at 300g for 10 minutes. Medium was 

aspirated and samples were kept at -80 °C for further analyses.  
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5.4.6. Immunocytochemistry 

 

At day 65 cells grown on Lab-Tek™ slides were washed 3 times with 1X DPBS 

and then fixed with 300 µL/well of 4% paraformaldehyde (PFA) in 1X DPSB at 

room temperature for 10 minutes. After 3 washings with 1X DPBS, cells were 

incubated in Blocking Solution (10% Fetal Calf Serum, i.e. FCS, and 0.3% Triton 

X-100 in 1X PBS) at room temperature for 30 minutes. Cells were then incubated 

in 300 µL/well of primary antibody solution, prepared as reported in Table 2 in 

Blocking Solution, overnight at 4 °C.  

 

Primary Ab Company Type Dilution Secondary Ab 

TH Aves chicken 1:400 Anti-chicken 594nm 

MAP2 Sigma mouse 1:400 Anti-mouse 488nm 

AADC Invitrogen rabbit 1:400 Anti-rabbit 488 nm 

GFAP Millipore mouse 1:400 Anti-mouse 594 nm 

MAO-A Abcam rabbit 1:200 Anti-rabbit 488nm 

MAO-B Abcam rabbit 1:400 Anti-rabbit 488nm 

Table 2. Primary and secondary antibodies used for immunocytochemistry analyses  

of midbrain DA neurons at day 65. 

 

After 3 washings with 1X DPBS, cells were incubated in 300 µL/well of Alexa 

Fluor® secondary antibody solution (1:400 antibody dilution in Blocking Solution) 

at room temperature for 45 minutes. After 3 washings with 1X DPBS, nuclei were 

stained with 4′,6-diamidino-2-phenylindole (DAPI, 1:1000 in 1x PBS) at room 

temperature in the dark for 5 minutes. Cells were then washed 3 times with 1X 

DPBS, polystyrene chamber walls were removed from the bottom glass slide, which 

was then covered with cover slip using ProLong® Gold Antifade Mountant. 

Images were acquired using an Inverted Zeiss LSM 710 Confocal Microscope 

and counting was carried out examining three randomly-selected fields from each 

differentiation using ImageJ. 1800 nuclei were manually counted blind within each 

field and cells were marked positive for MAP2 and double positive for MAP2 and 

TH. For quantification plots three independent differentiations data for each cell 

line were plotted using GraphPad Prism and statistically analysed using unpaired t 

test. 
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5.4.7. Bicinchoninic acid (BCA) assay 

 

Total proteins amount was measured for each sample. Frozen samples pellets 

from -80 °C were dissolved in 200 µL of radioimmunoprecipitation assay (RIPA) 

buffer with the addition of 2:10 Proteases Inhibitors Cocktail and 2X Phosphatases 

Inhibitors Cocktail. Pellet were resuspended, vortexed for 1 minute, incubated on 

ice for 30 minutes and centrifuged at 13,000 g for 15 minutes. Supernatant was 

collected and total proteins were quantified using Pierce™ BCA Protein Assay Kit. 

In a 96-wells plate 10 µL of sample, 10 µL of water and 10 µL of each protein 

standard were incubated with reagent mix (A+B, B:A 1:50) at 37 °C for 30 minutes. 

Absorbances were measured with a Tecan plate reader at 555 nm. Protein 

concentration was determined as µg/mL using the following equation: 

 

𝒙 =
𝐲 − 𝐭

𝐦
 

 

where y represents the sample absorbance, and t and m refer to intercept and 

slope, respectively, of the linear fitting calibration curve extrapolated from 

standards absorbances.  

Curves fitting was performed using Origin® 8 Pro (OriginLab). 

 

5.4.8. Immunoprecipitation 

 

100 µL of 1 mg/mL cells lysate samples, prepared and quantified as already 

descripted, were pre-incubated with 10 µL of Protein G Agarose beads, already 

cleaned through 4 steps of washings with 1X DPBS and centrifugations, through 

incubation on a rotary mixer at 4 °C for 30 minutes. Samples were centrifugated at 

14,000 g at 4°C for 1 minute and supernatant was transferred in a new tube. Primary 

antibodies were added to aliquoted pre-cleaned lysates, i.e. 1:50 rabbit anti-AADC 

(Cell Signaling Technology) (IP), 1:50 Normal Rabbit IgG (Cell Signaling 

Technology) for Isotype Control (IC) and no antibody for Negative Control (NC), 

and samples were incubated on a rotary mixer at 4° C overnight. 10 µL Protein G 

agarose beads/sample, previously washed as described above, were added to each 
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sample and were incubated on a rotary mixer at 4 °C for 3 hours. Samples were 

washed 5 times through centrifugation and 500 µL of fresh RIPA buffer with the 

addition of 2:10 Proteases Inhibitors Cocktail and 2X Phosphatases Inhibitors 

Cocktail, discarding the supernatant. After last washing step, pellets were 

resuspended in 20 µL of 4X Laemmli SB, heated at 100 °C for 5 minutes and 

centrifugated at 14,000 g for 1 minute. 2 µL of pre-cleaned lysate, 10 µL of each 

washing step and 2 µl of IP, IC and NC were directly loaded on gel for western 

blotting analysis (see below). 

 

5.4.9. Western Blotting 

 

10 µg of total proteins with 2.5 μL of 4X Laemmli SB and 2 μL DTT 0.5 M 

were heated at 100 °C for 5 minutes and loaded per gel well. Precision Plus 

Protein™ Dual Color Standards marker and samples ran on a Mini-Protean (4-20%) 

TGX Stain-Free pre-casted gel in Tris-glycine SDS (TGS) Buffer 1X. Proteins were 

transferred to a Trans-Blot® Turbo™ Transfer Pack membrane using the Trans-

Blot® Turbo™ Transfer System (Bio-Rad). Blot was blocked in 5% Skim Milk 

Powder in TBS-T at room temperature for 1 hour and then incubated overnight at 4 

°C with the diluted monoclonal primary antibody (Table 3) in TBS-T. 

 

Primary Ab Company Type Dilution Secondary Ab 

AADC Cell Signaling Technology Rabbit 1:1000 Yes 

MAO-A Abcam 
Rabbit  

HRP-conjugated 
1:5000 No 

MAO-B Abcam Rabbit 1:1000 Yes 

Table 3. Primary antibodies used for western blotting analyses. 

 

Membrane was washed 3 times with TBS-T and then incubated, when 

necessary, at room temperature for 1 hour with 1:3000 dilution of anti-rabbit 

horseradish peroxidase (HRP)-conjugated antibody (Cell Signaling Technology) in 

5% Skim Milk Powder in TBS-T. After 3 washing steps with TBS-T, membrane 

was visualised using SuperSignal™ West Pico Chemiluminescent Substrate using 

ChemiDoc XRS Imaging System (Bio Rad). 
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Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as 

housekeeping gene loading control. After first visualisation, membrane was 

stripped through incubation with Restore™ Stripping Buffer at room temperature 

for 20 minutes. Membrane was washed 3 times with TBS-T and then blocked in 5% 

Skim Milk Powder in TBS-T at room temperature for 1 hour. After incubation with 

GAPDH HRP-conjugated antibody (Cell Signalling Technology) 1:5000 in TBS-T 

at room temperature for 1 hour, membrane was washed 3 times for 10 minutes with 

TBS-T and blot was visualised as above. 

 Images were acquired using ChemiDoc MP (BioRad) and quantifications 

were carried out using ImageJ Gel Analysis method. Five values obtained from as 

many independent images for different control-Patien1-Patient2 sets were plotted 

using GraphPad Prism and statistically analysed using unpaired t test. 
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Chapter 6 

 

 

Cysteine 180 is a redox sensor modulating activity of human 

HDC 

 

 

Part of data presented in this chapter led to the drafting of attached Publication 

4 (Chapter 11). 

 

 

6.1. Cys180 is the only not conserved cysteine residue among HDCs 

 

Multiple sequence alignment of group II PLP-dependent α-decarboxylases 

sequences reveals that 6 out of 11 cysteine residues of human HDC are shared 

among them, while the remaining 4 are typical of HDC. In particular, Cys180 and 

Cys418, the cysteine residues mutated in serine in the crystallization paper by 

Komori et al. [18], belong to these, as highlighted by black arrows in Figure 6.1. 
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Figure 6.1. Multiple sequence alignment of human group II PLP-dependent α-decarboxylases. 

Used sequences were taken from the NCBI website (https://www.ncbi.nlm.nih.gov/) and are, in 

order: HDC, AADC, GAD and CSAD. 

Positions of C180 and C418 are indicated with two black arrows.  Amino acid one-letter code is 

used. Dashes represent insertions and deletions. Invariant positions are boxed in red and similar 

residues are written in red. ESPript (http://espript.ibcp.fr) was used to render this figure starting 

from a Clustal Omega alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). 
 

In addition, a multiple sequence alignment of HDCs from different origin, 

mammalians as well as other organisms, shows that Cys180 is the only one that is 

peculiar to human HDC (Figure 6.2). 
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Figure 6.2. Multiple sequence alignment of HDCs. 

Used sequences were taken from the NCBI website (https://www.ncbi.nlm.nih.gov/) and are, in 

order: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, Gallus gallus, Danio rerio, 

Drosophila melanogaster, Morganella morganii, Klebsiella aerogenes and Raoultella planticola. 

Positions of C180 and C418 are indicated with two black arrows.  

Amino acid one-letter code is used. Dashes represent insertions and deletions. Invariant positions 

are boxed in red and similar residues are written in red. The secondary structures of human HDC 

(PDB code 4E1O) are reported in the first line of each block: α-helices and β-strands are 

rendered as squiggles and arrows, respectively. ESPript (http://espript.ibcp.fr) was used to render 

this figure starting from a Clustal Omega alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

The consideration that Cys180 is not conserved and, together with Cys-418, 

was supposed to contribute to protein stability [1,2] raises questions about the role 

it could play. 

 

 

 

 

 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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6.2. Human wild-type HDC exists in an equilibrium between a reduced and an   

oxidized form 

 

The gene encoding amino acid sequence Met2-Cys479 of human wild-type 

HDC (HDCwt) has been cloned in pET28a, transformed in BL21 E. coli, expressed, 

and purified through affinity chromatography as reported in Chapter 5. It has been 

immediately noted that the protein formed a yellow precipitate during purification 

and later washing steps, thus, considering the suggested aggregation tendency 

possibly due to exposed cysteine residues [358], reducing agent was added during 

the whole protocol. In these conditions, HDCwt (RedHDCwt) yield is 2.5 mg/L, 

the enzyme binds two moles of PLP per dimer, and is pure as evidenced by a single 

band in SDS-PAGE analysis (Figure 6.3, lane 5), at around 55 kDa. 

 

 

Figure 6.3. 12% SDS-PAGE analysis of RedHDCwt purification. 

M, Molecular Weight Marker; L, cellular lysate loaded onto the column; FT, flow through the 

column during the loading; W, column wash after loading; from 1 to 6, collected fractions during 

elution gradient. Red squared highlights the band corresponding to eluted HDC, while red arrow 

indicates its corresponding molecular weight. 

 

Even if reducing agent addition is necessary during purification procedure in 

order to avoid protein loss as aggregates, it can be removed through gel filtration 

and extensive washings (see Chapter 5), and protein does not aggregate if 

maintained at low concentrations, i.e. lower than 2.5 mg/mL (OxHDCwt).  

It has been immediately noted that, incubating again OxHDCwt with increasing 

reducing agent concentrations followed by semi-denaturing SDS-PAGE (i.e. 

denaturing but non-reducing conditions), the enzyme presents one or two bands on 

gel depending on reductant concentration (Figure 6.4). β-ME, DTT, or GSH has 
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been used as reducing agents, showing in every case the same behaviour, as evident 

from Figure 6.4(a), 6.4(b) and 6.4(c), respectively.  

 

 

Figure 6.4. 10% semi-denaturing SDS-PAGE analysis of OxHDCwt with increasing reducing 

agent concentrations. 

5 µg OxHDCwt was incubated for 1 hour at room temperature with the corresponding reducing 

agent concentration in KP 0.1 M pH 7.4. (a) β-ME; (b) DTT; (c) GSH. 

Reducing agent concentrations used for each sample are indicated above each panel lane. 

M, Molecular Weight Marker. 

 

To obtain a fully reduced species, reductant to protein ratio should be at least 

2000-fold molar excess. The molecular weight of the fastest band, at about 55 kDa, 

corresponds to the completely reduced monomeric form (RedHDCwt), which 

amount increases in presence of increasing reducing agent concentration. However, 

at null or low reductant concentrations a low mobility band (OxHDCwt), at around 

160 kDa, is detected, suggesting that the higher molecular weight form with slower 

protein running mobility is characterised by the presence of one or more reversible 

disulphide bridge(s) between monomers. 

Interestingly, the two forms exhibit a nearly same elution volume in size-

exclusion chromatography (62.6 ± 0.1 and 61.8 ± 0.2 mL for RedHDCwt and 

OxHDCwt, respectively) (Figure 6.5(a)), as well as the same electrophoretic 

mobility on a native PAGE gel, even in the same conditions used for semi-



6. Cysteine 180 is a redox sensor modulating activity of human HDC 

102 
 

denaturing analysis, i.e. in presence of increasing reducing agent concentrations 

(Figure 6.5(b)). 

 

 

Figure 6.5. Analyses of HDCwt oligomeric state. 

(a): Size-exclusion liquid chromatography analysis of HDCwt forms. 

Chromatograms were recorded at 300 μg enzyme in 0.1 M KP buffer pH 7.4 without or with 

reducing agent. 

Blue: OxHDCwt; Orange: RedHDCwt in 20 mM GSH. 

Inset(a): Elution volume of the corresponding form. 

(b): 10% native PAGE analysis of OxHDCwt with increasing GSH concentrations. 

M, Molecular Weight Marker; from 1 to 6, 3 µg OxHDCwt incubate for 1 hour at room 

temperature with the corresponding GSH concentrations in KP 0.1 M pH 7.4. 

 

Even if at zero and low reducing agent concentration, a slight band with a 

higher molecular weight can also be detected on native PAGE, suggesting a 

propensity to aggregation of OxHDCwt, these analyses show that both HDCwt 

forms are present in solution as dimers, thus suggesting that one or more suggested 

disulphide bridge(s) are located at dimer interface. However, OxHDCwt elutes 

about 1 mL earlier than RedHDCwt (Figure 6.5(a)Inset). 

In addition, dynamic light scattering analysis reveals that RedHDCwt has a 

smaller hydrodynamic radius than the oxidized form (Table 6.1). 
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Enzyme 
size 

d*nm 

RedHDCwt 9.90 ± 0.08 

OxHDCwt 11.60 ± 0.04 

Table 6.1. Hydrodynamic radius of HDCwt forms. 

Data were recorded at 2 μM enzyme in 0.1 M KP buffer pH 7.4 without or with 10 mM β-ME. 

 

It should be pointed out that the theoretical diameter [359] is predicted to be 8 

nm calculated on the basis of determined structure, a value closer to that measured 

for RedHDCwt. 

The slightly earlier elution volume and greater hydrodynamic radius of 

OxHDCwt suggest that the conformational rearrangement 

RedHDCwt→OxHDCwt results in a less compact dimeric structure. 

 

6.3. HDC reduced and oxidized forms display slight structural changes 

 

Absorbance spectra of RedHDCwt and OxHDCwt show, in addition to the 280 

nm band that is attributed to aromatic amino acids, the presence of two bands in 

visible region with maxima at 339 and 415 nm for RedHDCwt and at 333 and 414 

nm for OxHDCwt (Figure 6.6), attributable to the enoliminic and ketoenaminic 

tautomer of the internal aldimine between PLP and Lys304, respectively.  
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Figure 6.6. Absorbance spectra of HDCwt forms. 

Red: RedHDCwt; Blue: OxHDCwt. 

Spectra were recorded at 1 mg/mL in 0.1 M potassium phosphate buffer pH 7.4 without or with 20 

mM GSH.  

Inset: absorbance maxima wavelengths of both forms. 

 

Besides the slight differences in wavelength maxima, the equilibrium between 

these two tautomeric species is different, with 339 nm/415 nm and 333 nm/414 nm 

ratios of 4.22 and 2.22, respectively (Figure 6.6 Inset), thus indicating an altered 

PLP microenvironment in the two states of the enzyme.   

While far-UV circular dichroism spectra are superimposable (Figure 6.7 

Inset), indicative of a similar secondary structure content, dichroic signals in visible 

region reflect a similar coenzyme behaviour already displayed in absorbance, with 

the addition of a slight difference between RedHDCwt and OxHDCwt in near-UV 

(Figure 6.7).  
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Figure 6.7. Circular dichroism spectra of HDCwt forms. 

Red: RedHDCwt; Blue: OxHDCwt. 

Near-UV and visible circular dichroism spectra were recorded at 1 mg/mL in 0.1 M potassium 

phosphate buffer pH 7.4 without or with 20 mM GSH. 

Insets: optical activities and far-UV spectra measured at 0.1 mg/mL in 0.1 M potassium phosphate 

buffer pH 7.4 without or with 20 mM GSH. 

 

Optical activities (millidegrees per absorbance unit at a fixed wavelength at the 

same protein concentration) for the enolimine and ketoenamine are 30.25 and 48.16 

for RedHDCwt and 24.53 and 20.12 for OxHDCwt, respectively, supporting the 

presence of a different PLP microenvironment.  

Fluorescence data essentially provide the same information of that from 

spectrophotometric and spectropolarimetric experiments. Intrinsic fluorescence 

spectra recorded upon excitation at 280 nm show an emission band centred at 335 

nm for RedHDCwt and 333 nm for OxHDCwt with slightly different relative 

intensities (Figure 6.8(a)). Interestingly, a red-shifted broad shoulder is more 

pronounced in OxHDCwt, emitting at 494 nm (Figure 6.8(a) Inset), suggesting an 

energy transfer and thus a different positioning of PLP with respect to aromatic 

amino acids.  
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Figure 6.8. Emission fluorescence spectra of HDCwt forms.  

Red: RedHDCwt; Blue: OxHDCwt. 

(a): Intrinsic fluorescence emission spectra of HDCwt forms after excitation at 280 nm.  

Spectra were recorded at 0.1 mg/mL in 0.1 M potassium phosphate buffer pH 7.4 without or with 

20 mM GSH. 

Inset: close-up of the fluorescence emission maximum in the 490 nm region.  

(b): Cofactor fluorescence emission spectra HDCwt forms after excitation at 339 and 333 nm of 

RedHDCwt and OxHDCwt, respectively, at 1 mg/mL in 0.1 M potassium phosphate buffer pH 7.4 

without or with 20 mM GSH. 

 Inset: cofactor fluorescence emission spectra after excitation at 415 and 414 nm for RedHDCwt 

and OxHDCwt, respectively. 

 

Cofactor emission fluorescence upon excitation of the enolimine tautomer at 

339 and 333 nm for RedHDCwt and OxHDCwt, respectively, shows emissions at 

386 and 485 nm for RedHDCwt and 381 and 491 nm for OxHDCwt, with the latter 

one slightly more pronounced (Figure 6.8(b)), while when the ketoenamine 

tautomer of the two species was excited at 415 nm (RedHDCwt) and 414 nm 

(OxHDCwt), a band centred at 485 nm and at 496 nm was recorded (Figure 6.8(b) 

Inset). Altogether, fluorescence results witness a modest change in cofactor 

microenvironment and in interconnections among PLP and surrounding residues in 

the two HDC forms. 
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6.4. HDC in oxidized form is more stable and active than HDC reduced form 

 

Thermostability (Tm) of the two enzymatic forms has been assessed by 

monitoring the dichroic signal at 222 nm with an increase in temperature from 25 

to 90 °C at a rate of 1.5 °C/min (Table 6.2).  

 

Enzyme 
Tm 

°C 

RedHDCwt 62.78 ± 0.06 

OxHDCwt 65.97 ± 0.02 

Table 6.2. Melting temperatures of HDCwt forms.  

Tm were calculated starting from the denaturation curves of enzyme recorded at 0.1 mg/mL 

concentration in 0.1 M potassium phosphate buffer pH 7.4 without or with 10 mM β-ME 

monitoring the dichroic signal at 222 nm with an increase in temperature from 25 to 90 °C at a 

rate of 1.5 °C/min. 

 

While Tm of RedHDCwt is 62.78 ± 0.06 °C, that of OxHDCwt is 65.97 ± 0.02 

°C, thus suggesting that the oxidized form of HDC is slightly more stable than the 

reduced form, possible due to the presence of intermolecular disulphide bridge(s). 

Kinetic parameters of RedHDCwt and OxHDCwt (Table 6.3) show that the 

catalytic efficiency of the oxidized form is 3-fold higher than that of the reduced 

form, and this is driven by the combination of both 1.6-fold increase in kcat and 2-

fold decrease in KM. 

 

Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1/mM-1 

RedHDCwt 0.70 ± 0.02 0.064 ± 0.008 10.9 ± 1.4 

OxHDCwt 1.10 ± 0.05 0.033 ± 0.006 33.3 ± 6.2 

Table 6.3. Kinetic parameter of HDCwt forms.  

Kinetic parameters were calculated incubating 0.075 nmol HDCwt with 0.05 to 2 mM L-histidine 

in 0.1 M potassium phosphate buffer pH 7.4 without or with 1 mM GSH.  
 

The presence of an altered PLP positioning/orientation at HDC active site 

between the two forms does not seem to affect the apparent equilibrium dissociation 

constant for the coenzyme: differences in calculated values, indeed, are negligible, 

i.e. 32.8 ± 0.4 mM for RedHDCwt and 44.0 ± 0.3 nM for OxHDCwt, indicating a 

quite similar affinity for the cofactor. 
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These data indicate that, interestingly, oxidized HDCwt is more active and 

more stable than the reduced form.  

 

6.5. C180S behaves like RedHDCwt, while C418S is sensitive to reductants as 

OxHDCwt 

 

The three-dimensional structure of active human HDC (residues 2−477) in complex 

with the inhibitory substrate analogue HME was determined in 2012 using an 

enzymatic form bearing a double-amino acid substitution (C180S and C418S), to 

increase protein stability and prevent nonspecific aggregation [18,357]. In 

functionally active dimeric arrangement, Cys180 belongs to the large domain that 

is responsible for dimeric interface formation, and faces near to the corresponding 

Cys180 of the other monomer, while Cys418 is located at the surface of the C-

terminal small domain, far from the other subunit (Figure 6.9). 

 

 

Figure 6.9. Representation of HDCwt.  

Human HDC structure [18] was taken from PDB (PDB code 4E1O) and rendered with PyMol. 

The two monomers are represented in orange and light blue cartoons, while PLP and HME were 

represented as sticks, coloured in green and grey, respectively.  

Ser180 and Ser418 were replace with the original cysteine residues, represented as sticks, and 

highlighted with squares and circles, respectively. 

 

Thus, HDCC180S and HDCC418S variants have been cloned, expressed and 

purified following the same wild-type protocol (RedHDCC180S and 
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RedHDCC418S, respectively). The yields are similar to that of wild-type enzyme, 

their homogeneity was assessed as a single band on an SDS-PAGE gel, and both of 

them bind 2 moles of PLP/dimer (data not shown). In addition, oxidized forms 

where produced for both variants (OxHDCC180S and OxHDCC418S) as already 

specified for wild-type. 

Semi-denaturing SDS-PAGE analyses, performed under the same conditions as 

the wild-type (see before), show that HDCC180S appears as a monomer at any β-

ME concentration (Figure 6.10(a)), while C418S exists as oxidized/reduced 

species in equilibrium depending on the concentration of the reducing agent 

(Figure 6.10(b)), a behaviour resembling that of HDCwt. 

 

 

Figure 6.10. 10% semi-denaturing SDS-PAGE analyses of (a) OxHDCC180S and  

(b) OxHDCC418S with increasing reducing agent concentrations. 

5 µg OxHDC variants were incubated for 1 hour at room temperature with the corresponding 

reducing agent concentration in KP 0.1 M pH 7.4. 

The reducing agent concentrations are indicated above each panel. 

M, Molecular Weight Marker. 

 

Thus, OxHDCC180S is not sensitive to reducing or oxidizing conditions, 

revealing that Cys180 is the residue responsible for the reversible disulfide bridge. 

In addition, calculated Tm and hydrodynamic radius for both variant show that 

OxHDCC180S features strongly resembles those of RedHDCwt, while 

OxHDCC418S behaves as OxHDCwt (Table 6.4). 
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Enzyme 
Tm 

°C 

size 

d*nm 

RedHDCwt 62.78 ± 0.06 9.90 ± 0.08 

OxHDCwt 65.97 ± 0.02 11.60 ± 0.04 

OxHDCC180S 62.68 ± 0.04 10.65 ± 0.05 

OxHDCC418S 65.49 ± 0.02 11.56 ± 0.06 

Table 6.4. Melting Temperatures and hydrodynamic radius of HDCwt forms and variants.  

Tm were calculated starting from the denaturation curves of enzyme recorded at 0.1 mg/mL 

concentration in 0.1 M potassium phosphate buffer pH 7.4 without or with 10 mM β-ME 

monitoring the dichroic signal at 222 nm with an increase in temperature from 25 to 90 °C at a 

rate of 1.5 °C/min. 

Hydrodynamic radius was calculated at 2 µM enzyme in 0.1 M KP buffer pH 7.4 without or with 

10 mM β-ME. 

 

Analyses of absorbance, dichroic, and fluorescence properties of HDCC180S 

and HDCC418S variants show that these species exhibit slight structural changes, 

in particular in PLP microenvironment, and no alterations in cofactor binding, as 

detected for wild-type (data not shown). Interestingly, functional characterisation 

shows that catalytic efficiencies of both RedHDCC180S and OxHDCC180S are 

almost identical to that of RedHDCwt, while those of RedHDCC418S and 

OxHDCC418S are similar to those of RedHDCwt and OxHDCwt, respectively 

(Table 6.5). 

 

Enzyme 
kcat 

s-1 

KM 

mM 

Kcat/KM 

s-1/mM-1 

RedHDCwt 0.70 ± 0.02 0.064 ± 0.008 10.9 ± 1.4 

OxHDCwt 1.10 ± 0.05 0.033 ± 0.006 33.3 ± 6.2 

RedHDCC180S 0.60 ± 0.02 0.057 ± 0.008 10.5 ± 1.5 

OxHDCC180S 0.72 ± 0.02 0.062 ± 0.007 11.6 ± 1.3 

RedHDCC418S 0.74 ± 0.04 0.060 ± 0.010 12.3 ± 2.2 

OxHDCC418S 1.05 ± 0.03 0.042 ± 0.007 25.0 ± 4.2 

Table 6.5. Kinetic parameter of HDCwt forms and variants.  

Kinetic parameters were calculated incubating 0.075 nmol HDC with 0.05 to 2 mM L-histidine in 

0.1 M potassium phosphate buffer pH 7.4 without or with 1 mM GSH.  
 

Taken together, these data indicate that HDCC180S is insensitive to reducing 

agent presence, as its structural and biochemical features resemble those of 
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RedHDCwt in any condition, individuating Cys180 as the residue responsible for 

the formation of the intermolecular disulphide bridge in HDCwt. 

 

6.6. Cys180 is not a S-glutathionylation target 

 

Since HDC seems to be regulated by oxidative environment and this latter 

condition may induce also other reversible modifications, such as S-

glutathionylation of cysteine residues, analyses were carried out in order to 

investigate if HDC can be subjected to this type of post-translational modification 

in response to intracellular redox state.  

In particular, to determine the effect of oxidative stress on possible 

glutathionylation of this enzyme, OxHDCwt and OxHDCC1800S (500 ng) were 

incubated with different thiol-specific oxidants for 30 min, GSH was added to the 

oxidized protein and further analyzed with anti-α-SSG antibody under denaturing 

but non-reducing conditions (Figure 6.11), as described in Chapter 5. 

 

 

Figure 6.11. Effect of oxidant/GSH treatment on S-glutathionylation of (a) OxHDCwt  

and (b) OxHDCC180S.  

500 ng of enzymes were incubated at room temperature with the indicated concentration of GSH 

or oxidant agent followed by GSH addition for 30 minutes in 50 mM HEPES pH 7.5. Reaction was 

blocked adding non-reducing 4X SB and samples were run in an 8% SDS-PAGE followed by 

western blot analysis with an anti-α-SSG antibody.  

The images are representative of 4 independent experiments. 

 

Treatment of both OxHDCwt and OxHDCC180S with GSH and H2O2 followed 

by GSH did not cause significant modification of proteins. However, when both of 

them underwent a combined treatment with 100 μM diamide and 125 μM GSH, S-

glutathionylation of protein was rapidly observed. S-glutathionylation signal was 
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intense for OxHDCwt dimer (Figure 6.11(a)) and for OxHDCC180S monomer 

(Figure 6.11(b)): since the signal is present in the dimeric form, where Cys180 is 

involved in the disulphide bridge between monomers, it can be assumed that the 

detected signal is not due to GSH linkage at this residue, as also confirmed by its 

detection in monomeric C180S mutant. Thus, Cys180 does not undergo to this type 

of post-translational modification. 

 

6.7. Cys418 seems to be responsible for HDC aggregation tendency 

 

Because it has been claimed that HDC tends to aggregate [358] and for this 

reason the structure of the enzyme has been determined in C180S/C418S double-

mutant form [18], and no aggregation was detected in presence of reducing agent 

(see before), this hypothesis was further investigated by concentrating 500 μL of 10 

μM OxHDCwt, OxHDCC180S, and OxHDCC418S to 25 μL in an Amicon ultra 

devices. Supernatants and pellets (if present) were then ran on an SDS-PAGE gel 

under denaturing reducing and non-reducing conditions.  

Interestingly, a yellow pellet was present in OxHDCwt and OxHDCC180S 

samples, with no PLP release in solution, while no precipitation occurs with the 

OxHDCC418S variant. Even if the SDS-PAGE analyses of pellets were impossible, 

due to the too high molecular weight of aggregates, not able to enter gel pores, from 

previous considerations follows that Cys418 concurs in structural stability, 

although the molecular reason for the aggregation of OxHDCwt needs to be further 

investigated. 

 

6.8. Preliminary data:  

Stopped-flow kinetic analyses of HDC 

 

Previous kinetic experiments suggested that there could be differences in 

catalytic mechanism between the two forms of HDC (RedHDCwt and OxHDCwt). 

In particular, spectroscopic analyses in presence of the substrate (data not shown) 

reveal that, for both enzymes, the external aldimine signal at around 427-428 nm 

can clearly be seen after substrate addition, but its formation proceeds slower for 
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RedHDCwt respect to the oxidized form, in line with calculated catalytic 

parameters. On the other hand, at the end of the reaction the initial spectrum of the 

enzyme, with two absorption maxima in the visible region at around 333 and 418 

nm can be detected only for RedHDCwt, while OxHDCwt presents instead a 333 

nm and a 387 nm bands. Thus, stopped-flow analyses of the two forms of HDCwt 

were performed in order to deeper investigate the different kinetic behaviour 

between them. 

RedHDCwt stopped-flow analysis shows a small amplitude fast increase 

followed by a slow increase at 422 nm, concomitantly with a slow decrease at 332 

nm (Figure 6.12).   

 

 

Figure 6.12. Stopped-flow analysis of the first-phase of RedHDCwt decarboxylation reaction. 

The experiment was performed at 25 °C in 0.1 M potassium phosphate buffer pH 7.4 with the 

addition of 10 mM GSH. 

Scans were collected from 250 to 800 nm for various periods of time and scanning rates after 

mixing an equal amount of 1 mg/mL RedHDCwt and 2 mM L-histidine. 

 

The 422 nm peak subsequently decays back to the 332 nm peak when substrate 

is consumed (Figure 6.13). 
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Figure 6.13. Stopped-flow analysis of the second-phase of RedHDCwt decarboxylation reaction. 

The experiment was performed at 25 °C in 0.1 M potassium phosphate buffer pH 7.4 with the 

addition of 10 mM GSH. 

Scans were collected from 250 to 800 nm for various periods of time and scanning rates after 

mixing an equal amount of 1 mg/mL RedHDCwt and 2 mM L-histidine. 

 

The behaviour of OxHDCwt is different from the reduced form. In fact, a fast 

reaction (90 s-1) of the 415 nm peak to form an external aldimine with a maximum 

at about 430 nm was detected, with a further decay to a peak at around 380 nm, 

with a velocity of 1.6 s-1 (Figure 6.14), probably attributable to the decarboxylation 

reaction.   
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Figure 6.14. Stopped-flow analysis of the fast-phase of OxHDCwt decarboxylation reaction. 

The experiment was performed at 25 °C in 0.1 M potassium phosphate buffer pH 7.4. 

Scans were collected from 250 to 800 nm for various periods of time and scanning rates after 

mixing an equal amount of 1 mg/mL OxHDCwt and 2 mM L-histidine. 

 

In addition, an independent slower reaction of the 332 nm peak at about 0.1 s-1 

to form a 388 nm peak, which predominates during the steady state, was also seen, 

presumably corresponding to the absorbance analysis end state (Figure 6.15).  

 

 

Figure 6.15. Stopped-flow analysis of the slow-phase of OxHDCwt decarboxylation reaction. 

The experiment was performed at 25 °C in 0.1 M potassium phosphate buffer pH 7.4. 

Scans were collected from 250 to 800 nm for various periods of time and scanning rates after 

mixing an equal amount of 1 mg/mL OxHDCwt and 2 mM L-histidine. 
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Finally, the 388 nm peak decays at about 0.03 s-1 to give the initial enzyme 

spectrum (data not shown).  

These preliminary analyses suggest that the different catalytic efficiency (see 

above) between reduced and oxidized form of HDC can be due to 

differences/alterations in reaction steps, even if further analyses have to be 

performed in order to deeply characterize the different catalytical behaviour 

between the two HDC forms. 

 

6.9. Preliminary data:  

First screening of possible HDC inhibitors 

 

Since HDC was found to be overexpressed and/or histamine content was 

quantified as higher than in physiological conditions in many diseases, a 

bioinformatic screening, performed as part of a collaboration at University of Roma 

“La Sapienza”, was implemented in order to identify some possible enzyme 

inhibitors. Figure 6.16 shows the structures of the resulting molecules.  

 

 

Figure 6.16. Representation of the structures of bioinformatic screening-identified possible 

inhibitors of HDC. 

Structures were taken from the producing company (MolPort) website.  

Inhibitor 1: Ethyl 4-oxo-3H,4H- pyrrole[2,1-f][1,2,4]triazin-6-carboxylate; Inhibitor 2: N-

(propan-2-yl)-1H-indazol-6-carboxyamide; Inhibitor 3: 1-[(1-methylpirrolydin-3-il)methil]-2,5-

dihidro-1H-1,2,3,4-tetrazol-5-thion; Inhibitor 4: methyl 3-(1H-1,2,3-triazol-5-il)propanoate; 

Inhibitor 5: N'-{1H-pyrazol[3,4-d]pirimidine-4-il}furan-2-carboxrhydrazide; Inhibitor 6: ethyl 3-

(1H-1,2,4-triazol-5-il)propanoate; Inhibitor 7: 1-(ethan sulphonyl)-3-(1H-imidazol-2-

il)piperidine; Inhibitor 8: ethyl 2-(1H-1,2,4-triazol-3-sulphonil)acetate; Inhibitor 9: methyl 2-(1H-

1,2,4-triazol-3-ilsulfanil)acetate; Inhibitor 10: 5-[(E)-2-(1H-1,2,4-triazol-5-yl)diazen-1-il]-1H-

1,2,4-triazol; Inhibitor 11: ethyl 2-[(5-amino-1H-1,2,4-triazol-3-il)sulphonyl]acetate. 
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A preliminary analysis to monitor their effects as non-competitive inhibitors 

was performed and the majority of identified compounds was tested in vitro at 1 

and 100 µM in presence of saturating concentrations of L-histidine (Figure 6.17). 

Moreover, compounds where tested using the oxidized form of HDC, demonstrated 

to be more active (see above). 

 

 

Figure 6.17. Residual activity percentage of OxHDCwt in presence of bioinformatic 

screening-identified possible inhibitors.  

Residual activities were calculated incubating 0.075 nmol HDCwt with 1 or 100 µM inhibitor 

followed by activity assay under saturating concentration of L-histidine in 0.1 M potassium 

phosphate buffer pH 7.4.  

OxHDCwt: 100% activity. 

 

Although some compounds did not show any effect or only a modest one, such 

as Inhibitor 3 and 6, some of them seem to considerably decrease the activity of 

OxHDCwt, in particular Inhibitor 8 and, even more, Inhibitor 11, of about 25 and 

50% respectively. Interestingly, these two inhibitors, share some structural features 

(Figure 6.18). 
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Figure 6.18. Representation of the structures of the two most active compounds among those 

bioinformatic screening-identified as possible inhibitors of HDC. 

Structures were taken from the producing company (MolPort) website.  

Inhibitor 8: ethyl 2-(1H-1,2,4-triazol-3-sulphonil)acetate; Inhibitor 11: ethyl 2-[(5-amino-1H-

1,2,4-triazol-3-il)sulphonyl]acetate. 

 

Both compounds are centred on a sulphur atom, linked to an imidazole ring and 

an esterified chain, containing also a double bond with an oxygen atom. The main 

difference between them regard an additional ammine group linked to the imidazole 

ring in Inhibitor 11. Thus, can be reasonably assumed that these two compounds 

skeletons could be used as lead-compounds for a second bioinformatic screening. 
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6.10. Partial conclusions and future prospects 

 

Besides its role in histamine production, HDC is now attracting attention 

because of its involvement in cell proliferation and link with many tumours, in 

particular gastrointestinal ones [198]. Among them, cholangiocarcinoma is difficult 

to diagnose and has limited treatments: surgical resection, the treatment of choice 

in such a case, is not always feasible given frequently late diagnosis. Recently, it 

has been demonstrated that HDC expression is enhanced in cholangiocarcinoma, 

and the increased level of histamine secretion is related to tumour growth [219]. 

Treatment with HME, an inhibitor of HDC, slows cancer progression [360]. Few 

inhibitors of HDC have been further explored, but none of them is used in clinical 

practice. The discovery of HDC inhibitors has been especially hindered by the poor 

characterisation of mammalian HDC until now, mainly due to its small quantities 

in the cell types where it is expressed [361], together with the post-translational 

proteolytic activation [60] and the extremely low stability of this enzyme [358].  

The only determined structure, indeed, is that of the human protein engineered 

with two cysteine-for-serine substitutions (C180S and C418S), supposed to 

increase its stability [18]. Notably, these two cysteine residues are not conserved in 

group II PLP -dependent α-decarboxylases, the homologues of HDC (Figure 6.1). 

In addition, Cys180 is unique of human HDC and is not present in other HDCs from 

different origin (Figure 6.2). Thus, HDCwt was produced and purified in 

recombinant form (Figure 6.3), revealing that this enzyme is present in solution in 

two species, that are in equilibrium depending on the concentration of reducing 

agent (Figure 6.4), suggesting the presence of a reversible intermolecular 

disulphide bridge between monomers. These two forms in solution, indeed, are both 

dimers (Figure 6.5), but they show slight structural differences, with an increased 

hydrodynamic radius (Table 6.1) and melting temperature (Table 6.2) for the 

completely oxidised form respect to the reduced one. The conformational 

rearrangement OxHDCwt→RedHDCwt is also accompanied by a slight 

perturbation of the active site microenvironment, as detected through spectroscopic 

(Figure 6.6), circular dichroism (Figure 6.7) and fluorescence (Figure 6.8) 

analyses, and a consequent alteration of kinetic parameters of the enzyme (Table 
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6.3): the oxidized form, indeed, is not only more stable than the reduced form, but 

also more active, with a 3-fold increase in catalytic efficiency, driven by the 

combination of both increase in kcat and decrease in KM.  

As the equilibrium between the two HDCwt forms involves the presence of 

reversible disulphide bridge(s) between monomers, and the analysis of the solved 

HDC structure [18] highlights the face-to-face positioning of Cys180 in the two 

subunits (Figure 6.9), it would be supposed that this residue could be responsible 

for a disulphide bridge. Thus, the two single mutants HDCC180S and HDCC418S 

were produced and characterised. Interestingly, while HDCC418S features closely 

resemble those of HDCwt, HDCC180S mutant in insensible to reducing agent 

presence (Figure 6.10) both structurally (Table 6.4) and catalytically (Table 6.5), 

as it shows features close to those of RedHDCwt in all conditions. Taken together, 

these data individuate Cys180 as the residue involved in RedHDC→OxHDC 

switch, responsible for the increase in both protein stability and catalytic efficiency. 

It follows that the solved HDC structure [18] is more likely corresponding to 

the reduced form of the enzyme. In collaboration with University of Roma “La 

Sapienza”, the possible structure of OxHDCwt was modelled starting from the 

solved one, and molecular dynamics simulations were undertaken in order to 

evaluate structural rearrangements during the conformational transitions between 

the two HDC forms [362]. These analyses show that the covalent bond in Cys-Cys 

pair at position 180 leads to a conformational rearrangement of HDC resulting in 

subtle alterations at the active site, in agreement with slight differences evidenced 

by spectroscopic analyses as well as by kinetic features. Moreover, the increased 

stability of OxHDCwt could be due to the additional sulphur-sulphur covalent bond, 

that also causes a rearrangement of the overall protein structure determining an 

increase in hydrodynamic diameter, in line with DLS measurements. 

Since Cys180 was individuated as a redox-sensitive switch in human HDC, a 

possible S-glutathionylation modification of this residue was investigated. This 

post-translational modification, indeed, occurs in response to oxidative or 

nitrosative stress and results in protein-specific functional changes (i.e. activation 

or deactivation) [370]. However, no S-glutathionylation was detected after HDC 

treatment with H2O2, resembling a mild oxidative condition, and GSH, suggesting 
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that HDC could not be target of this post-translational modification (Figure 6.11). 

Moreover, forcing thiols oxidation with diamide treatment followed by GSH 

incubation clearly shows S-glutathionylation of HDCwt, but also of HDCC180 

mutant, indicating that cysteine(s) modification does not regard Cys180, maybe 

because strongly linked in the intermolecular disulphide bridge. 

Taken together, these data highlight a redox-related regulation of HDC, which 

joins the short list of PLP enzymes that present redox-sensitive cysteine residues 

[363-369]. Interestingly, among PLP enzymes, the cysteine switch appears to be a 

peculiar and unique feature of human HDC, even if, at present, it is not easy to 

envisage a physiological role of this redox sensor in HDC. Taking into account that 

cell environment is highly reducing, it is reasonable to suggest that HDC is mainly 

reduced under physiological conditions. However, in cancer cells, where redox 

potential is altered, increased oxidizing conditions could favour the more stable and 

active OxHDC, leading to an increased histamine production. In this view, 

RedHDC→OxHDC switch could explain why in some cellular oxidative stress-

linked pathologies, such as cholangiocarcinoma, histamine content results higher 

than in physiological conditions. Moreover, this HDC feature could be interesting 

also in other tumour types, in which the enzyme could participate in the positive 

feedback loop that fix tumour microenvironment in a “constant inflammation” state, 

necessary for its own development. 

The different catalytic behaviour of the two HDC forms was investigated 

through stopped-flow analyses. RedHDC in presence of histidine shows a slow 

increase at 422 concomitantly with a slow decrease at 332 nm (Figure 6.12), 

followed by a decay back to the 332 nm peak when substrate is consumed (Figure 

6.13). On the contrary, only a fast reaction of the 415 nm peak to form an external 

aldimine with a maximum at about 420 nm was detected for OxHDC, followed by 

a decay to a peak at around 400 nm (Figure 6.14), but an independent slower 

reaction of the 332 nm peak to form a 388 nm peak is present, and predominates 

during the steady state (Figure 6.15). The formation and decay of this 388 nm peak 

is too slow to be catalytically competent, so it may be a branch intermediate of the 

main pathway. Alternatively, it would be another form of enzyme, which reacts 

more slowly and which does not interconvert with the 415 nm-form. Further 
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analyses will be performed in order to deeply characterize the different catalytical 

behaviour between the two HDC forms, but it is suggested that different/alternative 

catalytic steps or reaction intermediates might characterise each HDC form. Study 

of these differences could be useful in the unravelling how a reaction intermediate 

stabilisation can influence catalysis or substrate release. 

Considering the higher catalytic efficiency of OxHDC respect to RedHDC, the 

development of specific inhibitors directed toward the first form are highly 

desirable. Thus, several compounds, individuated as possible HDC inhibitors 

through a bioinformatic screening in collaboration with University of Roma “La 

Sapienza” (Figure 6.16), were tested on OxHDC under saturating concentrations 

of substrate, and residual enzyme activity was calculated (Figure 6.17). Even if 

other analyses have to be performed, such as the evaluation of a possible 

competitive inhibition mechanism at L-histidine concentrations around enzyme KM, 

two of them showed to decrease OxHDC activity, with a 25 to 50% maximum 

extent, respectively. Moreover, compounds identified as effective share common 

structural features (Figure 6.18) that can be the basis of a second bioinformatic 

screening following a rational-based drug discovering approach, as already applied 

for AADC with good results [52]. 
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Chapter 7 

 

 

AADC and HDC can be regulated by phosphorylation 

 

 

7.1. Bioinformatic analyses of AADC and HDC predict phosphorylation sites 

 

Bioinformatic analyses of AADC and HDC predicted phosphorylation sites 

identified, for both sequences, multiple possible phosphorylation sites for many 

different kinases, among which PKA, PKC, cell cycle control protein kinase 2 

(cdc2), casein kinase 2 (CK2) and p38 mitogen-activated protein kinases 

(p38MAPK). Starting from literature data [69-72,78-81], attention was focused on 

PKA predicted phosphorylation sites. Therefore, the position of corresponding 

residues in enzyme structures was analysed, in order to eliminate those located in 

protein core or solvent inaccessible surfaces. 

Three possible PKA phosphorylation sites in AADC, but no one in HDC, were 

identified (Table 7.1).  

 

Enzyme Kinase NetPhos score Amino acid 

AADC 

PKA 

0.757 Ser220 

0.722 Ser416 

0.663 Thr320 

PKC 

0.764 Thr323 

0.711 Ser193 

0.694 Ser104 

0.583 Ser429 

HDC PKC 

0.766 Ser194 

0.715 Thr472 

0.679 Thr105 

0.619 Thr327 

0.505 Ser329 

Table 7.1. Bioinformatic analyses results of AADC and HDC predicted phosphorylation sites 

after position analyses of residues. 

Bioinformatic analyses of AADC and HDC possible phosphorylation sites were performed using 

NetPhos 3.1 free online server (http://www.cbs.dtu.dk/services/NetPhos) using the corresponding 

amino acid sequences of the cloned genes. 

Underlined residues: predicted sites in AADC and HDC corresponding residues. 
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On the contrary, PKC possible phosphorylation sites are not only more 

represented, but also involve the same residues in both enzymes, underlined in 

Table 7.1. 

Interestingly, identified putative phosphorylation residues, matching in the two 

enzymes, are located close to active site (Figure 7.1). 

 

 

Figure 7.1. Cartoon representation of (a) AADC and (b) HDC predicted phosphorylation sites 

matching in the two enzymes.   

(a): pig kidney AADC (PDB code 1JS6); (b): human HDC (PDB code 4E1O). 

The represented structures of are taken from PDB and rendered with PyMol.  

For both enzymes the two monomers are colored in red and blue, respectively, while PLP is shown 

as sticks. The predicted phosphorylation sites are represented as spheres and colored as kinase 

target (green for PKA, purple for PKC). 

 

7.2. Ser193 is phosphorylated after AADC phosphorylation assay 

 

The in vitro phosphorylation assay mixture, prepared as reported in Chapter 5, 

was send to “Proteomics and Mass Spectrometry Core Facility” of Athens 

University (Georgia, USA). Mass spectrometry data revealed that Ser193 residue, 

one of those identified by bioinformatic analyses, was found to be phosphorylated 

in about 15% of AADC protein.  
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7.3. Activity analyses after AADC phosphorylation reveal ions concentration-

dependent AADC activity and increased affinity for L-DOPA 

 

Considering the identified phosphorylation site proximity to enzyme active site, 

activity assay of AADC in presence of L-DOPA after phosphorylation of enzyme 

was performed, in order to evaluate if kinetic parameters are affected by this post-

translational modification. Phosphorylated AADC was produced setting the most 

widely used in vitro phosphorylation conditions, using a 10:1 ratio between target 

protein and PKA, respectively, and performing the assay in 50 mM This-HCl buffer 

pH 7.5 in presence of 10 mM MgCl2 and 1 mM ATP. After incubation of this 

mixture at 37 °C for 30 minutes, aliquots of phosphorylation mix were used to 

perform AADC activity assay in standard conditions, as described in Chapter 5. 

As shown in Table 7.2, even if calculated kcat after AADC phosphorylation 

(AADC-P) is almost equal to that of the non-treated enzyme, KM of AADC-P is 

about 1.5-fold lower respect to AADC, whit a total increase in enzyme catalytic 

efficiency of about 2 times after phosphorylation.  

 

Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

AADC[152] 7.6 ± 0.1 0.11 ± 0.01 69.09 ± 6.34 

AADC-P 7.90 ± 0.16 0.068 ± 0.010 116.18 ± 17.25 

 Table 7.2. Calculated kinetic parameters of AADC-P for L-DOPA. 

 

These data seem to suggest a possible effect of phosphorylation on the affinity 

of AADC for L-DOPA. 

Even if 10 mM MgCl2 is the commonly used Mg2+ concentration in in vitro 

PKA phosphorylation assays, previously unpublished data suggest that high 

concentration of MgCl2 could slightly inhibit AADC activity, thus possibly 

counteracting the phosphorylation effect. To test this hypothesis, the same 

phosphorylation mixture was set without ATP but with 10 mM MgCl2 to assess if 

there is and how much consistent is the effect of Mg2+ on AADC activity subsequent 

measurement. As shown in Table 7.3, incubation of AADC with 10 mM MgCl2 
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slightly decrease kcat and increase KM of the enzyme for L-DOPA respect to the 

non-treated enzyme, resulting in a reduction of enzyme catalytic efficiency. 

 

Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

AADC[152] 7.6 ± 0.1 0.11 ± 0.01 69.09 ± 6.34 

AADC 6.75 ± 0.44 0.14 ± 0.03 48.21 ± 10.80 

AADC-P 7.90 ± 0.16 0.068 ± 0.010 116.18 ± 17.25 

Table 7.3. Calculated kinetic parameters of AADC-P for L-DOPA. 

 

Therefore, AADC phosphorylation was performed decreasing the 

concentration of MgCl2 from 10 to 1 mM in incubation mix. Surprisingly, 

subsequent measurement of kinetic parameters reveals that AADC-P kcat slightly 

increases respect to the non-phosphorylated enzyme, while the KM decreases by a 

factor of about 3.5 (Table 7.4), and catalytic efficiency increase of about 4 times. 

 

Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

AADC[152] 7.6 ± 0.1 0.11 ± 0.01 69.09 ± 6.34 

AADC 6.75 ± 0.44 0.14 ± 0.03 48.21 ± 10.80 

AADC-P 
7.90 ± 0.16 0.068 ± 0.010 116.18 ± 17.25 

8.63 ± 0.33 0.032 ± 0.009 269.69 ± 76.55 

Table 7.4. Calculated kinetic parameters of AADC-P for L-DOPA. 

 

These analyses suggest that incubation of AADC with high concentrations of 

Mg2+ can slightly inhibit enzymatic activity, so only 1 mM MgCl2 was used during 

phosphorylating incubation of enzyme in following analyses. In addition, AADC-

P kinetic parameters detection following low MgCl2 concentration condition for 

phosphorylation assay shows not only a maximum increase in kcat, which 

nevertheless seems to be not so affected, but it especially shows a drastic reduction 

of KM respect to the non-phosphorylated enzyme, with a global 4-fold increase in 

catalytic efficiency (kcat/KM), strongly suggesting that phosphorylation might 

increase the affinity of AADC for this substrate. 
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7.4. Activity analyses after AADC phosphorylation with L-5HTP and L-

phenylalanine reveal a common increased substrate affinity 

 

In order to investigate if phosphorylation can affect the affinity for only L-

DOPA or if it can lead to a more general structural protein modification that 

increases the affinity of all AADC substrates, kinetic parameters of AADC after 

phosphorylation were measured in presence of 5-HTP. As shown in Table 7.5, even 

if AADC-P kcat for this substrate is almost the same respect to the non-

phosphorylated enzyme, a concomitantly decrease of KM value was measured, 

which is around the assay detection limit. 

 

Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

AADC 1.01 ± 0.02 0.038 ± 0.007 26.58 ± 4.93 

AADC-P 1.10 ± 0.07  0.013 ± 0.004 84.61 ± 26.58 

Table 7.5. Calculated kinetic parameters of AADC-P for L-5HTP. 

 

Therefore, in presence of 5-HTP, like for L-DOPA, AADC after 

phosphorylation treatment shows a slight increase in kcat and a more pronounced 

decrease in KM, with a total 3-fold increase in catalytic efficiency. This increase 

seems to be lower than that for L-DOPA, even if it has to be taken into consideration 

that the really low KM measured value is close to the assay detection limit. 

AADC can decarboxylate also other amino acids, such as L-phenylalanine, L-

tyrosine and L-tryptophan to their corresponding amines. Accordingly, AADC 

activity after phosphorylation treatment was tested in presence of L-phenylalanine 

using the same procedure. For this substrate, as previously detected for L-DOPA 

and L-5HTP, a slight increase in kcat (Table 7.6) and an about 1.5-fold decrease in 

KM respect to the non-phosphorylated enzyme can be observed, with a 2-fold total 

increase in efficiency. 
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Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

AADC 0.128 ± 0.013 14.35 ± 3.73 0.009 ± 0.002 

AADC-P 0.173 ± 0.020  9.23 ± 1.90 0.019 ± 0.004 

Table 7.6. Calculated kinetic parameters of AADC-P for L-phenylalanine. 

 

7.5. Preliminary data:  

Regulation of HDC by phosphorylation seems to be form-dependent 

 

Incubation of HDC in phosphorylating mix followed by mass spectrometry 

analysis revealed that, after phosphorylation treatment, Ser194 residue, 

corresponding to Ser193 in AADC, is phosphorylated in about 5% of total protein, 

even less than AADC phosphorylation extent (around 15%). 

Previous analyses (see Chapter 6) demonstrate that HDC efficiency responds 

to reducing/non-reducing environment due to the presence of a disulphide bridge 

between the two protein monomers involving Cys180 residues. This disulphide 

bridge is reversible and its formation forces a structural rearrangement that 

increases both the stability of the enzyme and the catalytic efficiency. Therefore, 

kinetic parameters of HDC after phosphorylation treatment (HDC-P), performed in 

the same conditions of AADC, were measured not only to compare them with those 

of AADC-P and possibly detect a different effect of this post-translational 

modification between the two enzymes, but also to detect, if present, a different 

effect between the two forms of HDC (OxHDC and RedHDC). For this reason, 

incubation of HDC in phosphorylating mix and subsequent measurement of its 

kinetic parameters using the standard activity assay were performed for both 

enzymatic forms. Table 7.7 summarize the corresponding data. 
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Enzyme 
kcat 

s-1 

KM 

mM 

kcat/KM 

s-1mM-1 

OxHDC 1.10 ± 0.05 0.033 ± 0.006 33.3 ± 6.2 

OxHDC-P 1.03 ±0.10 0.094 ± 0.033 10.96 ± 3.99  

RedHDC 0.70 ± 0.02 0.064 ± 0.008 10.9 ± 1.4 

RedHDC-P 1.03 ± 0.02 0.032 ± 0.004 32.19 ± 4.07 

Table 7.7. Calculated kinetic parameters of HDC-P for L-histidine. 

 

While OxHDC after phosphorylation (OxHDC-P) shows a slight decrease in kcat 

and an increase in KM of about 3-fold respect to OxHDC, RedHDC-P presents an 

increased kcat and a half KM respect to the corresponding non-phosphorylated form 

of the enzyme. While OxHDC shows a 3-fold increase in catalytic efficiency 

respect to the reduced form, after phosphorylation treatment the ratio is reverse, 

with an efficiency 3 times lower for OxHDC-P respect to RedHDC-P. 
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7.6. Partial conclusions and future prospects 

 

Despite their great number and wide distribution in nature, only few PLP 

dependent enzymes have been reported to undergo phosphorylation [371] and, 

among these, phosphorylation can activate, inhibit or seems to have no structural or 

functional effect, sometimes with conflicting results. Few papers have been 

published reporting that both AADC and HDC purified from tissues can be 

phosphorylated, in particular by PKA [69-72,78-81]. Since phosphorylation is a 

common and widespread strategy of enzyme regulation, it could be interesting to 

understand the role, if present, of this post-translational modification in human 

AADC and HDC: these two homologous enzymes, indeed, produce important 

neurotransmitters that behave also as signalling mediators outside CNS, and their 

post-translational modification might be a fast response to environmental stimuli. 

Bioinformatic analyses predicted many possible phosphorylation sites for both 

proteins: among those solvent-accessible, identified residues are not only conserved 

between the two enzymes (Table 7.1), but also closed to active site (Figure 7.1). 

An in vitro PKA phosphorylation assay was set for AADC and mass spectrometry 

analysis was performed, allowing not only the quantification of phosphorylation 

extent, but also the individuation of involved residue(s). Interestingly, results 

indicate that PKA phosphorylation occurs on Ser193, the closest residue to the 

active site among those previously individuated through bioinformatic analysis 

(Figure 7.1).  

 Considering that phosphorylation at this aminoacidic position could influence 

active site microenvironment and/or catalytic activity of the enzyme, incubation of 

AADC in phosphorylating conditions (AADC-P) was followed by measurements 

of its kinetic parameters using the traditional activity assay (Table 7.2). 

Interestingly, meanwhile it was also found that AADC seems to be slightly inhibited 

in presence of high MgCl2 concentrations (Table 7.3): it might be interesting to 

investigate, through some focused experiment, the concentration-dependency of 

AADC inhibition, together with the evaluation of a similar effect of, for example, 

CaCl2. No data have been so far published, indeed, about a possible ions-dependent 

inhibition of AADC. 
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AADC kinetic parameters measurement after phosphorylation revealed that 

enzyme shows not only an increase of catalytic efficiency toward all tested 

substrates, i.e. L-DOPA, 5-HTP and L-phenylalanine (Tables 7.4, 7.5 and 7.6, 

respectively), but also the same mechanism of activation for all of them: the 

increase in catalytic efficiency, indeed, is mainly due to a decrease in KM for all 

substrates, strongly suggesting that phosphorylation could increase the affinity of 

AADC for its substrates.  

Even if many other experiments should be performed in order to confirm these 

data, for example artificial mutants changing serine in aspartate and/or glutamate 

as positive controls for the negative charge presence at that particular location, and 

molecular dynamics simulations in order to evaluate differences in possible 

location/orientation of substrates in phosphorylated enzyme active site respect to 

the non-phosphorylated one, these results strongly support an effect of Ser193 

phosphorylation on AADC. In addition, this measured activity alteration is due to 

a low portion of AADC-P in tested mix, since mass spectrometry detected only a 

15% of phosphorylated protein in these assay conditions, i.e. the common ones used 

for in vitro PKA phosphorylation assay. One would expect that the measured 

phosphorylation effect might be greater in presence of a higher amount of AADC-

P in solution: therefore, it could be interesting to evaluate phosphorylation 

efficiency using PKC, since this was the kinase predicted to preferentially 

phosphorylate Ser193 (Table 7.1), without ruling out the possibility that PKC could 

phosphorylate other residue(s). 

Preliminary results on HDC, phosphorylated using the same conditions as 

AADC, and further tested for kinetic parameters, show an interesting behaviour. 

HDC after phosphorylation, indeed, seems to switch its efficiency between the two 

forms of the enzyme: while the non-phosphorylated HDC is more efficient in L-

histidine decarboxylation when present in solution in oxidized form, the 

phosphorylated one is more efficient in reduced form (Table 7.7). Phosphorylation 

of HDC results in the same behaviour of phosphorylated AADC when HDC is in 

the reduced form (i.e. increase of catalytic efficiency), or in an opposite behaviour 

(i.e. decrease of catalytic efficiency) when HDC is in the oxidized form, peculiar of 

this enzyme. Since mass spectrometry analysis revealed that the phosphorylated 
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residue is Ser194, corresponding to Ser193 individuated for AADC, and thus close 

to enzyme active site (Figure 7.1), the opposite effect of phosphorylation at this 

residue in the two HDC enzymatic forms could be at least partially linked to 

conformational differences at the active site between them, as predicted through 

molecular modelling [362]. Interestingly, the amount of HDC-P was even lower 

than AADC-P, with only a 5% phosphorylated protein in these assay conditions, 

suggesting again the option of testing PKC possible phosphorylation, as the latter 

one was the kinase predicted to phosphorylate HDC by bioinformatic screening.  
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Chapter 8 

 

 

iPSCs differentiation into midbrain dopaminergic neurons 

allows the evaluation of dopamine synthetizing and 

degradative enzymes expression and equilibria 

 

 

8.1. Establishing a stable and reproducible model is essential for pathological 

mechanisms investigation 

 

All iPSCs lines used in this study were previously reprogrammed in hosting 

laboratory using a non-integrating Sendai RNA virus from skin fibroblasts [372] of 

two patients carrying mutations in AADC gene and one age-matched control 

subject. In addition, each iPSCs line was tested to be phenotypically homogeneous 

and karyotypically normal. Pluripotency was assessed by immunofluorescence for 

OCT3/4 and TRA-1-60, TRA-1-80, and NANOG and quantitative reverse 

transcriptase-polymerase chain reaction (qRT-PCR) for OCT4, cMYC, SOX2, and 

KLF4, all genes involved in maintenance of pluripotent state. Moreover, 

pluripotency was confirmed by in vitro spontaneous differentiation into three germ 

layer derivatives, i.e. mesoderm, endoderm, ectoderm, through SMA, TUJ1, 

SOX17 immunocytochemical expression. In addition, the ability of properly 

developing into DA neurons was already confirmed for each cell line, together with 

the strength and reproducibility of cellular model, through a set of analyses already 

performed in the research group. In particular, cell lines were analysed at day 11 

for midbrain neural progenitor population quality assessment: 

immunocytochemistry quantification of positive cells for developing midbrain 

unique co-expression of FOXA2 and LMX1A, and qRT-PCR analysis of increased 

expression level of different transcription factors involved in midbrain DA neurons 

differentiation (FOXA2, LMX1A, LMX1B, EN1 and EN2) together with decreased 

expression of pluripotency-related transcription factors (OCT4, NANOG) compared 
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to respective iPSCs lines. Cell lines were also previously analysed at day 65, i.e. at 

complete DA neurons maturation, for the immunocytochemical detection of mature 

neurons markers (MAP2 and TH) as well as for their qRT-PCR expression (MAP2, 

TH, NURR1, PITX3, SNCA). Finally, further analyses were performed in order to 

evaluate the disease-specific clinical-like phenotype of Patients lines, such as 

quantification of AADC activity and evaluation of its substrates accumulation 

and/or their metabolites decrease, using the same experiment setup used for disease 

diagnosis. 

 

8.2. iPSCs require standardised conditions for culture reproducibility 

 

Use of feeder-free conditions, i.e. Corning® Matrigel® as matrix, eliminates 

the inherent biological variability of feeder cells, in line with recent efforts focused 

on improving the reproducibility of iPSCs culture by simplifying and removing 

undefined components from all aspects of culture system (media, matrices and 

passaging reagents). Human iPSCs grow as compact, multicellular colonies 

characterized by distinct borders (Figure 1(a)). Healthy colonies merge together 

seamlessly, and can be multi-layered in the centre, resulting in dense clusters of 

cells. Individual cells are tightly packed, exhibit a high nuclear-to-cytoplasm ratio 

and have prominent nucleoli (Figure 1(b)).  
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Figure 8.1. Bright field images of human iPSCs morphology. 

(a,b) Undifferentiated human iPSC cells.   

(c,d) Areas of spontaneous differentiation (orange circle) at the border  

of an undifferentiated iPSCs colony.  

Images are taken using 20x (a,c) and 40x (b,d) magnifications. 

 

However, iPSCs can undergo undesired spontaneous differentiation, 

characterized by loss of colony border integrity (Figure 8.1(c)), regions of irregular 

cell morphology within a colony (Figure 8.1(d)), and/or the emergence of other cell 

types, usually linked to too low or too high colony density. Proper colony density 

is, indeed, a critical aspect of iPSCs culturing, so it is fundamental to adjust plating 

density in order to maintain the culture at the desired confluence (i.e. 

increase/decrease split ratio). iPSCs are ready to passage when the majority of 

colonies are large, compact, and have centres that are dense compared to their 

edges. 

 

8.3. Dopaminergic neurons maturation can be followed by a gradual cell 

morphology change 

 

Both Control and Patients iPSCs were differentiated using the protocol 

descripted in Chapter 5. During differentiation procedure, based on two main 

phases in which iPSCs are pushed toward midbrain DA neurons progenitors 
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development and subsequently driven over DA neurons maturation, cells show 

morphological features consistent with developing steps on bright field images 

(Figure 8.2): spherical embryoid bodies plating lead to the formation of adherent 

cultures, to further create neural progenitor cells and begin the DA neuron 

patterning, with the progressive development of neural projections branching out 

from round and dense somas.  

 

 

Figure 8.2. Bright field images of differentiation procedure. 

BF images were taken at different times during differentiation procedure, i.e. (a) d0, (b) d7, (c) 

d11, (d) d14, (e) d30 of protocol descripted in Materials and Methods section. 

Images are taken using 20x (a,b) and 40x (c,d,e) magnifications. 

 

8.4. Dopaminergic neurons properly differentiate from both Control and Patients 

iPSCs 

 

Immunofluorescence analysis after 65 days of differentiation was performed in 

order to establish efficiency in deriving DA neurons. Cell’s nucleus was stained 

using DAPI, while the number of neurons present in cell population was detected 

through immunostaining for MAP2, a major component of neuronal cytoskeleton 

[373]. In addition, cells were also stained for TH in order to quantify specific 

dopaminergic population among the total neuronal content. Representative 

immunofluorescence images of each analysed line are presented in Figure 8.3. 
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Figure 8.3. Immunofluorescence analysis of d65 iPSCs-derived neurons.  

iPSCs-derived differentiations are co-stained for DAPI, MAP2 and TH markers.  

Images were taken using 20x magnification. 

 

Quantification of general neuronal and specific DA neurons content was 

performed as reported in Chapter 5 using Image J software, to assess the percentage 

of MAP2 and TH/MAP2 double-positive cell. Percentage of MAP2-positive cells 

is 48.54 ± 2.78 for Control, 47.60 ± 3.28 for Patient 1 and 50.60 ± 1.69 for Patient 

2, indicative of a comparable neuronal content between Control and Patients lines 

(Figure 8.4(a)). All cells lines also show a relatively comparable range of TH 

positive cells among the MAP2 positive ones, with percentages of 40.83 ± 5.57 for 

Control and 36.43 ± 4.37 and 34.61 ± 4.80 for Patient 1 and Patient 2, respectively 

(Figure 4(b)). 

 



8 iPSCs differentiation into midbrain dopaminergic neurons allows the evaluation of  
dopamine synthetizing and degradative enzymes expression and equilibria 

138 

 

Figure 8.4. Quantification of d65 iPSCs-derived neurons.  

(a) Quantification of MAP2-positive cells as percentage of total cells. 

(b) Quantification od TH/MAP2 double-positive cells as a percentage of total cells.  

Counting is performed in triplicate for each cell line differentiation and a total n = 3 

measurements is used for data elaboration. Error bars represent s.e.m. 
 

Collected data are in line with previously data from hosting research group and 

original followed protocol [347], confirming an efficient differentiation process for 

both Control and Patients iPSCs. In addition, total and DA neurons percentages in 

Patients lines are consistent with Control, indicating that Patients iPSCs fully 

differentiate into midbrain DA neurons with the same efficiency of Control ones, 

thus suggesting that deficiency in AADC activity does not alter the neuronal 

development and does not trigger neurogenerative response.  

 

8.5. Controls neurons do not show AADC phosphorylation in standard culturing 

conditions 

 

Immunoprecipitation (IP) of AADC was performed in order to enrich the 

sample in protein content with the purpose of detecting a possible enzyme 

phosphorylated portion. Western blot following AADC IP was subsequently 

analysed using an anti-phosphorylated serine antibody. AADC detection after IP 

procedure clearly shows an enrichment without protein loss during washing steps 

(Figure 8.5(a)), while GAPDH, generally used as internal loading control and still 
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present after pre-cleaning procedure, is lost during washing steps, supporting the 

specificity direction of analysis (Figure 8.5(b)). 

 

 

Figure 8.5. Western blotting analysis of AADC immunoprecipitation and phosphorylation in 

Control iPSCs-derived neurons.  

(a) Detection of AADC. (b) Detection of GAPDH. (c) Detection of phosphorylated serine.  

M: molecular weight marker; L: pre-cleaned cell lysate; 1°, 2°, 3°, 4° and 5°: sequential washing 

steps; IP: immunoprecipitated sample; IC: isotype control; NC: negative control. 

 

However, the same membrane blotted with an anti-phosphorylated serine 

antibody does not show any positivity at AADC corresponding molecular weight 

(Figure 8.5(c)). Thus, even if immunoprecipitation enrichment in AADC content 

worked, this analysis does not detect any amount of phosphorylated protein, 

suggesting that, at least in standard cell culture conditions, AADC is not subject to 

regulation by this particular post-translational modification.  

 

8.6. AADC expression is altered in Patients-derived neurons compared to Control 

 

AADC expression in Control and Patients neurons was investigated through 

immunocytochemistry analysis at day 65, in a double staining with TH. 
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Representative acquired image is presented in Figure 8.6, showing that AADC 

expression is widely distributed in whole neurons, in both soma and projections. 

 

 

Figure 8.6. Immunofluorescence analysis of AADC expression in iPSCs-derived neurons.  

iPSCs-derived differentiations are co-stained for DAPI, AADC and TH markers.  

Images were taken using 20x magnification. 

 

A visual inspection of stained samples suggests that AADC may be less 

expressed in Patient 2 than in Control and Patient 1 that in general show a more 

intense signal. This observation could be in line with Patient 2 genotype, since a 

premature stop codon in one of AADC codifying alleles might likely result in a 

lower total amount of protein. 

Therefore, total AADC content in Control and Patients mature neurons was 

evaluated through western blot analysis, using GAPDH as sample loading control. 

Representative acquired image is presented in Figure 8.7(a): Patient 1 shows an 

AADC band stronger than Control, while in Patient 2 AADC seems to be highly 

under-expressed. 
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Figure 8.7. AADC expression in Control and Patients iPSCs-derived neurons.  

(a) Representative western blot analysis.  

(b) Quantification of AADC expression normalised to GAPDH respective expression in each cell 

line. **: p = 0.0018; ****: p < 0.0001. A total of n = 5 measurements is used for data 

elaboration. Error bars represent s.e.m. 

 

Quantification analysis of 5 western blots, performed with distinct 

differentiation samples for each cell line (Figure 8.7(b)), confirms an increased 

AADC content in Patient 1 iPSCs-derived neurons respect to Control ones (p = 

0.0018), and a very significant lower expression of protein in Patient 2 neurons (p 

< 0.0001), confirming immunocytochemistry analysis detection.  

While AADC low expression level in Patient 2 might be predictable according 

to genotype, i.e. a premature stop codon in one of the two encoding alleles, Patient 

1, characterised by a homologous missense mutation, shows an AADC content 

higher than in Control line.  

 

8.7. MAO-A and MAO-B expression alteration seems to be AADC-variant 

dependent 

 

Considering AADC differential expression in Patients and Control iPSCs-

derived neurons, it was interesting to investigate if the expression of other enzymes 

belonging to DA homeostasis pathway is altered as well. In particular, attention was 

focused on MAO-A and MAO-B, two main enzymes responsible for DA 

degradation in CNS. Both Patients show a decreased MAO-A expression level 

respect to Control, even more consistent for Patient 2 (p = 0.0443 for Patient 1 and 



8 iPSCs differentiation into midbrain dopaminergic neurons allows the evaluation of  
dopamine synthetizing and degradative enzymes expression and equilibria 

142 

p = 0.012 for Patient 2), as detected from western blot analyses (Figure 8.8(a)) and 

their quantifications (Figure 8.9(b)). 

 

 

Figure 8.8. MAO-A expression in Control and Patients iPSCs-derived neurons.  

(a) Representative western blot analysis.  

(b) Quantification of MAO-A expression normalised to GAPDH respective expression in each cell 

line. *: p = 0.0443; **: p = 0.0012. A total of n = 5 measurements is used for data elaboration. 

Error bars represent s.e.m. 

 

MAO-B expression, instead, seems to behaves differently, with a slight 

increase for Patient 1 (p = 0.0029) and a strong decrease for Patient 2 (p < 0.0001) 

respect to Control (Figure 8.9). 

 

 

Figure 8.9. MAO-B expression in Control and Patients iPSCs-derived neurons.  

(a) Representative western blot analysis.  

(b) Quantification of MAO-B expression normalised to GAPDH respective expression in each cell 

line. **: p = 0.0029; **: p < 0.0001. A total of n = 5 measurements is used for data elaboration. 

Error bars represent s.e.m. 
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In summary, a very low expression of both MAO-A and MAO-B is detected 

for Patient 2 compared to Control, while Patient 1 show a lower expression of 

MAO-A but a higher expression of MAO-B. In addition, MAO-A total levels, 

normalised to GAPDH for each cell line, are significantly higher than MAO-B ones. 

Interestingly, MAO-B expression pattern resemble AADC expression one, with an 

increase in Patient 1 and a decrease in Patient 2, while MAO-A is lower for both 

Patients compare to Control. Taken together, these analyses may suggest that DA 

degradative enzymes content in Patients could be regulated in response to DA 

and/or AADC levels, in general in response to DA synthetizing pathway alterations. 

In order to further investigate differential expression of MAO-A/B, 

immunocytochemistry analyses were performed to evaluate enzyme-specific cell-

subtype expression, in particular for Control and Patient 2, which are expected to 

show a higher difference, as suggested from western blot analyses.  

A visual inspection of whole stained samples, indeed, confirms that MAO-A is 

less expressed in Patient 2 than in Control, which in general shows a more intense 

signal.  

As shown in Figure 8.10, MAO-A expression co-localises with TH, both in 

Control and Patient 2 neuronal soma, but it is also expressed in TH negative cells, 

i.e. other cell types, usually present in samples since differentiation process toward 

midbrain DA neurons do not present a complete efficiency. 
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Figure 8.10. Immunofluorescence analysis of MAO-A expression in iPSCs-derived neurons.  

iPSCs-derived differentiations are co-stained for DAPI, TH and MAO-A markers. 

White arrows point to markers co-localisation.  

Images were taken using 20x and 40x magnifications. 

 

Samples were therefore double-stained for MAO-A and glial fibrillary acidic 

protein (GFAP), an intermediate filament protein expressed by glia cells, including 

astrocytes (Figure 8.11), to unravel if MAO-A positive and TH negative cells 

individuated in the previous analysis could possibly be glia cells. 
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Figure 8.11. Immunofluorescence analysis of MAO-A expression in glia cells.  

iPSCs-derived differentiations are co-stained for DAPI, GFAP and MAO-A markers.  

White arrows point to markers co-localisation.  

Images were taken using 20x and 40x magnifications. 

 

As shown in Figure 8.11, MAO-A co-localises also with GFAP, indicating that 

its widespread signal is linked to its expression not only in DA neurons, but also in 

glia cells.  

The same set of experiments were performed to analyse MAO-B expression. 

Surprisingly, no TH and MAO-B double-positive cells are detected (Figure 8.12), 

since MAO-B signal does not co-localise with TH signal. 
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Figure 8.12. Immunofluorescence analysis of MAO-B expression in iPSCs-derived neurons.  

iPSCs-derived differentiations are co-stained for DAPI, TH and MAO-B markers.  

Coloured arrows indicate the corresponding marker.  

Images were taken using 20x and 40x magnifications. 

 

Interestingly, MAO-B and GFAP double staining (Figure 8.13) confirms that 

MAO-B expression is mainly localised in glia cells. 
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Figure 8.13. Immunofluorescence analysis of MAO-B expression in glia cells.  

iPSCs-derived differentiations are co-stained for DAPI, GFAP and MAO-B markers.  

White arrows point to markers co-localisation.  

Images were taken using 20x and 40x magnifications. 

 

In summary, immunocytochemistry analyses showed that MAO-A is widely 

express in both DA neurons and glia cells, while MAO-B is mainly expressed in 

glia cells, and not in DA neurons. Moreover, further considerations can be made 

about glia cells phenotype in cell lines. In Patient 2, indeed, glia cells seem to be 

less structured, with smaller nuclei and consistently under-developed branches 

respect to Control line (Figures 8.11 and 8.13). Considering that in Patient 1 glia 

cells do not show this strong alteration (data not shown), and glia cells are the 

mainly responsible for MAO-B expression, Patient 1 very low MAO-B content 
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might be linked to an altered glia cells phenotype. The same consideration cannot 

be made for MAO-A, that is expressed both in glia cells and neurons, because, at 

least from these analyses, it cannot certainly be determined which cell type among 

them and in which extent both and/or one of them could contribute to MAO-A 

expression alteration in Patients respect to Control. 
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8.8. Partial conclusions and future prospects 

 

One of the main challenges in studying human neurological diseases is the lack 

of human-derived samples, mainly due to their inaccessibility, making it difficult 

to model diseases and improve pathophysiology understanding. Moreover, animal 

models often do not faithfully recapitulate human clinical phenotype [374], thus it 

is hoped that disease-modelling and therapy testing will become easier using human 

iPSCs. However, maintenance and propagation of human iPSCs in feeder-free 

conditions requires the use of complex media formulations, in combination with 

careful handling techniques, to maintain high quality cultures at each passage 

(Figure 8.1(a)). In addition, iPSCs cultures has to be routinely checked, and 

cleaned if necessary, in order to prevent, or remove, spontaneous differentiations 

spots (Figure 8.1(b)) that can substantially affect the differentiation outcome.  

Human iPSCs differentiation into midbrain DA neurons shows a gradual cell 

morphology acquisition (Figure 8.2). However, subsequent investigations about 

pathophysiology mechanisms underlying the disease require good quality samples, 

and, since it is well known that human iPSCs lines are subject to variable 

differentiation efficiencies [375], each differentiation is checked at day 65 for its 

DA neurons content by immunocytochemistry (Figure 8.3), followed by markers 

quantification (Figure 8.4), to ensure that it is qualitatively in line with model 

standards.  

A first set of analyses was performed in order to detect, if present, AADC in its 

phosphorylated form, as previously suggested by in vitro experiments (see Chapter 

6). Even if enzyme immunoprecipitation was performed with the aim to load a 

higher amount of enzyme, no signal was found in western blotting analysis using 

an anti-phosphorylated serine antibody (Figure 8.5), at least in Control standard 

culturing conditions. However, the highly dynamic feature of this post-translational 

modification, together with the static state that characterises an in vitro cellular 

model, not subjected to any environmental and internal stimulus in standard 

conditions, might have affected the possible presence of phosphorylated AADC. 

Therefore, it could be interesting to perform the experiment after chemical as well 

as ion channels-mediated stimulation of neurons. 
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As AADC expression showed to be wide distributed in differentiated lines, but 

with a putative weaker immunofluorescent signal in Patient2 (Figure 8.6), western 

blotting analyses were performed in order to check Patients lines AADC content 

respect to Control one. As expected from genetic background, i.e. compound 

heterozygosis with a premature stop codon in one allele, Patient 2 shows a 

decreased protein level (Figure 8.7), but, surprisingly, in Patient 1, which is 

homozygous for a missense mutation, protein amount is significantly higher than 

in Control. This result definitely deserves further investigation. One possible 

hypothesis could be related to an intrinsic feature of this particular AADC variant, 

R347G: the arginine to glycine mutation, indeed, was already characterised in vitro 

for structural/functional alterations [22], revealing that this substitution results in 

the destruction of a hydrogen bonds network, including Arg347, involved in proper 

positioning of catalytic loop, and consequently catalytic Tyr332 [20], at the active 

site of AADC upon substrate binding. Considering the peculiar flexibility of the 

catalytic loop, that also makes the loop “open” conformation more likely to be 

proteolyzed [25], it could be assumed that an arginine to glycine mutation close to 

the catalytic loop might make it less flexible and consequently less susceptible to 

proteolytic cleavage. In this view, the higher AADC content in Patient 1 samples 

could be due not to a higher protein expression but rather to a higher stability of this 

particular AADC variant. This hypothesis is now under investigation through a 

range of experiments in order to evaluate R347G mutant intrinsic stability. 

Another possibility might be the existence of a positive feedback mechanism 

that tends to increase AADC content with the aim to compensate the low DA 

release. Further experiments have to be performed in order to confirm/disprove this 

hypothesis. In particular, it might be interesting to analyse AADC cDNA levels 

through qRT-PCR to check for an increase in protein transcription in Patients 

respect to Control.  

Looking at the complexity of dopaminergic pathway, it has been considered 

interesting to evaluate if its upstream alteration could have any effect on 

downstream equilibria. Thus, attention was focused on two of the main enzymes 

responsible for DA degradation, MAO-A and MAO-B, performing western blot and 

immunocytochemistry analyses. MAO-A, widely express in both DA neurons and 
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glia cells (Figures 8.9 and 8.10), was found to be downregulated in both Patients 

compare to Control line (Figure 8.7), even if with a higher extent in Patient 2. 

MAO-B, instead, was found to be higher expressed in Patient 1 respect to Control 

line, but an opposite behaviour was detected for Patient 2 (Figure 8.8), a pattern 

similar to that of AADC amount. Interestingly, MAO-B was found to be expressed 

mainly in glia cells, and not in DA neurons (Figures 8.11 and 8.12). Moreover, glia 

cells of Patient 2, which present the greater extent of MAO-B and MAO-A 

decrease, clearly show a morphological alteration compared to Control line 

(Figures 10 and 12). 

Even if these preliminary results require further investigations, the suggestion 

that not only alteration of DA synthetic pathway in neurons, but also alteration of 

neurons-astrocytes interplay, could underlie the pathophysiologic mechanisms of 

AADC Deficiency is a new and interesting prospective. Recent findings strongly 

highlighted astrocytes role not only in provide neurons with metabolic and 

structural support, but also in information processing, through modulation of 

synaptic activity and plasticity, neurotransmitters homeostasis, neurogenesis and 

brain wiring, and structural and functional alterations of this cell type were already 

associated with many human brain pathological conditions [376]. Since 

dysregulations of astrocytes functions and interplay with neurons contribute to the 

development and progression of various neurological diseases, targeting astrocytes 

could be an alternative and/or supporting approach for the development of novel 

and effective therapies to treat brain disorders, and, maybe, also AADC Deficiency.  
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Chapter 9 

 

 

Conclusions 

 

 

AADC and HDC are two homologous enzymes responsible for the synthesis of 

DA/serotonin and histamine, respectively, as well as other modulators. All of these 

molecules are main protagonists or regulators of several physiological pathways, 

fundamental both in CNS and in peripheral tissues. Alterations of their homeostasis, 

indeed, cause and/or participate in the development and progression of several 

pathological conditions, often severe and disabling. Consequently, AADC and 

HDC activity modulation might be useful in pathophysiological understanding of 

several diseases as well as in improving/developing new therapeutic strategies. 

However, despite the fact that both enzymes are of fundamental importance, the 

knowledge of biochemical features of AADC and HDC is poor and fragmented.  

Human wild-type HDC production and purification in recombinant form 

revealed that this enzyme is present in solution in two species (RedHDCwt and 

OxHDCwt), that are in equilibrium depending on the concentration of reducing 

agent, due to the presence of an intermolecular reversible disulphide bridge between 

monomers, involving residue Cys180. This feature has been extensively 

investigated using in vitro biochemical technics, revealing that the two enzymatic 

forms show slight structural differences in their whole arrangement, as well as slight 

perturbation of the active site microenvironment. As consequence, OxHDCwt 

results not only more stable, but also more active than RedHDCwt. Even if, at 

present, it is not easy to envisage a physiological role of this redox 

RedHDC→OxHDC switch, it seems to be a peculiar and unique feature of human 

HDC among PLP-dependent enzymes. Taking into account that the cell 

environment is highly reducing, it is reasonable to suggest that HDC is mainly 

reduced under physiological conditions. However, in cancer cells, where redox 

potential is altered, the increased oxidizing conditions could favour the more stable 

and active OxHDC, leading to an increased histamine production. This HDC feature 
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could be responsible for the high histamine content characterising some cellular 

oxidative stress-linked pathologies, such as cholangiocarcinoma, and could be 

interesting also in other tumour types, in which the enzyme might participate in the 

positive feedback loop that fix tumour microenvironment in a “constant 

inflammation” state, necessary for its development. Moreover, in this view, the 

development of specific inhibitors directed toward OxHDC is highly desirable.  

On the other side, AADC limited literature studies about enzyme 

phosphorylation have driven an in vitro deep characterization of the impact of this 

possible post-translational modification on enzyme activity. The phosphorylated 

residue was individuated to be Ser193, close to active site. Moreover, AADC 

kinetic parameters measurements after phosphorylation assay revealed that the 

enzyme shows not only an increase of catalytic efficiency toward all tested 

substrates, i.e. L-DOPA, L-5HTP and L-phenylalanine, but also the same 

mechanism of activation for all of them: increase in catalytic efficiency, is mainly 

due to a decrease in KM, strongly suggesting that phosphorylation might increase 

the affinity of AADC for all its substrates. However, AADC in its phosphorylated 

form was not found in iPSCs-derived dopaminergic neurons, at least in standard 

culturing conditions. It should be considered, nevertheless, that the highly dynamic 

feature of this post-translational modification, together with the static state that 

characterise an in vitro cellular model, not subjected to any environmental and 

internal stimulus in standard conditions, might have affected the possible presence 

of phosphorylated AADC.  

iPSCs-derived dopaminergic neurons of AADC Deficiency patients were used 

as cell model to evaluate enzyme content in Patients’ lines respect to Control one, 

revealing that higher AADC amount is found in a patient harbouring the 

homozygous missense mutation R347G, possibly due to the existence of a positive 

feedback mechanism that tends to increase AADC content with the aim to 

compensate the low DA release, or to a higher stability of the specific AADC 

variant. Interestingly, the analysis of other dopaminergic pathway enzymes, in 

particular MAO-A and MAO-B, both in expression levels and in cell-specific 

localisation, suggested that not only alteration of DA levels, but also alteration of 

neurons-astrocytes interplay, could participate in pathophysiological mechanisms 
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of AADC Deficiency. Thus, targeting astrocytes might be an alternative and/or 

supporting approach for the development of novel and effective therapies to treat 

brain disorders, and, maybe, also AADC Deficiency. 

Altogether, data and information obtained from the performed experiments 

have increased AADC and HDC knowledge, as well as paved the way for new 

hypothesis regarding possible efforts in the development of new disease treatments. 
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We report here a clinical case of a patient with a novel mutation (Arg347→ Gly) in the gene encoding aromatic
amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified re-
combinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat
compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have car-
ried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic
loop (residues 328–339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We
have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K
exhibit about 13-, 97-, and 345-fold kcat decrease compared to thewild-type AADC, respectively. However, unlike
F103L, the R347G, R347K and R347Qmutants as well as the D345A variant appear to be more defective in catal-
ysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant,
share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This
finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the ac-
tive site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds
network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Fol-
lowing the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Aromatic amino acid decarboxylase (AADC) deficiency is a rare auto-
somal recessive disorder (OMIM #608643) caused by the deficit of Dopa
or aromatic amino acid decarboxylase (AADC), a pyridoxal 5′-phosphate
(PLP) enzyme, which catalyses the conversion of L-Dopa and L-5-
hydroxytryptophan to dopamine and serotonin, respectively. The main
structural and functional properties of AADChave been recently reviewed
atic amino acid decarboxylase;
S, 1,8-anilinonaphtalene sulfonic
m dissociation constant for PLP;

es, Biomedicine andMovement,
ada Le Grazie, 8, 37134 Verona,
[1]. In AADC deficiency, impaired enzyme activity is mainly due to point
mutations in the AADC gene that lead to the synthesis of pathogenic var-
iants. The most commonly reported symptoms of AADC deficiency in-
clude hypotonia, neurodevelopmental delay, oculogyric crises and
complexmovement disorderwith autonomic features [2,3]. Studies of ce-
rebrospinal fluid are key to diagnosis, showing reduced levels of 5-
hydroxyindoleacetic acid and homovanillic acid together with elevated
concentrations of L-Dopa, L-5-hydroxytryptophan and 3-O-methylDopa
[4–6]. Diagnosis is confirmed by quantification of plasma AADC enzyme
activity andAADC gene sequencing. To date, around 100 patientswith ho-
mozygous or compound heterozygous mutations have been genotyped.
Among them, 26 missense mutations have been identified, 18 of which
are homozygous in the affected patients (http://www.biopku.org/home/
jake.asp). Biochemical characterizations of the latter variants in the puri-
fied recombinant form of the enzyme, together with bioinformatics anal-
yses, revealed that most of the examined variants displayed kcat values
linearly related to the magnitude of the near-UV CD signals and the ANS
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emission fluorescence intensities [7]. These variants concernmutations of
residues mapping to or interacting with loops 1 (aa 66–84), 2 (aa 100–
110) and 3 (aa 323–357). Since the comparison of the crystal structure
of the apo and holo forms of AADChighlights the relevance of these struc-
tural elements for the transition from the apo open form to the holo
closed form [8], it was proposed that the pathogenicity of thesemutations
is due to incorrect apo-to-holo conversion [7]. The only exception is rep-
resented by the mutation R347Q which, although presenting no confor-
mational alteration and maintaining a PLP binding affinity similar to
that of the wild-type, exhibits severely decreased kcat value [7]. To date,
the reasons(s) for the loss of decarboxylase activity of this variant are un-
known. Here we report a clinical case of a patient with a novel homozy-
gous mutation, R347G, associated with AADC deficiency. This finding,
together with the fact that the point mutation of Arg347 (to Gln or Gly)
represents one of the most frequent pathogenic mutation and is present
both in homozygous and in compound heterozygous states, urged us to
undertake a detailed investigation on the molecular effects caused by
the mutations of Arg347. The biochemical characterization of the variant
R347G in the purified recombinant form reveals that it sharesmany struc-
tural and functional features with the variant R347Q. Thereafter we have
explored by bioinformatics analyses the possible interactions of Arg347 in
the crystal structure of the carbidopa-AADC complex inwhich the confor-
mation of the mobile loop (residues 328–339), invisible in this structure,
is modelled using the homologous region of histidine decarboxylase
(HDC) as a template [9]. These studies, together with the biochemical
characterization of the artificial mutants F103L, D345A, and R347K,
allow us not only to identify the Arg347-Leu333-Asp345 triad as an im-
portant hydrogen bonds network for efficient catalysis of human AADC
but also to unravel the molecular basis of the pathogenicity of the R347
mutations. Thus, our data provide potentially clinically translatable infor-
mation for the therapy of patients harbouring pathogenic mutations at
Arg347.

2. Materials and methods

2.1. Ascertainment of clinical case

Patient Awas referred to a Tertiary Paediatric Neurology Centrewith
expertise in neurotransmitter disorders. Investigations and treatment
strategies were investigated as part of routine clinical care.

2.2. Materials

PLP, L-Dopa, L-Dopa methyl ester (DME), 2,4,6-trinitrobenzene-1-
sulfonic acid (TNB) and isopropyl-β-D-thiogalactopyranosidewere pur-
chased from Sigma-Aldrich. Protease inhibitor cocktail were purchased
from Roche. The 1,8-anilinonaphtalene sulfonic acid (ANS) was pur-
chased fromMolecular Probes. The other chemicals were of the highest
purity available.

2.3. Construction, expression and purification of the variants R347G, R347K,
F103L and D345A

The R347G, R347K, F103L and D345A variants of AADC were con-
structed starting from the pDDChis construct that contains the complete
open reading frame of the human AADC including a C-terminal 6xhis-
tag and cloned into a pTrcHis2A expression vector [10]. Mutations
were introduced by the QuikChange site-directed mutagenesis kit
(Agilent Technologies) using the oligonucleotides 5′-CTGCATCG
GCTTATCCTGGGCGGCAAG-3′ and its complement, 5′-GCTTATCACTGA
CTACGGGCATTGGCAG-3′ and its complement, 5′-GGGCTTATCACTGA
CTACAAGCATTGGCAG-3′ and its complement, 5′-GGCTTATC
ACTGCCTACCGGCATTGG-3′ and its complement for F103L, R347G,
R347K and D345A, respectively (the mutated codons are underlined).
All the mutations were confirmed by the entire DNA sequence analysis.
Expression plasmids of wild-type AADC [10], R347Q [7], F103L, R347G,
R347K and D345A variants were used to transform Escherichia coli
JM109 cells. Recombinant enzymes were expressed and purified by fol-
lowing the procedure previously described [10], and stored at −20 °C.
The mutants yield after the standard purification was about 70% that
of the wild-type enzyme. Protein concentrations were determined
using the εM = 142,000 M−1 cm−1 at 280 nm and the PLP content of
the enzymes was determined by releasing the coenzyme in the pres-
ence of 0.1 M NaOH and by using εM 6600 M−1 cm−1 at 388 nm [11].
The purified variants were homogeneous as indicated by a single band
upon migration in SDS-PAGE with mobility identical to that of the
wild-type protein.

2.4. Spectroscopic measurements

Absorption measurements of F103L, R347G, R347Q, R347K, and
D345Awere performedusing a Jasco V-550 spectrophotometer at a pro-
tein concentration of 10 μM in the absence or in the presence of 300 μM
DME. CD measurements were made with a Jasco J-710 spectropolarim-
eter at a protein concentration of 6 μM. ANS binding spectra were re-
corded using a FP Jasco spectrofluorimeter setting at 5 nm excitation
and emission bandwidths, following excitation at 365 nm of 1 μM en-
zyme sample that was previously incubated in the presence of 15 μM
ANS for 1 h at 25 °C (in the dark) and in the presence of 20 μM PLP.
All the spectroscopic measurements were carried out in 100mM potas-
sium phosphate buffer, pH 7.4, at 25 °C.

2.5. Apoenzyme preparation and coenzyme binding affinity

Apoenzymewas prepared as described previously [10]. The equilib-
riumdissociation constant for PLP, KD(PLP), of the variants R347G, R347K,
F103L, and D345A was determined by measuring the quenching of the
intrinsic fluorescence of 0.15 μM apoenzyme in the presence of PLP at
concentrations ranging from 0.01 to 20 μM in 100mMpotassium phos-
phate buffer, pH 7.4 and by fitting the data to the following equation

Y ¼ Ymax
E½ �t þ PLP½ �t þ KD PLPð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ �t þ PLP½ �t þ KD PLPð Þ

� �2−4 E½ �t PLP½ �t
q

2 E½ �t

where [E]t and [PLP]t represent the total concentrations of the enzyme
and PLP, respectively, Y refers to the intrinsic quenching changes at a
PLP concentration, [PLP], and Ymax refers to the fluorescence changes
when all enzyme molecules are complexed with coenzyme. Curves
fitting was performed using Origin® 7.03 (OriginLab).

2.6. Enzyme activity assay

The decarboxylase activity of the AADC variants was measured by a
spectrophotometric assay as previously described [12] and modified
[13]. Briefly, after an appropriate incubation time (a time within
which a linear product formation is observed) of the enzyme in the
presence of 2 mM L-Dopa and 10 μM PLP in a final volume of 250 μl,
the reaction is stopped by heating at 100 °C for 1 min. Toluene
(1.5 ml) and TNB (1 ml of a 4.3 mM solution) are then added, and the
extraction of trinitrophenyldopamine is carried out at 42 °C for 1 h
with continuous shaking. The concentration of trinitrophenyldopamine
in the toluene layer is measured by using 12,400 M−1 cm−1 as the
molar extinction coefficient for trinitrophenyldopamine at 340 nm
[14]. The kinetic parameterswere determined by incubating themutant
recombinant proteins in the presence of different L-Dopa concentrations
under saturating PLP concentration in 100 mM potassium phosphate
buffer, pH 7.4. The concentrations of F103L, D345A, R347G, and R347K
were 0.3 μM, 2 μM, 3 μM, and 5 μM, respectively, while the reaction
times were 10 min for F103L and D345A, or 20 min for R347G and
R347K. Data were fitted to the Michaelis–Menten equation.



Fig. 1. Absorbance and CD spectra of wild-type AADC and variants. Absorption and CD
(inset) spectra of (—) wild-type, (\\\\\\) R347G, (-⋅⋅) R347K, (—-) F103L, and (⋅⋅⋅⋅⋅)
D345A at 10 μM enzyme concentration in 100 mM potassium phosphate buffer, pH 7.4.

Table 1
Kinetic parameters and coenzyme binding affinity.

Enzyme kcat
(s−1)

Km

(mM)
kcat/Km

(s−1 mM−1)
KD(PLP)

(nM)

Wild-typea 7.6 ± 0.1 0.11 ± 0.01 69 ± 6 43 ± 12
R347Qb 0.087 ± 0.005 0.49 ± 0.08 0.18 ± 0.03 54 ± 10
R347G 0.016 ± 0.001 0.64 ± 0.13 0.025 ± 0.05 178 ± 14
R347K 0.022 ± 0.003 0.31 ± 0.01 0.071 ± 0.011 214 ± 12
F103L 0.55 ± 0.09 0.15 ± 0.01 3.67 ± 0.007 98 ± 18
D345A 0.078 ± 0.001 0.60 ± 0.03 0.13 ± 0.65 150 ± 20

a Ref. [8].
b Ref. [6].
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2.7. HPLC analyses

Following incubation for 3 h in the presence of 300 μM DME in
100mMpotassium phosphate buffer, pH 7.4, at 25 °C, wild-type or var-
iants AADC 10 μMwere denatured by the addition of trichloroacetic acid
to a final concentration of 5% (v/v). The quenched solutionswere centri-
fuged to remove protein, and the supernatants were analysed by HPLC,
using a Nucleodur 100–5 C18 (250 × 4.6 mm) (Macherey-Nagel) col-
umn connected to a Jasco PU-2080 PlusHPLC control system. The eluent
was 50 mM potassium phosphate buffer, pH 2.35, at a flow rate of
1 ml/min. A Jasco UV-2075 Plus detector set at 295 nm was employed.
Peaks corresponding to PLP and pyridoxamine 5′-phosphate (PMP)
were integrated using the Jasco Borwin software. Standard curves of
peak area as a function of PLP or PMP concentration were prepared.

2.8. Atomic coordinates and modelling

Atomic coordinates were taken from the Protein Data Bank (PDB):
the ID code 1JS3 was used for AADC complexed with carbidopa and ID
code 4E1O for HDC [9,15]. The visualization of structures and contacts
analyses were performed using the Molecular Operating Environment
(MOE) software. Energy minimization refinement, applying the
AMBER99 force field, and the protonation state correction were per-
formed usingMOE software. Missing or substituted atoms and loop res-
idues inAADC, either native ormutant,weremodelled usingMODELLER
9.10 [16] and the solvedHDC loop (residues 328–346) [9]. Structural su-
perimpositions were conducted using PyMol [17].

3. Results and discussion

3.1. Identification of a new homozygous mutation of AADC causing AADC
deficiency

Patient A, a male infant, was referred for further investigation of
neurodevelopmental delay. Routine diagnostic testing revealed a raised
prolactin level and a vanilly lactate peak on urinary organic acids. A low
homovanillic acid, low 5-hydroxyindoleacetic acid, raised 3-
orthomethyl-dopa and 5-hydroxytryptophan were evident on cerebro-
spinal fluid neurotransmitter analysis. Plasma AADC enzyme activity
was undetectable. Molecular genetic testing of AADC revealed a homo-
zygousmutation, c.1039C NG (R347G) in the proband, with appropriate
familial segregation. Pyridoxine and calcium folinate treatment were
commenced initially, with some discernible clinical improvement in
baseline tone and involuntary movements. Following this, the MAO in-
hibitor, Selegeline, was added and lead to further clinical improvement.
A latter addition of the dopamine agonist, Pramipexole, has led to ongo-
ing benefits. Overall there has been reduction of the frequency and se-
verity of the oculogyric crises as well as further neurodevelopmental
gains with improvement in axial and peripheral tone.

3.2. Impact of the R347G mutation on the structure and function of AADC

The spectroscopic features of the R347G variant in the purified re-
combinant form were compared with the corresponding ones of the
wild-type AADC. No differences were observed between the far-UV CD
spectra of the mutated and the wild-type forms of the enzyme (data
not shown), suggesting that the mutation does not affect the overall
secondary structure of AADC. As shown in Fig. 1 and inset, the R347G
variant exhibited in the visible region absorbance and positive dichroic
bands at 420 and 335 nm whose intensities were similar to the corre-
sponding ones of the wild-type AADC. The R347G variant had a KD(PLP)

value ~4-fold higher than that of the wild-type enzyme (Table 1). In
order to evaluate the structural features of the mutated protein, near-
UV CD spectra and ANS fluorescence spectra of this variant were moni-
tored. When ANS binds to hydrophobic surfaces of proteins, it emits a
fluorescence signal whose maximum wavelength (at around 450 nm)
is red-shifted and the intensity increases. The near-UV CD spectra of
the holo and the apo forms of the R347G variant as well as the ANS
emission spectra of the holo form revealed amodest decrease in the dif-
ference of the dichroic signals between the holo- and the apo- forms as
well a slight increase of the ANS emission intensity of the holo form
(data not shown), in comparison to the wild-type enzyme. Thus, these
data fit the linear relation depicted in Fig. 2A, suggesting that the
R347Gmutation has amodest impact on the apo-holo transition. To de-
termine the functional effects of replacing Arg347 by Gly, the steady-
state kinetic parameters of the R347G variant were measured and com-
pared to those of the wild-type enzyme (Table 1). The variant exhibits a
very large drop in its catalytic efficiency, ~2760-fold, mainly driven by
the ~475-fold decrease of its kcat value. Interestingly, the location of
the R347G variant on the curve in Fig. 2B is similar to that of the
R347Q variant, suggesting that both variants R347Q and R347G behave
similarly in sharing a sharp decrease in the kcat value (corresponding to
a residual catalytic activity of 1.1% and 0.2%, respectively), despite no or
onlymodest conformational alterations. Based on these results,we have
decided to gain further insights into the catalytic relevance of the large
and positively charged side chain of Arg347 by using bioinformatics
analyses aiming to identify the possible interaction(s) between
Arg347 and other AADC residues.

3.3. Bioinformatics analyses

The position and possible interactions of Arg347 were analysed,
starting from the coordinate file of the pig kidney AADC in complex
with carbidopa (PDB file 1JS3). Arg347 belongs to loop 3 and maps
near the active site cavity in proximity of the 328–339 loop. This is amo-
bile segment, invisible in the electron density maps, that seems to be
important for the catalytic mechanism [15,18]. Before inspecting the
structure, the protonation state of the molecule was corrected to
mimic the physiological condition, and the structure was refined by



Fig. 2. Relationship between conformational and catalytic features of wild-type and
variants. The position of wild-type AADC and variants R347G, R347Q, R347K, D345A and
F103L are indicated. The solid symbol (■) represents positions of variants previously
studied [7]. (A) Plot of difference of the magnitude of the near-UV dichroic signal of holo
and the corresponding apo enzyme as a function of the ratio of ANS intensity of each
variant and the wild-type, and (B) plot of the decrease of kcat as a function of the
increase of ANS intensity. The diagonal lines correspond to a linear fit, with R2 values of
−0.926 and 0.842 for (A) and (B), respectively.

Fig. 3.Modelledmobile loop of human AADC (residues 326–346). The position of the loop
(pink ribbons and sticks) is shown in the context of theAADCstructure (grey ribbons). The
predicted hydrogen bonds network involving Arg347, Asp345 and residues of the mobile
loop (Leu333 and His335) is shown in yellow, together the relative distances (Å).

Fig. 4.Modelled R347Q and R347Kmutants of humanAADC. The position of the loop 326–
346 (pink ribbons and sticks) is shown in the context of the dimeric AADC structure. Chain
A is represented as grey ribbons. The distance (Å) between residues Gln/Lys347 and
Asp345 is shown in yellow and orange, respectively.
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energy minimization. As shown in Fig. 1 of SM, the side chain of Arg347
is predicted to form a hydrogen bond with the main chain oxygen of
Phe103, an active site residue composing the hydrophobic cavity that
hosts the substrate. The π system of Phe103 appears to be involved in
the binding and orientation of the substrate as well as in stabilizing
the position of the Tyr79 side chain [15]. Moreover, the proximity of
Arg347 in the primary structure to the C-terminus of the loop (aa
328–339)missing in the structure, urged us to also explore the possible
interaction(s) of this residue with those of the loop. Thus, we modelled
the latter starting from the structure of AADC complexed with
carbidopa, using the homologous region of HDC (PDB: 4E1O; residues
328–346) as template [9]. The modelling results obtained are shown
in Figs. 3 and Fig. 2 of SM. Two main interactions are engaged by
Arg347: 1) the guanidine moiety is placed at hydrogen-bond distance
from themain-chain oxygen atom of Leu333 (~3.1 Å), the latter residue
being adjacent to Tyr332, which is involved in the decarboxylase activ-
ity [18]; 2) the second one takes place between Arg347 and Asp345
(~2.4 Å), which also interacts also with the imidazole ring of His335
(~3.1 Å; Fig. 3). Therefore, it is predicted that there is a network of inter-
actions involving residues Asp345, Arg347, His335 and Leu333, the role
of which is probably to stabilize the closed conformation of the AADC
catalytic loop. Similar interactions were also observed in the crystal
structure of the close homologous human HDC (e.g., Asp345-His337;
Fig. 2 of SM). However, in HDC the stabilization of residue Leu333 rea-
sonably involves a hydrophobic interaction between its side-chain and
Met347, which corresponds to Arg347 in human AADC. Since both
interactions of Arg347 with Leu333 and Asp345 are missing in the
R347G mutant, we have modelled the previously characterized patho-
genic variant R347Q in an attempt to analyse the interactions of
Gln347 with neighbouring residues. As shown in Fig. 4, the modelling
study reveals that (i) the interaction (i.e., a hydrogen-bond) with
Asp345 is still conserved, even if the minimum distance between the
residues Gln347 and Asp345 (̴ 3.5 Å) is greater compared to the distance
observed for the residues Arg347 and Asp345, and (ii) the interaction
with Leu333 is completely lost, presumably leading to destabilization



Fig. 5. Absorption spectra of the complex of wild-type and variants with DME. Absorption
spectra ofwild-type and variants (10 μM)after 3 h of incubationwith 300 μMDMEat 25 °C
in 100 mM potassium phosphate buffer, pH 7.4.
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of the catalytic loop. Therefore,we could reason that theArg347-Leu333
interaction is pivotal for the proper positioning of the active site residue
Tyr332 and that the lack of such interaction would result in impaired
decarboxylase activity. We have also modelled an artificial R347K mu-
tant that, according to our assumptions, was predicted to be engaged
in a similar pattern of interactions as observed for the wild-type
AADC. Interestingly, as shown in Fig. 4, the ε-amino group of Lys347
preserves the electrostatic interaction with Asp345 ( ̴ 3.4 Å), but, as in
the case of the R347Q mutant, it loses the hydrogen-bond with the
main-chain O atom of Leu333, leading us to suppose that such amutant
would also have exhibited a sharp decrease in catalytic activity similar
to that observed for the mutants R347G and R347Q. Therefore, on the
basis of all the above observations, we have prepared and characterized
the F103L, D345A and R347K mutants.

3.4. Impact of themutations F103L, D345A and R347K on the structural and
functional properties of the wild-type AADC

The variants F103L, D345A, and R347K were expressed in E. coli and
purified to homogeneity, as described inMethods section. A comparison
of their far-UV CD spectra with that of the wild-type protein revealed
superimposable features, indicating that substitution of Phe103,
Asp345 or Arg347 for leucine, alanine or lysine, respectively, does not
alter the secondary structure of the wild-type AADC, significantly (re-
sults not shown). The visible absorption and CD spectra of the variants
F103L, D345A and R347K were similar to the corresponding spectra of
wild-type AADC (Fig. 1 and inset). The KD(PLP) values of the variants
F103L, D345A and R347K were ~2-, ~3.5-, and 5-fold, respectively,
higher than the corresponding value of the wild-type enzyme
(Table 1). Dichroic spectra in the near-UV region of both holo and apo
form of the three variants together with the ANS fluorescence emission
spectra of their holo formswere acquired and comparedwith the corre-
sponding spectra of the wild-type protein. As shown in Fig. 2A, the plot
of these data indicates that the examinedmutations fit the linear corre-
lation of the differences between the dichroic signals of holo and apo
form against the ANS emission intensity of each holo mutant. The posi-
tion of the F103L and D345A mutants on the curve is indicative of the
meaningful impact of the mutations F103L and D345A on the apo-
holo transition, even if less pronounced than that of mutations of resi-
dues mapping to loop 1 (H70T, H72Y, Y79C, P81L) [8]. On the other
hand, the finding that the position of the R347K in this curve is similar
to that of the wild-type AADC, R347Q and R347G variants strongly sug-
gests that the mutation R347K does not alter the tertiary structure of
holo-AADC. In order tofindout if themutations under study have an im-
pact on decarboxylase activity, the steady-state kinetic parameters of
the variants were measured (Table 1). The kcat/Km of the variants
F103L, D345A, and R347K was decreased by ~19-, 530-, and 970-fold,
respectively, in comparison with the wild-type AADC value. The de-
crease in catalytic efficiency is mainly driven by the decrease in kcat
(~14-fold in F103L, ~97-fold in D345A, and ̴ 345-fold in the case of
R347K). When Phe103, belonging to the substrate binding pocket, and
in van der Waals contact with the catecholic ring of carbidopa (a sub-
strate analogue) [15], is substituted with a residue bearing an aliphatic
side chain, there was a little change in the Km value.

As shown in Fig. 2B, F103L fits the linear relation between the struc-
tural and catalytic changes already identified for other AADC variants
[7]. This result, in linewith the fact that Phe103maps to loop 2, suggests
that mispositioning of the aromatic ring of Phe103 due to the loss of the
interaction with R347 could not explain the remarkable loss of catalytic
activity of the R347 variants (Table 1). On the other hand, it is evident
that D345A and R347K do not fit the linear relation, taking in the plot
a location similar to that of the wild-type protein and the other R347
variants (Fig. 2B). In other words, the drop in catalytic activity of the
variants R347Q, R347G, R347K and D345A is definitely more consistent
than the change in their conformation. These findings are in line with
the bioinformatics analyses prediction and strongly suggest that the
hydrogen bonds between Arg347 and both Asp345 and Leu333 are rel-
evant for the catalyticmechanism of AADC. In this regard, it is of interest
to note that both Arg347 and Asp345 residues are close to the dynamic
catalytic loop (residues 328–339) of AADC, while Leu333 is in the mid-
dle of this loop. Previous spectroscopic and kinetic studies indicated that
this catalytic loop undergoes a conformational change upon substrate
binding, leading to a closure of the active site thereby achieving a con-
formational state that is productive for decarboxylation [19]. Indeed,
site-directed mutagenesis has strongly suggested that Tyr332 performs
the protonation of the Cα atom of the quinonoid intermediate which is
crucial for the decarboxylation pathway [18].

3.5. Binding mode of variants with DME

Based on the above-mentioned results and considerations, we have
decided to analyse the effects of the mutations under study on the for-
mation of the external aldimine. This is the first intermediate that
forms upon covalent binding of the substrate to the formyl group of
the cofactor in PLP-enzymes while exchanging internal with external
Schiff base through a gem-diamine intermediate [20]. PLP reactivity
has beenwidely studied for this family of enzymes and the generally ac-
cepted hypothesis is based on Dunathan's proposal, published in 1966,
suggesting that PLP-enzymes employ stereoelectronic effects to control
their reaction specificity [21]. Dunathan's hypothesis assumes that en-
zymes place the bond to be broken of the external aldimine parallel to
the p-system. In thisway the developing p orbital is aligned formaximal
overlap with the extended p system, lowering the energy of the transi-
tion state and increasing the reaction rate. In decarboxylases, the Cα-
COO− should be found in the orthogonal position to the p-system and
its rupture allows the generation of a carboanionic quinonoid interme-
diate which is further protonated at the Cα leading to amine generation
[22].

We have selected DME, a substrate analogue that contains an ester-
ified carboxyl group and, therefore, is not susceptible to decarboxyl-
ation. For this reason, the AADC-DME complex appears to be a good
model for studying the external aldimine intermediate. The absorption
spectra upon addition of DME to the wild-type AADC and the variants
under study have been registered up to 3 h, a time after which DME un-
dergoes oxidation. As shown in Fig. 5, a prominent absorbance band
centred at 398 nm, already attributed to the formation of the external
aldimine, as well as a band at 325 nm characterize the complex of the
wild-type enzyme or F103L with DME. This is similar to what was
already seen for liver and kidney AADC [23,24]. On the contrary, we
have noticed that DME added to R347G, R347Q, R347K, and D345A
caused, in addition to the absorbance bands at 398 nm and 325 nm
(the latter being more pronounced than for wild-type AADC and
F103L), an absorbance band at 500 nm, typical of a quinonoid
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intermediate. It was also observed that both 325 and 500 nm bands in-
creasedwith time, concomitantlywith the decrease of the 398nmband.
To determine if this reaction converts PLP into PMP or other coenzyme
forms, aliquots were withdrawn after 3 h of incubation of the wild-type
enzyme and the variants F103L, R347Q, or R347G or R347K or D345A
with 300 μMDME. These samples were then subjected to HPLC analysis
after total denaturation. Interestingly, it was found that, while the orig-
inal PLP content of thewild-type AADC and themutant F103L remained
unchanged, about 10–15% of the PLP of mutants R347Q, R347G, R347K
and D345A was converted into PMP.

These results may indicate that the reaction in mutants R347Q,
R347G, R347K and D345A does not stop at the step of external aldimine
formation. Instead, the appearance of the quinonoid species at 500 nm
and the production of PMP are consistent with the suggestion of DME
binding at the active site of the variants in a conformation orienting
the Cα–H bond perpendicular to the plane of the cofactor system. In
otherwords, such an event is indicative of amispositioning of the exter-
nal aldimine at the active site of these variants.

3.6. The structural and functional relevance of the Arg347-Leu333-Asp345
triad

Taken together, these results rule out the possibility that the lack of
the interaction of Arg347 with the main chain oxygen of Phe103 could
be responsible for decreased catalytic activity of the different R347mu-
tants. Rather, they point to a set of hydrogen bonds engaged by Arg347
with both Asp345 and Leu333 and its effect on the decarboxylase activ-
ity of the humanAADC. As predicted by bioinformatics analyses, the dis-
ruption of both hydrogen bonds occurs uponmutation of Arg347 to Gly,
while the disruption of one hydrogen bond takes place upon mutation
of Arg347 to Gln or Lys or inmutant D345A. Since remarkable decreases
in the kcat (even if to different degree) is shared by all the tested R347
mutants and the D345 mutant, it is reasonable to suggest that the
Arg347-Leu333-Asp345 hydrogen bonds network plays an important
role in the catalysis of AADC. Moreover, the significant decrease in the
kcat values of R347G, R347Q, R347K, and D345A appears to be a conse-
quence of an incorrect location of the external aldimine at their active
site. These findings allow us to (i) indicate that Leu333, belonging to dy-
namic catalytic loop, and the Arg347 and Asp345 residues adjacent to it,
are structural elements that impose important constrains on the align-
ment of the catalytic groups at the active site of the human AADC
upon substrate binding, and (ii) offer an explanation for the molecular
basis of the pathogenicity of the R347Q and R347G variants.

3.7. Therapeutic suggestions

Up to date, specific treatments guidelines are lacking for patients
with AADC deficiency. Thus, a combination of pyridoxine, L-Dopa,
MAO inhibitors and dopamine agonists is often administered in order
to potentiate dopaminergic transmission. Like other diseases related
to protein malfunctioning, an inherited mutation can be a catalytic
and/or a folding mutation, thus altering protein function in different
ways. For this reason, a detailed analysis into how missense mutations
induce AADC deficit may provide a useful guidance for a proper thera-
peutic choice, and thereby improve clinical outcome. Only in the last
three years studies performed using pathogenic AADC variants in the
purified recombinant form have allowed identifying, at the protein
and/or cellular level, their defects and, on these bases, stratify patients
into different therapeutic categories [7,10,25]. Following this view,
characterization of the variants R347Q and R347G provides the basis
for delineate themost appropriate pharmacological therapy for patients
bearing the pathogenic mutations of Arg347. The low kcat value of the
purified recombinant R347G strongly suggests that a dopamine agonist
together with folinate could be the best way of assessing a good clinical
response of patients bearing theR347Gmutation. In fact,while the ther-
apy with dopamine agonists could mime the dopamine effects, the one
with folinic acid could not allow its depletion due to the conversion of
accumulated L-Dopa into 3-O-methylDopa. The same therapy strategy
could be applied to patients harbouring the R347Q variant. However,
in the case of mutation R347G, which, unlike R347Q, has a 4-fold
KD(PLP) value higher than that of the wild-type, the supplementation of
pyridoxine could also be useful. All these considerations seem to be con-
sistent with the improvement observed following the treatment of pa-
tient A.

4. Conclusion

A clinical case of a patient bearing a novel mutation in AADC, R347G,
associated with severe enzyme activity deficiency is reported. Similarly
to the pathogenic R347Q variant previously studied [7], the R347Gmu-
tant appears to be defective in catalysis rather than protein folding. The
reason(s) for the dramatic loss of decarboxylase activity caused by the
substitution of Arg347 with either Gly (~475-fold) or Gln (~87-fold)
were investigated. The in silico modelling of the missing loop 328–339
of AADC structure predicted interactions of Arg347 with Asp345 and
Leu333. Structural and functional features of the newdesignedmutants,
D345A and R347K in recombinant AADC, strongly suggested that resi-
dues Arg347, Asp345, and Leu333, as well as their mutual interaction,
are structural elements relevant for a proper location/orientation of
the substrate and/or of the catalytic groups at or near the active site. Al-
together, our data highlight the molecular defects caused by the muta-
tions of Arg347, and allow us to suggest a therapeutic management of
patients bearing the mutation R347G.
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Abstract: Aromatic amino acid, cysteine sulfinic acid, glutamate and histidine decarboxy-
lases, belonging to group II of pyridoxal 5'-phosphate-dependent enzymes, catalyze the syn-
thesis of dopamine/serotonin, hypotaurine, !-aminobutyric acid and histamine, respectively. 
Considering that these reaction products are all essential bioactive molecules, group II decar-
boxylases have been long studied from an evolutionary, biochemical and pharmacological 
standpoint. Despite the fact that they all belong to a common fold-type, during evolution each 
decarboxylase has evolved unique structural elements responsible for its substrate specificity. 
Combining a literature update with bioinformatic analyses, this review focuses on some struc-
tural determinants shared by these enzymes revealing their intrinsic substrate specificity and 
highlighting the importance of some residues/regions for catalytic competence. In particular, 
two key structural features emerge: 1) a mobile catalytic loop, and 2) an open-to-close con-
formation accompanying the apo-holo transition. Drawing attention on these elements is cru-
cial in correlating subtle structural modifications to functional properties for the understand-
ing, at a molecular level of a pathological condition. This is corroborated by the increasingly 
important role played by these decarboxylases in several different pathological states (auto-
immune diseases, type I diabetes, Parkinson's disease, aromatic amino acid decarboxylase de-
ficiency, Tourette's syndrome and cholangiocarcinoma). 

Keywords: Pyridoxal 5'-phosphate, aromatic amino acid decarboxylase, cysteine sulfinic acid decarboxylase, glu-
tamate decarboxylase, histidine decarboxylase, type I diabetes, Stiff-person syndrome, Parkinson's disease, aromatic 
amino acid decarboxylase deficiency, Tourette's syndrome, cholangiocarcinoma. 

GROUP II DECARBOXYLASES: A SUBFAMILY 
OF PYRIDOXAL 5'-PHOSPHATE (PLP) EN-
ZYMES 

Enzymes containing PLP are ubiquitous in biology, 
performing essential reactions in metabolism of amino 
acids and amines [1]. These enzymes catalyze a wide 
variety of reactions, including transamination, racemi-
zation, !- and "-decarboxylation, retro-aldol cleavage, 
"- and #-elimination and "- and #-substitution. The ba- 
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sic role of PLP in all these reactions has been under-
stood since the 1950s from the seminal work of 
Metzler and Snell in the United States of America [2-4] 
and of Braunstein and colleagues in the former Union 
of the Soviet Socialist Republics [5-7]. The strongly 
electron withdrawing capability of the pyridinium ring 
was proposed to stabilize !- or "-carbanions on the 
amine or amino acid portion of substrates, thereby fa-
cilitating the wide variety of the reactions. The chemis-
try of these enzymatic reactions is thus controlled by 
the PLP cofactor, and PLP alone has been shown to 
perform many of these reactions, albeit at very slow 
rates. Therefore, it is the protein environment that con-
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fers the reaction specificity and enormous rate accel-
erations (by a factor of 1010 or more) typical of these 
enzymes. In the past seventy years, PLP-enzymes have 
been the subject of extensive research focused on the 
understanding of their structure-function relationships 
[8-14]. In these enzymes, PLP is invariably bound as 
an imine to the $-amino group of a lysine residue of the 
protein in a structure known as the internal aldimine. 
After the initial binding of the substrate amino acid as a 
Michaelis complex, an external aldimine is formed be-
tween the C4’ of the cofactor and the !-amino group of 
the substrate, which substitutes in the Schiff base link-
age the $-amino group of the PLP-binding lysine. Tran-
simination (or transaldimination) itself is not a single 
step process. Indeed, it proceeds through a geminal dia-
mine in which both enzyme and substrate amino groups 
are bound to C4’ (Fig. 1). Dunathan's hypothesis [15] 
predicts that the course of the reaction at this stage 
would depend on which of the three bonds to the !-
carbon is held perpendicular to the plane of the coen-
zyme-imine % system by interactions between apoen-
zyme and substrate. This fundamental concept explains 
how reaction specificity is controlled and points on the 
role of polypeptide chain in directing the coenzyme 
intrinsic catalytic properties. Thus, the reaction cata-
lyzed depends on which of the three !-substituents is 
lost, i.e. (i) elimination of CO2 from C! (!-
decarboxylation), (ii) deprotonation (transamination, 
racemization, "-elimination and "- replacement, #-
elimination and #-replacement), and (iii) elimination of 
the side chain of amino acids (!-synthesis and aldol 
cleavage) (Fig. 1). In any case, this event results in the 
formation of a quinonoid intermediate in which the 
substrate and the cofactor generate a coplanar structure. 
An exception to this common mechanism is repre-
sented by PLP-dependent phosphorylases, where PLP 
does not act as an electrophilic catalyst but it partici-
pates in proton transfer acid-base reactions through its 
phosphate group [16]. 

The wide catalytic versatility of PLP-enzymes is ac-
companied by a limited structural diversity. In 1995 
Grishin et al. [17] distributed PLP-enzymes into five 
different fold-types (from I to V) based on amino acid 
sequence comparison, predicted secondary structure 
and three-dimensional structures published theretofore 
[17]. This classification has been later updated with 
new information provided by progresses due to the in-
creasing number of PLP-enzymes structure determina-
tions [18]. 

The fold-type I, which is the most common one, is 
mainly typical of aminotransferases and of the majority 

of the "-decarboxylases, including human aromatic 
amino acid decarboxylase (AADC), cysteine sulfinic 
acid decarboxylase (CSAD), glutamate decarboxylase 
(GAD) and histidine decarboxylase (HDC) and also of 
enzymes which catalyse !- or #-eliminations. Enzymes 
that catalyse "-elimination reactions belong to fold-
type II, alanine racemase and a subset of decarboxy-
lases (as eukaryotic ornithine decarboxylase) to fold-
type III and D-alanine aminotransferase as well as few 
other enzymes to fold-type IV. Finally, the fold-type V 
comprises glycogen and starch phosphorylases. 

 
Fig. (1). Catalytic intermediates of PLP-catalyzed reactions 
in PLP-enzymes. The versatility of the cofactor allows mul-
tiple possible reaction pathways according to Dunathan's 
hypothesis [15]. 

 

In 1994, Sandmeier et al. [19] proposed a classifica-
tion for PLP-decarboxylases considering their evolu-
tionary relationships derived by amino acid sequence 
comparisons. According to this analysis, glycine decar-
boxylase, both from various prokaryotic and eukaryotic 
sources, is included in group 

I. Group II comprises AADC, CSAD, HDC and 
GAD from prokaryotic and eukaryotic organisms. Pro-
karyotic ornithine, lysine and some arginine decar-
boxylases belong to group III. Finally, eukaryotic or-
nithine decarboxylases together with both prokaryotic 
and eukaryotic arginine decarboxylases and diamino-
pimelate decarboxylase are attributed to group IV. 
From that investigation [19] it is pointed out that de-
carboxylases have evolved along multiple lineages and 
even if some of them act on the same substrate, as or-
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nithine decarboxylases, they might not belong to the 
same group [20-22]. 

Increasing knowledge, given by structural compari-
sons, reveals only two different PLP-binding folds for 
all decarboxylases. Group I, II and III decarboxylases 
share the PLP-binding motif of fold-type I. Instead, 
group IV decarboxylases belong to fold-type III. 

The hallmarks of decarboxylases belonging to fold-
type I are: a) a glycine-rich motif upstream from the 
PLP-lysine and b) an invariant aspartate residue inter-
acting with the pyridine nitrogen [17, 19]. In fold-type 
III decarboxylases the PLP-lysine precedes the glycine-
rich loop and the pyridine nitrogen positive charge in-
teracts with the carboxy side chain of a glutamate resi-
due which is part of a cluster of acidic residues [21, 
22]. 

Table 1 presents some general characteristics and 
Fig. (2) shows substrates and products of the human 
group II decarboxylases that are the topics of this re-
view. 

HUMAN !-DECARBOXYLASES OF GROUP II: 
FUNCTIONAL PROPERTIES AND IMPLICA-
TIONS IN DISEASES  

AADC 

AADC is a homodimeric !-decarboxylase that cata-
lyzes the conversion of L-Dopa or 5- hydroxy-L-
tryptophan to the important neurotransmitters dopa-
mine or serotonin, respectively. The reported kcat and 

Km kinetic parameters for the pig enzyme are 4.3 ± 0.2 
s-1 and 0.070 ± 0.005 mM for L-Dopa and 1.9 ± 0.3 s-1 

and 0.155 ± 0.014 mM for 5-hydroxy-L-tryptophan in 
50 mM Hepes pH 7.5 [23]. For the human enzyme, the 
values for L-Dopa are 7.6 ± 0.1 s-1 and 0.11 ± 0.01 mM 
in 100 mM potassium phosphate buffer pH 7.4 [24]. 
The enzyme is also able to catalyze the decarboxylation 
of other cathecol- or indole-related L-amino acids, and, 
for this reason, it is more appropriately defined aro-
matic amino acid decarboxylase rather than Dopa de-
carboxylase. In addition, AADC can catalyze multiple 
side reactions, such as oxidative deamination and half- 
transamination, depending on the presence or absence 
of molecular oxygen [23, 25]. 

AADC was found in mammalian tissues of neuronal 
origin, particularly in various areas of mammalian 
brain and in the sympathetic nervous system in 
cathecolamine- and serotonin- producing neurons as 
well as in adrenal and pineal glands and glial cells [26]. 
Moreover, the presence of the enzyme was also evi-
denced in nonneuronal tissues, mainly in liver and kid-
ney, and, to a lower extent, in lung, spleen, and pan-
creas [26]. It is evident that, in neuronal tissues, AADC 
is devoted to the synthesis of neurotransmitters, while 
the function of AADC in nonneuronal tissues is far less 
clear. It has been reported that neuronal AADC could 
be phosphorylated and thus activated in vitro by either 
cAMP- or cGMP-dependent protein kinase [27, 28], 
even if the biological significance of this finding is still 
unknown [29]. Interestingly, Albert et al. [30] demon-

Table 1. Human PLP-dependent decarboxylases belonging to the group II. 

Name Acronym1 E.C. Gene Substrates Products Sequence2 Structures3 

Aromatic-L-
amino-acid 
decarboxylase 

AADC 4.1.1.28 DDC L-dopa 5-
hydroxy-L-
tryptophan  

Dopamine 5-
hydroxytryptamine 

P20711 
(DDC_HUMAN) 

1JS34, 1JS64, 
3RBF, 3RBL, 
3RCH 

Histidine decar-
boxylase 

HDC 4.1.1.22 HDC L-histidine histamine P19113 
(DCHS_HUMAN) 

4E1O 

Glutamate de-
carboxylase 1 

GAD67 4.1.1.15 GAD1 L-glutamate 4-aminobutanoate 

(GABA) 

Q99259 
(DCE1_HUMAN) 

2OKJ, 3VP65 

Glutamate de-
carboxylase 2 

GAD65 4.1.1.15 GAD2 L-glutamate 4-aminobutanoate 

(GABA) 

Q05329 
(DCE2_HUMAN) 

2OKK 

Cysteine 
sulfinic acid 
decarboxylase 

CSAD 4.1.1.29 CSAD 3-sulfino-
Lalanine 

hypotaurine Q9Y600 
(CSAD_HUMAN) 

2JIS 

1Abbreviation used in this review to indicate to the specific enzyme. 
2Accession Code in UniProtKB [130]. 
3Accession Code in PDB. 
4In the case of AADC, the enzyme from S. scrofa is also reported (90% sequence identity with the human enzyme). 
5GAD65/67 chimaera. 
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strated that the single gene coding for AADC in both 
neuronal and nonneuronal tissues contains alternative 
promoters directing expression of neuronal and non-
neuronal mRNA, differing only in their 5’- untranslated 
regions. Kinetic, mechanistic and inhibition studies 
carried out up to now on mammalian AADC enzymes 
were reported in a recent review [31]. 

 
Fig. (2). Substrates and products of the human group II de-
carboxylases. 

 

AADC is implicated in several clinic disorders. The 
enzyme is the target of drugs used in Parkinson’s dis-
ease (PD), a neurodegenerative disease caused by the 
loss of dopaminergic neurons in substantia nigra re-
gion of the midbrain resulting in reduced level of do-
pamine at the neuronal terminals in the striatum [32, 
33]. The current treatment for PD consists in the ad-
ministration of L- Dopa along with a peripheral AADC 
inhibitor. The inhibitors commonly used are carbidopa 
(L-"-methyl-"-hydrazino-3,4-dihydroxyphenylpro-pio-
nic acid) or benserazide ((RS)-2-amino-3-hydroxy- N'-
(2,3,4-trihydroxybenzyl)propanehydrazide), both un-
able to cross the blood brain barrier. Benserazide is 
metabolically cleaved into serine and 2,3,4-
trihydroxybenzylhydrazine which is the actual inhibi-
tory molecule. The presence of a hydrazine moiety in 

both carbidopa and 2,3,4-trihydroxybenzylhydrazine is 
responsible for the irreversible binding of these inhibi-
tors to the formyl group of PLP leading to the forma-
tion of a dead-end hydrazone. 

The rationale of the therapy in Parkinsonism is 
based on the pharmacological principle that the L- 
Dopa-carbidopa/benserazide combination would re-
duce the degradation of L-Dopa to dopamine in the 
peripheral compartment and, consequently, increases 
the amount of dopamine available to the brain. Since 
both inhibitors presently available for clinical use lack 
AADC specificity and are responsible for various un-
desired side effects, the identification of highly selec-
tive and reversible AADC inhibitors has been the sub-
ject of recent investigations [34-36], reviewed in [37]. 

A genetic disorder involving AADC is AADC defi-
ciency. It is an autosomal recessive neurometabolic 
disease (OMIM 608643) caused by inherited mutations 
in the AADC gene leading to malfunctioning of the en-
zyme. AADC deficiency is characterized by a cerebro-
spinal fluid profile of low homovanillic acid and 5-
hydroxyindolacetic acid, high L-Dopa and 5-hydroxy-
L-tryptophan [38-40]. The associated clinical features 
are hypotonia, neurodevelopmental delay, oculogyric 
crises and a complex movement disorder with auto-
nomic features [41, 42]. Definitive diagnosis is further 
confirmed by the quantification of plasma AADC en-
zyme activity and finally through AADC gene sequenc-
ing. The genotyping of AADC deficiency patients 
(about 100 but they are rapidly increasing) identified 
more than 25 missense mutations on the AADC gene, 
present in both homozygous and in compound het-
erozygous patients. Biochemical, cell biology and bio-
informatics analyses of the structural and functional 
consequences of missense mutations present in homo-
zygous patients constitute a significant advancement on 
the understanding of the mechanism by which patho-
genic mutations lead to AADC deficiency, thus allow-
ing to suggest an appropriate therapeutic management 
[24, 43-45]. In particular, it was evidenced that the ma-
jority of mutations associated with AADC deficiency 
concerns residues involved in the proper transition of 
apo to holo enzyme [44]. This transition involves a 
large conformational change as reported in a following 
section regarding structural comparisons among decar-
boxylases (see below). 

AADC is also regarded as a target of autoantibodies 
in autoimmune polyendocrine syndrome I (APS I) [46, 
47], especially in patients with autoimmune hepatitis 
[48]. Some studies aimed to map human antibody epi-
topes on AADC revealed that autoantibodies to the C-
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terminal region of the enzyme induce a significant in-
hibition of decarboxylase activity [48, 49]. These data 
constitute a first step for the understanding of the inter-
relation between autoantibody-mediated inhibition of 
enzymatic activity and epitope specificity. 

CSAD 

Among "-decarboxylases, CSAD is the less studied 
member so far. Its first partial characterization was per-
formed on the enzyme extracted from calf brain [50]. 
The great deal of information on this enzyme is avail-
able from the mouse form. The protein is a homodimer 
of 55 kDa subunits [51] expressed in liver, kidney [52], 
adipose tissue [53], retina [54], mammary glands [55] 
and brain, although the level of its expression in the 
brain is still controversial [56, 57]. CSAD is responsi-
ble for the decarboxylation of cysteine sulfinic acid (or 
cysteic acid) into CO2 and hypotaurine which is further 
oxidised to taurine, a molecule playing multiple roles 
in different biological processes: cell volume regula-
tion, cell homeostasis, bile acids conjugation, mito-
chondrial tRNA modifications, central nervous and 
visual systems development [58-60]. This amino acid, 
the major product of cysteine metabolism, is consid-
ered conditionally essential in humans. The published 
results regarding kinetic parameters of the human 
CSAD concern the kcat/Km value reported to be 3550 
± 880 M-1s-1 [61]. Instead, the reported values of kcat 
and kcat/Km for the mouse enzyme are 6.6 s-1 and 33000 
M-1s-1, respectively [57]. CSAD shares high sequence 
identity with GAD and with human GAD-like protein 
[57, 62], the latter performing also decarboxylation of 
cysteine sulfinic acid, involved in taurine synthesis and 
reported to be associated with bipolar syndrome [63]. 
Since the expression level of CSAD is low, taurine is 
often supplemented in diets, especially in infants, even 
if it is naturally present in foods such as seafood and 
meat. CSAD knockout mouse model evidenced the im-
portant physiological role played by the enzyme in 
modulating taurine concentration [64]. As AADC, also 
CSAD acts as autoantigen in APS-1, even if anti-
CSAD reactivity has low frequency with respect to 
AADC or other "-decarboxylases [65]. 

GAD 
GAD catalyzes the irreversible !-decarboxylation of 

L-glutamic acid to #-aminobutyric acid (GABA) and 
CO2, the former being the major inhibitory neuro-
transmitter of the mammalian brain [66, 67]. The en-
zyme was also found in nonneuronal tissues, including 
the pancreatic islet cell and kidney, where it performs 
signaling and trophic functions [68]. 

In addition to the primary decarboxylation reaction, 
the enzyme catalyzes a secondary slower half- transa-
mination producing pyridoxamine 5'-phosphate (PMP) 
and succinic semialdehyde. This reaction converts holo 
form in the apo one, which, upon PLP binding, is re-
converted into the active holo form. Of course, in the 
absence of PLP, a time-dependent GAD inactivation 
occurs. As a whole, these reactions represent the GAD 
activity cycle of apo and holoenzyme. In vertebrates, 
from fish to man, the enzyme exists as two isoforms, 
GAD67 and GAD65, with a molecular mass of 67kDa 
and 65kDa, respectively, each encoded by a different 
gene. A 75% sequence identity is shared by the two 
isoforms in the decarboxylase domain, being the differ-
ence only confined in the first 100-terminal amino ac-
ids [69]. The two isoforms have different intracellular 
distribution: GAD65 is found mainly in synaptic end-
ings, whereas GAD67 is more uniformly distributed 
through the cell [70]. Notably, many features distin-
guish GAD67 and GAD65. First, GAD67 is cytosolic, 
while GAD65 is membrane-associated. Second, the apo 
forms of GAD67 and GAD65 exhibit different features 
with respect to interaction with PLP: (i) a lower PLP 
binding constant for GAD67 than for GAD65 [71], (ii) 
a much higher rate constant of the apo to holo conver-
sion for GAD65 than for GAD67 [71], and (iii) a major 
propensity for GAD65 to be converted into the apo 
form in the presence of glutamate than for GAD67 [71, 
72]. Thus, the regulatory role played in the apo/holo 
ratio could explain why GAD67 is mainly found in the 
holoform (therefore always active) and is thus respon-
sible for the production of basal levels of GABA, while 
GAD65 is predominantly in the inactive apo form and 
is converted into the active holo form only in response 
to extra GABA requirement. Other compounds were 
found to play a different regulatory role of the two iso-
forms in the apo/holo cycle. ATP, which competes with 
PLP for apo GAD binding, slowed the activation of 
GAD65 but not that of GAD67 [71]. An opposite effect 
was observed in the presence of organic phosphate 
[71]. Again, although both GAD67 and GAD65 are 
regulated by phosphorylation, the regulation occurs in 
an opposite manner, i.e., GAD67 is inhibited while 
GAD65 is activated by phosphorylation. This is consis-
tent with the fact that the two isoforms have a different 
subcellular distribution and, thus, may be subjected to 
different regulation in responding to physiological con-
ditions [73]. 

Another striking difference between GAD67 and 
GAD65 deserves note. Unlike GAD67, GAD65 is 
autoantigenic with autoantibodies identified in patients 
with autoantibodies type I diabetes and the Stiff-person 
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syndrome, a neurological disorder. It is of interest to 
notice that binding of autoantibodies causing inhibition 
of GAD65 in vitro occurs in regions such as the C-
terminus of the enzyme that show difference in the 
structure and mobility with respect to GAD67 [72, 74-
77] (see below). 

The relevance of GAD in the clinical field is evi-
denced by the fact that abnormally low levels of 
GABA in the brain are associated with serious neuro-
logical disorders such as epilepsy [78], Huntington dis-
ease [79], Parkinson’s disease [80], and Alzheimer’s 
disease [81]. However, the pharmacological treatments 
are directed to regulate the levels of GABA by drug 
design strategy towards either the enzymes involved in 
GABA processing (such as GABA aminotransferase) 
or the GABA receptors. 

HDC 
HDC is the enzyme responsible for the synthesis of 

histamine from L-histidine. This multifunctional bio-
genic amine is involved in many physiological and 
pathological processes: neurotransmission, gastric se-
cretion, anaphylactic reactions and cell proliferation 
[82]. 

The expression of HDC is regulated by several fac-
tors such as glucocorticoids, cAMP, calcium ions, pro-
tein kinase C activity as well as other kinase-related 
signalling pathways [83-86]. 

The characterization of human HDC is quite poor 
and the little available information is relatively recent 
since the mammalian enzymes are reported to be scarce 
and unstable proteins. Human HDC is expressed in 
mast cells, basophils, enterochromaffin-like cells in the 
stomach, brain neurons, or macrophages. Human and 
mouse HDC are translated as ~74kDa forms and then 
subjected to tissue- specific post-translational C-
terminal proteolytic cleavage [87-91] to be converted 
into the catalytically active form [89, 92-94]. Processed 
isoforms range from ~53 to ~70 kDa, but the active 
ones are the 53-55 kDa isoforms [94-101]. The role of 
the C-terminal portion is to drive the HDC monomers 
to the endoplasmic reticulum before maturation, in or-
der to regulate histamine production [101-103]. 

Many derivatives of histidine have been identified 
as inhibitors of HDC. Among them L-histidine methyl 
ester (HME) which binds to the active site of the en-
zyme forming an external aldimine that cannot undergo 
decarboxylation, and "-methylhistidine that behaves as 
a suicide inhibitor [104, 105]. Again, epigallocatechin 
3-gallate [106] and phosphopyridoxyl histidine meth-
ylester [107] act as potent inhibitors of HDC. Recently, 

an aminooxy analog of histidine, 4(5)- aminooxymeth-
ylimidazole, was found to inhibit HDC with IC50 

# 2$10-7 M [108]. 

HDC-deficient mice present a decreased number of 
mast cells that are altered in morphology and granular 
content [109]. The studies on these models confirm the 
functions of histamine related to contraction of smooth 
muscle, increase of vascular permeability and stimula-
tion of gastric acid secretion. Moreover, they disclose 
other roles for this amine such as involvement in angi-
ogenesis, inflammation, neurotransmission [110] and in 
several types of tumours. A recent paper concerning 
the available mouse models presents an overview of all 
the effects examined and evidences the complexity of 
histamine functions and the advantages/disadvantages 
in knockout studies versus pharmacological approach 
[111]. In summary, other systematic experimental data 
are necessary to unravel the multiple roles played by 
histamine. 

Considering the involvement of the enzyme in 
pathological states, a truncated variant of HDC 
(W317X) is considered one of the genetic factors in-
volved in Tourette's syndrome, a severe neuropsy-
chiatric developmental disorder [112, 113]. The 
W317X mutation exerts a dominant- negative effect on 
HDC, resulting in lack of enzyme activity. However, 
recent studies have contradicted this hypothesis and 
stated that HDC mutations correlate poorly with this 
disorder [114]. It was also noted that the lack of HDC 
in mice results in increased locomotor and stereotypic 
behaviours, as well as increased anxiety [112, 113]. 
These findings point to a potential role for histaminer-
gic neurotransmission in neurobehavioural actions, 
such as tics. Moreover, increased HDC activity was 
demonstrated to be related to multiple tumours growth 
and HDC was reported to be dysregulated in some can-
cers [115]. In particular, a critical role of HDC in cho-
langiocytes proliferation has been assessed [116, 117], 
although data supporting a role in cholangiocarcinoma 
are still preliminary. 

Finally, as AADC and GAD, also HDC is an APS-1 
autoantigen and in one patient, for the first time, a cor-
relation between the presence of antibodies against 
APS-1 and the lack of gastric enterochromaffin-like 
cells [118] has been found. 

STRUCTURAL COMPARISON OF HUMAN 
GROUP II " -DECARBOXYLASES: SIMILARI-
TIES AND DIFFERENCES  

Till the last century, no experimentally determined 
structure of any member of group II "- decarboxylases 
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was available yet. Starting from 2001, when the first 
crystal structure of a member of this family was solved, 
i.e. Sus scrofa AADC [119] (~90% sequence identity 
with the human homologous enzyme), we have wit-
nessed a dramatic increase in the knowledge of the 
structural features of group II decarboxylases, which 
offers a detailed understanding of their similar enzy-
matic activities and highlights, at the same time, the 
key differences responsible for substrate specificity 
(Table 1; [77, 120]). Most importantly, this wealth of 
structural information paves the way for a detailed un-
derstanding, at molecular level, of some pathological 
states associated to these enzymes. 

The Overall Topology 

From a structural and evolutionary standpoint, the 
decarboxylase domains of AADC, CSAD, GAD65/67 
and HDC belong to the superfamily of fold-type I PLP-
dependent enzymes, sharing a number of structural fea-
tures that remained invariant upon the long evolution-
ary history of this superfamily [10] (Fig. 3A). In par-
ticular, as in the case of every fold-type I enzyme, 
group II decarboxylases are structural and functional 
dimers. The dimer represents the obligate quaternary 
structure required to generate a functional enzyme 
[121]. Moreover, they maintain all of the seventeen 
structurally conserved regions and the appropriate posi-
tioning of key residues, which are crucial for keeping 
the fold-type I fold and binding the PLP cofactor [122]. 
A detailed comparison of the available sequences and 
structures of the decarboxylase domains of AADC, 
CSAD, GAD65, GAD67 and HDC suggests that this 
group of enzymes can be further clustered in two dif-
ferent evolutionary subgroups, comprising AADC and 
HDC in a first subgroup (root mean- square deviation, 
RMSD & 0.8 Å), and GAD65/GAD67/CSAD in the 
other one (mean RMSD & 0.5 Å) [19] (Fig. 3B). 

Each of the two monomers is composed of three 
distinct domains (Fig. 4). A “large” domain, which 
consists of seven buried %-strands forming a %-sheet 
surrounded by eight "-helices, displays the "/% fold 
typical of fold-type I enzymes and hosts the PLP cofac-
tor. A “C-terminal”, or “small” domain, composed by a 
four-stranded antiparallel %-sheet and three "-helices, 
faces the opposite monomer. 

Finally, a “N-terminal” domain, composed by two 
helices linked by an extended strand, represents a dis-
tinct structural tract of all the group II decarboxylases. 
The latter forms a clamp to the neighboring subunit, 
with the first helix of one subunit aligning antiparallel 
to the equivalent helix of the other subunit. It is sug-

gested that this N-terminal domain is unlikely to repre-
sent an autonomous folding unit, but it is most likely 
stable only in the context of the dimer. The main func-
tion of this N-terminal domain would be to extend the 
interface between the two monomers [119]. A search of 
structurally similar domains, using the DALI server 
and the N-terminal domain of human AADC as query, 
highlights the presence of highly similar domains 
(RMSD < 3.0 Å over the entire N-terminal length) in 
other decarboxylases of bacterial origin (i.e., PLP-
dependent decarboxylase from Sphaerobacter thermo-
philes, PDB Code: 4RLG; tryptophan decarboxylase 
from Ruminococcus gnavus, PDB Code: 4OBV). Inter-
estingly, an analysis of the Human Microbiome Project 
data demonstrates that at least 10% of the human popu-
lation harbors at least one bacterium encoding a trypto-
phan decarboxylase in their gut community [123]. 

The N-terminal and the small C-terminal domains 
pack together via a short two-stranded sheet to close 
the monomer. The N- and C-terminal domains of each 
monomer form a structural and functional unit that is 
hypothesized to permit the large conformational 
changes accompanying the open-to-close switch of 
these enzymes (see below). 

The Active Site Residues Interacting with the PLP 
Cofactor 

The active site where the PLP cofactor lies is lo-
cated at the monomer-monomer interface. The ho-
mologous residues of the five enzymes interacting with 
the PLP cofactor are very well conserved and are 
shown in Table 2 and Fig. (5). The PLP cofactor binds 
to an evolutionarily invariant Lys residue through a 
Schiff base linkage. As already mentioned above, the 
carboxylate group of a conserved Asp residue stabi-
lizes, via an electrostatic interaction, the protonated 
pyridine nitrogen of PLP, providing the latter with a 
strong electrophilic nature necessary for the stabiliza-
tion of carbanionic intermediates during the enzymatic 
catalysis. Another well conserved base-stacking His 
residue is positioned on the re face of the pyridine ring 
of PLP, while the si face makes a hydrophobic interac-
tion with a conserved Ala residue. The oxygen atom in 
position 3 of PLP is stabilized via a hydrogen bond 
with a Thr residue. The phosphate group of PLP is fur-
ther anchored to the protein through an extended hy-
drogen bond network. The "5-helix dipole from the 
large domain, which is well conserved in fold-type I 
enzymes, is also responsible for the proper stabilization 
of the negative phosphate moiety. 



8    Current Medicinal Chemistry, 2017, Vol. 24, No. 00 Paiardini et al. 

 
Fig. (3). A) Schematic representation of protein sequences of human group II decarboxylases. The length of each sequence is 
indicated on the right of each bar. The position of the decarboxylase domain (PFAM ID: PF00282; [69]) relative to each se-
quence is also shown. B) Multiple sequence alignment of human group II decarboxylases. Amino acid one-letter code is used. 
Dashes represent insertions and deletions. Invariant positions are boxed in black. The secondary structures of human HDC 
(PDB code 4E1O) are reported in the first line of each block: !-helices and "-strands are rendered as squiggles and arrows, re-
spectively. ESPript ([134]; http://espript.ibcp.fr) was used to render this figure. 
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Fig. (4). Structural superposition of group II decarboxylases (HDC, AADC, GAD65, GAD67 and CSAD). In the case of 
AADC, the enzyme from S. scrofa was used. The N-terminal, large and C- terminal domains are represented in green, cyan and 
pink, respectively. Chain B is represented as grey cartoons and surface. 

 

Table 2. Residues of group II decarboxylases interacting with PLP and substrates. 

PLP  Substrate 

 Schiff 
base 

N1 O3 Re side Si side Phosphate "-carboxylate Side-chain 

AADC K303 D271 T246 H192 A273 S147, A148, 
S149, N300, 

H302 

H192  T82, I101, 
H302 

HDC K305 D273 T248 H194 A275 V150, S151, 
N302, S354 

H194 Y81, L102, 
S354 

GAD67 K405 D373 T348 H291 A375 G252, A253, 
N402, H404, 

G456 

R567 S192, 
N212, F214 

GAD65 K396 D364 T339 H282 A366 G243, A244, 
N393, H395, 

G447 

R558 S183, 
N203, F205 

CSAD K305 D273 T248 H191 A275 G152, S153, 
N302, H304, 

G357 

R466 F94, S114, 
Y116 

 
The Active Site Residues Interacting with the 
Ligands 

AADC and HDC have been both crystallized in 
complex with their respective inhibitors carbidopa and 
HME, while the structures of GAD65 and GAD67 have 
been determined with their reaction product GABA. 
The structure of CSAD has been solved solely with the 
PLP cofactor bound as internal aldimine (data not pub-
lished). 

In AADC and HDC structures, the "-carboxylate 
moiety of the inhibitor is always placed approximately 
orthogonal to the plane of the PLP ring, in agreement 
with Dunathan’s hypothesis [15] that foresees the per-

pendicular orientation of the scissile bond to the pyri-
dine ring of PLP to allow the greatest overlap between 
the & and ' orbitals during the transition state, as re-
ported above. Crystallographic data on these com-
plexes give therefore precious insights into the binding 
mode of substrates and inhibitors of human group II 
decarboxylases, and suggest at the same time how each 
enzyme is able to achieve reaction specificity and sub-
strate selectivity. 

The binding cleft where the ligands are bound is 
deeply buried into the active site cavity and extends 
underneath the si face of the pyridine ring of PLP. The 
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homologous residues of the five enzymes interacting 
with the ligands are shown in Table 2. 

In the case of AADC, the inhibitor carbidopa forms 
a hydrazone linkage with PLP, mimicking the external 
aldimine enzyme-substrate intermediate. His192 and 
three structural water molecules interact with the "-
carboxylate moiety of the inhibitor. Given the high 
structural similarity, it is expected that also the "-
carboxylate groups of the substrates are involved in the 
same interactions. One of the catechol hydroxyl groups 
of the inhibitor makes a hydrogen bond with the side 
chain of Thr82, which is located at the bottom of the 
ligand binding cleft. The other hydroxyl group of the 
catechol is hydrogen bonded with the phosphate moiety 
of PLP, and is also placed at hydrogen bonding dis-
tance with the imidazole ring of His302. Modelling of 
another inhibitor of human AADC into the ligand bind-
ing cleft, benserazide, evidenced that the latter could be 
accommodated without any major adjustment of the 
side chains of the residues composing the cleft [35, 
119]. 

A structural comparison of the substrate-binding 
pocket of HDC and AADC evidenced that the 
conformation of the inhibitors carbidopa and HME was 
quite similar [120], but highlighted at the same time 
key differences responsible for substrate specificity 

ferences responsible for substrate specificity (Fig. 6). 
Like carbidopa, the imidazole ring of HME points to-
ward the si face of the PLP-HME external aldimine, 
and makes two hydrogen-bonds with the main-chain of 
Tyr81 and a structural water molecule. Interestingly, 
the latter and a second water molecule in the substrate-
binding pocket of HDC occupy the same position of 
the two hydroxyl groups of the cathecol ring of carbi-
dopa. A crucial difference between the substrate-
binding pocket of AADC and HDC is represented by 
the presence in the latter enzyme of a Ser residue, 
namely Ser354, which is replaced by a Gly in AADC. 
The imidazole ring of HME is at hydrogen bonding 
distance from Ser354, suggesting that the latter could 
be a key residue for substrate specificity. Indeed, the 
S354G mutation in HDC resulted in a decreased affin-
ity for histidine, but at the same time an acquired abil-
ity to catalyze the decarboxylation of L-Dopa. It was 
therefore suggested that the mutation enlarged the size 
of the HDC substrate-binding pocket to permit the 
binding of a six-membered ring [120]. 

In the case of GAD65/GAD67/CSAD, the need to 
bind and select an aliphatic chain instead of an aro-
matic one imposes a narrower binding cleft compared 
to HDC and AADC, which is achieved by a structural 

 
Fig. (5). Homologous residues (white sticks) of human group II decarboxylases interacting with the PLP cofactor (cyan ball-
and-sticks). 
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modification of the loop region connecting the N-
terminal with the large domain (Fig. 7). An aromatic 
residue in AADC and HDC (Phe80 and Tyr81, respec-
tively) twists the loop by making a stacking interaction 
with another Tyr residue of the large domain (Tyr274 
and Tyr276, respectively) and creates the necessary 
space to bind aromatic ligands. 

In the active site of GAD67, two discretely disor-
dered conformations of GABA are observed. Though 
the resolution of the data precludes a full mechanistic 
interpretation on the GABA binding mode, nonetheless 
by comparing the structure of GAD67 with the other 
group II decarboxylases it appears quite clear that the 
side-chain of GAD65/GAD67 ligands occupy the same 
pocket and points toward the si face of the PLP cofac-
tor. In particular, with the "-carboxylate moiety inter-
acting with Arg567(GAD67)/Arg558(GAD65), the !-
carboxylate group would point to a cleft formed by 
Ser192(GAD67)/Ser183(GAD65), Asn212(GAD67)/ 
Asn203(GAD65) and Phe214(GAD67)/Phe205 
(GAD65). Interestingly, these three residues constitute 
a substrate recognition motif within the active site that 
is responsible for coordinating the respective preferred 
amino acid substrates of GAD and CSAD [61]. Intro-
duction of the CSAD substrate recognition motif 
(Phe94, Ser114, and Tyr116) into GAD67 (GAD67: 
S192F/N212S/F214Y) resulted in an enzyme with a 
>700 fold switch in selectivity toward the decarboxyla-
tion of cysteine sulfinic acid over L-glutamic acid [61]. 

The Mobile Catalytic Loop 

Human group II decarboxylases are all character-
ized by the presence of a highly flexible active site 

loop, which is important for the catalytic mechanism of 
decarboxylation (Fig. 8) [77, 120, 124]. This ‘catalytic 
loop’ is located at the dimer interface and extends to-
wards the active site of the other monomer in a closed 
conformation. It is well ordered and clearly assigned in 
the electron density map of HDC, CSAD and GAD67 
[77, 120], whereas it was found mostly disordered and 
lacked electron density in the structures of AADC and 
GAD65 [77, 119]. Interestingly, several studies have 
shown that these loops are more prone to cleavage by 
proteases in the ligand-free form of the decarboxylases, 
whereas they are cleaved to a much lesser extent in the 
presence of substrates/inhibitors [125]. Therefore, 
structural and mechanistic data strongly suggest that 
before substrate binding, the loop adopts an ‘open’ 
conformation that is more solvent- exposed and prone 
to proteases cleavage, while after substrate binding and 
during catalysis, it could occlude the active site cleft 
and act as a lid for solvent shielding [77, 120, 124]. 
The latter assists the conversion of carboxylate to the 
more hydrophobic CO2 product. Moreover, it has been 
also demonstrated that some loop residues take part in 
the catalytic mechanism. In GAD67 and HDC, a very 
well conserved residue (Tyr434/Tyr334 in 
GAD67/HDC, respectively) is placed into close prox-
imity to the PLP-stacking His residue and GABA/HME 
[77, 120]. In the case of AADC, GAD and HDC, the 
loop Tyr(Phe substitution resulted in an enzyme un-
able to produce amines, clearly indicating that this 
residue is crucial for the decarboxylase activity [77, 
120, 124]. Thus, it was suggested that the role of this 
conserved Tyr residue is to act as a proton donor to the 
negatively charged C! atom of the carboanionic qui-

 
Fig. (6). Comparison of the active sites of A) AADC and B) HDC. Residues are labeled according to PDB numbering and 
shown as white sticks. Carbidopa and HME are shown as cyan ball-and-sticks.  
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Fig. (7). Comparison of the substrate-specificty loop of decarboxylases. The loops of AADC and HDC with PLP bound to car-
bidopa or HME, respectively, are colored in beige, while the loops of GAD65, GAD67 with PLP-GABA and CSAD are de-
picted in magenta. Residues are labeled according to PDB numbering and shown as sticks. Carbidopa (pink), HME (pink) and 
GABA (magenta) are shown as ball-and-sticks. 

 
Fig. (8). Comparison of the mobile catalytic loop of group II decarboxylases. The loop is located at the dimer interface and ex-
tends towards the active site of the other monomer. The coordinates of the loops of GAD65 and AADC are missing due to the 
high flexibility of this region. Tyr334 and Tyr434 of HDC and GAD67, respectively, are shown as sticks. 

 

nonoid intermediate [77, 120, 124]. The close proxim-
ity to the PLP-stacking His favors indeed this mecha-
nism by lowering the pKa of Tyr. Although the con-
served Tyr residue of the loop is crucial for catalysis, 
the other residues composing the loop are nonetheless 
important for the proper positioning and mechanism of 
the loop. Enzymatic studies on HDC and AADC have 
shown that also the surrounding loop region affects 

catalytic activity [45, 126], and have revealed the mo-
lecular basis for the pathogenicity of some variants 
(e.g. R347G and R347Q of AADC) in AADC defi-
ciency [45]. 

As above mentioned, unlike the constitutively active 
GAD67, GAD65 undergoes auto-inactivation after 
catalyzing a side-reaction (i.e., conversion of glutamate 
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to succinic semialdehyde acid), during which PLP is 
released as PMP [77, 127]. The very high mobility of 
the flexible loop of GAD65 was invoked as a possible 
reason promoting the side reaction and subsequent 
auto-inactivation. To test this hypothesis, Langendorf 
et al. created a panel of GAD65-67 chimaeras, includ-
ing a GAD6765loop mutant [128]. Consequent structural 
and mechanistic analysis revealed that the conforma-
tional changes in the catalytic loop and auto-
inactivation of the enzymes are also intimately linked 
to the conformation of the C-terminal domain [128] 
(see below) and, notably, that the very same structural 
features, which represent requirements for GAD enzy-
matic mechanism, distinguish GAD65 from GAD67 as 
a B cell autoantigen [72, 76]. 

The Open-to-Close Conformation 
An interesting aspect of group II decarboxylases 

regulation that recently emerged, when the crystal 
structure of human apo-AADC was determined [129], 
forces us to reconsider the mechanism of PLP addition 
and preferential degradation of the apo- decarboxylases 
in a new perspective. 

In 2011, Giardina et al. demonstrated that apo-
AADC exists in an unexpected open conformation in 
which, compared with the AADC holoenzyme, the di-
mer subunits move up to 20Å apart and the two active 
sites become solvent-exposed (Fig. 9) [129]. The open 
conformation is achieved through a rigid body quater-
nary rearrangement of the dimer around a fixed dimer 
interface, comprising only a helix-bundle of the N-
terminal domain. Intriguingly, the apo-AADC structure 
was compared to an “open bivalve shell”, with the in-
terface between the N-domains functioning as the 
hinge [129]. The existence of such an open conforma-
tion of the apo-AADC implies that a large part of the 
apo-dimer interface is exposed, with the mobile cata-
lytic loop of the active site (which connects the large 
domain to the C-terminal one) becoming more flexile 
and unstructured. Given that ubiquitin-ligases recog-
nize unstructured regions of the target protein or newly 
exposed surfaces, these data could explain why apo-
AADC is degraded at least 20-fold faster than the 
holoenzyme in rat brain cells [130]. 

In addition, as stated above, it should be also con-
sidered that many of the point mutations responsible 
for AADC deficiency map on residues present in re-
gions of the apoenzyme involved in the transition to the 
holo form. A possible cause for the phenotype of the 
patients bearing these AADC mutations could be the 
inability to perform an efficient apo-to-holo active site 
closure. 

The mechanism of selective degradation of apo-
decarboxylases in vivo could represent a common strat-
egy of this family to finely regulate the availability of 
the total enzyme and its activity, based on PLP abun-
dance. Indeed, as in the case of AADC, it has been 
demonstrated that holo-GAD has a much higher stabil-
ity than apo-GAD [131]. Recently, coupling molecular 
dynamics simulations and normal mode analyses with 
small-angle X-ray scattering and fluorescence spec-
troscopy data, Kass et al. described a similar conforma-
tional opening of holo-GAD65 and the dynamic com-
munication between domains that drive this process 
[72], which involves a structural crosstalk between the 
mobile catalytic loop and the C-terminal domain, as 
previously mentioned. Intriguingly, an origami analogy 
was proposed illustrating the mechanism of dimer 
opening, which could be equally applicable to the 
apo(holo transitions of both AADC and GAD65 [72, 
129]. Finally, it was concluded that this conformational 
plasticity of human GAD65, enabling regulation of 
GABA synthesis based on PLP availability, could have 
come at the cost of its involvement as a prevalent 
autoantigen in autoimmune Type-1-Diabetes [72]. 

Development of New Inhibitors and/or Pharmacol-
ogical Chaperones Based on the Available Struc-
tural Data 

As reported above, the wealth of structural informa-
tion gained in recent years on group II decarboxylases 
provided us with a detailed description of the key simi-
larities and differences that could be exploited for new 
therapeutic strategies. Indeed, the most effective drugs 
targeting members of this family are still lacking speci-
ficity, and are responsible for various side effects and 
adverse reactions. 

CarbiDOPA and benserazide (more precisely, the 
metabolically derivative of benserazide, 2,3,4- trihy-
droxybenzylhydrazine), the AADC inhibitors em-
ployed clinically to treat Parkinson’s disease, are both 
endowed with a hydrazine function, which irreversibly 
binds not only to AADC but also to free pyridoxal 5’-
phosphate and pyridoxal 5’-phosphate-dependent en-
zymes [37]. In a recent effort to identify more specific 
inhibitors of AADC, a structure-based screening ap-
proach leaded to the identification of novel compounds 
with Ki values in the nanomolar range and, most im-
portantly, unable to bind free PLP [35]. In this study, 
the peculiar interactions between the catechol moiety 
of CarbiDOPA and the AADC ligand binding cleft, as 
assessed by the visual inspection of the crystal struc-
ture, were exploited to derive a pharmacophore map 
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that, in turn, permitted the rational design of structure-
based inhibitors. In addition, we recently examined the 
structural motifs involved in AADC inhibition shared 
by all the inhibitors identified so far [37]. Given the 
high structural similarity between AADC and HDC, it 
is conceivable that a similar approach, and/or subtle 
modifications of the scaffolds described in [35], could 
pave the way to the identification of HDC inhibitors. 
Indeed, as already mentioned, the Ser354 residue of 
HDC, which stabilizes the imidazole ring of the sub-
strate, could act as a key determinant for inhibitor 
specificity. 

Regulation of GABA levels in brain is mainly 
achieved by acting on GABA aminotransferase and/or 
GABA receptors [11] and transporters [132]. However, 
clinical disorders known to affect GABA metabolism 
and to lead to an excess of GABA could be treated also 
by targeting GAD enzymes. In this perspective, the 
structure-based design of inhibitors binding to the sub-
strate recognition cleft of GAD65/GAD67/CSAD, 
which evolved to specifically bind aliphatic com-

pounds, could represent a successful strategy. On the 
other hand, severe conditions as epilepsy and anxiety-
related disorders (e.g., panic disorder and post-
traumatic stress disorder) are all associated with low 
levels of GABA [133]. As already discussed above, 
transiently stabilizing the catalytic loop region of 
GAD65 with inhibitors and/or pharmacological chap-
erones will possibly result in a dramatic increase in the 
GABA production levels. 

Finally, acting on the selective degradation of apo-
decarboxylases in vivo, for example with pharmacol-
ogical chaperones able to rescue a productive enzyme 
conformation, could represent a common strategy in 
diverse diseases as AADC deficiency and Type-1-
Diabetes. 

CONCLUSION 

Here we have i) reviewed the functional properties 
of the human PLP-!-decarboxylases AADC, CSAD, 
GAD and HDC, which belong to group II and synthe-

 
Fig. (9). Molecular surface representation of the open and closed dimers of AADC and GAD65 and the proposed mechanism 
of dimer opening in holo ' apo conversion. 
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size important neurotransmitters, and (ii) provided the 
reader an up-date of their structural organization high-
lighting structural elements shared by these enzymes as 
well as those that differentiate them and are responsible 
for their substrate specificity. The current increase in 
the knowledge of the structure-function relationships of 
these decarboxylases makes this subject of topical in-
terest in the purpose of fine tuning the therapy of sev-
eral diseases (type I diabetes, PD, AADC deficiency, 
Tourette's syndrome, cholangiocarcinoma, APS-1) in 
which they are involved. The unraveling, from a mo-
lecular point of view, of their similar structural traits 
and of those underlying their individual substrate pref-
erence could help in facing the different diseases in 
which these decarboxylases are key players. In fact, 
residues of the mobile loop as well as those involved in 
the apo-to-holo transition could be envisaged as prefer-
ential targets for planning an oriented drug-design for 
finding more suitable drugs with therapeutic promise or 
for developing a pharmacological chaperone approach. 

ABBREVIATIONS 

AADC = aromatic amino acid decarboxylase 

CSAD = cysteine sulfinic acid decarboxylase 

HDC = histidine decarboxylase 

GAD = glutamate decarboxylase 

PLP = pyridoxal 5'-phosphate 

PD = Parkinson's disease 

APS I = polyendocrine syndrome I 

GABA = !-aminobutyric acid 

PMP = pyridoxamine 5'-phosphate  

HME = L-histidine methyl ester  

RMSD = root mean-square deviation 
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Abstract
Pyridoxal 5′-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the 
exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They 
represent about 4% of the gene products in eukaryotic cells. Although structure–function investigations regarding these 
enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is 
the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at 
summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-
dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional 
phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modifica-
tion in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many 
of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among 
PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or 
others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse 
cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass 
spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative 
to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition 
of a phosphate moiety and physiological response.
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Introduction

One of the main reasons for the extreme flexibility of pro-
teins is the ability to respond to different cell environmental 
conditions, being modified and regulated by many factors. 
The regulation of enzyme activity in vivo by post-transla-
tional modification (PTM) provides a rapid way for cells 
to respond to changing physiological conditions, by modu-
lating physico-chemical features, conformation, stability 
and activity, thus leading to a global altered protein func-
tion. PTMs are well-known mechanisms that trigger subtle 
changes in proteins and make them more suitable to face 
particular conditions.

Modern proteomic high-throughput mass spectrometry 
methods have permitted the identification of more than 200 
different types of PTMs (Mann and Jensen 2003; Lu et al. 
2013) spanning from phosphorylation, glycosylation, fatty 
acid linkage for membrane attachment, methylation, nitros-
ylation, glutathionylation, acetylation, ubiquitinylation, and 
many others (Seo and Lee 2004). Many platforms and data-
bases have been developed to map all experimentally found 
modification consensus sequences to allow prediction of the 
sites more prone to specific PTM in every protein.

Phosphorylation was one of the first PTMs to be identi-
fied and is one of the most widespread, versatile and stud-
ied PTMs (Cohen 2000, 2002). It is a reversible covalent 
modification that could alter the function, the binding part-
ners and the localization of proteins, thus determining the 
fine tuning of their biological activity. It is implied in many 
cellular processes such as signal transduction pathways, 
growth, differentiation and apoptosis. It has become more 
and more evident that alterations in phosphorylation path-
ways could cause or worsen pathological conditions such as 
cancer (Singh et al. 2017). This modification is carried out 
by a balanced interplay between kinases that phosphoryl-
ate a substrate protein using ATP as co-substrate, and phos-
phatases that are responsible for the removal of the phos-
phate (Hunter 1995). Phosphorylation commonly occurs on 
the hydroxy group of serine, threonine or tyrosine residues. 
There are 518 protein kinases known in the human genome, 
of which 428 are known or predicted to phosphorylate serine 
or threonine, while the other 90 react with tyrosine (Man-
ning et al. 2002). The phosphorylation event could take 
place at only one or at multiple sites on a specific protein. 
Furthermore, a protein could be a substrate of a single or 
of multiple kinases, thus establishing complex cascade net-
works in response to a stimulus.

Because of their importance, kinases have been the sub-
ject of numerous studies on their classification and mecha-
nism of action (Kornev et al. 2006; Taylor and Kornev 
2011). It has been recently reported that many eukaryotic 
proteins (probably thousands) undergo phosphorylation dur-
ing their lifespan (Venerando et al. 2017). Among them, 
pyridoxal 5′-phosphate (PLP)-dependent enzymes should 
not represent an exception. However, data concerning phos-
phorylation of PLP-enzymes are scarce: a search of the lit-
erature reveals that only 11 PLP-enzymes are known to be 
subject to phosphorylation.

From a structural point of view, PLP-enzymes are clas-
sified into five different fold types (from I to V) depend-
ing on their amino acid sequence, secondary structure and 
known spatial structures (Grishin et al. 1995; Schneider 
et al. 2000). Fold I, the largest, is the α-family, also known 
as the aminotransferase superfamily. Fold II is also known as 
the β-family, since many of its members catalyze reactions 
at the β-carbon. Fold III is the alanine racemase family, pri-
marily containing racemases and some decarboxylases. Fold 
IV contains only d-amino acid and branched-chain amino 
acid aminotransferases. Glycogen phosphorylase is the only 
member of Fold V. The organization in fold types is use-
ful to understand some structural constraints of the active 
site, the identity of the residues involved in catalysis and 
the conformational changes carried out by these enzymes 
upon cofactor and/or substrate binding. Despite their great 
numbers, wide distribution (Percudani and Peracchi 2003) 
and relevance for amino acid metabolism, only a few PLP-
dependent enzymes have been shown to undergo phospho-
rylation. The aim of this review is to outline what is known 
at present about the involvement and the role (if already 
determined) of phosphorylation in the regulation of PLP 
enzymes that are subjected to it.

Glycogen phosphorylase

One of the best studied and classic examples of protein phos-
phorylation deals with a PLP-dependent enzyme, namely 
glycogen phosphorylase. The pioneering work carried out 
from the late 1930s to late 1950s by Carl and Gerty Cori, by 
Burnett and Kennedy, and finally by Fischer and Krebs, led 
to the demonstration that muscle glycogen phosphorylase 
exists in two forms (a and b), with the less active b form 
being converted into the active a form by phosphorylation, 
as well as by AMP binding (Johnson 1992). Glycogen phos-
phorylase is a unique PLP enzyme, since the substrate, gly-
cogen, is a polysaccharide, and the phosphorolysis reaction 
is carried out by the 5′-phosphate group of the cofactor that 
has been proposed to behave in this case as an acid–base 
catalyst (Palm et al. 1990). However, a study with PLP phos-
phate analogs with altered pKas suggested that the phosphate 
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remains a dianion throughout catalysis, and therefore, pro-
vides electrostatic rather than acid–base catalysis (Stirtan 
and Withers 1996). This is a property not shared by all the 
other PLP-dependent enzymes, which act on amino acids 
and amines, and utilize the aldimine and the conjugated pyri-
dine ring as electron sinks, thus promoting catalysis. In these 
latter enzymes, the phosphate group functions mainly as a 
handle for the enzyme to bind the cofactor during the cata-
lytic cycle, although in some cases it may also participate in 
catalysis (Phillips et al. 2014).

Glycogen phosphorylase exhibits three tissue-specific 
isozymes, found in muscle, liver and brain. Although the 
three isozymes have high sequence homology, they show 
significant differences in regulation. Liver glycogen phos-
phorylase is primarily regulated by phosphorylation on Ser-
14 by phosphorylase kinase, in response to glucagon. Due to 
its key role in releasing glucose from the liver, this enzyme 
has emerged recently as a potential target for Type 2 anti-
diabetic drugs. Muscle glycogen phosphorylase is activated 
by both phosphorylation as well as ligands such as AMP, 
whereas brain glycogen phosphorylase is not activated by 
phosphorylation, but is activated by ligands such as AMP 
(Mathieu et al. 2017). The crystal structures of muscle and 
liver glycogen phosphorylase a and b have been determined 
(Sprang et al. 1988). The protein is a dimer and is allos-
terically activated by phosphorylation. In muscle glycogen 
phosphorylase, phosphorylation of Ser-14 results in confor-
mational changes near the active site, despite a distance of 
about 40 Å between the serine phosphate and PLP (Fig. 1). 
In fact, in phosphorylase b, Ser-14 is in a disordered region 
and is not observed in the structure. The AMP-binding site 
is located near the phosphorylation site, and AMP binding 
results in similar structural changes as phosphorylation. 
These structural changes resulting from phosphorylation 
of Ser-14 of glycogen phosphorylase provide a paradigm 
for the structural effects of phosphorylation of other PLP-
dependent enzymes.

PLP‑dependent reactions of amino acids

The great majority of PLP enzymes act on amino acids 
rather than sugars with a general mechanism depicted in 
Fig. 2. The cofactor is covalently bound to the protein 
moiety through a Schiff base linkage of its aldehyde group 
with the ε-amino group of a lysine, forming the so-called 
internal aldimine. When an amino acid enters the active 
site, its α-amino group substitutes the ε-amino group of 
the lysine residue in a transaldimination reaction that 
leads to the gem-diamine that is subsequently converted 
into an external aldimine. From this step on, the reaction 
pathway to be undertaken depends on which of the bonds 
of the external aldimine is perpendicular to the imine-
pyridine plane [Dunathan hypothesis (Dunathan 1966)]. 
This explains the enormous variety of reactions that could 
be catalyzed by PLP enzymes (Phillips 2015): transami-
nation, α- and β-decarboxylation, β- and γ-elimination, 
racemization, β- and γ-substitution, retro-aldol cleavage 
and even oxidation.

In addition to the well-known glycogen phosphorylase, 
also tyrosine aminotransferase (TAT), γ-aminobutyric acid 
(GABA) aminotransferase (GABA-T), serine palmitoyl-
transferase (SPT), glutamate decarboxylase (GAD), DOPA 
decarboxylase (DDC), histidine decarboxylase (HDC), 
cysteine sulfinic acid decarboxylase (CSAD) belonging 
to fold-type I, serine racemase (SR) and cystathionine 
β-synthase (CBS) to fold-type II, and eukaryotic ornithine 
decarboxylase (ODC) to fold-type III (Grishin et al. 1995), 
have been found to be phosphorylated.

Fig. 1  Structure of Ser-14 
phosphorylated glycogen 
phosphorylase. The structure 
of one subunit of rabbit muscle 
glycogen phosphorylase a over-
laid on glycogen phosphorylase 
b, showing the position of the 
phosphoserine-14 and PLP as 
space-filling models. The green 
ribbon is phosphorylase a and 
the cyan ribbon is phosphory-
lase b. The figure was prepared 
with Pymol (the PyMOL 
Molecular Graphics System, 
version 1.7.2.1 Schrödinger, 
LLC) from protein structure 
files 1GPA and 1GPB (color 
figure online)
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Fold‑type I decarboxylases: GAD, DDC, HDC, 
and CSAD

A recent review on this group of enzymes reveals many 
similarities as well as their major differences and spe-
cific features (Paiardini et al. 2017). Since these decar-
boxylases are responsible for the synthesis of essential 
molecules (neurotransmitters, bioactive amino acids and 
polyamines), it is conceivable that their activity should be 
finely tuned to respond to physiological conditions. Here, 
we review evidence that these enzymes can be phospho-
rylated, suggesting a possible interconnected regulation 
mechanism.

Among these decarboxylases, the most well-known is 
GAD, which catalyzes the a-decarboxylation of l-glutamate 
to GABA and is found in both prokaryotes and eukaryotes. 
In most vertebrates, the enzyme exists on two functional 
dimeric isoforms (GAD65 and GAD67) (Fenalti et al. 2007), 
while in plants (Gut et al. 2009; Astegno et al. 2015, 2016) 
and in E. coli and other enteric bacteria, it is characterized 
by a hexameric assembly (Capitani et al. 2003).

In mammals, GABA is a key inhibitory neurotransmit-
ter in central nervous system and plays many fundamental 
roles in motor control, vision, as well as in brain plastic-
ity-related processes such as memory, learning, locomo-
tion, and during the development of the nervous system 
(Roberts 1975; Tower 1976; Hornykiewicz et al. 1976). 
It is also widely recognized that many clinical conditions 
including psychiatric disorders, spasticity, epilepsy, stiff-
person syndrome, anxiety and cerebral ischemia involve 
imbalances in excitation and inhibition where GABA 

production is fundamental (Blum and Jankovic 1991; 
Sherman et al. 1991; Arias et al. 1992; Soghomonian and 
Laprade 1997; Kash et al. 1997).

The two human GAD isoforms, the membrane-anchored 
GAD65, and the cytosolic GAD67 (Erlander et al. 1991; Bu 
et al. 1992), are products of two independently regulated 
genes and expressed in different cerebral regions. Both of 
them utilize PLP as cofactor to perform catalysis. However, 
each of the two isoforms presents particular characteristics. 
GAD67 is present as holoenzyme, with the PLP cofactor 
bound as internal aldimine, while GAD65 is instead 50% in 
the apo form without bound PLP (Martin and Rimvall 1993). 
This was interpreted as suggesting GAD67 is responsible 
for basal GABA production, while GAD65 can be rapidly 
activated when higher neurotransmitter levels are required 
and cycles between an active holo form and an inactive apo 
form (Fenalti et al. 2007). Despite the high sequence identity 
and structural similarity of the two isoforms (Fenalti et al. 
2007). GAD65 is an antigen in patients with type 1 diabe-
tes and other autoimmune disorders, while GAD67 is rarely 
autoantigenic (Baekkeskov et al. 1987, 1990; Paiardini et al. 
2017; Jayakrishnan et al. 2011). Recently, through a com-
bined computational and experimental approach, it has been 
advanced that production of GAD65 autoantibodies could 
be related to cofactor-controlled conformational changes, 
due to the flexibility of some GAD65 structural elements, 
such as the C-terminal domain and the catalytic loop with 
respect to GAD67 (Kass et al. 2014; Langendorf et al. 2013). 
These determinants have been proposed to represent molecu-
lar bases for regulation of GABA production (Fenalti et al. 
2007; Langendorf et al. 2013).

Fig. 2  Mechanism of reactions of PLP-enzymes. The cofactor PLP 
is covalently linked to the ε-aminic group of a lysine residue in the 
active site of a resting PLP enzyme in the so-called internal aldimine 
species. When an amino acidic substrate enters the active site, it 
makes a nucleophilic attack to the 4′-carbon of PLP generating a sp3 
species: the gem-diamine, which is subsequently converted into the 
external aldimine by substituting the ε-amino group of the lysine with 
the α-amino group of the substrate. Then, the reaction is directed into 

a precise direction depending on which of the bond of the α-carbon 
is perpendicular to the imine-pyridine plane and is thus chemically 
prone to be broken. This leads to the high versatility of reactions cata-
lyzed by PLP enzymes. This mechanism is drawn according to the so-
called Dunathan hypothesis (Dunathan 1966) and a huge amount of 
information on PLP enzymes recently revised by (John 1995; Phillips 
2015)
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Both GAD65 and GAD67 have been reported to undergo 
phosphorylation (Bao et al. 1995; Hsu et al. 1999). Surpris-
ingly, this modification exerts opposite functional effects for 
the two isoforms, since GAD65 is activated by phospho-
rylation while GAD67 is inhibited (Wei et al. 2004). The 
treatment in vitro of both GAD isoforms with three protein 
kinases (PKA, PKC and CaMKII) showed that PKCε is 
responsible for GAD65 phosphorylation, while PKA phos-
phorylates GAD67, and that in GAD67, Thr-91 is subjected 
to this modification (Wei et al. 2004). Similar to glycogen 
phosphorylase, the phosphorylation site in GAD67 is > 40 Å 
from the PLP (Fig. 3). Unfortunately, the structure is trun-
cated on the N terminus, and Thr-91 is not visible in the 
structure. A model was proposed, taking into account the 
different regulation to which the two GAD proteins are sub-
jected, due probably to their different responses to physi-
ological conditions (Wei et al. 2004; Jin et al. 2003). In 
particular, it has been suggested that phosphorylation could 
alter the Km for glutamate in a different manner for the two 
isoforms. In addition, the neuronal stimulation on the one 
hand activates both PKA and PKCε which phosphorylate 
GAD67 and GAD65, respectively, leading to an increase in 
GABA levels in vesicles which could then be released (Wei 
et al. 2004; Jin et al. 2003). However, it should be taken into 
account that the kinases and phosphatases that are involved 
in vivo are unknown and their identification represents an 
essential step for dissecting the signal pathways that regulate 
GABA neurotransmission (Wei and Wu 2008). A number of 
putative phosphorylation sites for both GAD65 and GAD67 
have been proposed by means of bioinformatic prediction 
(Wei and Wu 2008). The effects of phosphorylation are not 
only limited to altered enzymatic activity but also to com-
partment localization. Phosphorylation of serine residues 3, 
6, 10 and 13 in GAD65 regulates membrane anchoring with-
out exerting any effect in catalysis (Namchuk et al. 1997). 
This has been proposed to be related to higher GAD65 mem-
brane association under neuronal stimulation (Wei and Wu 
2008). Other phosphorylation sites on GAD65 have been 

recently identified, unraveling the importance of Thr-95 in 
regulating activity and in the interplay with GAD67 follow-
ing neuronal stimulation (Chou et al. 2017).

DDC (also known as aromatic amino acid decarboxy-
lase, AADC) is a structurally similar α-decarboxylase whose 
role is the synthesis of the neurotransmitters, dopamine and 
serotonin, from the corresponding amino acids, l-Dopa and 
5-hydroxytryptophan. DDC activity is reduced in regions 
of the brain in Parkinson’s disease (PD), thus leading to low 
levels of dopamine. Pharmaceutical treatment of PD in the 
early stages is with l-Dopa and a peripheral DDC inhibi-
tor such as carbidopa or benserazide. Information regarding 
phosphorylation of DDC is relatively scarce. A few papers 
have been published reporting that both recombinant and 
immunoprecipitated (from brain homogenates) DDC could 
be phosphorylated by the catalytic subunits of cyclic AMP-
dependent protein kinase, and that the enzymatic activity 
increases in both cases (70% for the recombinant and 20% 
for the immunoprecipitated enzyme) (Duchemin et al. 2000). 
Moreover, interaction with α-synuclein, implicated in PD, 
has been reported to reduce phosphorylation levels of DDC 
(by 1.5-fold) probably by activation of a phosphatase such 
as protein phosphatase 2A (Tehranian et al. 2006). Con-
comitantly, a-synuclein leads to inhibition of DDC activity, 
a possible mechanism of dopamine homeostasis which is 
compromised in PD pathogenesis (Tehranian et al. 2006). 
Finally, cyclic guanosine monophosphate/protein kinase G 
(cGMP/PKG) has also been determined to phosphorylate 
DDC, increasing Vmax by ~ 30% and Km by ~ 60% (Duch-
emin et al. 2010). Activation of neuronal DDC by drugs that 
increase phosphorylation or allosteric activators could be a 
novel approach to treatment of PD. It is conceivable that an 
alteration or, more specifically, a decrease in phosphoryla-
tion level of DDC could be also involved in dysregulation 
of dopamine and serotonin observed in AADC deficiency, 
a rare genetic disease affecting DDC/AADC gene, caus-
ing neurological damages. In this sense, a treatment agent 
that acts increasing phosphorylation level could also be 

Fig. 3  Structure of Thr-
91-phosphorylated glutamate 
decarboxylase. The structure of 
the dimer of GAD67, showing 
the relationship between the 
phosphorylation site and the 
active site. The N terminus of 
the protein was truncated at 
Thr-93, so the phosphorylation 
site at Thr-91 is not seen. The 
figure was prepared with Pymol 
(the PyMOL Molecular Graph-
ics System, version 1.7.2.1 
Schrödinger, LLC) from protein 
structure file 2OKJ
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beneficial for patients carrying this genetic disease. How-
ever, no phosphorylation sites of DDC have been identified 
until now.

HDC is the only component of the biosynthetic path-
way of histamine, an important biogenic amine with physi-
ological regulatory roles in neurotransmission, gastric acid 
secretion and immune response. Thus, impairment of his-
tamine metabolism is related to many pathological states 
such as inflammatory responses, peptic ulcer and several 
central nervous system disorders (Ohtsu 2010; Panula and 
Nuutinen 2013). More recently, new interesting relation-
ships have been established between HDC expression and 
growth of different carcinoma types and neuroendocrine 
tumours, especially gastrointestinal cancers (Kennedy et al. 
2012), especially cholangiocarcinoma (Francis et al. 2012). 
HDC is expressed as a 74 kDa inactive polypeptide (Flem-
ing et al. 2004) and only after post-translational proteolysis 
of the C-terminal part, probably by caspase-9, the enzyme 
results in 53–55 kDa active isoforms (Dartsch et al. 1998). 
Since 30 years ago, papers have been published regarding 
possible HDC regulation by phosphorylation in rat hypo-
thalamus or gastric mucosa extracts, with conflicting results. 
In vitro, hypothalamic HDC is inhibited by incubating the 
homogenate under phosphorylating conditions (ATP, cAMP, 
and  Mg2+) in the presence of a cAMP-dependent protein 
kinase (Huszti and Magyar 1984), and this effect is reversed 
by the addition of cAMP-dependent protein kinase inhibi-
tor, enhancing HDC activity above control levels (Huszti 
and Magyar 1985). Although similar results are found also 
with the partially purified hypothalamic enzyme (Huszti 
and Magyar 1987), the incubation of gastric supernatant 
with various combinations of ATP,  Mg2+, cAMP and pro-
tein kinase under the blockade of endogenous phosphatases 
fails to alter significantly the enzyme activity. On the other 
hand, fractionated rat gastric mucosa enzyme distributes into 
multiple forms with different charges (Savany and Cronen-
berger 1982) and with the generation of less-negatively 
charged species in a time and temperature-dependent manner 
(Savany and Cronenberger 1988). In addition, in absence of 
PLP, gastric HDC is reversibly inactivated by phosphatase 
in a time and dose-dependent process (Savany and Cronen-
berger 1989) leading to the suggestion that dephosphoryla-
tion promotes and/or stabilizes apoenzyme formation. In 
fact, full reactivation is achieved by the addition of PLP, 
that at the same time reduces the number of forms with low 
negative charge (Savany and Cronenberger 1990), suggest-
ing a relationship between the charge heterogeneity and the 
phosphorylation state.

CSAD is a recently identified decarboxylase involved in 
the production of taurine, which is involved in many biologi-
cal processes. It has been reported that CSAD is activated 
when phosphorylated and inhibited when dephosphorylated. 
PKC is responsible for the phosphorylation reaction, while 

protein phosphatase 2C for phosphate removal (Tang et al. 
1997). In particular, a neuronal stimulus resulting in taurine 
release, increases also taurine synthesis by activating PKC 
which in turns phosphorylates CSAD leading to an increase 
of taurine levels (Tang et al. 1997; Wu et al. 1998). This 
behaviour reminiscent of that of GAD65 and opposite to 
that of GAD67, highlighting the interplay of taurine and 
GABA in brain.

Fold‑type I aminotransferases 
and acyltransferases: TAT, GABA‑T and SPT

Phosphorylation of TAT and GABA-T was reported in 
papers published more than 40 years ago, in particular TAT 
is found phosphorylated in vivo and it is demonstrated that 
this modification does not alter enzyme activity (Lee and 
Nickol 1974). TAT is an enzyme active in the liver and 
whose role is to regulate the catabolism of tyrosine and 
phenylalanine. Its expression is modulated by cAMP and 
glucocorticoids in primary hepatocytes (Schmid et al. 1987) 
and cAMP-dependent protein kinase is considered to be 
responsible for phosphorylation (Spielholz et al. 1984; Pog-
son et al. 1986). The same kinase acts also on purified pig 
brain GABA-T and no effect of phosphorylation on enzyme 
kinetic properties is reported (Carr et al. 1986), even if no 
in-depth investigations on these phosphorylated aminotrans-
ferases have been carried out since then. Although no effects 
of phosphorylation on activity are seen with these enzymes 
in vitro, it is possible that phosphorylation can affect the 
interaction with other cell components in vivo, or their intra-
cellular lifetime.

Some papers have recently been published on the phos-
phorylation of SPT, the first and rate-limiting enzyme of de 
novo sphingolipid biosynthetic pathway, that catalyses the 
condensation between l-serine and an acyl-CoA thioester 
substrate (typically palmitoyl-CoA). Despite the identifica-
tion of some associated regulatory subunits, its core is a 
heterodimer composed by the subunits long-chain base 1 
and 2 (LCB1 and LCB2) encoded by separate paralogous 
genes (Yard et al. 2007). Although only LCB2 contains the 
PLP-dependent catalytic site, LCB1 plays important roles 
in the regulation of the enzyme. Point mutations in both 
subunits are, indeed, associated with hereditary sensory 
and autonomic neuropathy type 1 (HSAN1), an autoso-
mal-dominant genetic disorder characterized by periph-
eral neuropathy with signs of neuronal degeneration and 
minor limb injury development into extensive ulcerations 
with necessary amputation. HSAN1 is mainly due to a SPT 
substrate shift from l-serine to l-alanine, with consequent 
decrease in sphingolipids, and therefore, myelin production 
and simultaneously accumulation of atypical neurotoxic 
1-deoxy-sphingolipids (1-deoxySL) (Penno et al. 2010). In 
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addition, wild-type SPT can metabolize l-alanine under cer-
tain conditions, associated with metabolic syndrome, type 2 
diabetes and diabetic neuropathy (Othman et al. 2012, 2015). 
In particular, a fraction containing wild-type SPT extracted 
from CHO cells is found to be phosphorylated at Ser-384 
of LCB2 subunit and phosphorylation is lost after alkaline 
phosphatase treatment. In addition, the mutation of this resi-
due to phenylalanine, with the loss of the phosphorylation 
site, switches the substrate specificity of the enzyme from 
l-serine to l-alanine (Ernst et al. 2015). Despite the evidence 
of the alternative substrate preference of SPT, the physi-
ological role of this dynamic regulation is still unknown. 
SPT phosphorylation was also found in BCR-ABL posi-
tive cells, a condition linked to the development of chronic 
myeloid leukemia (Taouji et al. 2013). LCB1, the other SPT 
subunit, is indeed phosphorylated at Tyr-164 in this cell 
types under basal condition and the inhibition of BCR-ABL 
with Imatinib decreases SPT phosphorylation, leading to a 
time and dose-dependent activation of the enzyme and its 
translocation from the endoplasmic reticulum to the Golgi 
apparatus. In addition, Tyr-164 mutation induces apoptosis 
in BCR-ABL-positive leukemia cells, identifying SPT as a 
potential therapeutic target to overcome Imatinib resistance.

Fold‑type II: SR and CBS

l-Serine is racemized by SR to give d-serine, which binds to 
the glycine site as a co-agonist of the N-methyl d-aspartate 
(NMDA) receptors in various regions of the brain, exerting 
its effects in neurotoxicity and synaptic plasticity. Given the 
involvement of d-serine in neurodegenerative diseases and 
schizophrenia, the regulation by phosphorylation may be 
relevant in physiological and pathological mechanisms. SR 
is a tightly regulated enzyme by various factors: nucleotides, 
divalent cations, S-nitrosylation, other protein partners, and 
phosphorylation (Baumgart and Rodriguez-Crespo 2008). 
It was shown that phosphorylation at Thr-277 is typical of 
the 10% pool of membrane-associated mouse SR in non-
neuronal cells (Balan et al. 2009). Mouse cytosolic SR has 
been found to be phosphorylated at Thr-71 and the enzymic 
activity, in terms of Vmax, is increased following phospho-
rylation (Foltyn et al. 2010). This represents the main phos-
phorylation site on SR. Moreover, it has been demonstrated 
that PKC controls rat SR phosphorylation and thus d-serine 
production both in vitro and in vivo (Vargas-Lopes et al. 
2011). Interestingly, this phosphorylation event inhibits 
SR in astrocytes and neurons (Vargas-Lopes et al. 2011). 
Since neither Thr-71 nor Thr-227 are conserved in human 
SR (the human corresponding residues are Ala-71 and Met-
227), a search in phosphoproteomic analyses reveals that the 
human enzyme possesses multiple possible phosphorylation 
sites conserved also in mouse and rat: Ser-134, Tyr-207, 

Ser-212, Tyr-218, Ser-220, Ser-242 and Ser-339 (Klammer 
et al. 2012; Mertins et al. 2016). No in-depth investigation 
exists yet on the role of these residues regarding the struc-
ture–function relationship of SR.

Phosphorylation of human CBS has been reported in 
very recent papers (d’Emmanuele di Villa Bianca et al. 
2015, 2016). Human CBS is a unique heme-containing 
enzyme that catalyzes the PLP-dependent condensation of 
homocysteine with serine to form cystathionine (Miles and 
Kraus 2004). Cystathionine is then cleaved by cystathionine 
γ-lyase (CGL) to give cysteine. CBS represents the first step 
in the transsulfuration pathway which connects the methio-
nine cycle to cysteine production, therefore, its proper func-
tion is crucial for both cysteine and methionine metabolism. 
Accordingly, a compromised CBS activity or the absence of 
CBS leads to manifestation of CBS-deficient homocystinu-
ria, a condition characterized by very high levels of plasma 
total homocysteine and methionine.

Recent studies have reported that the activity of human 
CBS within the urothelium, the epithelial lining the inner 
surface of human bladder, is regulated by phosphorylation 
(d’Emmanuele di Villa Bianca et al. 2015). The authors have 
demonstrated that CBS activity is specifically enhanced 
by phosphorylation at Ser227 in cGMP/PKG-dependent 
mechanism (d’Emmanuele di Villa Bianca et  al. 2015, 
2016). CBS is markedly expressed in the human urothe-
lium (d’Emmanuele di Villa Bianca et al. 2015) represent-
ing the main enzymatic source of  H2S, which has been 
recently proposed as a new signal molecule in the control 
of bladder tone. In this context, the finding that CBS phos-
phorylation by PKG increases endogenous  H2S production 
(d’Emmanuele di Villa Bianca et al. 2015) suggests the pos-
sibility that the regulation of  H2S formation by CBS may 
involve CBS phosphorylation. Interestingly, CBS was found 
to be phosphorylated also on Ser-525 in a PKG-dependent 
manner, but without affecting  H2S production. This could be 
due to the localization of Ser-525 in the C-terminal regula-
tory domain which is the binding region of the allosteric 
activator S-adenosyl methionine. Therefore, phosphorylation 
of this serine residue may be implicated in the modulation of 
further features of CBS protein. Additional experiments are 
necessary to unravel the molecular mechanism underlying 
CBS activation by phosphorylation.

Fold‑type III decarboxylases: eukaryotic 
ODC

ODC is the rate-limiting enzyme in polyamine biosynthe-
sis, which is essential for cell division. The mammalian 
enzyme presents a consensus phosphorylation sequence for 
protein casein kinase II, and it has been reported that ODC, 
either recombinant mouse enzyme, or from intact mouse 
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overproducing ODC cells, can be phosphorylated at Ser-303 
by casein kinase II (Rosenberg-Hasson et al. 1991). Studies 
with the wild-type and the S303A variant show that phos-
phorylation does not affect ODC activity as well as protein 
rate turnover (Rosenberg-Hasson et al. 1991). Reddy et al. 
(1996) reported that ODC could undergo multisite phospho-
rylation (in addition to that performed by casein kinase II) 
involving unidentified kinases that leads to ~ 50% increase 
in the Vmax value and higher protein stability. Again, phos-
phorylation may affect the enzyme stability in vivo despite 
no direct effect on activity.

Concluding remarks and future perspectives

A search of the human phosphoproteomic data reveals that, 
although theoretically many PLP enzymes appear to be 
involved in phosphorylation regulatory pathways, only few 
of them are reported to be phosphorylated, at least until now. 
Apart from glycogen phosphorylase, for many of the oth-
ers, the knowledge of how this modification affects enzyme 
function is unknown. Here, we show how difficult it is to 
interpret the possible modulation exerted by this modifica-
tion, even for those enzymes whose structure is solved and 
the phosphorylation site(s) identified, as for example GAD 
or SR. The common feature appears to be the exposed posi-
tion of the phosphorylation site in both enzymes. Moreover, 
the same modification could trigger different effects. This 
is also evident for these investigated PLP-enzymes where 
phosphorylation can activate, inhibit or have no effects. The 
relation among phosphorylation site, structural modifica-
tion and functional effect is desirable to be obtained to shed 
light into complex metabolic regulation networks in which 
these enzymes are involved and often responsible for the 
first committed step in biosynthetic reactions of essential 
bioactive amines.

Since phosphorylation is a common and widespread 
strategy of regulation and interplay among transduction 
and metabolic pathways, it is of much interest to deepen the 
knowledge for PLP enzymes that represent the 4% of the 
enzyme activities present in a eukaryotic cells (Percudani 
and Peracchi 2003, 2009).

In perspective, the unraveling of the structure-to-func-
tion relationships of phosphorylation events for all known 
PLP enzymes and especially for those placed in key knots 
of physiological controlling routes is highly attractive. In 
addition, this information could be of great help also for 
PLP enzymes involved in hereditary pathogenic diseases, 
to concur in understanding complex phenotypes of patients 
bearing mutations that apparently lead to subtle modifica-
tions in protein structures. The study of regulation of PLP 
enzymes is at its beginning and needs to be further system-
atically undertaken.
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ABSTRACT: Histidine decarboxylase is a pyridoxal 5′-phosphate enzyme
catalyzing the conversion of histidine to histamine, a bioactive molecule exerting
its role in many modulatory processes. The human enzyme is involved in many
physiological functions, such as neurotransmission, gastrointestinal track function,
cell growth, and differentiation. Here, we studied the functional properties of the
human enzyme and, in particular, the effects exerted at the protein level by two
cysteine residues: Cys-180 and Cys-418. Surprisingly, the enzyme exists in an
equilibrium between a reduced and an oxidized form whose extent depends on the
redox state of Cys-180. Moreover, we determined that (i) the two enzymatic redox
species exhibit modest structural changes in the coenzyme microenvironment and
(ii) the oxidized form is slightly more active and stable than the reduced one. These
data are consistent with the model proposed by bioinformatics analyses and
molecular dynamics simulations in which the Cys-180 redox state could be
responsible for a structural transition affecting the C-terminal domain reorientation leading to active site alterations.
Furthermore, the biochemical properties of the purified C180S and C418S variants reveal that C180S behaves like the reduced
form of the wild-type enzyme, while C418S is sensitive to reductants like the wild-type enzyme, thus allowing the identification
of Cys-180 as the redox sensitive switch. On the other hand, Cys-418 appears to be a residue involved in aggregation propensity.
A possible role for Cys-180 as a regulatory switch in response to different cellular redox conditions could be suggested.

Histidine decarboxylase (HDC, EC 4.1.1.22) is a pyridoxal
5′-phosphate (PLP) enzyme that is responsible for the

conversion of histidine to histamine. Histamine plays
important roles in gastric acid secretion and immune responses
and is also involved in cell growth, memory, appetite, and
circadian rhythm regulation.1 Impairment of histamine
metabolism leads to multiple pathological states such as
inflammatory responses, peptic ulcer, and several central
nervous system disorders.2,3

From an evolutionary and structural point of view, HDC
belongs to group II PLP-decarboxylases of fold type I. A recent
review summarizes the spatial and functional correlations
among the enzymes that belong to this group.4 Although the
prokaryotic HDC enzymes are mainly pyruvoyl-dependent
(with the exception of a few Gram-negative bacteria such as
Morganella morganii together with some Enterobacter and
Klebsiella species), the eukaryotic, and thus the mammalian
and human, enzymes are PLP-dependent. E. E. Snell and co-
workers cloned, purified, and characterized the prokaryotic
PLP HDCs.5−11Today, apart from a few mechanistic papers,12

these prokaryotic decarboxylases are mainly studied for their
role in contamination of food, especially fish, to find possible
inhibitors that could prevent histamine accumulation.13−15

Mammalian HDC, which is different from the other
homologous enzymes such as aromatic amino acid decarbox-
ylase or glutamate decarboxylase,4 has been poorly charac-
terized until now, given its small quantities in the cell types
where it is expressed: mast cells, a group of hypothalamic
neurons, and enterochromaphin-like cells.16,17 Indeed, its level
is generally scarce also when it is cloned and expressed as a
recombinant protein in bacterial systems. Moreover, the rat
and mouse proteins, translated as 74 kDa inactive precursors,
are very unstable and subjected to post-translational processing
at the N- and C-termini.18,19The cleaved forms are active and
range from 53 to 64 kDa, as seen in different cell
types.20−27The minimum required for activity is 53 kDa,28

which corresponds to the homologous domain of other PLP-
decarboxylases. The mechanism of processing has been
attributed to various systems such as calpains, proteasome,
and caspase-9,22,23,29−31 but it is far from being exhaustively
elucidated.
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Besides its role in histamine production, HDC is now
attracting attention because of its involvement in the cell
proliferation of many tumors and in Tourette syndrome.
Among tumors, cholangiocarcinoma is difficult to diagnose and
has limited treatments being chemoresistant.32,33 Surgical
resection, the treatment of choice in such a case, is not always
feasible given frequent late diagnosis.34 Recently, it has been
demonstrated that HDC expression is enhanced in cholangio-
carcinoma, and the increased level of histamine secretion is
related to tumor growth.35 Treatment with an inhibitor of
HDC, namely α-methyl-D,L-histidine, decreases HDC activity
and slows cancer progression.35,36 A few inhibitors of HDC
have been further explored,4 such as α-fluoromethylhistidine,37

histidine methylester,37 epigallocatechin gallate,38 and 4(5)-
aminooxymethylimidazole,39 however with no direct clinical
results.
Tourette syndrome, a developmental neuropsychiatric

disorder, has been linked to a mutation, present in
heterozygosis, in the Hdc gene. This gives rise to a deleted
protein (W317X) with no decarboxylase activity.40 However,
despite contradictory reports, it has been recently confirmed
both in humans and in Hdc knockout (KO) mouse models that
HDC deficiency represents a rare cause of Tourette syndrome
and that histamine−dopamine interconnections in the basal
ganglia are an important knot of pathology.41 This monoamine
interplay has recently been reviewed by Pittenger.42

KO mice, generated in 2001,43 gave insights into previously
unknown pathophysiological functions of histamine, expanding
its roles from taking part in allergic and neurological responses
to being involved in different fields such as cardiology,
immunology, and infectious diseases.2

The three-dimensional structure of active human HDC
(residues 2−477) in complex with the inhibitory substrate
analogue histidine methylester was determined in 2012 using
an enzymatic form bearing a double-amino acid substitution
(C180S and C418S) to increase protein stability and prevent
nonspecific aggregation.44,45 In the functionally active dimeric
arrangement, Cys-180 belongs to the large domain of each
monomer that is responsible for dimeric interface formation
and faces near to the corresponding Cys-180 of the other
monomer, while Cys-418 is located at the surface of the C-
terminal small domain far from the other subunit. It has been
demonstrated that the catalytic efficiency of the doubly
substituted enzyme is not altered compared to that of the
wild-type (WT) enzyme45 with measured kcat values 10-fold
higher than the kcat values reported for most mammalian
HDCs (<0.1 s−1).46 A possible role for a regulation played by
the redox state and/or by calcium levels was advanced.46

Here, we show, for the first time, that human WT HDC
exists as an equilibrium between a cysteine-reduced (redHDC)
and cysteine-oxidized (oxHDC) form. These two species
exhibit slight structural and functional differences. In addition,
we show that Cys-180 is responsible for the intermolecular
disulfide-bound dimer (oxHDC) and provide insight into its
properties, while Cys-418, in agreement with ref 44, could be
involved in the propensity of HDC to aggregate.

■ MATERIALS AND METHODS
Materials. Pyridoxal 5′-phosphate (PLP), L-histidine (L-

His), 2,4,6-trinitrobenzene-1-sulfonic acid (TNB), isopropyl β-
D-thiogalactopyranoside (IPTG), protease inhibitor cocktail
EDTA-free tablets, phenylmethanesulfonyl fluoride (PMSF),
2,4,6-trinitrobenzenesulfonic acid (TNB), 1,8-anilinonaphtha-

lenesulfonic acid (ANS), dithiothreitol (DTT), β-mercaptoe-
thanol (β-MeSH), glutathione (GSH), and all the other
chemicals and reagents were purchased from Sigma-Aldrich
and were of the highest purity available. The gene encoding
human HDC was purchased from ORIGENE.

Multiple-Sequence Alignment of HDCs. Amino acid
sequences from various sources were taken from the NCBI
Web site (https://www.ncbi.nlm.nih.gov/) and aligned using
the Clustal Omega tool (http://www.ebi.ac.uk/Tools/msa/
clustalo/) keeping all parameters at their default values.

Plasmid Constructs. The gene encoding human HDC,
carried by mammalian expression vector pCMV6, was
amplified to obtain the gene sequence corresponding to the
amino acid sequence Met-2−Cys-479, followed by the
thrombin protease cleavage site. In addition, the restriction
sites for the enzymes NdeI and XhoI were inserted upstream
and downstream, respectively, for subcloning the modified
HDC gene sequence upstream of the six-His tag into bacterial
expression plasmid pET28a. The designed and synthesized
(Eurofins Genomics) primers were 5′-AGGGACCATGGGC-
ATGGAGCCTGAGGAGTACAGA-3′ for the forward primer
and 5′-ATTTACTCGAGGGATCCACGCGGAACCAGAC-
AGTGCTGACTCAGGAT-3′ for the reverse primer (the
NdeI and XhoI restriction sites are underlined in the forward
and reverse primers, respectively, while the thrombin cleavage
site is shown in bold).
The C180S and C418S variants were constructed starting

from the cloned gene in the pET28a expression vector.
Mutations were introduced by the QuickChange site-directed
mutagenesis kit (Agilent Technologies) using the oligonucleo-
tides 5′-GCTGATGAGTCCAGCCTAAATGCCCGA-3′ and
its complement and 5′-GGGTCCTAATAGTCTCACAGAA-
AATGTG-3′ and its complement for C180S and C418S,
respectively (the mutated codons are underlined) (Eurofins
Genomics). The correct nucleotide sequences of the constructs
were confirmed by DNA sequencing (BMR Genomics).

Expression and Purification. Escherichia coli BL21 (DE3)
chemically competent cells were transformed by heat shock at
42 °C with the appropriate construct and grown in 6 L of
Luria-Bertani (LB) broth supplemented with 35 mg/mL
kanamycin. The cultures were grown at 37 °C to an OD600
of 0.4−0.6, and expression was induced with 0.5 mM IPTG for
15 h at 30 °C. Cells were harvested and resuspended in 20 mM
sodium phosphate buffer (pH 7.4) containing 0.5 M NaCl, 20
mM imidazole, 50 μM PLP, 0.5 mM PMSF, and protease
inhibitor cocktail, with the addition of 10 mM β-MeSH.
Lysozyme was then added to a concentration of 0.2 mg/mL,
and the culture was incubated for 20 min at room temperature.
After a freeze−thaw cycle, leupeptin (1 μg/mL) and pepstatin
(1 μg/mL) were added, and the suspension was centrifuged at
30000g for 30 min. The cleared lysate was diluted to ∼30 mg/
mL and loaded onto a HisPrep FF 16/10 column (GE
Healthcare) equilibrated with 20 mM sodium phosphate buffer
(pH 7.4) containing 0.5 M NaCl and 20 mM imidazole in the
presence of 10 mM β-MeSH. A linear gradient was then
inserted (0 to 100% in 200 mL) with the same buffer
containing 350 mM imidazole. Soluble HDC elutes as a
symmetrical peak and was incubated with 100 μM PLP.
Imidazole and unbound coenzyme were removed by extensive
washing with 0.1 M potassium phosphate buffer (pH 7.4) and
10 mM β-MeSH, and the protein solution (redHDC) was
concentrated in the same buffer using Amicon Ultra 10
concentrators (Millipore). The enzyme concentration was
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determined by using an εM of 1.57 × 105 M−1 cm−1 at 280
nm,47 and the PLP content was determined by releasing the
coenzyme in 0.1 M NaOH using an εM of 6600 M−1 cm−1 at
388 nm.48 The purity of the protein was detected by a single
band corresponding to a molecular weight of ∼56 kDa in a
12% reducing sodium dodecyl sulfate−polyacrylamide gel
electrophoresis (SDS−PAGE) gel.
Semidenaturing and Native PAGE. Semidenaturing 10%

SDS−PAGE used to evaluate the presence of the intermo-
lecular disulfide bond of 5 μg of HDC incubated with
increasing concentrations of β-MeSH, DTT, or GSH (the
concentrations are listed in the Results and Discussion) for 1 h
and loaded with the addition of 4× nonreducing sample buffer.
Native PAGE analysis was performed under the same

conditions as semidenaturing SDS−PAGE, but samples were
loaded with the addition of 2× native sample buffer.
Size-Exclusion Liquid Chromatography Analyses.

Size-exclusion liquid chromatography was used to prepare
the fully oxidized HDC (oxHDC) starting from the reduced
form. RedHDC was loaded onto a Sephacryl H-200 (16/60)
(GE Healtcare) column equilibrated with 0.1 M potassium
phosphate buffer (pH 7.4) and 0.15 M NaCl on an Akta FPLC
system (GE Healthcare). The run, using the same buffer, was
performed at a flow rate of 0.5 mL/min with detection at 280
nm. The protein eluted as a single symmetrical peak and was
incubated with 100 μM PLP. Unbound coenzyme was
removed by extensive washing with 0.1 M potassium
phosphate buffer (pH 7.4), and the protein solution was
concentrated in the same buffer using Amicon Ultra 10
concentrators (Millipore). The redox state of the eluted
protein was determined by loading it onto a nonreducing
denaturing (semidenaturing, see above) SDS−PAGE gel.
Size-exclusion liquid chromatography was used to determine

the molecular dimensions of the holoenzyme (300 μg) in both
oxidized and reduced forms. The samples were loaded on a
Sephacryl H-200 (16/60) (GE Healtcare) column equilibrated
with 0.1 mM potassium phosphate buffer (pH 7.4) and 0.15 M
NaCl with the addition of 10 mM β-MeSH for redHDC, on an
Akta FPLC system (GE Healthcare). The injection volume
was 500 μL at a flow rate of 0.5 mL/min with detection at 280
nm. Three chromatographic experiments were run per sample,

and Unicorn version 5.01 (GE Healthcare) was used to
calculate the elution volume of each peak. The apparent
molecular dimension of the eluting species was calculated by
comparing their elution volume to that of a set of molecular
weight standards under the same experimental conditions.

Spectroscopic Measurements. Absorption measure-
ments were performed using a Jasco V-550 spectrophotometer
at a protein concentration of 1 mg/mL under conditions
specified in the Results and Discussion for each case.
Circular dichroism measurements were taken with a Jasco J-

710 spectropolarimeter at a protein concentration of 1 mg/mL
for near-ultraviolet (near-UV) and visible spectra or 0.1 mg/
mL for far-UV spectra. The thermostability was determined by
monitoring the circular dichroic signal at 222 nm at a
concentration of 0.1 mg/mL and a temperature increase from
25 to 90 °C at a rate of 1.5 °C/min.
Fluorescence spectra were recorded using a FP-750 Jasco

spectrofluorimeter setting at 5 nm excitation and emission
bandwidths, following excitation at different wavelengths,
specified in the Results and Discussion for each case.
All the spectroscopic measurements were taken in 0.1 M

potassium phosphate buffer (pH 7.4) at 25 °C, with the
addition of 10 mM β-MeSH or 10 mM GSH for redHDC.

Coenzyme Binding Affinity Measurements. The
apoenzyme was prepared by incubating 10 μM redHDC or
oxHDC with 50 mM phenylhydrazine at 25 °C for 2 h in 0.5
M potassium phosphate buffer (pH 6.8), with the addition of
10 mM β-MeSH for redHDC. The solution was then loaded
on a desalting 26/10 column (GE Healthcare) preequilibrated
with the same buffer without phenylhydrazine. The eluted
enzyme was then concentrated using Amicon Ultra 10
concentrators (Millipore) and washed with 0.1 M potassium
phosphate buffer (pH 7.4), with the addition of 10 mM β-
MeSH for apo-redHDC.
The equilibrium apparent dissociation constant for PLP,

KD(PLP), was determined by measuring the quenching of the
intrinsic fluorescence of the 0.03 μM HDC apoenzyme in the
presence of PLP at concentrations ranging from 0.005 to 20
μM in 0.1 mM potassium phosphate buffer (pH 7.4), with the
addition of 10 mM β-MeSH for redHDC.
The data were fitted to the following equation:

=
[ ] + [ ] + − [[ ] + [ ] + ] − [ ] [ ]

[ ]
Y Y

K KE PLP E PLP 4 E PLP

2 Emax
t t D(PLP) t t D(PLP)

2
t t

t

where [E]t and [PLP]t represent the total concentrations of the
enzyme and PLP, respectively, Y refers to the intrinsic
quenching changes at a PLP concentration, and Ymax refers
to the fluorescence changes when all enzyme molecules are
complexed with coenzyme.
Curve fitting was performed using Origin 8 Pro (OriginLab).
Dynamic Light Scattering Analysis. The dynamic light

scattering (DLS) analyses were performed using the Zetasizer
Nano S (ZEN1600) instrument (Malvern Instruments) with a
constant 90° scattering angle and a 633 nm wavelength laser at
25 °C. The sample volume used for analysis was 0.8 mL at an
enzyme concentration of 2 μM in 0.1 M potassium phosphate
buffer (pH 7.4), with the addition of 10 mM β-MeSH for
redHDC. A total of 100 scans were obtained for each sample,
after an equilibration time of 10 min, and all samples were
analyzed in triplicate.

Enzyme Activity Assay. The decarboxylase activity was
measured by a stopped spectrophotometric assay already used
for DOPA decarboxylase and useful for quantifying aromatic
amines.49 HDC (WT or variants, 0.3 μM) was incubated for an
appropriate incubation time (a time within which linear
product formation is observed) with 1 mM L-His and 10 μM
PLP in a final volume of 250 μL in 0.1 M potassium phosphate
buffer (pH 7.4), with the addition 1 mM GSH for redHDC.
The reaction was then stopped by heating the mixture at 100
°C for 2 min. TNB (1 mL of a 4.3 mM solution) and toluene
(1.5 mL) were added, and the extraction of trinitrophenylhist-
amine was performed at 42 °C for 45 min with continuous
shaking. The concentration of the trinitrophenyl derivative in
the toluene layer was measured by using a prepared calibration
curve of absorbance at 340 nm as a function of trinitrophenyl
derivative concentration. The measured εM is 11300 M−1 cm−1
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at 340 nm. The kinetic parameters were determined by
incubating the enzyme in the presence of different L-His
concentrations (0.025−2 mM) at a saturating PLP concen-
tration, and the obtained data were fitted to the Michaelis−
Menten equation using Origin 8 Pro (OriginLab).
Atomic Coordinates and Modeling. Atomic coordinates

of human HDC (entry 4E1O45) were taken from the Protein
Data Bank (PDB)50 and used as a starting point to model the
disulfide bond between the Cys-180 residues of the
polypeptide chain. Modeling was done using MODELER,
version 9.17,51 and PyMod.52 Subsequently, local steepest
descent energy minimization in vacuum was performed to
relieve local structural strain using GROMACS version 4.0.753

in conjunction with the GROMOS53a6 force field. The
structural stability of the obtained model was assessed by a
number of structure analysis tools. Ramachandran plot
calculations, computed with PROCHECK,54 exhibited optimal
stereochemical quality, with 95.3% of the residues in the most
favored region and only 0.5% of the residues in the disallowed
regions. The energy profile calculated by the Dope score of the
model suggests that the obtained disulfide bond is energetically
consistent and reliable. Normal mode (NM) analysis of the
structure of HDC with reduced Cys-180 residues was
performed using the elastic network model (ENM), a fast
and simple way to compute the low-frequency normal modes
of a macromolecule,55 as implemented in the PyANM tool.56

The lowest-frequency normal mode was kept and used for
visual analysis.
Molecular Dynamics (MD). All simulations have been

performed using Gromacs version 2018.2. The structures were
centered in cubic boxes with minimum distance of 0.9 nm
between each atom of the protein and the box to reduce. The
SPC water model57 was used to solvate the system. The ionic
strength was adjusted to make sure all simulations were
electrically neutral. MD simulations were performed with
periodic boundary conditions in the isothermal−isochoric
ensemble (NVT), using an integration step of 2 fs at a constant
temperature (300 K) using the velocity rescaling algorithm.58

The particle mesh Ewald method59 was used to calculate the
long-range contribution (reciprocal space) of the electrostatic
interactions using a cutoff radius of 1.0 nm. The Gromos53a6
force field60 was used. Before production runs, all systems were
subject to a minimization cycle and thermalization procedure
to bring the temperature gradually to 300 K. All runs consisted
of at least 100 ns MD simulations in an NVT ensemble. MD
analysis was performed using Gromacs and was based on the
equilibrated part of all simulations, that is, beyond 20 ns. Root-
mean-square fluctuations were calculated using the Cα atom
deviation with respect to their average position. Trajectories
were projected onto selected eigenvectors to show main
dominant protein motions. PLP was included in all
simulations, and the topology parameter of the Gromos53a6
force field was obtained using the PRODRG server.61 Figures
were generated using the Pymol 2.0 software (The PyMOL
Molecular Graphics System, version 2.0, Schrödinger, LLC).

■ RESULTS AND DISCUSSION
HDC Cys-180 Is the Only Cysteine Residue Not

Conserved among HDCs. A multiple-sequence alignment
of HDCs from mammals and other sources such as Gallus,
Drosophila, Danio, and prokaryotic organisms shows that only
one cysteine residue is not conserved among the 11 cysteine
residues present in each subunit of the functionally active

dimeric human HDC, namely Cys-180 (Figure 1). A further
comparison of the sequences of HDCs with those of
decarboxylases of group II, in particular with that of human
aromatic amino acid decarboxylase, points out that six of the
11 cysteine residues of human HDC are shared, while the
remaining four are typical of HDCs. Cys-418, the other
cysteine residue replaced with serine in the crystallization
papers by Komori and co-workers,44,45 belongs to the latter
group. Interestingly, HDCs from primates (Gorilla gorilla,
Pongo abelii, Pan paniscus, Pan troglodytes, and many species of
the genera Macaco) are predicted to have Cys-180, thus dating
at least to primates the substitution responsible for the
presence of this cysteine residue in the human protein. The
fact that Cys-180 is not conserved and, at the same time
together with Cys-418, contributes to protein stability45 raises
questions about the role it could play.

Human Wild-Type HDC Exists in an Equilibrium
between a Reduced (redHDC) and an Oxidized
(oxHDC) Form Controlled by Cys-180. Human HDC has
been cloned in pET28a, transformed in BL21 E. coli, expressed,
and purified with an affinity column as reported in Materials
and Methods. The yield is 2−5 mg/L, and the enzyme is pure
as evidenced by a single band in an SDS−PAGE gel (Figure
S1) and contains 2 mol of PLP per dimer. It has been
immediately noted that, depending on the reducing agent
concentration, HDC presents one or two bands on a
semidenaturing SDS−PAGE gel. The molecular weight of
the slow mobility band suggests that it is a dimer, while the
fastest band, at ∼56 kDa, corresponds to the monomer (Figure
2A and Figure S2A,B). β-MeSH, DTT, or GSH has been used
as a reducing agent, showing in every case the same results. To
obtain a fully reduced species, the reductant:protein dimer
ratio should be an at least 2000-fold molar excess. A native
PAGE performed at increasing GSH concentrations confirms
that HDC is present as a dimer (Figure S2C). The dimeric
arrangement is also exhibited by size-exclusion chromatog-
raphy analysis showing that the two species elute at nearly the
same volume (62.6 ± 0.1 and 61.8 ± 0.2 mL for redHDC and
oxHDC, respectively) (Figure S2D).
The C180S and C418S variant HDCs have been cloned,

expressed, and purified to homogeneity as revealed by a single
band on an SDS−PAGE gel (data not shown), and both of
them bind 2 mol of PLP/dimer. A semidenaturing SDS−
PAGE performed under the same conditions as the wild-type
method shows that C180S appears as a monomer at any GSH
concentration, while C418S exists as oxidized/reduced species
in equilibrium depending on the absence or presence of a
reducing agent, a behavior strongly ressembling that of the WT
(Figure 2B,C).
From these data, it can be inferred that HDC exists in a

reduced and oxidized state depending on the presence of a
reductant and that Cys-180 appears as a good candidate for an
intersubunit disulfide bond of one subunit with the same
residue of the neighboring subunit. No other cysteine residue
is in fact present within 10 Å of Cys-180. In this regard, it is of
interest that a possible role for regulation by the redox state
was advanced.46

We have then undertaken a spectroscopic characterization to
highlight possible differences in physicochemical signals
between redHDC and oxHDC.

The Spectroscopic Analyses Reveal That redHDC and
oxHDC Display Slight Structural Changes. The absorb-
ance spectra of redHDC (in the presence of 10 mM GSH) and
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Figure 1. Multiple-sequence alignment of HDCs. Amino acid
sequences from various sources were taken from the NCBI Web
site (https://www.ncbi.nlm.nih.gov/) and are, in order, Homo sapiens,
Mus musculus, Rattus norvegicus, Bos taurus, Gallus gallus, Danio rerio,
Drosophila melanogaster, Morganella morganii, Klebsiella aerogenes, and

Figure 1. continued

Raoultella planticola. The one-letter amino acid code is used.
Dashes represent insertions and deletions. Invariant positions
are boxed in red. Similar residues are written in red characters.
Homologous regions are boxed in light blue. The secondary
structures of human HDC (PDB entry 4E1O) are reported in
the first line of each block. α-Helices and β-strands are
rendered as squiggles and arrows, respectively. ESPript
(http://espript.ibcp.fr) was used to render this figure starting
from a Clustal Omega alignment (http://www.ebi.ac.uk/
Tools/msa/clustalo/).

Figure 2. Semidenaturing 10% SDS−PAGE analysis of (A) WT, (B)
C180S, and (C) C418S HDC with increasing β-MeSH concen-
trations. Five micrograms of (A) WT, (B) C180S, or (C) C418S
HDC was incubated for 1 h at room temperature with the
corresponding β-MeSH concentration in 0.1 M potassium phosphate
buffer (pH 7.4). M, molecular weight marker.
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oxHDC measured in 0.1 M potassium phosphate buffer (pH
7.4) show, in addition to the 280 nm band that can be
attributed to the aromatic amino acids, the presence of two
bands in the visible region with maxima at 339 and 415 nm for
redHDC and at 333 and 414 nm for oxHDC. Besides the slight
differences in wavelength maxima, the equilibrium between
these two species is altered with 339 nm/415 nm and 333 nm/
414 nm ratios of 4.22 and 2.22, respectively (Figure 3A).
These species can be reasonably attributed to the enolimine
and ketoenamine tautomers of the internal aldimine between
PLP and Lys-304, and it can be thus suggested that the PLP
microenvironment is altered in the two redox states of the
enzyme.

The dichroic signals in the visible region reflect a similar
coenzyme behavior displayed in absorbance, and in addition,
the near-UV bands show a slight difference between redHDC
and oxHDC (Figure 3B). The optical activities (millidegrees
per absorbance unit at a fixed wavelength at the same protein
concentration) for the enolimine and ketoenamine are 30.25
and 48.18 for redHDC and 24.53 and 20.12 for oxHDC,
respectively, supporting the presence of an altered PLP
microenvironment. Finally, the far-UV CD spectra are
superimposable, indicative of a similar secondary structure
content (inset Figure 3B).
Fluorescence data essentially provide the same information

about the spectrophotometric and spectropolarimetric experi-

Figure 3. Spectroscopic characterization of WT HDC. (A) Absorbance and (B) near-UV and visible dichroic spectra of redHDC (dotted line) and
oxHDC (straight line) were recorded at 1 mg/mL in 0.1 M potassium phosphate buffer (pH 7.4) without or with 20 mM GSH. The absorbance
maximum wavelengths are reported in inset A. Inset B shows the far-UV spectra measured at 0.1 mg/mL in 0.1 M potassium phosphate buffer (pH
7.4) without or with 20 mM GSH.

Figure 4. Emission fluorescence spectra of WT HDC. (A) Intrinsic fluorescence emission spectra of redHDC (dotted line) and oxHDC (straight
line) after excitation at 280 nm. Spectra were recorded at 0.1 mg/mL in 0.1 M potassium phosphate buffer (pH 7.4) without or with 20 mM GSH.
Inset A is a close-up of the fluorescence emission maximum in the 490 nm region. (B) Cofactor fluorescence emission spectra after excitation at
339 and 333 nm of redHDC (dotted line) and oxHDC (straight line), respectively, at 1 mg/mL in 0.1 M potassium phosphate buffer (pH 7.4)
without or with 20 mM GSH. Inset B shows cofactor fluorescence emission spectra after excitation at 415 and 414 nm for redHDC and oxHDC,
respectively.
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ments. Intrinsic fluorescence spectra recorded upon excitation
at 280 nm show an emission band centered at 335 nm for
redHDC and 333 nm for oxHDC with different relative
intensities (207 vs 185). A red-shifted broad shoulder is
present in oxHDC, emitting at 494 nm with a relative intensity
of ∼5 for oxHDC suggesting an energy transfer and thus a
different positioning of PLP with respect to aromatic amino
acids. (Figure 4A). Cofactor emission fluorescence upon
excitation of the enolimine tautomer at 339 and 333 nm for
redHDC and oxHDC, respectively, shows emissions at 386
and 485 nm for redHDC and 381 and 491 nm for oxHDC.
When the ketoenamine tautomer of the two species was
excited at 415 nm (redHDC) and 414 nm (oxHDC), a band
centered at 485 nm and at 496 nm was recorded (Figure 4B
and inset). Altogether, these fluorescence results witnessed a
modest change in the cofactor environment and in the
interconnections among PLP and the surrounding residues in
the two HDC forms.
These spectroscopic data suggest that redHDC and oxHDC

present slight differences in all measured signals indicative of
subtle structural changes. The optical activity values are also an
expression of modest coenzyme-to-aromatic amino acid side
chain microenvironment alterations. We thus investigated if
these changes are related to the catalytic activity and to the
stability of the enzyme.
OxHDC Is More Stable and More Active Than

redHDC. The thermostability of the two enzymatic forms
has been assessed by monitoring the dichroic signal at 222 nm
with an increase in temperature from 25 to 90 °C at a rate of
1.5 °C/min. While the Tm of redHDC is 62.78 ± 0.06 °C, that
of oxHDC is 65.97 ± 0.02 °C (Table 1), thus suggesting that
the oxidized form of HDC is slightly more stable than the
reduced form. DLS analyses show that the hydrodynamic
diameter of redHDC is 9.90 ± 0.08 nm while that of oxHDC is
11.60 ± 0.04 nm. In addition, it should be pointed out that the
theoretical diameter62 is predicted to be 8 nm calculated on
the basis of the determined structure of the double-mutant
form (C180S/C418S)45 that ressembles redHDC (see below).
Kinetic parameters of redHDC and oxHDC (Table 1) show

that the catalytic efficiency of the oxidized form is 3-fold higher
than that of the reduced form, and this is driven by the
combination of both the 1.6-fold increase in kcat and the 2-fold
decrease in Km. The apparent equilibrium dissociation constant
for the coenzyme is quite similar, i.e., 33 nM for redHDC
versus 44 nM for oxHDC.
Interestingly, the oxidized species is more active and more

stable than the reduced form. Thus, we looked for a possible
molecular cause as the basis for this different behavior.

The Cys-180 Redox State Is Responsible for a
Structural Transition Affecting the C-Terminal Domain
Reorientation and Could Be Responsible for Active Site
Alterations. The availability of the recently determined
crystal structure of human HDC (PDB entry 4E1O)45 gave
us the unprecedented opportunity to gain insights into the role
of the intersubunit disulfide bridge of Cys-180 in controlling
the structural rearrangement of human HDC and its catalysis.
However, because Cys-180 was replaced with serine to prevent
unwanted oligomerization,45 we started our analysis by
modeling the position of Cys-180 and the disulfide bridge in
their reduced and oxidized forms, respectively (Figure 5). In

their oxidized state, the two Cys-180 residues of each
monomer are in a distance range (≈2.5 Å) that is compatible
with the formation of an intersubunit disulfide bond. The
latter, in turn, could be responsible for a “locking” of the two
α-helices spanning residues 178−184 and comprising Cys-180,
which face each other at the dimer interface. On the contrary,
in the absence of the covalent bond between the two Cys
residues, the two α-helices of redHDC are expected to freely
move, because no other close contact is present. Indeed, an
inspection of the physicochemical properties of the dimer
interfaces of HDC and its close homologue aromatic amino
acid decarboxylase (PDB entry 1JS3; root-mean-square
deviation of ≈0.8 Å) in this region revealed that both enzymes
(and other group II decarboxylases, e.g., glutamate decarbox-

Table 1. Kinetic Parameters, Apparent Equilibrium Dissociation Constants for PLP, and Melting Temperatures of WT HDC
and Its Variantsa

enzyme kcat (s
−1) Km (mM) kcat/Km (s−1 mM−1) KD(PLP) (nM) Tm (°C)

redHDC WT 0.70 ± 0.02 0.064 ± 0.008 10.9 ± 1.4 32.8 ± 0.4 62.78 ± 0.06
oxHDC WT 1.10 ± 0.05 0.033 ± 0.006 33.3 ± 6.2 44.0 ± 0.3 65.97 ± 0.02
redHDC C180S 0.60 ± 0.02 0.057 ± 0.008 10.5 ± 1.5 − −
oxHDC C180S 0.72 ± 0.02 0.062 ± 0.007 11.6 ± 1.3 30.5 ± 0.2 62.68 ± 0.04
redHDC C418S 0.74 ± 0.04 0.06 ± 0.01 12.3 ± 2.2 − −
oxHDC C418S 1.05 ± 0.03 0.042 ± 0.007 25.0 ± 4.2 43.1 ± 0.2 65.49 ± 0.04

aFrom 0.05 to 2 mM L-His reacted with 0.075 nmol of each HDC species for 10 min in 250 μL of 0.1 M potassium phosphate buffer (pH 7.4)
without or with 1 mM GSH. Dissociation constants for PLP were calculated from the measured enzyme intrinsic fluorescence quencing with an
increasing concentration of the coenzyme as reported in Materials and Methods. Melting temperatures were calculated by dichroic changes at 222
nm as reported in Materials and Methods.

Figure 5. Modeling of WT HDC in its (A) reduced and (B) oxidized
states. The two HDC subunits are represented as green and cyan
cartoons and sticks, respectively. The dashed black circle indicates the
position of the two Cys-180 residues.
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ylase 65) share solvation properties that favor a partial
opening.4 Therefore, we reasoned that the presence or absence
of a disulfide bridge between the Cys-180 residues of the HDC
subunits63 could lead to a subtle structural change, which in
turn could be transmitted to the adjacent long α-helix of
residues 150−173. The latter directly connects the α-helix of
residues 178−184 to the active site of HDC. To test this
hypothesis, we thus performed an all-Cα atom normal mode
(NM) analysis of redHDC to investigate the conformational
transitions of HDC. Indeed, it is well-known that NM analysis
can probe large-amplitude motions that are often inaccessible
to other atomistic simulations.64 Moreover, NM analysis is
insensitive to the presence of small molecules, such as PLP, in
the context of large protein systems.
The NM symmetric rigid-body motions of the PLP binding

and C-terminal domains of HDC, described by the lowest-
frequency NM, are shown in Figure 6. According to NM
analysis of human HDC, the magnitude of the structural
fluctuations was highest at the C-terminal domains (CTDs)
and at the flexible α-helix of residues 150−173 connecting the
position of the α-helix residues of 178−184 and PLP (Figure
6A). Notably, HDC displayed a symmetric profile of
fluctuations at the CTDs, as already observed in the close
homologue glutamate decarboxylase.65

The obtained results of the NM simulations of HDC
therefore suggested a tight coupling between the helix−loop−
helix motif comprising residues 150−184 and the C-terminal
domain of HDC, which in turn could drive a structural
rearrangement of the two domains and of the catalytic loop
lying at the interface between the N- and C-terminal domains

of HDC. Interestingly, the conformation of the 150−184
helix−loop−helix motif comprises both Cys-180 and residues
of the PLP binding cleft, directly linking therefore the redox
state of Cys-180 to the position and stabilization of PLP. Most
notably, the NM data corroborate the findings from the
analysis of the structural flexibility of human HDC inferred
from crystallographic B-factors45 (Figure 6B), which can be
used to assess the local dynamics of protein structures.66

To further corroborate the results obtained with coarse-
grained NM analysis, MD simulations were performed to
investigate the atomistic fluctuations of the PLP binding site as
a function of the redox state of Cys-180. All simulations were
100 ns long, and all the analyses have been performed on the
equilibrated part of all trajectories, i.e., after simulation for 20
ns. Insertion of a disulfide bridge between the Cys-180 residues
of the two HDC subunits causes a general decrease in protein
flexibility as measured by the root-mean-square fluctuation
(RMSF) (see Materials and Methods). Figure 7 shows a
comparison between the RMSF of the oxidized and reduced
HDC for each monomer. As the plot shows, the introduction
of a constraint in the S−S interchain disulfide bridge of Cys-
180 confers upon oxHDC a generally higher rigidity compared
to that of redHDC. From a structural viewpoint, the main
RMSF differences between the oxidized and reduced HDC
were localized on the helix encompassing residues 150−170.
We have checked the effect of conformational dynamics of

helix 150−170 and all residues facing the active site on PLP
mobility. In particular, we compared the flexibility (RMSF) of
PLP atoms in the two HDC simulations and found that the
RMSF in oxHDC was systematically lower than the

Figure 6. (A) NM analysis and (B) B-factors of WT HDC. (A) The two HDC subunits are represented as green and cyan cartoons. The gray
arrows are trajectory vectors of the NM analysis. Each arrow’s direction points in the direction where the residue will move, and each arrow’s length
indicates the moving scale for each residue. (B) Experimentally derived B-factor values, indicating local structural fluctuations, are in good
agreement with NM analysis data.
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corresponding values for the PLP in the redHDC simulation
(Figure 8), and this suggests that the disulfide bridge in Cys-
180 affects the conformational mobility of the PLP moiety in
its pocket by decreasing its conformational mobility

Further confirmation of this finding came from the essential
dynamics analysis on the active site subset residues. This
analysis showed that the overall fluctuation of the Cα atoms of
active site residues (as calculated from the trace of the
covariance matrix of positional atomic fluctuations of Cα
atoms) was lower in oxHDC (0.32821 nm2) than in redHDC
(0.6821 nm2). This confirms that the covalent bond in the
Cys-Cys pair at position 180 confers a higher rigidity in the
active site area.
In more detail, a ribbon representation of the HDC structure

with a thickness and color scheme proportional to the
difference between the RMSF of oxHDC and that of redHDC
is reported in Figure 9 and a close-up inset. As shown, the N-

terminal end of the redHDC is more flexible than its oxidized
counterpart. This region is within the range of contact of either
the active site lid of HDC (corresponding to residues 321−
332) or the loop spanning residues 350−353 (comprising
residues interacting with the phosphate moiety of PLP), which
also show a higher flexibility in redHDC than in oxHDC. We
suggest that this higher flexibility affects the pocket size hosting
the PL, which in turn is more likely to have greater
conformational freedom in redHDC than in oxHDC.
These bioinformatics data are in agreement with the slight

differences evidenced by the spectroscopic analyses as well as
by the kinetic features and by the protein thermal stability data
between redHDC and oxHDC and suggest that oxidation
could lead to a movement triggering subtle alterations at the
active site. The stability could be due to the additional sulfur−
sulfur covalent bond that causes a rearrangement of the overall
protein structure determining an increase in the hydrodynamic
diameter, as witnessed by DLS measurements. We then
evaluated the functional properties of single variants C180S
and C418S to gain insight into their specific contribution.

C180S Presents Features Similar to Those of redHDC,
while C418S Is Sensitive to Reductants. The analyses of
the absorbance, dichroic, and fluorescence properties of C180S

Figure 7.MD analysis of WT HDC in its reduced and oxidized states.
Root-mean-square fluctuation of oxHDC (black) and redHDC (red)
as a function of residue number for chain 1 (top) and chain 2
(bottom).

Figure 8. RMSF of PLP in oxNHD and redHDC. Root-mean-square
fluctuation of PLP atoms with respect to their average position along
the MD trajectories for the oxHDC simulation (black) and the
redHDC simulation (red).

Figure 9. Difference between the RMSF of redHDC and that of
oxHDC. Ribbon representation of the HDC structure with the
difference between RMSF of redHDC and that of oxHDC mapped
onto monomer A (rainbow scale going from 0.33 to −0.29 nm).
Monomer B is colored gray. As shown in the inset, the N-terminal end
of the redHDC is more flexible than its oxidized counterpart. This
higher flexibility affects in turn the active site lid of HDC (residues
321−332) as well as the loop spanning residues 350−353.
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and C418S variants show that these species exhibit slight
structural changes and no gross alterations in cofactor binding
microenvironment (data not shown). We then focused our
attention on the oxidized species of both variants because
oxC180S should not form a disulfide-bound species and
oxC418S should be less prone to aggregate. Interestingly,
measurements of both the hydrodynamic diameter and of the
thermostability show that oxC180S behaves like redHDC with
a diameter of 10.56 ± 0.04 nm and a Tm value of 62.68 ± 0.04
°C, while oxC418S has a diameter of 11.6 ± 0.6 nm and a Tm
of 65.49 ± 0.04 °C behaving like oxHDC. In addition, the
functional features show that the catalytic efficiencies of both
redC180S and oxC180S are almost identical to that of the
redHDC while those of both redC418S and oxC418S are
similar to those of redHDC and oxHDC, respectively (Table
1). No differences in PLP equilibrium binding constant are
measured (Table 1).
Because it has been claimed that oxHDC tends to aggregate

and for this reason the structure of the enzyme has been
determined in the C180S/C418S double-mutant species,45 we
addressed this by concentrating 500 μL of 10 μM oxHDC,
oxC180S, and oxC418S to 25 μL in an Amicon ultra device.
The supernatants and the pellets (if present) were then run on
an SDS gel under reducing and nonreducing conditions. We
determined that a pellet was present in oxHDC and oxC180S
solutions while no precipitation occurs with the oxC418S
variant. Here, it follows that Cys-418 concurs in structural
stability, although the molecular reason for the aggregation of
oxHDC needs to be further investigated.

■ CONCLUSIONS
Even if human HDC belongs to the well-known group of the
PLP-dependent α-decarboxylases, it is a poorly characterized
protein, mainly because of its intrinsic instability. The only
determined structure is that of the human protein engineered
with two cysteine-for-serine substitutions (C180S and C418S)
to increase its stability.45 Here, for the first time, we provide
evidence for the existence of an equilibrium between a reduced
and an oxidized form of human HDC, the latter being slightly
more active and stable than the former. We also identify Cys-
180 as the residue that is responsible for this redox equilibrium.
Bioinformatics analyses suggest a higher stability and active site
alteration determined by the disulfide bridge in the oxHDC
form. On this basis, human HDC may join the short list of PLP
enzymes that present redox sensitive cysteine residues.67−76

Interestingly, among PLP enzymes, the cysteine switch appears
to be a peculiar and unique feature of human HDC. It has been
documented that cysteine residues in proteins could play a role
in the response to altered redox conditions in cancer.77,78 At
present, it is not easy to envisage a physiological role of this
redox sensor in HDC. However, when the fact that the
environment of a cell is highly reduced is taken into account, it
is reasonable to suggest that HDC is mainly reduced under
physiological conditions. However, in cancer cells, where redox
conditions are altered, the highly oxidizing conditions could
favor the more active and stable oxHDC. With this view in
mind, it is worth mentioning that high histamine levels have
been reported in cholangiocarcinoma, and the involvement of
HDC in tumor progression was thus suggested.35 Our results
suggest that, under redox-altered conditions, the prevalence of
oxHDC, which is more active and more stable because of the
presence of an additional disulfide bridge involving Cys-180,
could therefore lead to an increased level of production of

histamine, which makes the pathological state worse. In this
regard, the development of specific inhibitors directed toward
oxHDC is highly desirable.
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