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Abstract
In this paper,we study the small noise asymptotic expansions for certain classes of local
volatility models arising in finance. We provide explicit expressions for the involved
coefficients as well as accurate estimates on the remainders. Moreover, we perform
a detailed numerical analysis, with accuracy comparisons, of the obtained results by
means of the standard Monte Carlo technique as well as exploiting the Polynomial
Chaos Expansion approach.
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1 Introduction

In the present paper, we shall provide small noise asymptotic expansions for some local
volatility models (LVMs) arising in finance. Our approach is based on the rigorous
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results on asymptotic expansions for solutions of finite-dimensional SDE’s obtained in
Albeverio and Smii (2013) [following the approach proposed in Gardiner (2004, Sect.
6.2)]; some extensions to a class of SPDE’s and infinite-dimensional SDE’s have been
presented in Albeverio et al. (2011, 2016a, b). In particular, we consider underlyings
whose behavior is characterized by a stochastic volatility term of small amplitude ε

with respect to which we perform a formal, based on Gardiner (2004, Sect. 6.2), resp.
asymptotic, based on Albeverio and Smii (2013), expansion. The latter implies that
the equation characterizing the particular LVM of interest is approximated by a finite
recursive system of a number N of linear equations with random coefficients. We then
exploit the solutions of the latter system to provide a formal, resp. an asymptotic,
approximation of smooth functions of the original solution for the particular LVM of
interest. In a similar way, we derive the corresponding approximation for the expected
value of the related option price in a risk- neutral setting. Errors estimates and explicit
expressions for the involved approximations are also provided for some specific cases,
together with a detailed numerical analysis.

We would like to recall that LVMs are commonly used to analyze options mar-
kets where the underlying volatility strongly depends on the level of the underlying
itself. Let us mention that although time homogeneous local volatilities are suppos-
edly inconsistent with the dynamics of the equity index implied volatility surface, see,
e.g., Mandelbrot et al. (2004), some authors, see, e.g., Crepey (2004), claim that such
models provide the best average hedge for equity index options.

Let us also note that, particularly during recent years, different asymptotic expan-
sions approaches to other particular problems in mathematical finance have been
developed, see, e.g., Andersen and Lipton (2012), Bayer and Laurence (2014),
Benarous and Laurence (2013), Benhamou et al. (2009), Breitung (1994), Cordoni
and Di Persio (2015), Fouque et al. (2000), Friz et al. (2015), Fuji and Akihiko (2012),
Gatheral et al. (2012), Gulisashvili (2012), Kusuoka and Yoshida (2000), Lütke-
bohmert (2004), Shiraya and Takahashi (2017), Takahashi and Tsuzuki (2014), Uchida
and Yosida (2004) and Yoshida (2003), see also Albeverio et al. (2012), Imkeller et al.
(2009), Peszat and Russo (2005) for applications of similar expansion to other areas.

The present paper is organized as follows: in Sect. 2, the basic general asymptotic
expansion approach based on Albeverio and Smii (2013), is presented. Then, in Sect. 3
we apply the aforementioned results to important examples in financial mathematics.
In particular, in Sect. 3 we study a perturbation up to the first order around the Black–
Scholes model as well as a correction with jumps for the case of a generic smooth
volatility function f . We then give more detailed results for the case of an exponential
volatility function f , in Sect. 3.1 with Brownian motion driving, in Sect. 3.2 with
an additional jump term. In Sect. 3.3, we shall present detailed corresponding results
for the case of a polynomial volatility function f ; in Sect. 3.4, we treat the case of
corrections for f being a polynomial and the noise containing jumps. To validate our
expansions, we present their numerical implementations obtained by exploiting the
Polynomial Chaos Expansion approach aswell as the standardMonte Carlo technique,
also providing a detailed comparison between the two implementations in terms of
accuracy.
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2 The asymptotic expansion

2.1 The general setting

We shall consider the following stochastic differential equation (SDE), indexed by a
parameter ε ≥ 0

{
dX ε

t = με
(
X ε
t

)
dt + σε

(
X ε
t

)
dLt ,

X ε
0 = xε

0 ∈ R, t ∈ [0,∞)
(1)

where Lt , t ∈ [0,∞), is a real-valued, d-dimensional, Lévy process of jump-diffusion
type, subject to some restrictions which will be specified later on and με : Rd → R

d ,
σε : R

d → R
d×d are Borel measurable functions for any ε ≥ 0 satisfying some

additional technical conditions in order to have existence and uniqueness of strong
solutions, e.g., locally Lipschitz and sublinear growth at infinity, see, e.g., Apple-
baum (2009), Arnold (1974), Mandrekar and Rüdiger (2015), Gihman and Skorokhod
(1972), Imkeller et al. (2009) and Shreve (2004). If the Lévy process Lt has a jump
component, then X ε

t in Eq. (1) has to be understood as X ε
t− := lims↑t X ε

s , see, e.g.,
Mandrekar and Rüdiger (2015) for details.

Hypothesis 1 Let us assume that:

(i) με, σ ε ∈ Ck+1(Rd) in the space variable, for any fixed value ε ≥ 0 and for all
k ∈ N0 := N ∪ {0};

(ii) the maps ε �→ αε(x), where α = μ, σ , are in CM (I ) in ε, for some M ∈ N, for
every fixed x ∈ R and where I := [0, ε0], ε0 > 0.

Our goal is to show that under Hypothesis 1 and some further smoothness con-
ditions on με and σ ε (needed for the construction of the random coefficients Xi

t ,
i = 0, 1, . . . , N appearing in (2)), a solution X ε

t of Eq. (1) can be represented as a
power series with respect to the parameter ε, namely

X ε
t = X0

t + εX1
t + ε2X2

t + · · · + εN XN
t + RN (t, ε), (2)

where Xi : [0,∞) → R, i = 0, . . . , N , are continuous functions, while |RN (t, ε)| ≤
CN (t)εN+1, ∀N ∈ N and ε ≥ 0, for some CN (t) independent of ε, but in general
dependent of randomness, through X0

t , X
1
t , . . . , X

N
t . For n ∈ N, the functions Xi

t are
determined recursively as solutions of random differential equations in terms of the
X j
t , j ≤ i − 1, ∀i ∈ {1, . . . , N }.
Before giving the proof of the validity of the expression in Eq. (2), let us recall the

following result, see, e.g., Giaquinta and Modica (2000).

Lemma 1 Let f be a real (resp. complex)-valued function in CM+1 (B(x0, r)), r > 0,
x0 ∈ R for some M ∈ N0, where (B(x0, r) denotes the ball of center x0 and radius r .
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Then, for any x ∈ B(x0, r) the following Taylor expansion formula holds

f (x) =
M∑
p=0

Dp f (x0)

p! (x − x0)
p + RM

(
DM+1 f (x0, x)

)
,

with Dp f (x0) := Dp f (x)|x=x0 the pth derivative at x0 and

RM

(
f (M+1)(x0, x)

)
:= (x − x0)

M+1CM (x0, x),

with

CM (x0, x) := M + 1

(M + 1)!
∫ 1

0
(1 − s)MDM+1 f (x0 + s(x − x0))ds.

We have

|CM (x0, x)| ≤ M + 1

(M + 1)!
∫ 1

0
(1 − s)M sup

x∈B(x0,r)
|DM+1 f (x0 + s(x − x0))|ds

=: C̃M (x0) < +∞ (3)

and also

|RM

(
f (M+1)(x0, x)

)
| ≤ |CM (x, x0)||x − x0|M+1 ≤ C̃M (x0)|x − x0|M+1, M ∈ N0.

With this lemma in mind, let us then consider a function f : R+ × R → R, and
fε(x) := f (ε, x), ε ≥ 0, x ∈ R. If we then suppose that for any fixed x ∈ R, f is of
class CK+1(I ) in ε for some K ∈ N0, I = [0, ε0], ε0 > 0, we can write the Taylor
expansion of f around ε = 0, w.r.t. ε ∈ I for any fixed x ∈ R, as follows:

fε(x) =
K∑
j=0

f j (x)ε
j + R fε

K (ε, x), (4)

where f j is the j th coefficient in the expansion provided by Lemma 1, while

supx |R fε
K (ε, x)| ≤ CK , f ε

K+1 for some CK , f > 0, independent of ε. Assume in
addition that x �→ f j (x) are in CM+1, j = 0, . . . , K , for some M ∈ N0, then,
applying Lemma 1 to the function f j in B(x0, r), r > 0, we obtain

fε(x) =
K∑
j=0

ε j

⎡
⎣ M∑

γ=0

Dγ f j (x0)

γ ! (x − x0)
γ + RM ( f (M+1)

j (x0, x))

⎤
⎦ + R fε

K (ε, x),

(5)

with RM ( f (M+1)
j (x0, x)) estimated as in Lemma1 (with f j replacing f ) and R fε

K (ε, x)
as in (4).
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Let us now take x = x(ε) assuming ε �→ x(ε) in CN+1, with 0 ≤ ε ≤ ε0,
0 < ε0 < 1 and x(0) = x0 ∈ R. Then, by Lemma 1

x(ε) =
N∑
j=0

ε j x j + Rx
N (ε), N ∈ N0, x j ∈ R, j = 0, 1, . . . , N , (6)

with f replaced by x , M replaced by N , x by ε, x0 by 0 and RM ( f (M+1)(x0, x)) by
Rx
N (ε). In particular,

|Rx
N (ε)| ≤ C̃N (0)εN+1, (7)

with C̃N (0) independent of ε.
Plugging (6) into (5), we get

fε(x(ε)) =
K∑
j=0

ε j

⎡
⎣ M∑

γ=0

Dγ f j (x0)

γ ! (x(ε) − x0)
γ + RM

(
f (M+1)
j (x0, x(ε))

)⎤
⎦ + R fε

K (ε, x(ε))

=
K∑
j=0

ε j

⎡
⎣ ∑

γ≤M

Dγ f j (x0)

γ !

⎛
⎝ N∑
k=1

εk xk + Rx
N (ε)

⎞
⎠

γ

+ RM

(
f (M+1)
j (x0, x(ε))

)⎤
⎦

+ R fε
K (ε, x(ε)).

(8)

The estimates on RM , R fε
K and Rx

N have been given in Lemma 1, resp., after (4),
resp. (7).

By Newton’s formula, we have that, ∀ γ ∈ N0, the following holds
⎛
⎝ N∑

j=1

ε j x j + Rx
N (ε)

⎞
⎠

γ

=
γ∑
∗

γ !
γ1! . . . γN+1! ε

γ1+2γ2+···+NγN x
γ1
1 . . . x

γN
N (Rx

N (ε))γN+1 , (9)

where we have used the notation

γ∑
∗

=
γ∑

γ1,...,γN+1=0
γ1+2γ2+···+NγN+γN+1=γ

;

hence, using (9) to rewrite (8) we obtain the following.

Lemma 2 If, for 0 ≤ ε < ε0, ε �→ x(ε) is in CN+1(I ), I = [0, ε0], and ε �→ fε(y) is
CK+1(R) in ε ∈ I and for any y ∈ R, y �→ fε(y) is in CM+1, the following expansion
in powers of ε holds:

fε(x(ε)) =
K∑
j=0

ε j

⎡
⎣ M∑

γ=0

Dγ f j (x0)

γ !
γ∑
∗

γ !
γ1! . . . γN+1! ε

γ1+2γ2+···+NγN x
γ1
1 . . . x

γN
N (Rx

N (ε))γN+1

+ RM

(
f (M+1)
j (x0, x(ε))

) ⎤
⎦ + R fε

K (ε, x(ε)),

(10)
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The estimates for the remainders are as follows:

|Rx
N (ε)| ≤ C̃N (0)εN+1,

RM

(
f (M+1)
j (x0, x(ε))

)
≤ C̃M (x0)|x − x0|M+1,

sup
x, ε

|R fε
K (ε, x)| ≤ CK , f ,

with C̃N (0), C̃M (x0) and CK , f independent of ε.

TakingEq. (10) into account,we can group all the termswith the same power k ∈ N0
of ε. Calling [ fε(x(ε))]k the coefficient of ε

k and using k = j+γ with j = 0, . . . , K ,
γ1+2γ2+· · ·+NγN = γ with γ = 0, . . . , M , we have the following, see, Albeverio
and Smii (2013).

Proposition 1 Let x(ε) be as in (6); let fε as in (4) with f j ∈ CM+1, j = 0, . . . , K.
Then,

fε(x(ε)) =
K+M∑
k=0

εk [ fε(x(ε))]k + RK+M (ε),

with |RK+M (ε)| ≤ CK+MεK+M+1, for some constant CK+M ≥ 0, independent of ε,
0 ≤ ε ≤ ε0, and coefficients [ fε(x(ε))]k defined by

[ fε(x(ε))]0 = f0(x0);
[ fε(x(ε))]1 = Df0(x0)x1 + f1(x0);
[ fε(x(ε))]2 = Df0(x0)x2 + 1

2
D2 f0(x0)x

2
1 + Df1(x0)x1 + f2(x0);

[ fε(x(ε))]3 = Df0(x0)x3 + 1

6
D3 f0(x0)x

3
1 + Df1(x0)x2 + Df2(x0)x1 + D2 f1(x0)x

2
1 + f3(x0).

The general case has the following form:

[ fε(x(ε))]k = Df0(x0)xk + 1

k! D
k f0(x0)x

k
1 + fk (x0)

+B f
k (x0, x1, . . . , xk−1), k = 1, . . . , K + M (11)

where B f
k is a real function depending on (x0, x1, . . . , xk−1) only.

Remark 1 We observe that [ fε(x(ε))]k depends linearly on xk , non-linearly in the
inhomogeneity involving the coefficients x j , 0 ≤ j ≤ k−1 in (6). If x(ε) satisfies (6)
and both με and σ ε have the properties of the function fε in (4), then the coefficients
με(x(ε)) and σ ε(x(ε)) on the right-hand side of (1) can be rewritten in powers of ε,
for 0 ≤ ε ≤ ε0, as follows:
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με(x(ε)) =
Kμ+Mμ∑
k=0

[
με(x(ε))

]
k εk + Rμ

Kμ+Mμ
(ε);

σε(x(ε)) =
Kσ +Mσ∑
k=0

[
σ ε(x(ε))

]
k εk + Rσ

Kσ +Mσ
(ε);

where the natural numbers Kα and Mα , α = μ, σ depend on the functions με , resp.
σε , and

|Rα
Kα+Mα

(ε)| ≤ CKα+Mα εKα+Mα+1,

for some constants CKα+Mα depending on C j , j = 0, . . . , Kα + Mα but independent
of ε, and 0 ≤ ε ≤ ε0.

2.2 The asymptotic character of the expansion of the solution X�
t of the SDE in

powers of�

Theorem 1 Let us assume that the coefficients αε , α = μ, σ , of the stochastic differ-
ential equation (1) are in CKα (I ) as functions of ε, ε ∈ I = [0, ε0], ε0 > 0, and
in CMα (R) as functions of x. Let us also assume that αε are such that there exists a
solution X ε

t in the probabilistic strong, resp. weak sense of (1) and that the recursive
system of random differential equations

dX j
t = [

με
(
X ε
t

)]
j dt + [

σ ε
(
X ε
t

)]
j dLt , j = 0, 1, . . . , N , t ≥ 0,

has a unique solution.
Then, there exists a sequence εn ∈ (0, ε0], ε0 > 0, εn ↓ 0 as n → ∞ such that X εn

t
has an asymptotic expansion in powers of εn, up to order N, in the following sense:

X εn
t = X0

t + εn X
1
t + · · · + εNn XN

t + RN (εn, t),

with

st − limεn↓0
sups∈[0,t] |RN (εn, s)|

εN+1
n

≤ CN+1,

for some deterministic CN+1 ≥ 0, independent of ε ∈ I , where st-lim stands for the
limit in probability.

Proof We proceed by slightly modifying the proof in Albeverio and Smii (2013) since
we have to take care of the presence of the explicit dependence on ε of the drift
coefficient.

We shall use the fact that

TN (ε, t) :=
[
X ε
t − ∑N

j=0 ε j X j
t

]
εN+1 , ε ∈ (0, ε0],
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satisfies a random differential equation of the form

εN+1dTN (ε, t) = Aμε

N+1

(
X0
t , . . . , XN

t , RN (t, ε)
)
dt + Aσε

N+1

(
X0
t , . . . , XN

t , RN (t, ε)
)
dLt ,

with coefficients Aαε

N+1, α = μ, σ given by

Aαε

N+1 (y0, y1, . . . , yN , y) =
⎡
⎣αε

⎛
⎝ N∑

j=0

ε j y j + εN+1y

⎞
⎠ −

N∑
j=0

ε jα j (y0, y1, . . . , yN )

⎤
⎦ ,

with α j , j = 0, 1, . . . , N the expansion coefficients of αε in powers of ε ∈ I .
By Taylor’s theorem, one proves

1

εN+1 sup
s∈[0,t]

|Aαε

N+1

(
X0
s , . . . , X

N
s , RN

s (ε)
)

| ≤ CN+1, ε ∈ (0, ε0],

for some CN+1 ≥ 0, independent of ε, 0 ≤ ε ≤ ε0.
From this, one deduces that one can find a sequence εn → 0 as n → ∞ s.t.

st-lim εn↓0
n→∞

1

εN+1
n

sup
s∈[0,t]

|Aαεn

N+1

(
X0
s , . . . , X

N
s , RN

s (εn)
)

|

exists and it is bounded by CN+1.
Under some assumptions on με , σ ε and L , it follows then from a theorem by

Skorohod, on the continuous dependence of solutions of SDE’s on the coefficients,
see, e.g., Gihman and Skorokhod (1972), that

st-lim εn↓0
n→∞

sup
s∈[0,t]

|TN (εn, s)|

exists and it is bounded by CN+1, which proves the result.
See Albeverio and Smii (2013) for more details. 
�

Remark 2 It is worth to mention that if Lt is a standard Brownian motion, then results
of the type stated in Theorem 1, have been already obtained, exploiting Malliavin
calculus’ techniques, see, e.g., Takahashi (1999) and Watanabe (1987). Recently, see
Shiraya andTakahashi (2017), results ofTakahashi (1999) have beenpartially extended
to consider the case when the small perturbation parameter ε is also in the jump
component and then expand the related SDE around ε = 0, even if in a different
way compared to our approach. We further generalize previous setting considering
a small parameter which fully enters in the volatility term multiplying the stochastic
noise Lt , possibly with a polynomial dependence. We would like to underline that,
w.r.t. the settings studied in Takahashi (1999) and Watanabe (1987), we retrieve the
driving SDE there analyzed and then obtain the same expansion. Let us also recall
that asymptotic expansions in the case of Lt with jumps have been also discussed, by
using PDE methods, in Benhamou et al. (2009) and Matsuoka et al. (2004), where the
coefficients appearing in the expansion for the option price are expressed in terms of
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the Geeks, while in Pagliarani et al. (2013), PDE and Fourier transformation methods
are used to handle an expansion of the solution of the Kolmogorov equation associated
with processes with stochastic volatility and general jump terms. Expansions in terms
of nested systems of linearized SDE’s also occur in Fouque et al. (2000) and Takahashi
and Yamada (2012).

Remark 3 It can be seen that in general the kth equation for Xk
t in Theorem 1 is a

non-homogeneous linear equation in Xk
t , but with random coefficients depending on

X0
t , . . . , X

k−1
t and with a random inhomogeneity depending on Xk

t . Thus, it has the
general form

dXk
t = fk

(
X0
t , . . . , X

k−1
t

)
Xk
t dt + gk

(
X0
t , . . . , X

k−1
t

)
dt

+ g̃k
(
X0
t

)
dLt + hk

(
X0
t , . . . , X

k−1
t

)
Xk
t dLt ,

(12)

for some continuous functions fk, gk, g̃k and hk .

Let us now look at a particular case

Example 1 Let us consider the linear case, that is, let με = (a + εb)x and σε =
(σ0 + εσ1)x with a, b, σ0 and σ1 some real constants. Applying Proposition 1, we get

X0
t = x0 +

∫ t

0
aX0

s ds +
∫ t

0
σ0X

0
s dLs,

X1
t =

∫ t

0
aX1

s ds +
∫ t

0
bX0

s ds +
∫ t

0
σ1X

0
s dLt +

∫ t

0
σ0X

1
s dLt ,

Xk
t =

∫ t

0
aXk

s ds +
∫ t

0
bXk−1

s ds +
∫ t

0
σ1X

k−1
s dLs +

∫ t

0
σ0X

k
t dLt , k ≥ 2.

(13)

If we consider the special case of Remark 1 where με(x) = ax + b, independent
of ε, σε(x) = cx + εd̃x , for some real constants a, b, c and d̃ , independent of ε, and
where the Lévy process is taken to be a standard Brownian motion, Lt = Wt , then by
Eq. (11) we have that Xk

t satisfies a linear equation with constant coefficients for any
k ∈ N; thus, applying standard results, see, e.g., Arnold (1974), an explicit solution
for Xk

t can be retrieved.
Let us describe this in the case where we have a set of K coupled linear stochastic

equations with random coefficients of the form

{
dXt = [A(t)Xt + f (t)] dt + ∑m

i=1 [Bi (t)Xt + gi (t)] dWi
t ,

Xk
0 = xk0 ∈ R, t ≥ 0

(14)

where A and Bi are K × K matrices and f and gi RK -valued deterministic functions.
Let us underline that, in a financial setting, A and B can be considered as the percentage
rate at which drift and volatility change, whereas f and g play the role of inhomoge-
neous terms. All the coefficients A, B, f and g are assumed to be measurable. The
solution of Eq. (14) is then given by
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Xt = Φ(t)

[
x0 +

∫ t

0
Φ−1(s)

(
f (s) −

m∑
i=1

Bi (s)gi (s)

)
ds +

m∑
i=1

∫ t

0
gi (s)dW

i
s

]

(15)

where Φ(t) is the fundamental K × K matrix solution of the corresponding homoge-
neous equation, i.e., it is the solution of the problem

{
dΦ(t) = A(t)Φ(t)dt + ∑m

i=1 Bi (t)Φ(t)dWi
t ,

Φ(0) = I , t ≥ 0,
, (16)

being I the unit K × K matrix.

Remark 4 In the case where K = 1, we have that Φ reduces to a scalar and is given
by

Φ(t) = exp

{∫ t

0

(
A(s) − 1

2
B2(s)

)
ds +

∫ t

0
B(s)dWs

}
.

Still in the case K = 1 but with a more general noise, i.e.,Wt in Eq. (14) replaced by a
Lévy process composed by a Brownian motion plus Wt a jump component expressed
by Ñ , Eq. (16) is replaced by

{
dΦ(t) = A(t)Φ(t)dt + B(t)Φ(t)dWt + ∫

R0
Φ(t−)C(t, x)Ñ (dt, dx),

Φ(0) = I , t ≥ 0
(17)

with A, B,C Lipschitz and with at most linear growth, and where Ñ (dt, dx) is
a Poisson compensated random measure to be understood in the following sense:
Ñ (t, A) := N (t, A) − tν(A) for all A ∈ B(R0), 0 /∈ Ā, with Ā the closure of A,
N being a Poisson random measure on R+ × R0 and ν(A) := E(N (1, A)), while
R0 := R\{0} and ∫

R0
(|x |2 ∧ 1)ν(dx) < ∞, ν is the Lévy measure to Ñ , see, e.g.,

Applebaum (2009), Imkeller et al. (2009), Mandrekar and Rüdiger (2015).
Denoting then Eq. (17) for short as

dΦ(t) = Φ(t−)dX(t), (18)

with

dX(t) = A(t)dt + B(t)dWt +
∫
R0

C(t, x)Ñ (dt, dx), (19)

we have then that the solution to Eq. (18) is explicitly given, in terms of the coefficients
and noise, and the solution of Eq. (19), by
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Φ(t) = exp

{
1 +

∫ t

0

(
A(s) − 1

2
B2(s)

)
ds +

∫ t

0
B(s)dWs

+
∫
R0

C(s, x)Ñ (ds, dx)

} ∏
0<s≤t

(1 + ΔXs) e
−ΔXs ,

(20)

where ΔX(s) := Xs − Xs− is the jump at time s ∈ (0, t]. The stochastic process
(20) is called Doléans-Dade exponential (or stochastic exponential), and it is usually
denoted by Φ(t) = E(Xt ). The Doléans-Dade exponential has a wide use in finance
since it is the natural extension to the Lévy case of the standard geometric Brownian
motion, see, e.g., Arnold (1974) and Gardiner (2004) for a more extensive treatment
of the fundamental solution of the homogeneous equation for systems of linear SDE’s
and Applebaum (2009) for more details on the Doléans-Dade exponential.

3 Corrections around the Black–Scholes price (with Brownian, resp.
Brownian plus jumps)

We shall study an asset Sε
t evolving according to the particular stochastic differential

equation (SDE) governing the Black–Scholes (BS) model, with the possible addition
of some driving term determined by a compound Poisson process, see, e.g., Black
and Scholes (1973), Shreve (2004), resp. Benhamou et al. (2009), Merton (1976) and
Albeverio et al. (2006). Our aim is to apply the theory developed in Sect. 2 in order to
give corrections around the price given by the BS model for an option with terminal
payoff Φ written on the underlying Sε

t (Φ is a given real-valued function assumed
here to be sufficiently smooth). In particular, if we consider the return process defined
as X ε

t := logSε
t , S

ε
t being supposed to be strictly positive, at least almost surely, we

have that the price P(t, T ) at time t of the option with final payoff Φ with maturity
time T , 0 ≤ t ≤ T , is given by

P(t, T ) = E
Q

[
er(T−t)Φ(XT )

∣∣∣Ft

]
, (21)

where Q is a relevant equivalent martingale measure, called in financial application
risk-neutral measure, EQ [·|·] the corresponding conditional expectation given the σ -
algebra Ft at time t associated with the underlying Brownian motion; r > 0 is the
constant interest rate. We refer to, e.g., Black and Scholes (1973), Brigo andMercurio
(2006), Cox et al. (1985), Filipovic (2009), Kim and Kunitomo (1999), Shreve (2004),
for a general introduction to option pricing. We stress that, defining the stock price as

dS(t) = S(t−)dL(t),

for a general Lévy process L , as remarked in Eqs. (18)–(20), its solution can be given
in terms of the Doléans-Dade exponential as S(t) = E(Xt ). In particular, using the
notation in Eq. (20) and requiring that

inf {ΔL(t), t > 0} > −1 a.s.,
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then Z is almost surely finite and positive, see, e.g., Applebaum (2009, Proposition
5.1.1, pp. 247–248).Moreover, by Theorem1 and using Lemma 2,we have thatΦ(X ε

t )

has an asymptotic expansion, in the sense of Theorem 1, in powers of ε ∈ [0, ε0),
ε0 > 0, with the following form

Φ(X ε
t ) =

H∑
k=0

εk
[
Φ(X ε

t )
]
k + RH (ε, t), (22)

where

sup
s∈[0,t]

|RH (ε, s)| ≤ CH+1(t)ε
H+1,

for any H ∈ N, and the coefficients can be computed from the expansion coefficients
of X ε

t , as discussed in Sect. 2.
More concretely, we will deal with two particular cases. In the first case, we have an

asset Sε evolving according to a geometric Brownian motion with a small perturbation
in the diffusion. Namely, the asset evolves, in a risk-neutral setting, according to

{
dSε

t = Sε
t

[
(σ0 + εσ1 f̄ (Sε

t ))dWt
]
,

s0 = s0, t ≥ 0
(23)

where σ0 �= 0 and σ1 are real constants, s0 > 0, Wt is a Q-Brownian motion adapted
to the filtration (Ft )t and f̄ (Sε

t ) := f (X ε
t ) with f a given smooth function on R.

In particular, the existence and uniqueness of a strong solution to Eq. (23) follow
under the general assumption of f̄ ∈ C1 from McKean (1969, Problem 3.3.2). For
the sake of simplicity, we have assumed both σ0 and σ1 to be time independent,
the generalization to time-dependent functions being almost straightforward, without
computational problems w.r.t. derivation of the results developed in what follows.

Suppose, for all t ≥ 0, Sε
t > 0 a.s. (which is the case if ε is sufficiently small).

Applying Itô’s lemma to X ε
t := log Sε

t , we end up with the following evolution for
X ε
t , the return of the asset price

X ε
t = x0 −

∫ t

0

[
σ 2
0

2
+ εσ0σ1 f (X

ε
s ) + ε2

σ 2
1 f (X ε

s )
2

2

]
ds

+
∫ t

0

[
σ0 + εσ1 f (X

ε
s )

]
dWs, (24)

where we have set x0 := logs0.
Applying the results obtained in Sect. 2 and expanding Eq. (24) to the second order

in ε, we get
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X0
t = x0 − σ 2

0

2
t + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

,

X1
t = −

∫ t

0
σ0σ1 f (X

0
s )ds +

∫ t

0
σ1 f

(
X0
s

)
dWs,

X2
t = −

∫ t

0

(
σ 2
1 f (X0

s )
2

2
+ 2σ0σ1 f

′ (X0
s

)
X1
s

)
ds +

∫ t

0
σ1 f

′ (X0
s

)
X1
s dWs,

(25)

whereN
(

−σ 2
0
2 t, σ 2

0 t

)
denotes the Gaussian distribution of mean −σ 2

0
2 t and variance

σ 2
0 t , f

′ the derivative of f .
The second model we will deal with, followingMerton (1976) and Benhamou et al.

(2009), is the previous one with an addition of a small compound Poisson process

Zt =
Nt∑
i=1

Ji ,

with Nt a standard Poisson process with intensity λ > 0 and (Ji )i=1,...,Nt being
independent normally distributed random variables, namely such that

Ji has law N (γ, δ2),

for some γ ∈ R and δ > 0.
We thus have that the Lévy measure ν(dz) of Z reads as

ν(dz) = λ√
2πδ

e− (z−γ )2

2δ2 dz, z ∈ R,

and the cumulant function of Z is

κ(ζ ) = λ

(
eγ ζ+ δ2ζ2

2 − 1

)
.

In particular, we assume the asset Sε to evolve according to a geometric Lévy
process with a small perturbation in the diffusion. Namely, the asset evolves, in a
risk-neutral setting, according to

{
dSε

t = Sε
t

[
(σ0 + εσ1 f̄ (Sε

t ))dWt + ε
∑Nt

i=1 Ji
]
,

Sε
0 = s0 > 0, t ≥ 0,

. (26)

Again the existence and uniqueness of a strong solution to Eq. (26) can be obtained
by arguments similar to the ones used in McKean (1969, Problem 3.3.2) together with
the properties of

∑Nt
i=1 Ji .

Proceeding as above and applying Itô’s lemma to X ε
t := log Sε

t , we have that the
log-return process X ε

t evolves according to
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X ε
t = x0 −

∫ t

0

[
σ 2
0

2
+ εσ0σ1 f (X

ε
s ) + ε2

σ 2
1 f (X ε

s )
2

2

]
ds + ελt

(
eγ+ δ2

2 − 1

)

+
∫ t

0

(
σ0 + εσ1 f

(
X ε
s

))
dWs + ε

Nt∑
i=1

Ji ,

(27)

for ε ∈ I = [0, ε0], ε0 > 0.
In the present case, it is more tricky to deal with the risk-neutral probability mea-

sure Q. Under suitable assumptions on the coefficients and noise, one can assure the
existence (but not necessarily the uniqueness) of an equivalent probability measureQ.
We will assume the process (27) to evolve under a risk-neutral measure Q, see, e.g.,
Applebaum (2009).

In particular, we will use two specific forms for the function f that is an exponential
function and a polynomial function. The former is of special interest for its general
application to integral transforms, such as Fourier or Laplace transforms, see, e.g.,
Sect. 3.1, Remark 6. The latter mimics a polynomial volatility process [these types
of processes have been widely used in finance since they can be easily implemented,
see, e.g., Carr et al. (2013) and reference therein].

3.1 A correction given by an exponential function

Let us consider the first model described by Eqs. (24) and (25), i.e., an asset Sε

evolving according to a geometric Brownian motion under the unique risk-neutral
probability measure Q, recalling that X ε

t = logSε
t . Let us first look at the particular

case f (x) = eαx , for some α ∈ R. We take into account the particular case of an
exponential function due to the fact that it can be easily extended to the much more
general case where the function f can be written as a Fourier transform or a Laplace
transform of some bounded measure on the real line, as it will be further discussed in
Remark 6. We then get the following proposition.

Proposition 2 Let us consider the SDE (24) in the particular case where f (x) = eαx ,
for some α ∈ R0 := R\{0}, σ0 ∈ R0.

Then, the following expansion X ε
t = X0

t + εX1
t + ε2X2

t + R2(ε, t) holds, where
the coefficients are given by

X0
t = x0 − σ 2

0

2
t + σ0Wt , with law N

(
x0

σ 2
0

2
t, σ 2

0 t

)
;

X1
t =

∫ t

0
Kαe

αX0
s ds + σ1

ασ0

(
eαX0

t − 1
)

;

X2
t = C1

α

∫ t

0
e2αX

0
s ds + C2

αe
αX0

t

∫ t

0
eαX0

s ds + C3
α

∫ t

0
eαX0

s ds

+ C4
α

∫ t

0
eαX0

s

∫ s

0
eαX0

r drds + C5
αe

2αX0
t + C6

αe
αX0

t + C7
α,

(28)
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with

Kα := σ1

(σ0

2
− ασ0

2
− σ0

)
, C1

α := −σ 2
1

(
5

2
− 1

2
+ α + Kα

σ0σ1

)
, C2

α := Kα

σ1

σ0
,

C3
α := −σ 2

1

(
1

2
+ α

2
+ 2

)
, C4

α := −Kασ1α
(
2σ0 − σ0

2
+ ασ0

2

)
,

C5
α := σ 2

1

2ασ 2
0

, C6
α := − σ 2

1

ασ 2
0

, C7
α := σ 2

1

2ασ 2
0

.

Furthermore, R2(ε, t) satisfies the bound

st − limεn↓0
sups∈[0,t] |R2(ε, s)|

ε3n
≤ C3,

for some subsequence εn ↓ 0 and with some constant C3 ≥ 0.

Proof The proof consists in a repeated application of the Itô formula and the stochastic
Fubini theorem.

In fact, substituting f (x) = eαx into system (25) we immediately obtain

X0
t = x0μt + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

;

X1
t = −

∫ t

0
σ0σ1e

αX0
s ds +

∫ t

0
σ1e

αX0
s dWs;

X2
t = −

∫ t

0

(
σ 2
1

2
e2αX

0
s + 2σ0σ1αe

αX0
s X1

s

)
ds +

∫ t

0
σ1αe

αX0
s X1

s dWs .

(29)

To compute X1
t , we apply Itô’s lemma to the function g(X0

t ) = eαX0
t to get

eαX0
t = 1 +

∫ t

0

(
eαX0

s αμ + α2

2
σ 2
0 e

αX0
s

)
ds +

∫ t

0
eαX0

s ασ0dWs . (30)

Expressing the latter integral involving dWs by the other terms in Eq. (30) and
substituting it in the stochastic integral of X1

t in the system (29), we get the result for
X1
t in Eq. (28).
In order to derive the expression for X2

t , we use again Itô’s lemma, in particular
Eq. (30), getting from (29)

X2
t = −

∫ t

0

(
σ 2
1
2
e2αX

0
s + 2σ0σ1αe

αX0
s X1

s

)
ds +

∫ t

0
ασ1e

αX0
s X1

s dWs

= −
∫ t

0
σ 2
1

(
2α + 1

2

)
e2αX

0
s ds +

∫ t

0
2ασ 2

1 e
αX0

s ds −
∫ t

0

∫ s

0
2Kασ1σ0αe

αX0
s eαX

0
r drds

+
∫ t

0

σ 2
1 α

σ0
e2αX

0
s dWs︸ ︷︷ ︸

(1)

−
∫ t

0

ασ 2
1

σ0
eαX

0
s dWs︸ ︷︷ ︸

(2)

+
∫ t

0
Kαασ1e

αX0
s

∫ s

0
eαX

0
r drdWs︸ ︷︷ ︸

(3)

.
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For the terms (1) and (2), we use Eq. (30), resp. Itô’s lemma applied to the function
g(X0

t ) = e2αX
0
t , as before to replace the stochastic integral by an integral against

Lebesgue measure. In order to treat the term (3), we use the stochastic Fubini theorem,
see, e.g., Theorem 6.2 in Filipovic (2009), to get

(3) = Kασ1

σ0

∫ t

0

∫ s

0
ασ0e

αX0
s eαX0

r drdWs = Kασ1

σ0

∫ t

0
eαX0

r

∫ t

r
ασ0e

αX0
s dWsdr .

Using the expression for the integral in dWs coming from (30), we then get

(3) = Kασ1

σ0

∫ t

0
eαX0

r

∫ t

r
ασ0e

αX0
s dWsdr

= Kασ1

σ0
eαX0

t

∫ t

0
eαX0

s ds − Kασ1

σ0

∫ t

0
e2αX

0
s ds − Kασ1

σ0

(
αμ + α2σ 2

0

2

)

×
∫ t

0

∫ s

0
eαX0

s eαX0
r drds.

Substituting now everything into the original system (29), rearranging and grouping
the integrals of the same type, we get the desired result in (28).

The estimate on the remainder is a consequence of Theorem 1. 
�
Remark 5 Our aim inProposition 2 is to discuss in detail a particular choice of volatility
function around the Black–Scholes one.We obtain explicit formulae for the expansion
coefficients, keeping control of the remainder. This expansion can be seen as a par-
ticular, but more explicit, case of the one discussed in Takahashi (1999, Proposition
2.1).

Remark 6 The particular choice of f (x) = eαx can easily be extended to any real
function which can be written as a Fourier transform, resp. Laplace transform, f (x) =∫
R0

ei xy�(dα), resp. f (x) = ∫
R0

eαx�(dα), of some positive measure � on R0 (e.g., a
symmetric probabilitymeasure) resp.which hasfiniteLaplace transform. Formula (28)
holdswith KαeαX0

τ replaced by
∫
R0

KαeiαX
0
τ �(dα), resp.

∫
R0

KαeαX0
τ �(dα), which are

finite if, e.g.,
∫
R0

|Kα|�(dα) < ∞, resp. � has, e.g., compact support. In fact, Eq. (30)
gets replaced by

∫
R0

eαX0
t �(dα) = 1 +

∫
R

[∫ t

0

(
eαX0

s αμ + α2

2
σ 2
0 e

αX0
s

)
ds

]
�(dα)

+
∫
R

[∫ t

0
eαX0

s ασ0dWs

]
�(dα).

(31)

By repeating the steps used before and exploiting again the Stochastic Fubini’s theo-
rem, we get the statements in Proposition 2 extended to these more general cases.

If we assume the payoff function x �→ Φ(x) to be smooth, x ∈ R+, we can expand
Φ(X ε

t ) in powers of ε using the formulae in Proposition 1. Then, exploiting Eq. (22)
with H = 1, i.e., stopping at the first order, we get
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Φ
(
X ε
t

) = Φ(X0
t ) + εΦ ′(X0

t )X
1
t + R1(ε, t), (32)

with sups∈[0,t] |R1(ε, s)| ≤ C̃(s)ε2, for some C̃ independent of ε (Φ ′ is the derivative
of Φ).

Calling Φ1 the terms on the r.h.s. in Eq. (32) minus the reminder term R1(ε, t), we
get that the corresponding corrected fair price Pr1(0; T ), up to the first order in ε, of
an option written on the underlying Sε

t := eX
ε
t at time t = 0 with maturity T , reads

as follows:

Pr1(0; T ) = e−rT
E
Q

[
Φ1(X

ε
T )

] = e−rT
E
Q

[
Φ(X0

T ) + εΦ ′(X0
T )X1

T

]
= PrBS + εe−rT

E
Q

[
Φ ′(X0

T )X1
T

]
,

(33)

where PrBS stands for the standard B–S price with underlying S0t := eX
0
t , see, e.g.,

Black and Scholes (1973).
This formula yields thus, for a smooth payoff function, the corrected price up to

the first order, with an error term related to the “full price” and bounded in modulus
by C2ε

2 for a constant C2 ≥ 0 independent of ε.

Remark 7 It is worth to recall that typical payoff functions usually fail to be smooth,
as in the case of European call options where Φ(x) = (ex − K )+, K > 0 being the
strike price. In particular, latter case is characterized by a point of non-differentiability
at eX = K . To avoid such an issue, one can consider a smoothed version of the payoff
function, namely Φh := Φ ∗ ρh , with ρh a smooth kernel s.t. Φh → Φ as h → ∞, in
distributional sense. As an example, taking ρh to be a smoothC∞ mollifier, properties
of the convolution product imply that alsoΦh inherits the smoothC∞ regularity. Then,
choosing a suitable calls of mollifier, the desired convergence Φh → Φ as h → ∞ is
obtained, see, e.g., Showalter (2010). As a byproduct of such an approach, we have
that the smoothed payoff function Φh , see Eq. (33), is well defined. In particular, the
first derivative appearing in Eq. (33) is given by a regularized version of 1[x>ln K ](x).
Heuristically, interchanging the limits involved in the expansionwith the regularization
removing, we can look at Pr1(0, T ) as given by (33), also in the case of the payoff
function Φ(x) = (ex − K )+, x ∈ R. Namely, we can considered we have that it
approximates the price, with Φ ′(x) = 1[x>ln K ](x) given as above. In fact, it can be
notice that, being Φ ∈ C1(R\{ln K }), we have that its derivative on the domain of
differentiability corresponds to 1[x>ln K ](x). We stress that the above approach should
ideally deal with distributional coefficients, using methods of see Watanabe (1987),
and also to handle distributional Φ, see Takahashi and Yamada (2012).

We have the following result.

Proposition 3 Let us consider the particular case of an European call option Φ with
payoff given byΦ(X ε

T ) = max{eXε
t −K , 0} =: (

eX
ε
t − K

)
+, K being the strike price.

Then, the approximated price up to the first-order Pr1(0; T ), in the sense of Remark 7,
is explicitly given by
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Pr1(0; T ) = PBS + εK1s
α+1
0 I1(s, T , α) − εK2s0N (d1)

+εK3s
α+1
0 N (d(2α + 1)) , (34)

with N (x) the cumulative function of the standard Gaussian distribution and

d(α) = 1

σ0
√
T

(
log

s0
K

+
(
r − σ 2

0
2

α

)
T

)
, d1 := d(1), d2 := (d1 + σ0

√
T ),

K1 = Kαe
− σ20

2 T
, K2 = σ

ασ0
, K3 = σ1

ασ0
e

σ20
2 Tα(α+1)+αrT

,

I1(s, T , α) =
∫ T

0
eαμs

∫
R×R

1{
x+y>

√
Td2

}eσ0x e(1+α)σ0 yφ(x, 0, T − s)φ(y, 0, s)dxdyds,

where we have denoted by φ(x;μ, σ) the density function of the normal distribution
with mean μ and variance σ ; PBS denotes the usual B–S price with underlying S0t =
eX

0
t .

Proof Given the exponential function f (x) = eαx , where α ∈ R, the approximated
price up to the first-order Pr1(0; T ) of an European call option with payoff function

Φ(X ε
T ) =

(
eX

ε
T − K

)
+ is

Pr1(0; T ) = PBS + εe−rT
E
Q

[
Φ ′(X0

T )X1
T

]
= PBS + εe−rT

{
E
Q

[
1[XT

0 >ln(K )]e
X0
T

∫ T

0
Kαe

αX0
s ds

]
+

− K2E
Q

[
1[XT

0 >ln(K )]e
X0
T

]
+ K2E

Q

[
1[XT

0 >ln(K )]e
X0
T eαX0

T

]}
,

(35)

where PBS is the standard B–S price with underlying S0t = eX
0
t .

Let us first compute the integral

εe−rT
E
Q

[
1[X0

T >ln(K )]e
X0
T

∫ T

0
Kαe

αX0
s ds

]

By means of Fubini Theorem, we can exchange the expectation with respect to the
integration in time so that we obtain

εe−rT Kα

∫ T

0
E
Q

[
1[X0

t >ln(K )]e
X0
T eαX0

s

]
ds. (36)

From the definition of X0
T and X0

s , for every fixed 0 < s < T , we have

X0
T = x0 + μT + σ0WT ,

X0
s = x0 + μs + σ0Ws,

123



Asymptotic expansion for some local volatility models… 545

are two correlated random variables, by means of the Wiener processes involved. By
algebraic manipulation let us define WT = WT − Ws + Ws , where X := WT − Ws is
N (0, T − s) independent with respect to Ws . Then, X0

T = x0 + μT + σ0X + σ0Ws

and (36) becomes

εe−rT Kα

∫ T

0
E
Q

[
1{

σ0X+σ0Ws>ln( K
s0

)−μT
}e(1+α)x0+μT eαμseσ0Xe(1+α)σ0Ws

]
ds

= εe−rT Kαs
(1+α)
0 erT e− σ20

2 T

×
∫ T

0
eαμs

E
Q

[
1{

σ0X+σ0Ws>ln
(

K
s0

)
−μT

}eσ0Xe(1+α)σ0Ws

]
ds.

The expectation with respect to the risk-neutral measure can be exchanged with the
time integration. Moreover, by exploiting the independence of X and Ws , we get the
final result

εKαs
(1+α)
0 e−

σ20
2 T

∫ T

0
eαμs

∫
R×R

1{
x+y>−√

Td2
}eσ0x e(1+α)σ0 yφ(x, 0, T − s)φ(y, 0, s)dxdyds

= εs(1+α)
0 K1

∫ T

0
eαμs

∫
R×R

1{
x+y>−√

Td2
}eσ0x e(1+α)σ0 yφ(x, 0, T − s)φ(y, 0, s)dxdyds.

Then, we have from the definition of X0
T

E

[
1[XT

0 >ln(K )]e
X0
T

]
=

∫
x>−d2

ex0+μT+σ0
√
T x 1√

2π
e

−x2
2 dx

= s0e
rT e− σ20

2 T
∫
x>−d2

1√
2π

e
−

(
x√
2
− σ0

√
T√
2

)2

e
σ20 T
2 dx

= s0e
rT

∫
x>−d2

1√
2π

e
−

(
x√
2
− σ0

√
T√
2

)2

dx .

(37)

By setting y = x − σ0
√
T , the integral in (68) reads as

E

[
1[XT

0 >ln(K )]e
X0
T

]
= s0e

rT
∫
y>−d1

1√
2π

e− y2

2 dx = s0e
rT N (d1). (38)

Eventually by multiplying by −εe−rTK2, we obtain

− εe−rTK2E

[
1[XT

0 >ln(K )]e
X0
T

]
= −εK2s0N (d1) (39)
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Let us now compute the last term in the bracket { } in (35). We have

K2E

[
1[XT

0 >ln(K )]e
X0
T eαX

0
T

]
= K2

∫
x0+μT+σ0

√
T x>ln(K )

e
(1+α)

(
x0+μT+σ0

√
T x

)
1√
2π

e
−x2
2 dx

= K2

∫
x>−d2

e(1+α)(x0+μT )e(1+α)σ0
√
T x 1√

2π
e

−x2
2 dx

= K2s
(1+α)
0 e(1+α)rT e−(1+α)

σ20
2 T

∫
x>−d2

e(1+α)σ0
√
T x 1√

2π
e

−x2
2 dx

(40)

The integrand function can be recast as

1√
2π

e(1+α)σ0
√
T xe

−x2
2 = 1√

2π
e
−

(
x√
2
− (1+α)σ0

√
T√

2

)2

e
σ20
2 (1+α)2T .

By the change of variable x �→ y = x − (1 + α)σ0
√
T , the domain of integration

becomes

y > −d2 − (1 + α)σ0T = − 1

σ0
√
T

(
ln

(
K

s0

)
− rT + σ 2

0 /2 − (1 + α)σ 2
0 T

)

= − 1

σ0
√
T

(
ln

(
K

s0

)
+ rT + σ 2

0

2
(2α + 1)T

)

= −d(2α + 1).

Therefore, (40) becomes

K2E

[
1[XT

0 >ln(K )]e
X0
T eαX0

T

]
= K2s

(1+α)
0 e(1+α)rT e−(1+α)

σ20
2 T e

σ20
2 (1+α)2T

∫
y>−d(2α+1)

1√
2π

e
−y2

2 dy

= K2s
(1+α)
0 e(1+α)rT eα(1+α)

σ20
2 T N (d(2α + 1))

Eventually by multiplying by εe−rT , we get

K2E

[
1[XT

0 >ln(K )]e
X0
T eαX0

T

]
= K2s

(1+α)
0 eαrT eα(1+α)

σ20
2 T N (d(2α + 1))

= εK3s
(1+α)
0 N (d(2α + 1)) 
�

By Proposition 3, we have that the explicit computation of the corrected fair price
is reduced to a numerical evaluation of a deterministic integral, which might be more
efficient than directly simulating the random variables involved.

Remark 8 Our result in Proposition 3 covers the case of a perturbation around the
classical Black–Scholes model. This is different in this sense from the one discussed
in Takahashi (1999).
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Remark 9 We could have also considered the second order perturbation Pr2(0; T )

around the BS price. This is given by

Pr2(0; T ) = Pr1(0; T ) + ε2e−rT
E
Q

[
Φ(X0

T )′X2
T

]
+ e−rT

E
Q

[
Φ(X0

T )′′
(
X1
T

)2]
,

with Pr1 the up to first-order price in Eq. (33). For the particular case of a European
call option, we have that Φ ′′ = δ(X − log K )eX + 1[X>log K ]e

X , with δ the Dirac
measure at the origin. Thus, the correction up to the second order of the BS price for
a European call option reads

Pr2(0; T ) = Pr1 + ε2K4s
2α+1
0 I1(s, T , 2α)

+ ε2K5s
2α+1
0 I2(s, T ) + ε2K6s

α+1
0 I1(s, T , α)

+ ε2K7s
2α+1
0 I3(r , s, T ) + ε2K8s

2α+1
0 N (d(−3 − 4α))

+ ε2K9s
α+1
0 N (d(−1 − 2α)) + ε2K10s0N (d(1)),

(41)

with Pr1 as in Eq. (34), the notations as in Proposition 3 and

K4 =
(
C1

α + 2Kα

σ1

ασ0

)
e− σ20

2 T , K5 = C2
αe

αrT− σ20
2 (α+1)T ,

K6 =
(
C3

α + 2Kα

σ1

ασ0

)
e− σ20

2 T , K7 =
(
C4

α + 2K 2
α

)
e− σ20

2 T ,

K8 = C5
αe

σ20
2 Tα(2α+1)+2αrT , K9 =

(
C6

α + σ1

ασ0

)
e

σ20
2 Tα(α+1)+αrT ,

K10 =
(
C7

α − σ1

ασ0

)
,

I2(s, T ) =
∫ T

0

∫
R×R

1[
x+y>−√

Td(1)
]eαμs+(2α+1)σ0 y+(α+1)σ0x

× φ(x; y, T − s)φ(y; 0, s) dx dy ds,

I3(r , s, T ) =
∫ T

0

∫ s

0

∫
R×R×R

1[
x+y+z>−√

Td(1)
]eαμ(s+r)+σ0x+(1+α)σ0 y+(1+2α)σ0z

× φ(x; y, T − s)φ(y; z, s − r)φ(z; 0, r) dx dy dz dr ds,

3.1.1 Numerical results concerning the pricing formula in Proposition 3.

Wewill now use the techniques based on themulti-element Polynomial Chaos Expan-
sion (PCE) approach, to show the accuracy of the above derived approximated pricing
formula in Proposition 3.

In what follows, we will numerically compute the first-order correction of the price

of an European call option, whose payoff function is
(
eX

ε
T − K

)
+. In particular, we

focus our attention on the second summand of
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Table 1 Numerical values of the parameters employed in further computations

Sigma1 r Alpha T K Sigmazero s0 Epsilon

0.15 0.03 0.1 0.5 50 0.15 90 0.15

0.75 75 0.25 100 0.1

1 90 0.35 110 0.06

1.25 100 0.03

1.5 110 0.01

1.75 125

2

Pr1(0; T ) = PBS + εe−rT
E
Q

[
Φ ′(X0

T )X1
T

]
. (42)

Also, X0
T and X1

T are defined as in Proposition 2.
The expectation is computed by means of the standard Monte Carlo method, using

10,000 independent realization, and by means of the multi-element PCE, see, e.g.,
Bonollo et al. (2015), Crestaux et al. (2009), Ernst et al. (2012), Peccati and Taqqu
(2011) and references therein, for a detailed introduction to such a method. Indeed,
the random variable of interest is

1{XT
0 (ω)>ln(K )} exp(X

0
T )X1

T .

For both methods, we will use the available analytical expression of X0
T and X1

T ,
depending on the function f (x). In what follows, D := {XT

0 (ω) > ln(K )}.
In particular exploiting the linearity of the expectation and the definition of the two

random variables involved, (42) becomes

E
Q

[
1De

X0
T

∫ T

0
Kαe

αX0
s ds

]
+ K2E

Q

[
1De

X0
T eαX0

T

]
− K2E

Q

[
1De

X0
T

]
(43)

Then, we perform a multi-element PCE approximation of each random variable
in (43), setting the degree of the approximation to be p = 15, since the degree of
precision reached for such approximation seems to be sufficient. For higher degree, the
computational costs increase as well as numerical fluctuations; as witnessed exploiting
the Non-Intrusive Spectral Projection (NISP) toolbox developed within the Scilab
open-source software for mathematics and engineering sciences becomes relevant for
multi-element approximation. It is worth tomention thatmulti-element PCE is nothing
else that a PCE focused on D. Moreover, the global statistics are given by D, scaled
by means of the weight w.

The numerical values of the parameters are gathered in Table 1.
Figures 1, 2 and 3 report percentage error between analytical and PCE approxi-

mations of the above pricing equation, for different strike prices, maturity and ε; also
similarly, the same results are collected in Fig. 4 regarding relative error over ε grouped
by maturity.
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Fig. 1 Percentage error for PCE and analytical estimation—error w.r.t. strike price K

In particular, Figs. 5, 6 and 7 show that, as expected, the relative error increases
with and volatility; nonetheless, the relative error remains low. Same reasoning holds
increasing the maturity T .

Also varying ε, it emerges how the error decreases for smaller values of ε, in accord
with the small noise expansion nature of the pricing formula.

3.2 A correction given by an exponential function and jumps

In what follows, we extend the results in Sect. 3.1 to the second model in Sect. 3. In
particular, we will consider a correction up to the first order around the BS price (for
a European call option) where both diffusive and jump perturbations are taken into
account.We consider an asset whose return evolves according to Eq. (27) and consider
as before the particular case where f (x) = eαx , α ∈ R0. Carrying out the asymptotic
expansion in powers of ε, 0 ≤ ε ≤ ε0, and stopping it at the second order, we get the
following proposition:
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Fig. 2 Percentage error for PCE
and analytical estimation—error
w.r.t. σ

Fig. 3 Percentage error for PCE and analytical estimation—error w.r.t. ε
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Fig. 4 Percentage error for PCE and analytical estimation grouped by maturity—error w.r.t. ε

Fig. 5 Percentage error for PCE and analytical estimation—error w.r.t. strike price K

Proposition 4 Let us assume X ε
t evolves according to Eq. (27) with f (x) = eαx , for

some α ∈ R, then we have the asymptotic expansion up to the second order in powers
of ε, 0 ≤ ε ≤ ε0, X ε

t = X0
t + εX1

t + ε2X2
t + R2(ε, t), where the coefficients are given

by
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Fig. 6 Percentage error for PCE
and analytical estimation—error
w.r.t. σ

Fig. 7 Percentage error for PCE and analytical estimation—error w.r.t. ε
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X0
t = x0 + μt + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

;

X1
t =

∫ t

0
Kαe

αX0
s ds + σ1

ασ0

(
eαX0

t − 1
)

+ λt

(
eγ+ δ2

2 − 1

)
+

Nt∑
i=1

Ji ;

X2
t = C1

α

∫ t

0
e2αX

0
s ds + C2

αe
αX0

t

∫ t

0
eαX0

s ds

+ C3
α

∫ t

0
eαX0

s ds + C4
α

∫ t

0
eαX0

s

∫ s

0
eαX0

r drds

+ C5
αe

2αX0
t + C6

αe
αX0

t + C7
α + C8

αλ

(
eγ+ δ2

2 − 1

)
ν(dx)

∫ t

0
seαX0

s ds

− teαX0
t λ

(
eγ+ δ2

2 − 1

)
+ σ1

σ0
λ

(
eγ+ δ2

2 − 1

) ∫ t

0
eαX0

s ds

+ Cα
9

∫ t

0

Ns∑
i=1

Jie
αX0

s ds + σ1

σ0
eαX0

t

Nt∑
i=1

Ji − σ1

σ0

Nt∑
i=1

Ji

∫ t

0
eαX0

s ds,

(44)

with the constants as in Proposition 2 and

C8
α = σ1

σ0
αμ + σ0σ1

2
α2 − 2σ0σ1α, C9

α = 2σ0σ1α − σ1

σ0
αμ − σ0σ1

2
α2.

Proof The proof follows fromProposition 2 just taking into account the presence of the
Poisson randommeasure terms and applying Itô’s lemma, together with the stochastic
Fubini theorem. 
�
Remark 10 As mentioned in Remark 6, it is easy to extend Proposition 4 and formula
(33) to the case where f (x) = eαx is replaced by

∫
R0

eiαx�(dα), resp.
∫
R0

eαx�(dα),
with assumptions corresponding to those in Remark 6.

Proposition 5 Let us consider the model described by (27) in the particular case of
an European call option Φ with payoff given by Φ(X ε

T ) = (
eX

ε
t − K

)
+. Then, the

approximated price up to the first-order Pr1ν (0; T ), in the sense explained in Remark
7, is explicitly given by

Pr1ν (0; T ) = Pr1 + εT s0N (d1)

(
eγ+ δ2

2 − 1

)
+ εT s0N (d1) δλ,

where Pr1 is the corrected fair price up to the first order as given in Eq. (34) (the
notations are as Proposition 3).

Proof The proof is analogous of the proof of Proposition 3 adding the jump process.
The claim follows then from the independence of the jumpprocess and of theBrownian

motion togetherwith the fact thatE
[∑Nt

i=1 Ji
]

= δTλ as consequence of the definition

of Ji in Sect. 3.1. 
�
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3.2.1 Numerical results concerning the pricing formula in Proposition 4

We consider numerically the model discussed in Proposition 5, assuming that the Ji
is independent and normally distributed random variable

Ji ∼ N (γ, δ2) γ = 0.05, δ = 0.02,

and λ = 2. In particular, we are aiming at numerically computing the expectations in
the second summand of (42), which in the present case reads

E
Q

[
1De

X0
T

∫ T

0
Kαe

αX0
s ds

]
+ K2E

Q

[
1De

X0
T eαX0

T

]
− K2E

Q

[
1De

X0
T

]

+ K2E
Q

[
1De

X0
T λT

(
eγ+ δ2

2 − 1

)]
+ K2E

Q

[
1De

X0
T

NT∑
i=1

Ji

]
.

(45)

By means of independence of the jumps and Et

[∑NT
i=1 Ji

]
= λT δ, we get

E
Q

[
1De

X0
T

∫ T

0
Kαe

αX0
s ds

]
+ K2E

Q

[
1De

X0
T eαX0

T

]
− K2E

Q

[
1De

X0
T

]

K2E
Q

[
1De

X0
T λT

(
eγ+ δ2

2 − 1

)]
+ K2λT δEQ

[
1De

X0
T

]
.

(46)

We are going to compute (64) by multi-element PCE approximations.
Figures 5, 6 and 7 report percentage error between analytical and PCE approx-

imations of above pricing equation, for different strike prices, maturity and ε; also
similarly, the same results are collected in Fig. 8 regarding relative error over ε grouped
by maturity. Also parameters are shown in Table 1

Conclusion similar to the one drawn in Sect. 3 can be derived.

3.3 A correction given by a polynomial function

Let us consider Eq. (24) with f a polynomial correction, namely f (x) = ∑N
i=0 αi x i ,

with αi ∈ R and N ∈ N0. We then get the following proposition.

Proposition 6 Let us consider the case of the B–S model corrected by a nonlinear
term given by (24) with f (x) = ∑N

i=0 αi x i , for some αi ∈ R, then the expansion
coefficients for the solution X ε

t of (24) up to the second order are given by the system
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Fig. 8 Percentage error for PCE and analytical estimation grouped by maturity—error w.r.t. ε

X0
t = x0 + μt + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

;

X1
t =

N∑
i=1

K̃i (X
0
t )

i+1 −
N∑
i=0

∫ t

0
Ki (X

0
s )

ids + σ1α0Wt ;

X2
t =

2N+1∑
k=1

C1
k (X

0
t )

k −
2N+1∑
k=1

∫ t

0
C2
k (X

0
s )

kds

+
N∑
i=1

N∑
j=0

∫ t

0

∫ s

0
C3
i, j (X

0
s )

i−1(X0
r )

jdrds

+
N∑
i=1

N∑
j=0

(X0
t )

i
∫ s

0
C4
i, j (X

0
r )

jdr .

(47)

where the constants are given by

Ki =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0σ1αi + σ1
σ0

μαi + σ0σ1
2 αi+1(i + 1), i �= 0, i �= N ,

σ0σ1α0 + σ0σ1α1
2 , i = 0,

σ0σ1αN + σ1
σ0

μαN , i = N ,

K̃i = σ1

σ0

αi

(i + 1)
,

C1
k = γ 1

k + γ 2
k + γ 3

k ,
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where

γ 1
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k=i+ j+1 μiαi + σ1

σ0
− σ0

2 (i + j + 1), k �= 1, k �= 2N ,

σ0
2 , k = 0,

μσ1
σ0
NαN

(
σ0σ1αN + σ1

σ0
μαN

)
, k = 2N ,

γ 2
k =

⎧⎨
⎩

(
(−1)k+1

2
σ 2
1
2

)
α2
k , if 1 ≤ k ≤ N ,

0, otherwise

γ 3
k =

∑
i+ j=k−1

2σ0σ1αi i K̃ j ,

C3
i, j = −

⎧⎨
⎩

σ1
σ0

α1K0, if i = 1, j = 0,

σ1
σ0
iαi K j + σ0σ1

2 iαi K j (i − 1), otherwise.

C4
i, j = σ1

σ0
αi K j ,

.

Proof The proof consists in a series of applications of Itô’s formula and stochastic
Fubini theorem, see, e.g., Filipovic (2009), Theorem 6.2. In fact, substituting f (x) =∑N

i=0 αi x i into system (25) we obtain

X0
t = x0 + μt + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

;

X1
t = −

∫ t

0
σ0σ1

(
N∑
i=0

αi (X
0
s )

i

)
ds +

∫ t

0
σ1

(
N∑
i=0

αi (X
0
s )

i

)
dWs;

X2
t = −

∫ t

0

σ 2
1

2

(
N∑
i=0

αi (X
0
s )

i

)2

+ 2σ1

(
N∑
i=0

αi (X
0
s )

)′
X1
s ds

+
∫ t

0
σ1

(
N∑
i=0

αi (X
0
s )

)′
X1
s dWs .

(48)

To compute X1
t obtaining Eq. (47), we apply Itô’s lemma to the function g(X0

t ) =
αi+1(X0

t )
i+1 to get

(X0
t )

i+1 =
∫ t

0

(
μ(i + 1)(X0

s )
i 1

2
σ 2
0 i(i + 1)(X0

s )
i−1

)
ds

+
∫ t

0
(X0

s )
i (i + 1)σ0dWs .

(49)
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Then, summing up we obtain

N∑
i=1

∫ t

0
(X0

s )
i (i + 1)σ0dWs =

N∑
i=1

(X0
s )

i+1+

−
N∑
i=1

∫ t

0

(
μ(i + 1)(X0

s )
i + 1

2
σ 2
0 i(i + 1)(X0

s )
i−1

)
ds.

(50)

Substituting now Eq. (50) into X1 in Eq. (48), we obtain the following

X1
t =

N∑
i=1

σ1

σ0

αi

(i + 1)
(X0

t )
i+1+

−
N∑
i=1

∫ t

0
σ0σ1αi (X

0
s )

i −
N∑
i=1

∫ t

0
μ(i + 1)

σ1αi

σ0(i + 1)
(X0

s )
i+

−
N∑
i=1

∫ t

0

1

2
σ 2
0 i(i + 1)

σ1αi

σ0(i + 1)
(X0

s )
i−1ds,

and rearranging the terms we then get the desired result in (47) for X1
t .

Substituting the expression of X1
t into X2

t , we obtain

X2
t = −

N∑
i=1

∫ t

0

σ 2
1

2
α2
i (X

0
s )

2ids −
N∑

i, j=1

∫ t

0
2σ0σ1αi i K̃ j (X

0
s )

i−1(X0
s )

j+1ds

=
N∑
j=0

N∑
i=1

∫ t

0

∫ s

0
2σ0σ1αi i K j (X

0
s )

i−1(X0
r )

jdrds

+
N∑

i, j=1

∫ t

0
σ1αi i K j (X

0
s )

i−1(X0
s )

j+1dWs

−
N∑
j=0

N∑
i=1

∫ t

0

∫ s

0
σ1αi i K j (X

0
s )

i−1(X0
r )

jdrdWs.

Exploiting again the stochastic Fubini theorem from Eq. (50) and grouping the terms
with the same powers, we obtain (47). 
�
Proposition 7 Let us consider the particular case of N = 1, i.e., a linear perturbation,
namely f (x) = α0 + α1x, αi ∈ R, i = 0, 1. Then, the terms up to the first order in
Eq. (47) read

X0
t = x0 + μt + σ0Wt ,

X1
t = β1t + β2t

2 + β3Wt + β4W
2
t + β5tWt −

∫ t

0
β6Wsds,

(51)
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with

β1 = −σ0σ1α0 − σ0σ1α1x0 − σ0σ1α1

2
,

β2 = −σ0σ1α1μ

2
, β3 = α1σ0 + x0σ1α1,

β4 = σ0σ1α1

2
, β5 = σ1α1μ, β6 = σ1α1μ + σ 2

0 σ1α1.

The first-order correction (in the sense discussed in Remark 7) of the price of an

European call option Φ with payoff given by Φ(X ε
T ) =

(
eX

ε
T − K

)
+ is explicitly

given by

Pr1(0; T ) = PBS + εs0(β1 + σ0β3 + β4)T N (d1) + εs0(β2 + σ 2
0 β4)T

2N (d1)

+ εs0(β3 + 2σ0β4T + Tβ5)
√
Tφ (−d1) − εs0β4Td1φ(d1)

+ εs0T
2β5σ0T

2N (d1) − εs0e
+ σ20

2 Tβ6 I (s, T ),

(52)

where the notation is as in Proposition 3 and we have denoted for short by φ(x) the
density function of the standard Gaussian law and we have set

I (s, T ) =
∫ T

0

∫
R×R

1[
x+y>−√

Td1
]eσ0(x+y)yφ(x; 0, T − s)φ(y; 0, s)dx dy ds.

Proof Let us consider the linear function f (x) = α0 + α1x , where α0, α1 ∈ R. The
approximated price up to the first-order Pr1(0; T ) of an European call option with

payoff function Φ(X ε
T ) =

(
eX

ε
T − K

)
+ is

Pr1(0; T ) = PBS + εe−rT
E
Q

[
Φ(X0

T )X1
T

]
(53)

where PBS is the standard B–S price with underlying s0(t) = eX
0
t .

In particular, we have that X0
T and XT

1 are defined as

X0
T = x0 + μT + σ0WT (54)

X1
T = β1T + β2T

2 + β3WT + β4W
2
T + β5TWT − β6

∫ T

0
Wsds. (55)

By linearity of the expectation, (53) becomes, collecting the terms with coefficients
β3 and β5,
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Pr1(0; T ) = PBS + εe−rT
{
E
Q

[
β1T1{

XT
0 >ln(K )

}eX0
T

]
+ E

Q

[
β2T

21{
XT
0 >ln(K )

}eX0
T

]
+ E

Q

[
βT
3,5WT1{

XT
0 >ln(K )

}eX0
T

]
+ E

Q

[
β4W

2
T1

{
XT
0 >ln(K )

}eX0
T

]
+ E

Q

[
β61{

XT
0 >ln(K )

}eX0
T

∫ T

0
Wsds

]}
,

(56)

with βT
3,5 := β3 + Tβ5.

From the definition of X0
T , we have that

εe−rT
E
Q

[
β1T1{

XT
0 >ln(K )

}eX0
T

]
= εTβ1s0N (d1),

and as above we have

εe−rT
E
Q

[
β2T

21{
XT
0 >ln(K )

}eX0
T

]
= εT 2β2s0N (d1)

Concerning the third term in (56), we have that

βT
3,5E

Q

[
WT1{

XT
0 >ln(K )

}eX0
T

]
= βT

3,5s0e
rT e− σ20

2 T
√
T

∫
x>−d2

eσ0
√
T x x

1√
2π

e− x2
2 dx

= βT
3,5s0e

rT e− σ20
2 T

√
T

∫
x>−d2

x
1√
2π

e
−

(
x√
2
− σ0

√
T√
2

)2

e
σ20
2 T dx,

and by setting y = x − σ0
√
T , we get that the r.h.s. is given by

βT
3,5s0e

rT
√
T

∫
y>−d1

(
σ0

√
T + y

) 1√
2π

e− y2

2 dy

= βT
3,5T s0e

rT σ0N (d1) − βT
3,5

√
T s0e

rT
[

1√
2π

e− y2

2

]+∞

−d1

= βT
3,5T s0e

rT σ0N (d1) + βT
3,5

√
T s0e

rTφ(−d1, 0, 1).

Hence, the third term in (56) reads

εe−rT
E
Q

[
β3WT1{

XT
0 >ln(K )

}eX0
T

]
= εβ3Tσ0s0N (d1) + εβ3s0

√
Tφ(−d1, 0, 1).

Exploiting the definition of X0
T occurring in the fourth term in (56), as well as

similar algebraic computation as in the previous previous section, we get
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E
Q

[
β4W

2
T1

{
XT
0 >ln(K )

}eX0
T

]
= β4s0e

rT e− σ20
2 T

∫
x>−d2

T x2eσ0
√
T x 1√

2π
e− x2

2 dx

= β4s0e
rT T

∫
y>−d1

(y + σ0
√
T )2

1√
2π

e− y2

2 dy.

Developing the square and using the linearity property of the integral, we get that
the r.h.s. is equal to

∫
y>−d1

y2
1√
2π

e− y2

2 dy +
∫
y>−d1

2σ0
√
T y

1√
2π

e− y2

2 dy

+
∫
y>−d1

σ 2
0 T

1√
2π

e− y2

2 dy

=
∫
y>−d1

y2
1√
2π

e− y2

2 dy + 2σ0
√
Tφ(−d1, 0, 1) + σ 2

0 T N (d1).

The first term is computed using integration by parts,

∫
y>−d1

y2
1√
2π

e− y2

2 dy = −d1φ(d1) + N (d1);

therefore,

εe−rT
E
Q

[
β4W

2
T1

{
XT
0 >ln(K )

}eX0
T

]
= εβ4s0T

(
−d1φ(d1) + N (d1) + 2σ0

√
Tφ(−d1, 0, 1) + σ 2

0 T N (d1)
)

.

Tocompute thefifth term in (56),we useFubini theorem to exchange the expectation
with the integral with respect to time, getting

β6

∫ T

0
E
Q

[
1{

XT
0 >ln(K )

}eX0
T Wsds

]
. (57)

For everyfixed s ∈ [0, T ],Ws andWT , the latter is included in XT
0 by its very definition,

areGaussian randomvariable jointly distributed. Therefore, exploiting basic properties
of Brownian motion we can recast them by means of a sum of independent random
variable, namely

Ws = Y ∼ N (0, s),

WT = WT − Ws + Ws = X + Y .

In particular, X ∼ N (0, T − s) and it is independent with respect to Y . Thus, (57)
reads
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β6

∫ T

0

∫
R×R

1{x+y>−√
Td2}e

x0+μT eσ0(x+y)y
1√
2π

e
x2

2(T−s)
1√
2π

e−
y2
2s ds

= β6s0e
rT e−

σ20
2 T

∫ T

0

∫
R×R

1{x+y>−√
Td2}e

σ0(x+y)yφ(x; 0; T − s)φ(y, 0, s)dxdyds,

and the claim follows. 
�

3.3.1 Numerical results concerning the pricing formula in Proposition 7

Let us consider the case of the B–S model corrected by a linear term given as in
Proposition 7 by f (x) = α0 +α1x . We compute the first-order correction of the price
of an European call option with Φ(X ε

T ) = (eX
ε
T −K )+ as payoff function, according

to Proposition 7.
Our aim is computing the expectation in (42) in the present case. By the very

definition of XT
0 and XT

1 and the form of Φ ′, it reads as

E
Q

[
1De

XT
0 β1T

]
+ E

Q

[
1De

XT
0 β2T

2
]

+ E
Q

[
1De

XT
0 β3WT

]
+ E

Q

[
1De

XT
0 β4W

2
T

]
+ E

Q

[
1De

XT
0 β5TWT

]
− E

Q

[
1De

XT
0 β6

∫ T

0
Wsds

]
(58)

Each random variable in the brackets is approximated by means of a multi-element
PCE of degree p = 15 and, respectively, by means of standard Monte Carlo methods,
using N = 10,000 independent simulations of the random variable involved.

The accuracy of PCE is represented by its absolute error, using as benchmark the
analytical value coming from (52). Due to the Law of Large Numbers, the accuracy
of MC estimation of (33) is provided by its standard error (SEMC ). Upon considering
N = 10,000 realizations (Y j ) of the random variable Y := Φ ′(X0

T )X1
T inside the

expectation in the r.h.s. of Eq. (33), let us compute

SEMC = σ̂√
N

(59)

where σ̂ 2 = 1
N−1

∑N
j=1

(
Y j − μMC

)2 and μMC = 1
N

∑N
j=1 Y j .

Figures 9, 10 and 11 report percentage error between analytical and PCE approx-
imations of above pricing equation, for different strike prices, maturity and ε; also
similarly, the same results are collected in Fig. 12 regarding relative error over ε

grouped by maturity. Also parameters are shown in Table 1
Conclusion similar to the one drawn in Sect. 3 can be derived.

3.4 A correction given by a polynomial function and jumps

In the present section, we generalize the results obtained in Sect. 3.3 adding a com-
pensated Poisson random measure. In particular, let us assume that the normal return
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Fig. 9 Percentage error for PCE and analytical estimation—error w.r.t. strike price K

Fig. 10 Percentage error for
PCE and analytical
estimation—error w.r.t. σ
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Fig. 11 Percentage error for PCE and analytical estimation—error w.r.t. ε

Fig. 12 Percentage error for PCE and analytical estimation grouped by maturity—error w.r.t. ε
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of the asset price evolves according to Eq. (27) with a polynomial f . Then, we have
the following proposition.

Proposition 8 Let us consider the case of the B–S model with added compensated
Poisson noise and corrected by a nonlinear termgiven by (27)with f (x) = ∑N

i=0 αi x i ,
for some αi ∈ R, then the expansion coefficients for the solution X ε

t of (27) up to the
second order are given by the system

X0
t = x0 + μt + σ0Wt , with law N

(
x0 + μt, σ 2

0 t
)

;

X1
t =

N∑
i=1

K̃i (X
0
t )i+1 −

N∑
i=0

∫ t

0
Ki (X

0
s )ids + σ1α0Wt − λt

(
eγ+ δ2

2 − 1

)
+

Nt∑
i=1

Ji ;

X2
t =

2N+1∑
k=1

C1
k (X0

t )k −
2N+1∑
k=1

∫ t

0
C2
k (X0

s )kds +
N∑
i=1

N∑
j=0

∫ t

0

∫ s

0
C3
i, j (X

0
s )i−1(X0

r ) jdrds

+
N∑
i=1

N∑
j=0

(X0
t )i

∫ s

0
C4
i, j (X

0
r ) jdr +

N−1∑
i=0

C5
i λ

(
eγ+ δ2

2 − 1

) ∫ t

0
s
(
X0
s

)i
ds

− αi+1σ1t
(
X0
t

)i
λ

(
eγ+ δ2

2 − 1

)

+
∫ t

0
σ1α1Wsdsλ

(
eγ+ δ2

2 − 1

)
− σ1tα1Wtλ

(
eγ+ δ2

2 − 1

)

+
N∑
i=2

αiσ1λ

(
eγ+ δ2

2 − 1

) ∫ t

0

(
X0
s

)i
ds + σ1α1Wt +

N∑
i=2

σ1αi

(
X0
s

)i Nt∑
i=1

Ji

−
N∑
i=2

σ1αi

∫ t

0

∫
R0

(
X0
s

)i
ds

Nt∑
i=1

Ji +
N−1∑
i=0

C5
i

∫ t

0

Ns∑
i=1

Ji
(
X0
s

)i
ds

(60)

where the constants are as in Proposition 6 and

C5
i =

⎧⎪⎨
⎪⎩

σ 2
0 σ1α2 + 2σ0σ1α1, i = 0,

σ1μαi+1(i + 1) + σ 2
0
2 (i + 2)(i + 1) + 4σ0σ1αi+1, i �= 0, i �= N ,

αNσ1Nμ + 2σ0σ1NαN+1, i �= N ,

and

K̃i = σ1

σ0

αi

(i + 1)
.

Proof The proof is analogous to the one in Proposition 6 taking into account the
compensated Poisson random measure terms and applying Itô’s lemma together with
the stochastic Fubini theorem. 
�

Proposition 9 Let us consider the particular case of N = 1, i.e., a linear perturbation,
namely f (x) = α0 + α1x in Proposition 8. Then, the terms up to the first order in
Eq. (60) read
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X0
t = x0 + μt + σ0Wt ,

X1
t = β1t + β2t

2 + β3Wt + β4W
2
t

+ β5tWt −
∫ t

0
β6Wsds − λt

(
eγ+ δ2

2 − 1

)
+

Nt∑
i=1

Ji ,

(61)

the constants being as in Proposition 7.
Also, the first-order correction of the price of an European call optionΦ with payoff

given by Φ(X ε
T ) =

(
eX

ε
T − K

)
+ (in the sense of Remark 7) is explicitly given by

Pr1(0; T ) = Pr1 + εT s0N (d(1))

(
eγ+ δ2

2 − 1

)
+ εT s0N (d(1)) δλ, (62)

where Pr1 is the corrected fair price up to the first order as given in Eq. (52) and the
notations are as above.

Proof The proof is similar to the one in Proposition 7. 
�

3.4.1 Numerical results concerning the pricing formula in Proposition 8

The Ji is assumed to be independent and normally distributed random variables

Ji ∼ N (γ, δ2), for all i ∈ {1, 2, . . . , NT }, γ = 0.05, δ = 0.02,

and λ = 2. In particular, we are aiming at computing the expectation in (42) for the
model described in Proposition 8. In the present case, we have that this expectation in
equal to

E
Q

[
1De

XT
0 β1T

]
+ E

Q

[
1De

XT
0 β2T

2
]

+ E
Q

[
1De

XT
0 β3WT

]
+ E

Q

[
1De

XT
0 β4W

2
T

]
+ E

Q

[
1De

XT
0 β5TWT

]
− E

Q

[
1De

XT
0 β6

∫ T

0
Wsds

]

+ K2E
Q

[
1De

X0
T λT

(
eγ+ δ2

2 − 1

)]
+ K2E

Q

[
1De

X0
T

NT∑
i=1

Ji

]
. (63)

By means of the independence of the jumps and E
[∑NT

i=1 Ji
]

= δλT , we can rewrite

(63) as

E
Q

[
1De

XT
0 β1T

]
+ E

Q

[
1De

XT
0 β2T

2
]

+ E
Q

[
1De

XT
0 β3WT

]
+ E

Q

[
1De

XT
0 β4W

2
T

]
+ E

Q

[
1De

XT
0 β5TWT

]
− E

Q

[
1De

XT
0 β6

∫ T

0
Wsds

]

+ K2E
Q

[
1De

X0
T λT

(
eγ+ δ2

2 − 1

)]
+ K2λT δEQ

[
1De

X0
T

]
. (64)
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Fig. 13 Percentage error for PCE and analytical estimation—error w.r.t. strike price K

We shall then compute multi-element PCE approximations for this expression.
Figures 13 and 14 report percentage error between analytical and PCE approxi-

mations of above pricing equation, for different strike prices, maturity and ε; also
similarly, the same results are collected in Fig. 15 regarding relative error over ε

grouped by maturity. Also parameters are shown in Table 1
Conclusion similar to the one drawn in Sect. 3 can be derived.

4 Conclusions

In thiswork,wehave focusedour attention on the analysis of the small noise asymptotic
expansions for particular classes of local volatility models arising in finance. We have
given explicit expressions for the associated coefficients, alongwith accurate estimates
on the remainders. Furthermore, we have provided a detailed numerical analysis,
with accuracy comparisons, of the obtained results exploiting the standard Monte
Carlo technique as well as the so-called Polynomial Chaos Expansion approach. We
would like to underline that our approach allows to consider, other than the well know
Gaussian noise component, a realistic stochastic perturbation of jump type.

In a futurework,we plan to use the latter extension, alongwith the described asymp-
totic expansion techniques, to study particular types of implied volatilities models and
further related functionals, as suggested by one of the anonymous reviewers. Such
developments will be also the basis for an extensive calibration work on real financial
data.
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Fig. 14 Percentage error for
PCE and analytical
estimation—error w.r.t. σ

Fig. 15 Percentage error for PCE and analytical estimation grouped by maturity—error w.r.t. ε
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Appendix

Polynomial Chaos Expansion

In the present section,we briefly recall the basics andmain characteristic of thePolyno-
mial Chaos Expansion (PCE) approach.We refer the interested reader to, e.g., Bonollo
et al. (2015), Crestaux et al. (2009), Ernst et al. (2012), Peccati and Taqqu (2011) and
references therein, for a detailed introduction to such a method, particularly from the
financial point of view. The PCE approach allows to approximate a random variable as
a linear combination of orthogonal polynomials in order to compute its statistics with a
lower computational effort if compared to the one needed by taking into consideration
the full set of information characterizing it. Before entering into details, we would like
to underline that the PCE technique is a generalization of the original Wiener Chaos
decomposition, see Wiener (1938).

Let us consider a standard probability space (Ω,F ,P), and the Hilbert space of
real-valued random variables L2(Ω,F ,P) X defined on (Ω,F ,P), such that

E[X2] =
∫

Ω

(
X(ω)

)2
P(dω) < +∞,

equipped with the standard scalar product

E[XY ] = 〈X ,Y 〉P =
∫

Ω

X(ω)Y (ω)P(dω),

and corresponding norm

‖X‖2
P

= E[X2],

with related concept of mean square convergence or strong convergence.
Among the elements of L2(Ω,F ,P), we can identify the class of basic random

variables, which is used to decompose stochastic quantity of interest as, e.g., the
stochastic process solution of a Stochastic Differential Equation (SDE), evaluated at
(horizon) time T > 0. It is worth tomention that not all the functions ξ ∈ L2(Ω,F ,P)

can be used to perform aforementioned decomposition. In fact, they have to satisfy,
see, e.g., Ernst et al. (2012, Section 3), at least the following two properties

– ξ has finite moments of all orders
– the distribution function Fξ (x) := P (ξ ≤ x), x ∈ R, of the basic random variables

ξ is absolutely continuous, with a probability density function (pdf) denoted by
fξ .

Let us denote by σ(ξ) the σ -algebra generated by the basic random variable ξ ;
hence, σ(ξ) ⊂ F . If we want to polynomially decompose a given random variable
Y in terms of ξ , then Y has to be, at least, measurable with respect to the σ -algebra
σ(ξ). Exploiting the Doob–Dynkin Lemma, see, e.g., Kallenberg et al. (2006, Lemma
1.13), we have that Y is σ(ξ)-measurable if for some Borel measurable function
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g : R → R,Y = g(ξ). Inwhat follows,without loss of generality,we restrict ourselves
to consider the decomposition in L2(Ω, σ(ξ),P). The basic random variable ξ is
assumed to determine a class of orthogonal polynomials {Ψi (ξ)}i∈N, which is called
the generalized polynomial chaos (gPC) basis. We underline that their orthogonality
properties is detected by means of the measure induced by ξ in the image space
(D,B(D)), where D ⊂ R is the range of ξ and where B(D) ⊂ B(R) denotes the
Borel σ -algebra associated with D. For each i, j ∈ N, we have

〈
Ψi , Ψ j

〉
P

=
∫

Ω

Ψi (ξ(ω)) Ψ j (ξ(ω)) dP(ω) =
∫
D

Ψi (x)Ψ j (x) fξ (x)dx . (65)

If ξ has lawN (0, 1/2), namely the centered normal distribution of variance 1
2 , then

the related set {Ψi (x)}i∈N is represented by the family of non-normalized Hermite
polynomials defined on the whole real line, namely D = R, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ0(x) = 1

Ψ1(x) = 2x

Ψ2(x) = 4x2 − 2
...

(66)

Figure 16 provides the graph of the first six orthonormal polynomials, achieved by
scaling each Ψi in (66) by its norm in L2(Ω, σ(ξ),P), namely, ∀i ∈ N, Ψi is divided
by ‖Ψi‖P := √

2i i !.
Latter polynomials Ψi constitute a maximal system in L2(Ω, σ(ξ),P); therefore,

every random variable Y ∈ L2(Ω, σ(ξ),P) can be approximated as follows:

Y (p) =
p∑

i=0

ciΨi (ξ), (67)

for some p ∈ N and suitable real coefficients ci which depend on the random variable
Y , see, e.g., Ernst et al. (2012, Section 3.1). We refer to Eq. (67) as the truncated
PCE, at degree p, of Y . Exploiting previous definitions, taking i ∈ {0, . . . , p} and
considering the orthogonality property of the polynomials {Ψi (ξ)}i∈N, we have

ci = 1

‖Ψi‖2P
〈Y , Ψi 〉P = 1

‖Ψi‖2P
〈g, Ψi 〉P, (68)

and, since Y = g(ξ), we also obtain

〈Y , Ψ 〉P = 〈g, Ψ 〉P =
∫

Ω

g(ξ(ω))Ψi (ξ(ω))dP(ω) =
∫
R

g(x)Ψi (x) fξ (x)dx .

(69)
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Fig. 16 Hermite normalized polynomials up to degree 5

The convergence rate of the PCE approximation (67) in L2(Ω, σ(ξ),P) norm is
strictly linked to the magnitude of the coefficients of the decomposition. Indeed, by
the Parseval identity, we have

‖Y‖2
P

=
+∞∑
i=0

c2i ‖Ψi‖2P;

furthermore, using the orthogonality property of the Hermite polynomials in
L2(Ω, σ(ξ),P), the norm of (67) is given by

∥∥∥Y (p)
∥∥∥2
P

=
p∑

i=0

c2i ‖Ψi‖2P.

Exploiting the fundamental properties of the orthogonal projections in Hilbert
space, see, e.g., Rudin (1986, Theorem 4.11), we can estimate the mean square error
as

∥∥∥Y − Y (N )
∥∥∥2
P

= ‖Y‖2
P

−
∥∥∥Y (N )

∥∥∥2
P

=
+∞∑

i=N+1

c2i ‖Ψi‖2P, ; (70)

thus, the rate of convergence depends on the coefficients. In particular, the PCE of
Y (p) approximates the Y -statistics in terms of the ci coefficients appearing in Eq. (67),
e.g., the first two centered moments are determined by
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E

[
Y (p)

]
= c0, (71)

Var
[
Y (p)

]
=

p∑
i=1

c2i ‖Ψi‖2P. (72)

Multi-element decomposition

Concerning the application of the PCEmethod to the approximation of quantities as in
the case of European call options, we have implemented amethod calledmulti-element
generalized polynomial chaos (ME-gPC) method, see, e.g., Peccati and Taqqu (2011),
and references therein. Without entering into technical details, let us mention that it
is an extension of the PCE approach which can be applied to arbitrary probability
measures. In particular, see, e.g., Wan and Karniadakis (2005, 2006), the ME-gPC
approach can be effectively used to numerically solve S(P)DEs, by decomposing
the random inputs, e.g., the Brownian motion, into smaller elements. Each of the
latter is then used to define a new random variable, with respect to a conditional
probability density function, and a set of orthogonal polynomials defined in terms of
the aforementioned random variable. Then, the procedure we have already recalled is
applied element by element and, thanks to the convergence of the method, the final
result is achieved rearranging, in a suitable way, the ones obtained for each term.
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