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Abstract

The goal of environmental monitoring is to collect information from the
environment and to generate an accurate model for a specific phenomena of
interest.

We can distinguish environmental monitoring applications into two macro
areas that have different strategies for acquiring data from the environment.
On one hand the use of fixed sensors deployed in the environment allows a
constant monitoring and a steady flow of information coming from a prede-
termined set of locations in space. On the other hand the use of mobile plat-
forms allows to adaptively and rapidly choose the sensing locations based on
needs. For some applications (e.g. water monitoring) this can significantly
reduce costs associated with monitoring compared with classical analysis
made by human operators.

However, both cases share a common problem to be solved. The data
collection process must consider limited resources and the key problem is
to choose where to perform observations (measurements) in order to most
effectively acquire information from the environment and decrease the un-
certainty about the analyzed phenomena. We can generalize this concept
under the name of information gathering. In general, maximizing the infor-
mation that we can obtain from the environment is an NP-hard problem.
Hence, optimizing the selection of the sampling locations is crucial in this
context.

For example, in case of mobile sensors the problem of reducing uncer-
tainty about a physical process requires to compute sensing trajectories con-
strained by the limited resources available, such as, the battery lifetime of
the platform or the computation power available on board. This problem is
usually referred to as Informative Path Planning (IPP). In the other case,
observation with a network of fixed sensors requires to decide beforehand the
specific locations where the sensors has to be deployed. Usually the process
of selecting a limited set of informative locations is performed by solving a
combinatorial optimization problem that model the information gathering
process.

This thesis focuses on the above mentioned scenario. Specifically, we in-
vestigate diverse problems and propose innovative algorithms and heuristics
related to the optimization of information gathering techniques for envi-
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ronmental monitoring applications, both in case of deployment of mobile
and fixed sensors. Moreover, we also investigate the possibility of using
a quantum computation approach in the context of information gathering
optimization.
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Chapter 1

Introduction

1.1 Environmental Monitoring

The goal of environmental monitoring is to collect information and generate
an accurate model for a specific environmental phenomena of interest. In
general, environmental analysis aims at understanding, preserving and im-
proving the quality of the environment. For example, when monitoring the
quality of a body of water, operators might be interested in modeling how
crucial parameters such as pH level, Dissolved Oxygen and temperature vary
across time and space. Other examples can be represented by monitoring
the quality and the amount of CO2 in the air or the leakage of dangerous
gas.

In such applications, common problems to solve are the minimization of
the uncertainty of measurements or the level set estimation. In the level set
estimation problem we need to identify in which portions of the environment
the phenomena is above or below a given threshold level, e.g. where the pH
level is above a level considered to be dangerous .

Environmental analysis usually requires the collection of large data sets
sometimes in harsh conditions, hence the use of networks composed by fixed
sensors or mobile platforms can be very beneficial. Typical examples in-
clude fixed stations deployed in the environment or mobile drones such as
unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs) or
autonomous surface vessels (ASVs) such as the one in Figure 1.1.

On one hand, the use of a sensor network allows a constant monitoring
of the environment with a steady flow of informations coming from the
deployed sensors [121].

On the other hand the use of mobile platforms allows to adaptively and
rapidly choose the sensing locations based on needs and to obtain data
hence facilitating and reducing costs compared with classical analysis made
by human operators. For an exhaustive overview on advancements and
applications see [14,67].
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Chapter 1. Introduction

Figure 1.1: Mobile platform that we used: Platypus Lutra equipped with
pH, dissolved oxygen, temperature and electrical conductivity sensors. The
computation is on board and performed by an Arduino Due and a smart-
phone.

A successful monitoring operation must acquire a sufficient amount of
data to build an accurate model of the environmental phenomena of interest.
However, the data collection process must consider limited resources such
as money, energy or time depending on the means used to take the mea-
surements. Therefore, it is crucial to carefully select measurement locations
to acquire as much information as possible while minimizing the resources
required to collect the data.

In this thesis we focus on diverse problems related to the optimization of
information gathering techniques for environmental monitoring applications
both in case of deployment of mobile and fixed sensors.

1.2 Information Gathering

As mentioned above, environmental monitoring requires to gather informa-
tion from the environment in order to build an accurate model of some
physical phenomena. In many practical applications in order to monitor a
spatial phenomena with sensor networks or mobile robots, the most crucial
problem is to choose where to perform observations (measurements) in order
to most effectively decrease the uncertainty about the phenomena. We can
generalize this concept under the name of information gathering. In general,
maximizing the information we can obtain from the environment is a hard
problem from a computational standpoint, and the complexity depends on
the specific setting of our application.

For example, in case of mobile sensors the problem of reducing uncer-
tainty about a physical process requires to compute sensing trajectories con-
strained by the limited resources available such as the computation power

10



1.3. Optimization

or the battery lifetime of the platform. This problem is usually referred to
as Informative Path Planning (IPP). IPP is used to design paths for mobile
sensors in order to extract the maximum information while operating un-
der a set of constraint and it has been shown to be NP-hard [87]. The key
components of an informative path planner are the selection of locations to
visit and the processing of the information gathered along the path.

On the other hand, observation with a network of fixed sensors requires
to decide beforehand the specific locations where they have to be deployed.
Usually performing observations or deploying sensors is costly, this implies
that we have only a limited number of measurement locations available. The
process of selecting a limited set of informative locations is again an NP-
hard problem and usually performed by solving a combinatorial optimization
problem.

To this aim, in this thesis we propose innovative algorithms and heuris-
tics with the aim of optimizing crucial aspects of information gathering
techniques both in the context of mobile and fixed sensor. Specifically, in
the former case we propose two main algorithms that allow us to compute
efficient sampling paths while improving computation time or path length
(battery consumption) with respect to previous state-of-the-art algorithms.
In case of fixed sensors, we propose three different techniques with the aim
of computing effective deployment positions (sampling location) for a given
set of available sensors (possible observations). In this context, the process
of information gathering is modeled as an optimization (or a constrained
optimization) problem and we developed techniques for the cases where the
measurement domain is either continuous or discrete. We also investigate
the possibility of using a quantum approach in the context of information
gathering to exploit recent technological advances provided by quantum an-
nealing machines such as the D-Wave.

1.3 Optimization

In computer science and mathematics, optimization is the selection of the
best element from a set of available alternatives or in other words, an opti-
mization problem is the problem of finding the best solution from all feasible
solutions.

Optimization problems typically are composed by three fundamental ele-
ments, an objective function, a collection of variables and a set of constraints
which are restrictions on the values that the variables can take. In the sim-
plest case, an optimization problem consists of maximizing or minimizing a
real function by choosing input values within an allowed set (domain) and
satisfy the constraints.

We can divide optimization problems into two categories depending on
whether the variables are continuous or discrete. In continuous optimization
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Chapter 1. Introduction

the variables used in the objective function are required to be continuous,
that is, chosen from a set of real values. Because of this continuity assump-
tion, continuous optimization allows the use of calculus techniques. On the
other hand, in discrete optimization (also known as combinatorial optimiza-
tion) the variables used in the objective function are restricted to be discrete,
that is, to assume only a discrete set of values, such as binary or integers
values.

Optimization can be seen as a tool with applications that span across
many fields. For example, in the investment context, the portfolio optimiza-
tion requires to allocate funds to stocks in such a way to minimize risk.
In the production context, the machine allocation optimization requires to
allocate the production of a product to different machines, with different
capacities, startup cost and operating cost, to meet production target at
minimum cost. In the logistic context we want to generate a transporta-
tion model that determines how many products to ship from each factory to
each warehouse so as to minimize the shipping cost while meeting warehouse
demands.

In the information gathering context discussed in this thesis, we need
to optimize the sensing locations in order to generate a model of a physical
environmental phenomena of interest, while satisfying the constraint given
by the number of allowed samples.

1.4 Quantum computation

As previously mentioned in this thesis we also investigate the use of a quan-
tum approach to solve optimization problem related to the information gath-
ering context.

Quantum computation was first suggested in 1982 by Richard Feynman
[70] as a way to overcome the problem of the exponential growth in resources
required to simulate quantum phenomena on a classical computer. Since
then, there have been numerous studies combining mathematics, physics
and computer science involving both theoretical and practical advantages
and difficulties.

Since many computationally interesting problems can be recast into an
equivalent problem of finding the minimum of an objective function, in 2000
Farhi et al. [69] suggested the construction of a quantum algorithm using
adiabatic evolution. Adiabatic Quantum Computation (AQC) is based on
the Adiabatic Theorem stated in 1928 by Born and Fock [31]:

“A physical system remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly enough and if there is
a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum.”

12



1.4. Quantum computation

In other words, a quantum mechanical system remains in its ground state
(lowest energy state) if a perturbation is acting on it slowly enough.

1.4.1 Quantum Annealing

Quantum Annealing (QA) [59,71,91,155] is an optimization meta-heuristic
that aims at optimizing an objective function. The process is realized in
principle by the adiabatic evolution previously mentioned, where a quantum
annealer minimizes a discrete variables objective function with a vast and
complex landscape by physically exploiting quantum effects.

Quantum annealing was suggested as an improvement of the simulated
annealing [96], an approach to optimization based on the observation that
the cost function of an optimization problem can be viewed as the energy of
a physical system, and that local minima can be escaped thanks to thermal
hopping. In the quantum case the computation is driven by quantum fluc-
tuation instead of thermal fluctuation. The advantage in the quantum case
depends on the fact that unlike classical annealing, where the system climbs
barriers, in quantum annealing fluctuation can help “tunneling” through
these barriers and escape points of local minima (sketched in Figure 1.2)
i.e., it uses some quantum effects that allows the tunneling through narrow
barriers separating local minima, rather than climbing over them as done
classically by using thermal fluctuations.

Figure 1.2: Graphical representation of the different behavior between quan-
tum and simulated annealing.

However, there are similarities between quantum and simulated anneal-
ing. In both techniques it is important to control the relevant parameters
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and change them slowly to tune the strengths of quantum or thermal fluc-
tuations.

Apart from theoretical demonstrations [71, 91] there are experimental
evidence [39, 60, 76, 90] that quantum annealing could be advantageous to
solve optimization problems compared to its classical analogue, demonstrat-
ing the power of quantum tunneling for reaching a better solution. A funda-
mental contribution in this direction is due to D-Wave Systems Inc., which
has commercialized some analog quantum devices designed to use quantum
annealing to solve quadratic optimization problems.

1.4.2 The D-Wave machine

D-Wave System Inc1 is a quantum computing company based in Canada.
They propose the D-Wave, a quantum annealer that uses quantum mechan-
ical effects to efficiently sample low-energy configurations of particular cost
functions on binary variables.

Specifically, a D-Wave minimizes an objective function of a specific class
of problem, the Ising Model. Such energy minimization problems is NP-
hard [11] and it is equivalent, through an arithmetic transformation, to a
Quadratic Unconstrained Binary Optimization (QUBO) problem [98]. In
QUBO, we aim to find an assignment for binary variables so as to minimize
a quadratic objective function.

Such QUBO formulation can be embedded on the D-Wave architecture
and the quantum annealing process will then return a set of solutions sam-
pled from the energy function. Although, as any quantum annealing system
the D-Wave machine is not guaranteed to return optimal solutions, it has
been shown to outperform a range of classical algorithms on certain prob-
lems designed to match its hardware structure [60, 94]. Successful applica-
tion [28,29,141,164] opened a new era in quantum computing.

By using this protocol many interesting problems in artificial intelligence
have been addressed (see Section 2.3). In this thesis we address two problems
related to environmental monitoring applications by formulating Quadratic
Unconstrained Binary Optimization models (see Section 3.5).

1.5 Contributions

As previously mentioned, the aim of this thesis is to propose techniques
to optimize the information gathering process in environmental monitor-
ing applications. Specifically, the main contributions of this thesis are the
following:

1. In the context of mobile sensors we focus on the level set estimation
problem. Specifically, we consider the case where a mobile platform

1http://www.dwavesys.com/
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with low computational power can continuously acquire measurements
with a negligible energy cost. This scenario imposes a change in the
perspective with respect to other works in literature, since now ef-
ficiency is achieved by reducing the distance traveled by the mobile
platform and the computation required by this path selection pro-
cess, as opposed to minimizing the number of measurement required
as in [79]. In this thesis we propose two active learning algorithms
aimed at facing this issue, specifically:

• SBOLSE that casts informative path planning into an orienteer-
ing problem.

• PULSE that exploits a less accurate but computationally faster
path selection procedure.

Evaluation of our algorithms, both on a real world and a synthetic
dataset, shows that our approaches can compute informative paths
that achieve a high quality classification, while significantly reducing
the travel distance and the computation time.

2. In the context of fixed sensors, we focus on the variance minimization
of a Gaussian process. A key issue in Gaussian Process modeling is to
decide on the locations where measurements are going to be taken. A
good set of observations will provide a better model. Current state of
the art selects such a set so as to minimize the posterior variance of
the Gaussian Process by exploiting submodularity. In this thesis we
propose two contributions in this direction, specifically:

• A gradient descent procedure to iteratively improve an initial set
of observations so as to minimize the posterior variance directly.

• A novel heuristic whose behavior is an approximation to that of
gradient descent but with faster computation.

The performance of these two techniques are analyzed under differ-
ent conditions by varying the number of measurement points and the
hyperparameters of underlying the Gaussian Process. Results show
the applicability of both our techniques and the clear improvements
that can be obtain in different settings. Moreover, these techniques
has been tested by varying the dimensionality of the domain to show
the generality of the approach and making it a viable option in other
contexts besides environmental monitoring.

3. We investigate the use of quantum annealing by providing two novel
Quadratic Unconstrained Binary Optimization (QUBO) models for
problems related to environmental monitoring applications. Specifi-
cally:
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• A QUBO model specifically designed to implement the problem
of selecting a set of sampling locations. The aim is to minimize
the posterior variance of a Gaussian process as proposed in the
previous contributions, but this case in a discrete domain.

• Recent contributions [43,44] make use of clustering and bicluster-
ing techniques to analyze data of unsupervised mobile platforms
in environmental monitoring operations. We focus on biclustering
and propose a QUBO model designed to tackle this problem.

For both these models we provide mathematical proofs of the correct-
ness. Moreover, for what concerns the biclustering model, we also
provide an empirical evaluation performed on a D-Wave machine, dis-
cussing its applicability and embedding properties.

1.6 Organization of the thesis

This thesis is divided in four parts. The first part discusses related works
in literature and the background knowledge required to define and analyze
the problems and algorithms proposed in this thesis. The three remaining
parts present the above mentioned contributions of the manuscript.

More in detail, the rest of the document is organized as follows: Chapter
2 and 3 present the related works in literature and the background knowledge
required for this thesis. Chapter 4 and 5 discuss the SBOLSE and PULSE
algorithms respectively and in Chapter 6 we present a comprehensive em-
pirical evaluation of these techniques. In Chapter 7 and 8 we present the
gradient descent and heuristic algorithms for the Gaussian process posterior
variance minimization. Chapter 9 and 10 propose the QUBO models for
the variance minimization and biclustering problem respectively. Finally, in
Chapter 11 we draws conclusions and discuss future research directions.

Figure 1.3 provides a taxonomy of the contributions and organization of
this thesis.

1.7 Publications

Most of the contents proposed in this thesis have been published in pres-
tigious journal and conferences. Specifically, the contents of the Part II of
the thesis (Chapters 4, 5 and 6) have been published in [32–34,37]. Regard-
ing Part III, Chapter 7 have been published in [38] and regarding Part IV,
Chapter 10 have been published in [35,36]. Specifically, the model proposed
in Chapter 10 has been previously presented during the master’s thesis,
whereas the empirical evaluation using a D-Wave machine constitutes a new
contribution of this thesis. The remaining contributions presented in Chap-
ters 8 and 9 are currently in preparation.
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Figure 1.3: Taxonomy of the contributions and organization of the thesis.
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Chapter 2

Related Work

As previously mentioned in the introduction, environmental monitoring en-
compasses the analysis and actions required to characterize and monitor the
quality of the environment. This includes the collection of information from
the environment and the generation of a model that represents a specific
phenomena of interest [75,110,111].

Computational methods are often used to facilitate environmental mon-
itoring, for example Cheng et al. [46] propose an expert system for the
analysis of the water quality in a city. Another example is the monitoring
of a body of water (e.g., lakes, rivers, coastal areas and so forth). In this
case the analysis focuses on the generation of a model that describes how
crucial parameters such as the presence of harmful algal blooms [126] or the
dissolved oxygen (DO) vary across the environment.

In this chapter we position the contributions proposed in this thesis with
respect to the existing literature in the areas of informative path planning for
mobile sensors (Section 2.1) and optimization of sampling locations for fixed
sensors (Section 2.2). Moreover, in the context of quantum computation
for optimization problems we propose a review on quadratic unconstrained
binary models (Section 2.3).

2.1 Mobile sensors

The goal of the information gathering process is to obtain data from the en-
vironment and to generate an accurate model for the phenomena of interest.
In many applications the information gathering process requires to obtain
measurement of the phenomena in harsh or dangerous conditions (e.g., en-
vironmental monitoring applications of water in a lake or search and rescue
operations in disaster response). At the same time, a successful monitoring
operation must acquire large datasets to build an accurate model of the en-
vironmental phenomena of interest.
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To solve this problems, in recent years the interest towards robotic mo-
bile sensors such as Unmanned Ground Vehicles (UGVs), Unmanned Aerial
Vehicles (UAVs) or Autonomous Surface Vessels (ASVs) for information
gathering applications has been steadily increasing. Significant advances in
mobility and sensing capabilities have enabled the effective use of robotic sys-
tems in many contexts that require rapid and accurate information collection
such as search and rescue [109,127,137,181], source seeking [8], autonomous
mapping [4, 5, 42, 100, 159], and environmental monitoring [41, 49, 168]. As
a result, the use of autonomous vehicles is becoming an essential tool in a
wide variety of applications.

Several examples specific for environmental monitoring includes attempts
to use robots for underground gas leakage tracing [154], plume tracing [130],
missions which involves mapping the magnitude of measured data (e.g. an
RF signal) in a specific region [48] and microbe detection [165], For an ex-
haustive overview on advancements and applications of mobile sensors for
environmental monitoring see [14,67].

2.1.1 Informative path planning

In general, when deploying any kind of unmanned vehicles the data collec-
tion process must consider limited resources such as time or energy that
constrain the operation range of the platforms. For example, one of the
main constraints in path generation when operating a mobile system is the
limited power source.

In some studies proposed in literature, it has been shown that exploiting
wind-energy is one of the most effective ways of decreasing UAV energy
consumption [3, 112, 180], however this is not an option available to every
type of mobile platforms. Consequently, it is necessary to study and develop
techniques specifically designed to minimize energy consumption by reducing
the length of the path performed by mobile sensors as we propose in this
thesis.

Specifically, to generate an accurate model of the environmental phe-
nomena of interest in this case [89], it is important to select an informative
path for the mobile agents to acquire as much information as possible while
reducing the total traveled distance and hence the time and energy required
to perform the analysis.

As a further issue, autonomous mobile systems are usually equipped with
low computational capacity on board such as the one showed in Figure 1.1.
As a consequence, when the path selection procedure is performed on-board
during the monitoring operation, it is crucial to reduce as much as possible
the computational complexity of the algorithms.

The problem that combines these aspects and requires to efficiently
compute informative paths is generally known in literature as Informative
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Path Planning (IPP). Informative path planning is used to design paths for
robotic mobile sensors in order to extract the maximum possible informa-
tion about a quantity of interest while operating under the set of constraints
previously mentioned. The informative path planning problem is complex
because it involves a combination of perception, estimation and inference,
and the control of the mobile sensors. The key challenges of informative
path planning are the strong coupling in multiple layers of decisions: the
selection of locations to visit, and the processing of the gathered information
along the paths.

In general, when using mobile robotic systems, different path selection
strategies could be identified [161]. Traditional nonadaptive (offline) meth-
ods generate the path before any observations are made, hence the path is
independent from the data that the sensors will read from the environment.
In contrast, adaptive (online) methods plan the path based on the previ-
ously collected data during the operation [12, 148, 160]. As a consequence
the path selection procedure is strictly dependent on the data that has been
previously measured from the environment. In the first contributions of this
thesis (discussed in Part II) we focus on this latter path selection scheme
since usually informative path planning studies use an adaptive formula-
tion [115,162,163].

Informative path planning problems have been studied for a long time,
and most of the research has focused on minimizing the path length or the
moving cost of the platforms. However, in many cases, the highest priority
is to design paths that make the best use of the resources and maximize the
amount of information acquired in a given mission. Especially considering
that the quantity of information is not equally distributed at every point
in space and hence, the planned path should prioritize areas where there is
more “information” [15].

Several information measurement criteria have been used in literature
to formulate informative path planning problems. Examples are the Fisher
information [114], the Kullback-Leibler divergence [117], the mutual infor-
mation [50] and, more related to the topics that we cover in this thesis, the
Gaussian process uncertainty [25,48]. Most of the studies about informative
path planning have formulated the location where to acquire information as
a constraint [108] or a reward [25] based on these information measurement
criteria.

Our contributions proposed in this thesis fall within this context where,
the environment locations have a specific information content and these
values can be further used to drive the decision making process of the infor-
mative path planning algorithms.

The common aspect between these adaptive techniques is that they in-
crementally generate the model of the environmental phenomena of interest
during the data collection phase and focus the information collection process
on specific regions of the environment where the phenomena exhibits critical
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values.

An example where this kind of strategy is important is given by the
pollution source localization problem [14]. In this case the aim is to find the
location in space that represents the source of a given substance of interest
(e.g. chemical pollutant at sea). The localization of toxic pollutant sources
is an important as well as a challenging issue in many environment related
areas. In order to reduce the impact of pollutants on the environment, it is
imperative to localize pollutant sources so as to devise an effective control
strategy.

2.1.2 Level set estimation

Another context that has drawn increasing attention due to its scientific and
commercial interest, is to determine not the single source but instead the
regions where the phenomena of interest exhibit dangerous conditions. For
example, in a lake such regions could encompass the locations where the
water’s dissolved oxygen level is considered harmful for the environment.
Another example could be the detection of contours of biological or chemical
plumes [139]. From a general perspective, this can be seen as the problem of
deciding if a quantity of interest is above or below a pre-specified threshold.
This problem is typically referred to as the “level set estimation problem”
in the literature [88].

Previous work on the level set estimation problem [57] focused on a
network composed by a combination of static and mobile sensors. In the
manuscript of Gotovos et al. [79] the proposed LSE algorithm uses Gaussian
Processes (GPs) to identify sampling points that reduce uncertainty around
a given threshold level of the modeled function. Even if the authors obtain
a high quality classification with respect to threshold level (above or below)
for the regions of the space using a low number of sampled locations, in
their contribution the main algorithm does not explicitly take into account
the path between the sampling locations. To partially consider this aspect,
the authors propose a batch variant where a set of new sampling locations
is selected in a batch such that it is possible to compute an efficient path
between these points.

Hitz et al. [88] describe a method designed for ASVs equipped with a
probe that allows an aquatic sensor to be lowered into the water. Their LSE-
DP algorithm, built on the LSE algorithm [79], uses a dynamic programming
approach with a receding horizon to plan a feasible sampling path for the
probe within a predefined vertical transect plane.

In a more recent work Hitz et al. [87] introduce an evolutionary strategy
to optimize a path in continuous space. Specifically, authors parametrize a
path as a cardinal B-spline with n control points and propose a re-planning
scheme to adapt the planned paths according to the measurements obtained
from the environment.
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The contributions of this thesis presented in Part II (Chapters 4, 5 and
6) are inserted in the aforementioned scenario where we aim at facing the
problem of level set estimation by devising informative path planning al-
gorithms specifically designed for low-cost, small mobile platforms that can
perform sampling in various body of waters. As we will better explain in
Part II, in the empirical evaluation we compare our techniques with the
most similar ones in this context [79,87].

However, a key element of novelty of our work with respect to the state
of the art is that we exploit the fact that such platforms can acquire mea-
surements while moving. Hence, our algorithms are specifically designed to
optimize the information gathered along the path while the platform is mov-
ing instead of a set of sampling locations selected in the environment. We
show that in this context our techniques are able to devise better solutions
both in terms of path length and computation time.

2.2 Optimizing sampling locations

Many practical applications require to select among a set of feasible in-
formative observations in order to monitor space, objects or relationships
between entities. Consider for example problems where we want to perform
observations in order to monitor traffic conditions in a road network, ob-
serve the relationship between input and outputs of an expensive computer
simulation [166], or select between a set of feasible tests to administer to
a patient in order to decide the most appropriate treatment [56]. In such
problems, we can make observations by placing a set of sensors on the roads,
trying some computer simulation or apply a medical testing procedure re-
spectively. In practice, these observations are typically expensive in terms
of sensor and deployment cost, power and time consumption, or cost for
performing medical tests.

Hence, the common problem to solve is to decide which observations to
perform in order to acquire the highest amount of information and at the
same time be either cost effective or to satisfy given constraints, such as
the maximum number of sensors available. This class of problems in litera-
ture is usually referred to as sensing problems [101], with a wide definition
of the notion of “sensing”. These problems have gained much attention in
areas such as statistical experimental design, decision theory, operations re-
search, probabilistic planning, and also sensing in environmental monitoring
applications.

Network of small, wireless sensors are becoming increasingly popular for
monitoring spatial phenomena [121], such as the temperature distribution
in building [63], light prediction tasks [104], water supply contamination
monitoring [106,138] or air pollution [93].
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When monitoring environmental spatial phenomena with a network of
deployed sensors (or a set of handmade analysis), we need to decide which lo-
cations to observe in order to most effectively decrease the uncertainty about
the phenomena. Sensor planning is particularly relevant for environmental
monitoring tasks as there are limited resources and sparse measurements
available. Hence, we need to perform the sampling process as efficiently as
possible in order to maximize the information extracted from the environ-
ment while meeting constraints on resources or minimizing the associated
costs.

2.2.1 Gaussian processes

As we will describe thorough the thesis, in many environmental analyses the
spatial phenomena of interest is modeled using Gaussian Processes [149].
When tackling the analysis in a data-driven manner, the better the choice
of locations we sample, the better the Gaussian process will approximate
the true underlying functional relationship. Otherwise, we can consider
the dual problem of obtaining a prespecified level of performance using the
fewer measurements possible. More in general, a good set of observations
will provide a better Gaussian process model.

Since only a limited number of sensors can be placed, it is important
to deploy them in locations that are especially informative with respect to
some objective function [80,105,108]. The choice of the locations to sample
is usually a combinatorial NP-hard problem, thus in general it is not possible
to find the optimal solution with an efficient procedure.

Classical approaches for tackling these sensing problems have mainly re-
lied on myopic heuristics, i.e., approaches which only consider iteratively the
next best observation to add (greedy heuristics), without planning for a set
of future sensing opportunities. On the other hand non-myopic approaches
try to find a better solution by planning ahead, but often are computa-
tionally very difficult to scale to larger problems. Typical sensor placement
techniques greedily add measurements or sensors where uncertainty about
the phenomena is the highest, i.e. the highest entropy location of the Gaus-
sian process [55].

2.2.2 Variance reduction and submodularity

Recent research in the context of optimizing sampling locations aimed at se-
lecting a set of measurements so as to optimize an important sensing quality
function for spatial prediction that is represented by the reduction of pre-
dictive variance of the Gaussian Process [107] (also called Kriging variance
in the geostatistics literature).
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Another example, besides environmental monitoring applications, where
minimizing the predictive variance of a Gaussian process is an important
task is represented by the context of emulators for computer experiments
[166]. In this context it is possible to use a Gaussian process to model an
emulator for computationally expensive computer experiments. In order to
provide a robust model and an accurate approximation of the relationship
between simulation output and untried inputs at a reduced computational
cost, a small predictive variance of the Gaussian process is an important
objective.

The selection of measurement locations in order to minimize the posterior
predictive variance unfortunately is NP-hard in general and the number of
candidate solutions is very large. However, Das and Kempe [58] showed
that, in many cases, the variance reduction at any particular location is
submodular.

Submodularity is a property of a specific class of set functions. They en-
code an intuitive diminishing returns property that allows for a simple greedy
forward-selection algorithm with an optimality bound guarantees [129]. This
is widely exploited in sensing optimization literature [102,103,105,145,174].
The idea behind submodular techniques (that we better describe in Section
3.3) is that adding a new measurement to a small set helps more than adding
it to a large set of measurements.

Although submodular objective functions allow for an efficient optimiza-
tion, the solution is inherently discrete since we can select the sensing points
only within a given set of feasible locations. In an environmental monitor-
ing application where the feasible sensing locations are not confined to a
given set of points, i.e. sensing locations can be arbitrarily adapted in a
continuous domain of interest, the solution of such a technique can deviate
considerably from the optimum. In other words, there is definitely room for
improvement, which is the main goal of some contributions proposed in this
thesis.

Specifically, the contributions presented in Part III (Chapters 7 and 8)
are inserted in this context. By comparing our techniques with a submod-
ular selection process, we show that when the sensing locations range in a
continuous space of interest, continuous optimization techniques can obtain
better results.

2.3 QUBO models

Several problems in Artificial Intelligence and Pattern Recognition are com-
putationally challenging due to their inherent complexity and the exponen-
tial size of the solution space. To solve these problem numerous classic
heuristic algorithm has been developed.

27



Chapter 2. Related Work

As previously mentioned in the introduction (Section 1.4), the emer-
gence of quantum computation could provide a viable alternative to combat
the complexity of hard optimization problems. A notable progress in this
direction is represented by the recent development of the D-Wave quan-
tum annealer, whose processor has been designed to the purpose of solving
Quadratic Unconstrained Binary Optimization (QUBO) problems (more de-
tails in Section 3.5).

The general framework to solve a problem by using a D-Wave machine
consists of two steps:

1. Map the problem of interest into a QUBO formulation, i.e. into a
quadratic unconstrained cost function over binary variables.

2. Embed the QUBO formulation into the architecture of the D-Wave
processor.

The embedding that represent the second step of this framework can
be carried out with automated techniques [40]. As a consequence many
works in literature investigate the possibility of using quantum annealing
to address hard artificial intelligence and pattern recognition problems by
proposing their QUBO formulation.

Examples include image recognition [132], bayesian network structure
learning [135], fault detection and diagnosis [143], training a binary classifier
[131] and portfolio optimization [122, 152, 176]. Moreover, in the context of
mathematical logic, Bian et al. [22] propose a QUBO formulation to tackle
the maxSAT problem, an optimization extension of the well known SAT
(boolean satisfiability) problem [53].

NASA’s Quantum Artificial Intelligence Laboratory (QuAIL) team1 hosts
one of the D-Wave machine and aims to investigate whether quantum com-
puting can improve the ability to address difficult optimization and machine
learning problems related to several fields that include NASA’s aeronautics,
Earth and space sciences, and space exploration missions. The focus of the
QuAIL team is both theoretical and empirical investigations of quantum
annealing. Biswas et al. [26] reviews NASA perspective on quantum com-
puting of three potential application areas such as planning and schedul-
ing [150, 164, 170, 171, 178], fault detection and diagnosis [143], and sam-
pling/machine learning [2, 6, 17, 18]. These works are part of the emerging
field of quantum machine learning [157] where the use of quantum computing
technologies for sampling and machine learning applications has attracted
increasing attention in recent years.

In this thesis we propose two contributions that are positioned in this
context and that constitute a connection bridge between sampling/machine
learning and environmental monitoring applications. These contributions

1https://ti.arc.nasa.gov/tech/dash/groups/physics/quail/
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are described in Part IV of this thesis, where we investigate the use of
quantum annealing by providing two QUBO models. Specifically, Chapter 9
presents a model that optimizes sampling locations by reducing the variance
of a Gaussian process, addressing a problem similar to the one discussed in
Part III of the thesis, but considering discrete domains for the locations
of the sensors. Chapter 10 proposes a QUBO model for the biclustering
problem.
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Chapter 3

Background

In this chapter we formally describe the main concepts and problems later
discussed in this thesis. We start by presenting the two most recurrent
topics in this thesis, specifically, in Section 3.1 Gaussian processes and in
Section 3.2 the level set estimation problem. Then in Sections 3.4, 3.3
and 3.5 we introduce gradient descent, submodular functions and Quadratic
Unconstrained Binary Optimization problems. We conclude this chapter
with a brief introduction to clustering in Section 3.6, orienteering in Section
3.7 and topological skeletonization in Section 3.8.

3.1 Gaussian processes

Gaussian processes are a widely used tool in machine learning [125,149] and
provides a statistical distribution together with a way to model an unknown
function f . In probability theory and statistics, a Gaussian process is a
stochastic process (a collection of random variables), such that every finite
collection of those random variables has a multivariate normal distribution.
A Gaussian process defines a prior distribution over functions, which can
be converted into a posterior distribution over functions once we have seen
some data.

Although it might seem difficult to represent a distribution over a func-
tion, we only need to be able to define a distribution over the function’s
values at arbitrary and finite set of points {x1, . . . ,xn}.

Gaussian Processes are a powerful technique for modeling and predicting
data and they have some strong advantages:

1. Flexibility: can be used to model many different functions.

2. Non-parametric model: we do not have to worry about whether it
is possible for the model to fit the data as would be the case if for
example we were using a linear model on strongly non-linear data.

3. Based on probability theory, hence with a solid mathematical theory.
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A Gaussian process is completely specified by its mean function and
covariance function. The mean function m(x) and the covariance function
k(x,x′) of a real process f(x) are defined as follows:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

and the Gaussian process can be written as

f(x) ∼ GP(m(x), k(x,x′)) (3.1)

For notational simplicity the mean function can be zero without loss of
generality, since the Gaussian process is flexible enough to model the mean
arbitrarily well. In a Gaussian process the random variables represent the
value of the function f(x) at location x.

Now, given a training set D of n observations, D = {(xi, yi)|i = 1, . . . , n},
where x denotes an input vector of dimension D and y denotes a scalar
output; the column input vectors for all n cases are aggregated in a D × n
matrix X, and the outputs are collected in the vector y, so we can write
D = (X,y). We are interested in making inferences about the relationship
between inputs and outputs, i.e. the conditional distribution of the outputs
given the inputs.

Gaussian processes can be used under two different conditions, i.e. the
prediction using noise-free and the prediction using noisy observations. In
the case of noise-free observation if we ask the Gaussian process to predict
f(x) for a value of x that has already seen, it would return the answer f(x)
with no uncertainty. In other words, in this case the Gaussian process acts
as an interpolator of the training data.

Throughout this thesis we focus instead on the case of noisy observation,
hence, in the next section we briefly introduce Gaussian processes predictions
under this second condition. Our presentation is based on [125, 149], which
should be consulted for further details.

3.1.1 Predictions with noisy observations

Suppose we observe a training set D = {(xi, yi)|i = 1, . . . , n}, with yi =
f(xi)+ε where ε ∼ N (0, σ2n), that is, observation with additive independent
identically distributed Gaussian noise ε with variance σ2n.

Given a test set X∗ of size n∗, we want to predict the function outputs
f∗. By definition of the Gaussian process (eq. 3.1), the joint distribution of
the observed output values and the function values at the test locations is:[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(3.2)
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where we are assuming the mean is zero, for notational simplicity. By
the standard rules for conditioning Gaussians [125, 149], we obtain the key
predictive equations for Gaussian process regression as follows:

f∗|X,y, X∗ ∼ N
(
f∗, cov(f∗)

)
, where (3.3)

f∗ , E[f∗|X,y, X∗] = K(X,X)
[
K(X,X) + σ2nI

]−1
y (3.4)

cov(f∗) = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2nI

]−1
K(X,X∗) (3.5)

If there are n training points and n∗ test points, then K(X,X∗) denotes
the n × n∗ matrix of the covariances evaluated at all pairs of training and
test points with some kernel function k(·, ·). Similarly for the other entries
K(X,X) and K(X∗, X∗).

This process is illustrated in a 1-dimensional example in Figure 3.1. On
the left we show samples from the prior and on the right samples from the
posterior given a set of observations.

(a) (b)

Figure 3.1: 3.1a functions sampled from a Gaussian process prior. 3.1b
samples from a Gaussian process posterior with 5 noise-free observa-
tions. (Pictures generated using probabilistic modeling toolkit PMTK3 -
https://github.com/probml/pmtk3)

The notation of equations 3.4 and 3.5 can be simplified by using K =
K(X,X) and K∗ = K(X,X∗). If we have only one test point x∗ we can
denote the vector of covariances between the test point and the n training
points with k∗.

Using this simplified notation we can compute the mean and variance
for a single test point x∗ as follows:

f∗ , µ(x∗) = kT∗ (K + σ2nI)−1y (3.6)
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V[f∗] , σ2(x∗) = k(x∗,x∗)− kT∗ (K + σ2nI)−1k∗ (3.7)

Using the above equations we can compute the GP to update our knowl-
edge about the unknown function f based on information acquired through
observations and all these computations can be done in closed form, in O(n3)
time.

Note that variance in equation 3.7 does not depend of the observed
output values but only on the inputs of the training set. This is a property
of Gaussian distribution and will play an important role throughout this
thesis.

Gaussian processes use a measure of the similarity between points (the
kernel function k(·, ·)) to predict values of unseen point from training data.
In the next section we briefly discuss the role of the kernel function and its
hyperparameters.

3.1.2 Role of the kernel

The kernel function is at the core of a specific Gaussian Process and describes
the similarity between two points. Specifically, a kernel function takes as
input two points and gives as outputs the covariance between them. That
determines how strongly correlated these two points are. The key idea is
that if xi and xj are deemed by the kernel to be similar, then we expect the
output of the function at those points to be similar too.

The predictive performance of Gaussian processes depends exclusively
on the suitability of the chose kernel and parameters. There are lots of
possible kernel functions to choose from [125, 149]. A common property is
to have the covariance decrease as the distance between the points grows, so
that the prediction is mostly based on the near locations. Alternatively, the
kernel function could include a periodic part, such as a sine wave, to model
a period component of the underlying function f.

A famous and widely used kernel is the squared exponential, also known
as Gaussian kernel or RBF kernel:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
(3.8)

The kernel function will often have some parameters. For example,
a length parameter that determines how quickly the covariance decreases
with distance. For example in the squared exponential kernel here above, l
controls the horizontal length scale over which the function varies, and σ2f
controls the vertical variation.

Suppose we choose this squared-exponential kernel (equation 3.8), Figure
3.2 illustrates the effect of changing the parameters l = horizontal length-
scale, σ2f = vertical length scale and σ2n noise of the measurement on a
1 dimensional functions. Similarly Figure 3.3 illustrate the effect on the
2-dimensional case.
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(a)

(b) (c)

Figure 3.2: 1-dimensional Gaussian processes using the squared expo-
nential kernel with different hyperparameters fit to 20 noisy observa-
tions. The specific hyperparameters (l, σf , σn) used are: (a) (1,1,0.1) - (b)
(0.3,1.08,0.00005) - (c) (3,1.16,0.89). (Pictures generated using probabilistic
modeling toolkit PMTK3 - https://github.com/probml/pmtk3)

To estimate the kernel parameters a common practice is to use an empir-
ical Bayes approach, which allows to use continuous optimization methods,
in particular the maximization of the marginal likelihood [125,149].

3.2 Level Set Estimation problem

In the level set estimation problem we have an unknown scalar field that
can represents for example an environmental phenomena of interest. The
objective is to partition each location of the scalar field into two groups that
represent locations either above or below a given threshold level h. More
formally, given a set of locations X ⊆ Rd and a threshold value h, we want
to model the unknown scalar field f : Rd 7→ R in order to classify all the
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(a)

(b) (c)

Figure 3.3: 2-dimensional functions sampled from a Gaussian pro-
cess using the squared exponential kernel with different hyperparame-
ters. (Pictures generated using probabilistic modeling toolkit PMTK3 -
https://github.com/probml/pmtk3)

locations x ∈ X into either a superlevel set H = {x | f(x) > h} or a sublevel
set L = {x | f(x) ≤ h} (see Figure 3.4).

The problem is defined as the selection of the set of locations xi where
to perform (possibly noisy) measurements yi = f(xi) + ei while minimizing
some criteria or satisfying some constraints depending on the context.

In an environmental monitoring application the unknown scalar field
could represent the environmental phenomena of interest that has to be
modeled for example the pH value of a body of water, and the threshold
could represent a critical level for the safety of the environment. In this
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Figure 3.4: On the left side a real-world scalar field of pH level of waters
extracted in the Persian Gulf near Doha (Qatar). On the right side the
partition given a threshold h = 7.4 with orange above and blue below the
threshold.

context, measurement locations should be selected to maximize the classifi-
cation accuracy of the domain, while minimizing the resources required to
obtain such a partition, such as total traveled distance required for a mobile
sensor to analyze these locations, or the number of points to samples.

In the next section we summarize the method proposed by Gotovos et
al. [79], which falls within this context and represents the starting point for
some of our contributions presented in this thesis.

3.2.1 The LSE algorithm

The LSE algorithm presented by Gotovos et al. [79] is based on Gaussian
Processes, a technique which offers a way to model unknown functions as
we previously discussed in Section 3.1.

Specifically, in [79] authors propose to model the unknown scalar field f
of an environmental phenomena of interest (the algal population in a lake
in their case) by mean of a sequential selection of sampling locations. By
doing this, the Gaussian process (and our knowledge about the scalar field)
is sequentially updated with the new measurements acquired.

Authors in [79] consider a set of noisy measurements Yt = {y1, y2, · · · , yt}
taken at locations Xt = {x1,x2, · · · ,xt} at time t, and assume that yi =
f(xi) + ei where ei ∼ N (0, σ2n), i.e., measurement noise with zero mean.
Given this set of measurements we can compute the mean and variance
of the scalar field in every point in space using the equations 3.6 and 3.7
previously presented.

Given a region of interest in R2, they discretize it into a grid where each
element represents a small portion of the surface. These elements compose
the set of possible sampling locations (points) X , and the goal is to classify
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each location xi ∈ X into two sets H or L with respect to a threshold level
h. The LSE algorithm uses the inferred mean (eq. 3.6) and variance (eq.
3.7) of the Gaussian process to construct an interval:

Qt(x) =
[
µt−1(x)± β1/2t σt−1(x)

]
(3.9)

for any x ∈ X . The parameter βt represents a scaling factor for the interval.
The procedure for tuning this parameter can be found in theorems 1 and 2
in [79].

Then, in order to classify every point x into either H or L, they define
the following confidence interval using the intersection of all previous Qt(x)
intervals for every point x:

Ct(x) =

t⋂
i=1

Qi(x) (3.10)

The classification of a point x depends on the position of its confidence
interval with respect to the threshold level h. Specifically, for each location
x ∈ X if its confidence interval Ct(x) lies entirely above h, then f(x) >
h with high probability, and we can classify x into the superlevel set H.
Similarly, when the entire confidence interval Ct(x) lies below h then we
can classify x into the sublevel set L. These conditions are relaxed with an
accuracy parameter ε as shown in the following equations:

Ht = {x | min(Ct(x)) + ε > h} (3.11)

Lt = {x | max(Ct(x))− ε ≤ h} (3.12)

At time t, for every point with a confidence interval that crosses the
threshold, we have to defer the decision until more information is available.
The set of unclassified locations is then identified as:

Ut = X \ (Lt ∪Ht) (3.13)

In order to classify the points in Ut according to the equations (3.11)
and (3.12), it is necessary to acquire more data by selecting new sampling
locations xi ∈ Ut. To this end, the algorithm at each iteration uses the con-
fidence interval for each unclassified point to derive the following ambiguity
value:

at(x) = min{max(Ct(x))− h, h−min(Ct(x))} (3.14)

The LSE algorithm uses the measure of ambiguity for each unclassified
point to guide the selection of the sampling locations. Specifically, the point
xt with the highest ambiguity value represents the location with the highest
information content. As such, it becomes the next point to measure.
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3.3. Submodular functions

3.3 Submodular functions

As previously mentioned in Section 2.2.2, submodular functions have proper-
ties that can be exploited to find greedy solutions to optimization problems.
The variance of a Gaussian process given a set of observations falls into
this category of functions and greedy submodular techniques represent the
baseline of comparison with some of our contributions presented in this the-
sis. Therefore, in what follows we better describe this specific class of set
functions.

In mathematics we define as a set function, a function whose inputs is a
set of elements. Particular classes of set functions turn out to be submodular.
The property of submodularity formally translates as follows:

Definition 1. A set function F : 2X → R is submodular if for all subsets
A,B ⊆ X it holds that

F (A ∪B) + F (A ∩B) ≤ F (A) + F (B) (3.15)

A maybe more intuitive characterization of a submodular function has
been given by Nemhauser et al. [129] as follows:

Definition 2. A function F is submodular if and only if for all A ⊆ B ⊆ X
and x ∈ X \B it holds that:

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B) (3.16)

This second definition captures a concept known as diminishing return
property. Informally we can say that if F is submodular, adding a new
element x to a set increases the value of F more if we have fewer elements
than if we have more.

This concept is of our interest as it directly apply to environmental
monitoring applications. For example, in a environmental monitoring appli-
cation, performing an additional measurement in a environment where we
have few measurements helps more (gives more information) that adding a
new measurement in a environment where we have already obtained many
observations.

Specifically, the posterior variance of a Gaussian process belongs to this
class of submodular functions. Das and Kempe [58] show that the variance
reduction:

Fx(A) = σ2(x)− σ2(x|A) (3.17)

at any particular point x, satisfies the diminishing returns property: adding
a new observation reduces the variance in x more if we have made few
observations so far, and less if we have already made many observations.

Since each of the variance reduction functions Fx is submodular, the
average variance reduction

F (A) =
1

|X|
∑
x

Fx(A) (3.18)
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is also submodular.

3.4 Gradient descent

In the context of optimizing a set of sampling locations, one of the contri-
butions proposed in this thesis (Chapter 7) is a gradient descent algorithm
to minimize the posterior variance of a Gaussian process. Therefore, in this
section we briefly introduce gradient descent techniques.

Gradient Descent (GD) is a very common and simple iterative opti-
mization algorithm used to minimize an objective function. The basic idea
behind gradient descent is that the algorithm starts from an initial point
in the desired objective function and then takes a step in the direction of
the negative of the gradient of the function itself in that point. The process
iterates until it converges to a local minimum of the objective function. This
simple idea is represented in Figure 3.5.

Figure 3.5: Abstract representation of gradient descent on a 2-dimensional
objective function.

In more details, given a multi-variable function J(θ) differentiable in
a neighborhood of a point θ, gradient descent is based on the observation
that J(θ) decreases fastest in the direction of the negative gradient, that is
−∇J(θ). Whenever the gradient of the function is non-zero we know that in
the direction of the negative gradient we can minimize the objective function
further, and in that sense improve upon the current solution.

The equation below describe the basic iteration of gradient descent:

θi+1 = θi − α∇J(θi) (3.19)
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This formula basically tells that the next position where the algorithm
goes (θi+1), is in the direction of the steepest descent from the current
position θi modulated by a parameter α called learning rate. This learning
rate α determines how fast or slow we will move towards the current basin
of attraction of the objective function.

In order for gradient descent to reach the local minimum, we have to set
this learning rate α to an appropriate value, which is neither too low nor
too high (see figure 3.6). If we set the learning rate to a very small value,
gradient descent will eventually reach the local minimum but it will maybe
take too much time like you can see on the left side of the image. If alpha is
too large (as represented on the right side of the picture), gradient descent
can overshoot the minimum. It may fail to converge, or in some cases even
diverge.

(a) (b)

Figure 3.6: Iterations of gradient descent using: 3.6a a learning parameter
α too small and 3.6b a learning parameter α too big.

The value of the learning parameter α can be determined mostly by trial
and error, there is no one-fits-all for parameter and it depends on the context
of the objective function.

When gradient descent cannot decrease the function anymore or remains
more or less on the same level (i.e. the improvements between an iteration
and the other are less than a given threshold), we say it has converged. Note
that the number of iterations that gradient descent has to perform in order
to converge can sometimes vary significantly. Therefore the number of iter-
ations is hard to estimate in advance. There are also some algorithms that
can tell automatically if the gradient descent iteration has converged but
with the requirement to define a threshold for the convergence beforehand
which is also pretty hard to estimate.

Gradient descent is a widely used algorithm in machine learning. In this
context the objective function is used to monitor the error in predictions of
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a machine learning model. Minimizing this error function basically means
obtaining the lowest error value or in other words increasing the accuracy
of the model. In this context we can observe variants of gradient descent in
literature that mainly differ in the amount of data they use [153].

As previously mentioned, as far as we are concerned in this thesis we will
make use of a gradient descent technique in order to minimize the variance
of a Gaussian process in the context of sensor placement (sensing location)
for environmental monitoring applications.

3.5 Quadratic Unconstrained Binary Optimization
(QUBO)

As described in Section 2.3, the emergence of quantum computation could
provide a viable alternative to tackle hard optimization problems. A notable
progress in this direction is represented by the development of the D-Wave
quantum annealer, designed to solve Quadratic Unconstrained Binary Op-
timization (QUBO) problem.

In this thesis we investigate the possibility of using a quantum com-
putation approach in the context of environmental monitoring applications
by providing two QUBO models (Chapters 9 and 10). Therefore, in what
follows we provide the formal description regarding QUBOs.

The goal of a Quadratic Unconstrained Binary Optimization problem is
to find the assignment of a set of binary variables z1...zn so as to minimize
a given objective function

O(z1, ..., zn) =
n∑
i=1

aizi +
∑

1≤i<j≤n
bi,jzizj (3.20)

Each instance of a QUBO problem can be conveniently represented by
using a weighted graph where:

• There is a node for every binary variable zi

• A linear coefficient ai encodes the value associated to the node zi

• A quadratic coefficient bi,j encodes the value associated to the edge
between nodes zi and zj

In this graphical representation the QUBO objective function (3.20) cor-
responds to the summation of the values in the graph, namely the sum of
linear terms will be the sum of the node values and the sum of the quadratic
terms will be the sum of the edge values:

O(z1, ..., zn) =
n∑
i=1

aizi︸ ︷︷ ︸
node values

+
∑

1≤i<j≤n
bi,jzizj︸ ︷︷ ︸

edge values

(3.21)
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By using this convenient graphical representation of a QUBO instance,
we can also imagine the problem of minimizing the objective function as
follows:

• zi = 1 is equivalent to keeping the node zi in the graph.

• zi = 0 is equivalent to removing the node zi from the graph.

• Minimizing the function is equivalent to decide which nodes to remove
from the graph, where removing a node implies the removal of all edges
that are incident to that node.

Example

The function O(z1, z2, z3, z4, z5) = 3z1− z2 + 3z3 + z5 + z1z2− z2z3− z1z4−
z1z5 − 2z4z5 + 2z3z5 can be represented as:

3

z1

-1

z2

3 z3

0

z4

1

z5

1

-1

-1
-1

-2 2

and minimizes for O(0, 1, 0, 1, 1) = −2 represented as:

-1

z2

0

z4

1

z5

-2

3.6 Clustering

Clustering (or cluster analysis) refers to the division of data into groups
(clusters) of similar objects, based on the concept of similarity: object in
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the same group should be similar, whereas objects belongings to different
groups should be dissimilar.

Clustering can be viewed as a data modeling technique that provides for
concise summaries of the data. In clustering we can represent a quantity
of data with a relatively small number of clusters, that is, some details
are disregarded in exchange for data simplification. Clustering is therefore
related to many disciplines and plays an important role in a broad range
of applications and usually deals with large datasets and data with many
attributes.

Cluster analysis is in many cases an essential data analysis task and
it can be used as an independent data mining process to disclose intrinsic
characteristics of data, or as a preprocessing step with the clustering results
used further in other task. Clustering has been studied extensively in various
research fields, including machine learning, pattern recognition, engineering,
social, economic, and biomedical data analysis. As a consequence cluster
analysis can be performed by numerous algorithms that differ significantly
in what constitutes a cluster and how to efficiently find them [1,19,183].

Popular notions of clusters include groups with small distances between
cluster members (as shown in Figure 3.7), intervals or particular statistical
distributions. The appropriate clustering algorithm depend on the individ-
ual data set and intended use of the results. Cluster analysis as such is
not a straightforward task, but instead an iterative process of knowledge
discovery that involves trial and failure. It is often necessary to modify data
preprocessing and model parameters until the result achieves the desired
properties.

Figure 3.7: Simple example of clustering (performed with k-means algo-
rithm)

Although the wide variety of clustering techniques that is possible to
find in literature [99, 182], in our contributions proposed in this thesis we
make use of three specific types that we introduce here below. Specifically,
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soft K-means, exemplar based clustering through an affinity propagation
algorithm and biclustering.

3.6.1 K-Means and soft K-means

In our contribution presented in Chapter 8, we devise an heuristic approach
for the problem of minimizing the posterior variance of a Gaussian process
and the core of our algorithm is inspired by a soft K-means technique. Hence
in what follows we describe the basic knowledge regarding this topic.

K-means is one of the most popular techniques to cluster a given data set
X = {x1,x2, . . . ,xn} ⊂ Rd into k subsets (clusters) C1, . . . , Ck such that:

C1 ∪ C2 ∪ · · ·Ck = X (3.22)

and for i 6= j
Ci ∩ Cl = ∅ (3.23)

K-means clustering aims to partition the n data points so as to minimize
the within-cluster sum of squares, formally:

arg min
µ1,...,µK

K∑
i=1

∑
xj∈Ci

∣∣∣∣xj − µi
∣∣∣∣2 (3.24)

where µi is the mean point (centroid) of Ci.
The objective function in equation 3.24 has numerous local minima and

since the problem is NP-hard there is no algorithm known today that is
guaranteed to find the optimal solution. However, the underlying ideas
of k-means clustering are intuitive, several heuristic algorithms have been
developed [82,116,119] and most theoretical properties are well established
[74,118].

We can observe that equation 3.24 can also be expressed in terms of
binary indicator variables zi,j which indicates whether or not a point xj
belongs to cluster Ci. Specifically, with:

zi,j =

{
1, if xj ∈ Ci
0, otherwise

(3.25)

the objective function in equation 3.24 becomes equivalent to:

arg min
µ1,...,µK

K∑
i=1

n∑
j=1

zi,j
∣∣∣∣xj − µi

∣∣∣∣2 (3.26)

The above formulation represents the standard k-means clustering where
each point belong to one and only one cluster. We can however relax the
assumption in equation 3.23 and define a formulation of a soft K-means [13],
also referred to as fuzzy k-means clustering [20, 68].
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There is a fundamental property with regard to this idea. Soft K-means
clustering allows every data point to belong to several clusters simultane-
ously but this is not meant in the sense that clusters may overlap. Rather,
soft K-means clustering determines to which degree each data point belongs
to each cluster.

This idea can be simply implemented in the objective function repre-
sented by equation 3.26 by allowing the indicator variables zi,j to vary con-
tinuously, i.e. zi,j ∈ [0, 1]. Since it is reasonable to decide cluster member-
ship based on distances to cluster centroids a popular choice to achieve this
transformation is to consider softmax functions [128]:

zi,j =
e−β
∣∣∣∣xj−µi∣∣∣∣2

K∑
l=1

e−β
∣∣∣∣xj−µl∣∣∣∣2 (3.27)

where β is called stiffness parameter. The indicator values zi,j thus
defined can now be interpreted as probabilities p(µi|xj).

3.6.2 Exemplar Based Clustering (EBC)

In this Section we present the background knowledge regarding exemplar
based clustering through an affinity propagation algorithm. This technique
has been used as a preprocessing operation in our contribution presented in
Chapter 4.

A common approach in clustering is to use the data we hold to learn a
set of centers such that the sum of squared errors between data points and
their nearest centers is small (see Figure 3.7). This is the typical example
encountered when approaching clustering with a technique such as k-means
as we described in the previous section.

In contrast to this, when the centers are selected from actual data points,
they are called “exemplars”. A popular technique in this context is the k-
centers algorithm [133]. It begins with an initial set of randomly selected
exemplars and iteratively refines this set so as to decrease the sum of squared
errors. K-centers clustering (similarly to k-means) is quite sensitive to the
initial selection of exemplars. The number of exemplars has to be deter-
mined beforehand and it has to be executed multiple times with different
initializations to find a good solution. This algorithm works well only when
two assumptions are correct, specifically the number of clusters (exemplars)
is correct and when chances are good that at least one random initialization
is close to a good solution.

Frey and Dueck [73] take a different approach and introduce a method
that simultaneously considers all data points as potential exemplars. They
proposed a technique where each data point is considered a node in a net-
work, and devised an algorithm that recursively transmits messages along
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edges of the network until a good set of exemplars and the corresponding
clusters emerges (points which have chosen the same exemplar are in the
same cluster). Messages are updated on the basis of simple formulas that
search for minima of an appropriately chosen energy function. The method
is called affinity propagation because the magnitude of each message re-
flects the current “affinity” that one data point has for choosing another
data point as its exemplar.

Affinity propagation takes as input a set of real-valued similarities be-
tween data points, where the similarity s(i, k) specifies how well the data
point with index k is suited to be the exemplar for data point i. For ex-
ample, if the goal is to minimize the squared error, each similarity can be
set to the negative Euclidean distance. Specifically, for points xi and xk,
s(i, k) = −||xi − xk||2. Alternatively, when appropriate for the application
of interest, these similarities may be set by hand. As previously mentioned,
one of the main advantages of this algorithm is that it does not require
to define an explicit number of clusters beforehand. A suitable number is
automatically determined and is influenced by the self similarities s(k, k),
referred to as “preferences”, indicating how likely each point is to become
an exemplar.

The efficiency and accuracy of this algorithm have been shown in dif-
ferent applications [73]. In this thesis, we are interested in this affinity
propagation clustering technique as a preprocessing step to reduce the com-
putation required by one of our algorithm later described in Chapter 4.

3.6.3 Biclustering

As previously mentioned in Section 1.5, one of the contribution presented in
this thesis is a quadratic unconstrained binary optimization model for the
biclustering problem.

Biclustering, also known in other scenarios as sub-space clustering, is
a term used to encompass a large set of data mining techniques generally
aimed at “performing simultaneous row-column clustering” of a data matrix
[120]. The biclustering problem appears in several different scenarios, such
as document analysis [64], market segmentation [66], recommender systems
[124], classification of medical data [140] and expression microarray data
analysis [10,72,120,134,146].

More recently, biclustering has been employed for detecting, modeling
and interpreting aquatic drone state in the context of water monitoring oper-
ations [44]. The use of this technique enables the analysis of large amounts
of data collected by autonomous drones and enhance situation awareness
which can be exploited by the platform to improve the decision making
process.

The starting point of biclustering is a matrix whose rows and columns
represent different aspects specific of the data analyzed. For example in the

47



Chapter 3. Background

context of water monitoring [44] rows represent different properties of the
drone (e.g. position, time, speed, physical phenomenas measured) and the
columns represent samples over time. The analysis in this scenarios is to
perform biclustering with the aim of discovering which properties show a
coherent behavior over the time (for a graphical representation see Figure
3.8). In more detail, Castellini et al. [44] proposes the use of biclustering to
identify interesting situations for the drones that can not be directly mea-
sured with specific sensors, such as whether the drone is moving upstream
or downstream. The use of biclustering in this context is key to minimize
the features that are considered to identify such situations. In fact, as men-
tioned before in contrast to clustering approaches, biclustering techniques
can group coherent data over a subset of the features that define the data
points. This is important in this context because it allows to retrieve sit-
uations more accurately and (more important) it can provide to a human
operator a clear indication about which features are more relevant to deter-
mine the situation of interest. Results show the utility of such approach for
environmental monitoring applications.

(a) (b)

Figure 3.8: Example of a constant bicluster, before 3.8a and after permuta-
tions 3.8b.

Different biclustering techniques have been proposed in the past – e.g.
[9,24,47,62,173], each one characterized by different features, such as com-
putational complexity, effectiveness, interpretability and optimization crite-
rion. For a general review we recommend [72,84,85,120,146].

Some of these approaches adapts a specific clustering technique to the bi-
clustering problem, for example by repeatedly performing rows and columns
clustering. However, the majority of recent works aim at proposing novel
models for biclustering, where rows and columns are analyzed simultane-
ously (as opposed to clustering rows and columns separately) [173]. This
approach has several advantages for what concerns the performance of the
biclustering process that is significantly more accurate.
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However, such accuracy comes at a price as such models typically involve
a large amount of variables and relationships. In the context of biclustering
data analysis, the typical candidate data are represented by a matrix with
thousands of rows and columns. Moreover, the underlying optimization
task required by the model is NP-hard leading to severe restrictions on
the practical applicability of those approaches. In order to combat such
complexity, recent works typically relax the model or use heuristic, greedy
approaches, hence giving up optimality of the solution.

In this thesis we follow a standard technique where the problem of biclus-
tering is formulated as a sequential search for the most coherent bicluster.
This is a widely employed technique in the literature [16,47,61], and consists
of the extraction of biclusters one by one from the data-matrix. Clearly, it
is crucial how to “mask” the obtained bicluster before looking for the next
one. In literature we can find different heuristics addressing this problem:
for example, one way to address this problem is to replace the obtained bi-
cluster with background noise in the original data matrix [47], so that the
next bicluster can be looked for.

3.7 Orienteering

In our contribution regarding the computation of informative trajectories
for mobile sensors, and specifically in our SBOLSE algorithm presented in
Chapter 4, we make use of an orienteering formulation.

The Orienteering Problem (OP) originates from the sport game of orien-
teering. In the orienteering game, the start and end locations are specified
along with a set of other checkpoints which have an associated score. The
players aim to visit checkpoints in order to maximize the total score and
reaching the end point within a given time frame. This problem can be
used to model several different contexts. For example, consider the problem
in which a traveling salesperson has a set of cities which could be visited.
Assuming that the salesperson knows the expected number of sales in each
city, the goal is to plan a route so as to maximize the total number of sales
while keeping the total length of such route within a given budget (i.e. the
maximum distance that can be traveled in one day).

More formally, the orienteering problem can be formulated in the fol-
lowing way: given a set of N locations, each with a score Si ≥ 0, a starting
location with index i = 1, an ending location with index i = N and the
travel time tij for all couples of locations i and j (with i 6= j), the goal is to
plan a route, limited by a given budget Tmax, that visits a subset of these
locations in order to maximize the total collected score.

An orienteering instance can easily be described using a weighted undi-
rected complete graph G = (V,E) where V = {v1, . . . , vN} is the set of
locations (nodes) and E is the set of edges between every pair of nodes. In
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this formulation the nonnegative score Si of location i is associated with a
vertex vi ∈ V , and the travel time tij between location i and j is associated
with each edge eij ∈ E. See an example in figure 3.9.
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Figure 3.9: Example of the graphical representation of an orienteering in-
stance. S represents the starting node and E represents the end node.

The orienteering problem consists of determining a Hamiltonian path
over a subset of V , including the start node (v1) and end node (vN ), having
a total length that does not exceeds the bound Tmax, in order to maximize
the collected score. See example in figure 3.10.
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Tmax ≥ 11
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Figure 3.10: Example of the solutions of an orienteering instance by varying
the total budget. The red (dashed) path represent the optimal solution with
Tmax = 7 on the left side and with any Tmax ≥ 11 on the right side.

The orienteering problem is a combination of node selection and short-
est path computation between the graphs’ nodes. As a consequence it can
be cast as a combination of the Traveling Salesman Problem (TSP) prob-
lems [54] and the Knapsack Problem (KP), where the KP goal is to maximize
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the total score collected while the TSP aims at minimizing the travel dis-
tance. This formulation is also referred to as a generalized traveling salesman
problem (GTSP) [77]. The orienteering problem is known to be an NP-hard,
as it contains the well known traveling salesman problem as a special case.

An orienteering problem formulation arises in scheduling and routing
applications, and it is also known as the selective traveling salesperson prob-
lem [113, 167] or the maximum collection problem [92]. A number of prac-
tical applications have been modeled as an orienteering problem and many
heuristic approaches have been developed to combat the inherent complex-
ity of the problem. In most cases, the orienteering problem is defined as
a path to be found between distinct locations, rather than a circuit where
v1 ≡ vN . However, in some applications v1 can coincide with vN but the
difference between both formulations is not significant.

For a general review on the numerous variants and applications we sug-
gest the surveys proposed by Vansteenwegen et al. [175] and Gunawan et
al. [81].

3.8 Topological Skeletonization

In our SBOLSE algorithm presented in Chapter 4 we make use of a technique
known as skeletonization as a preprocessing phase to reduce the number of
points that we must consider when planning the path for a robotic platform.

In digital image processing and shape analysis the topological skele-
tonization, also known as thinning process or medial representation, is a
process for reducing regions of an image to a thin (skeletal) representation
while erasing most of the original pixels (see example in Figure 3.11). Fur-
ther, algorithms has been developed and extended to extract a skeleton of
3D volumetric objects [185].

Figure 3.11: Example of a topological skeletonization applied to an image.

In general, the aim of the skeletonization is to extract a shape feature
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representing the general form of an object. The skeletonization preserves
and usually emphasizes the geometrical properties of the shape, such as its
topology, connectivity, direction and length.

Skeletonization was first introduced by using an intuitive model of fire
propagation by [27]. If one “sets fire” at all points on the boundary of a
shape, the skeleton forms at the points in the region where two or more
“fires” meet. This intuitive description has different mathematical defini-
tions and in the literature it is sometimes referred to as medial axis or
thinning [78].

Skeletonization is an important step in pre-processing phase for many
applications in digital image processing such as OCR (Optical Character
Recognition), computer vision or path planning for a mobile robot among
obstacles [65]. There are many techniques that are tailored for different
application contexts. Such algorithms can vary in run time and properties
of the produced skeleton, however they all significantly compress the input.
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Informative path planning
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Chapter 4

SBOLSE

4.1 Introduction

The use of robotic mobile sensors for environmental monitoring applications
has gained increasing attention in recent years. In this context, a common
application is to determine the region of space where the analyzed phenom-
ena is above or below a given threshold level. This is the level set estimation
problem as introduced in Section 3.2. One example is the analysis of water
in a lake, where the operators might want to determine where the dissolved
oxygen level is above a critical threshold value. Recent research proposes to
model the spatial phenomena of interest using Gaussian processes, and then
use an informative path planning procedure to determine where to gather
data.

Our contribution presented in this part of the thesis is inserted in the
aforementioned scenario, and aims at facing the problem of level set estima-
tion. However, in contrast to previous works, we consider the case where
a mobile platform with low computational power can continuously acquire
measurements with a negligible energy cost. This scenario imposes a change
in the perspective, since now efficiency is achieved by reducing the distance
traveled by the mobile platform and the computation required by this path
selection process.

Specifically, our techniques are motivated by the recent development
of low-cost, small mobile platforms that can perform continuous-sampling
in various body of waters (lakes, rivers and coastal areas). For example,
consider the autonomous surface vessel shown in Figure 1.1. This platform
is small (about 1 meter long and 50 cm wide) and it is equipped with probes
that measure various parameters such as the dissolved oxygen, temperature,
electrical conductivity and the pH level (see Figure 4.1) with sampling rate
between 1 and 10 Hz while the platform is moving. In this setting the cost
in terms of energy to perform a single measurement is negligible, and the
most crucial issue for the data collection process is the energy consumed to
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move the vessel. In fact, to meet the payload constraint of this platform,
batteries must have a limited capacity that results in constraints on total
path length. In this scenario, our goal is then to minimize the total path
length while collecting as much information as possible to correctly classify
our domain of interest.

As a further constraint, we also want to take into account the low com-
putational power of the hardware of this platform (composed of an Arduino
Due board and an Android smartphone), which motivates the derivation of
algorithms with reduced computational complexity.

Figure 4.1: Picture of the bottom of the hull of the boat. We can observe
that it is equipped with probes for different measurements capabilities.

Even if the LSE solutions proposed by Gotovos et al. [79] described in
Section 3.2.1 proved to be effective and accurate, they are not suitable for
our constrained scenario. Actually, with such methods the mobile sensor is
guided toward the most informative locations without taking into account
the path to reach such points. For example, the LSE algorithm assumes
that the mobile sensor moves from one position to the next selected location
following a straight line. Another issue is that the measure is collected
only at the final location without considering all the points traversed by
the sensor along its path. On the other hand, here we consider applications
where sensors can provide data while the robotic platform is moving.

In general, when planning sampling paths, an important aspect is the
trade-off between the quality of the paths and the timing of the decision. One
can plan a high quality path, which can turn out to be worse then expected
when it is followed and when the model of the environmental phenomenon
is correspondingly updated.

In what follows we present our Skeleton-Based Orienteering for Level Set
Estimation (SBOLSE) algorithm that makes use of an orienteering problem
formulation for the level set estimation. It starts from the LSE framework
but is specifically designed for continuous measuring sensors in which the
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cost (in terms of energy) required to take a measurement is negligible, but
instead it is necessary to optimize the total path of the mobile platform to
minimize battery consumption.

SBOLSE aims to obtain a high quality classification of the analyzed
regions while optimizing the total path length required by the mobile agent,
rather than the number of samples extracted during the executions (which is
an important criteria for previous works in the level set domain). Moreover,
to match the low computation power of mobile platforms, we introduce the
use of several heuristics which significantly reduces the time required by the
algorithm for the selection of an informative path.

Specifically, the main contributions to the state of the art are:

• We propose a novel algorithm called SBOLSE, that uses an orien-
teering formulation to solve the level set estimation problem. The
algorithm is specifically designed for continuous-sampling mobile sen-
sors.

• We propose four different heuristics with the aim to reduce the compu-
tation time required to determine an efficient path with the SBOLSE
algorithm.

• We test our algorithms on a real world dataset of water pH level and
on synthetic datasets (presented in Chapter 6). We show that our
approaches are better in terms of computation time required and path
length, while achieving a high quality classification when compared to
the state of the art techniques for level set estimation.

Notice that, the SBOLSE algorithm is based on several methodologies
derived from different areas of computer science: LSE from information
gathering, skeletonization from image processing, orienteering from graph
theory and clustering. Our work shows that a clever combination of such
methodologies results in an effective approach for addressing level set esti-
mation with continuous measurement sensors.

Although our techniques has been introduced for environmental mon-
itoring operations, they can be generalized to different applications where
mobile sensors are used to model the information of the environment. Specif-
ically, applications where a mobile sensor has to take measurements from the
environment with a battery constraint and hence it is required to compute
an efficient path. Examples can span across different context such as search
and rescue operations [156], precision agriculture [144,169], sea-floor target
localization [123] and radio signal source localization [158].

4.2 SBOLSE algorithm

The proposed SBOLSE algorithm is based on a Gaussian process model
of the scalar field. It considers the knowledge about unclassified locations
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Algorithm 1 SBOLSE algorithm

Input: set X , threshold h, accuracy parameter ε,
prior known data X ⊂ X , starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← X
4: while Ht ∪ Lt 6= X do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut
7: Classify and update Ht, Lt, Ut according to LSE [79]
8: xc ← current position
9: G← buildGraph(xc, Ut)

10: path← orienteeringStep(G, budget)
11: Execute path
12: end while
13: H ← Ht, L← Lt

xi ∈ Ut (as done by Gotovos et al. [79] and previously described in Section
3.2.1) to build an orienteering problem instance and to select a sequence
of locations to visit. The algorithm optimizes the information that can
be acquired along the route while meeting the budget on the travel dis-
tance. Moreover, we propose a heuristic approach based on the topologi-
cal skeletonization to combat the computational complexity associated with
the orienteering problem, along with several heuristics to reduce the num-
ber of orienteering executions required. We empirically show that with these
heuristics the classification accuracy does not suffer a significant degradation
while greatly reducing the computation time.

The code of Algorithm 1 describes the steps of our SBOLSE approach.
Our algorithm maintains three sets of points: the current sublevel Lt and
superlevel Ht sets, as well as the set of unclassified points Ut. At each
iteration t we update the GP posterior by integrating the new information
gathered at the preceding iteration (line 6). Then we compute the confidence
intervals Ct(x) for each point x ∈ Ut(x), classify them into one of the three
sets, and then compute the sequence of locations to be visited. To compute
such a path we consider the ambiguity defined by equation (3.14) of the
unclassified points and build an orienteering problem instance. Specifically,
in line 9 we create a graph from the unclassified points Ut (Algorithm 2)
and then compute a path (line 10) using the orienteeringStep procedure of
Algorithm 3. The algorithm terminates when Ht ∪ Lt = X , i.e. when all
points are classified and thus Ut = ∅. Note that during the execution of
the path (Algorithm 1, line 11) if the sensor moves over locations not yet
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analyzed but already classified according to LSE technique [79], these are
evaluated and possibly re-classified considering newly acquired data.

4.2.1 Building the graph

Algorithm 2 buildGraph procedure

Input: current position xc, unclassified elements Ut
Output: weighted graph G

1: V ← v1 ≡ xc
2: w(v1)← 0
3: n← 1
4: for all xi ∈ Ut do
5: n← n+ 1
6: V ← V ∪ vn ≡ xi
7: w(vn)← a(xi)
8: end for
9: E ← ∅

10: for all vi ∈ V do
11: for all vj ∈ V do
12: if vi 6= vj then
13: E ← E ∪ eij
14: w(eij)← ||vi − vj ||
15: end if
16: end for
17: end for
18: G← (V,E)

In the buildGraph procedure we take all the unclassified locations Ut,
and we build an undirected weighted graph, where all nodes are connected.
This graph will then be used in the orienteering procedure.

As shown in Algorithm 2, the first node of the graph represents the
current location of the mobile sensor (line 1). This location represents the
starting position for the orienteering solver. Subsequently we build the nodes
set V and the edges set E. The function w(·) denotes the weight of a node or
the weight of an edge. The weight of a node w(vi) (line 7) corresponds to the
ambiguity measure (equation 3.14) of the location that the node represents.
The weight of the first node is an exception as this represents the current
position of the mobile sensor, hence the location has been already visited
and classified. The weight of the edges w(eij) (line 14) denotes the travel
distance between the locations represented by the nodes vi and vj .

4.2.2 Orienteering Step
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Algorithm 3 orienteeringStep procedure

Input: graph G = (V,E), budget B
Output: bestPath

1: bestPath← ∅
2: bestPathV alue← 0
3: for i in range(2, |V |) do
4: if ||v1 − vi|| ≤ budget then
5: path← orienteeringHeuristic(G, v1, vi, B)
6: if value(path) > bestPathV alue then
7: bestPath← path
8: bestPathV alue← value(path)
9: end if

10: end if
11: end for

In the orienteeringStep procedure we use the undirected weighted graph
G previously built and consider this as the input to the orienteering problem.
In particular we have a fixed starting point (i.e. the current location of the
sensor), but we do not have an ending location (which is required in the
classical formulation of the orienteering problem).

Please note that, in principle, it would clearly make sense to design
an orienteering problem instance where the starting point is equal to the
destination point. However in the classic orienteering problem the rewards
of every node are fixed: in our case, rewards change during the execution
of the algorithm since the information value of every point decreases while
the sensor acquires new data. Hence, making a single run of orienteering
with a budget equal to the total battery lifetime, and with a starting point
equal to the ending point, would not take into account the dynamics of the
information inherent in such a scenario. Therefore, we iterate the process for
smaller segments, and this allows us to update the model (with a Gaussian
process update) more frequently, considering the newly acquired data. When
measuring at a point we also obtain information about nearby locations.
Frequent updates allow the algorithm to make better decisions about future
path choices. In other words, the choice of the budget (length) of these
segments allows a trade-off between adaptivity and the horizon of our path
planning procedure.

To choose the destination we perform an orienteering procedure multiple
times (Algorithm 3, line 5), assuming as destination every unclassified point
in the graph that is reachable with the given budget. The choice of repeat-
ing the orienteering step multiple times (one for every possible reachable
destination) represents the simplest choice for formalizing this problem and
this aspect is improved with the end-point heuristics described in Section
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4.3.

Every time we solve an orienteering instance with a different destina-
tion point we obtain a new path. The procedure keeps track of the best
discovered one and returns this as final route to be executed from the
SBOLSE algorithm. Specifically with value(path) (line 6 and 8) we indicate
the summation of the nodes’ weights in that route, that is value(path) =∑

vi∈pathw(vi). Since the orienteering problem aims at maximizing the score
for a given travel budget, using this procedure we obtain a path that maxi-
mizes the information collected about the unclassified locations for the level
set estimation problem.

4.2.3 Skeletonization

In practical applications of the level set estimation problem the input is a
set of dense points that must be classified. Specifically, when the data ac-
quisition process starts, we must consider the entire surface of the selected
portion of the environment. These data are typically discretized and orga-
nized in a grid where each entry represents a small portion of the surface
(i.e., a square of 50 centimeters or 1 meter in our experiments).

Now, given the smoothness property of the environmental phenomena,
locations with high classification uncertainty usually cluster into areas where
the unknown scalar field has higher probability to cross the threshold level.
Considering all such points is redundant and this motivates the use of the
topological skeletonization technique to compress the input.

Specifically, we consider the grid containing the information about the
ambiguity measure (equation 3.14) of the unclassified points Ut as a binary
image, where unclassified points are set to 1 and classified points are 0.
We then apply a skeletonization technique (introduced in Section 3.8) to
such image, and we maintain as interesting points to be classified only the
points of the resulting skeleton. This greatly reduces the number of locations
that we must consider in the buildGraph procedure previously presented in
section 4.2.1 (see an example in Figures 4.2a and 4.2b). Note that in the
buildGraph procedure each point that is maintained after the skeletonization
represents a node of a complete graph.

4.3 Orienteering with end-point heuristics

The major computation bottleneck of the naive SBOLSE algorithm can be
identified in the multiple executions of the orienteering step (Algorithm 3,
line 5), assuming as its destination every unclassified location in the graph
that is reachable with the given budget. Hence, we aim at reducing the
number of the orienteering executions by selecting only a subset of the un-
classified locations as potential end points.
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The new orienteering step procedure is described in Algorithm 4. We
can notice that the only differences with respect to Algorithm 3 are in line
3, where we determine a new set of nodes V ′ using a heuristic, and line 4
that loops on the newly created V ′ instead of V .

Algorithm 4 orienteeringStep procedure with heuristics

Input: graph G = (V,E), budget B
Output: bestPath

1: bestPath← ∅
2: bestPathV alue← 0
3: V ′ ← heuristic(V )
4: for i in range(2, |V ′|) do
5: if ||v1 − vi|| ≤ budget then
6: path← orienteeringHeuristic(G, v1, vi, B)
7: if value(path) > bestPathV alue then
8: bestPath← path
9: bestPathV alue← value(path)

10: end if
11: end if
12: end for

In what follows we propose the main heuristic (EBC in Section 4.3.1)
that we implemented and used in order to determine the new locations set
V ′. Additionally, three baseline heuristics that we used for comparisons are
described in Section 4.3.2.

4.3.1 EBC heuristic

The main heuristic that we propose is based on the Exemplar Based Clus-
tering (EBC) performed with the Affinity Propagation technique [73] intro-
duced in Section 3.6.2. The main idea behind this technique is to exploit
the Affinity Propagation algorithm on the unclassified locations and use the
selected exemplars as the set of valid end points for the orienteering proce-
dure.

As described in Section 3.6.2 the affinity propagation procedure takes
as input a set of real-valued similarities between data points, where the
similarity s(i, k) specifies how well the data point with index k is suited
to be the exemplar for data point i, and a set of real numbers referred to
as “preferences” which identify the preference of a location to become an
exemplar.

In our application what we want to obtain is a set of points reason-
ably scattered in space and with high information content. Similarities and
preferences have to be set accordingly. Specifically, the similarity between
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two points is related to their proximity, and preferences are related to the
informativeness. Specifically values has been set as follows:

• Similarity: We want to associate the proximity of two points to their
similarity. Moreover all the similarity measures have to be positive.
To do so we compute the maximum distance possible between any
two locations (that we identify as maxDist) and we set the similarity
between point xi and point xj as s(xi,xj) = (maxDist− ||xi − xj ||).
The set of similarity thus obtained is normalized so as to have all
values between 0 and 1.

• Preference: We want to associate the informativeness of a loca-
tion with the preference to become an exemplar for other neighboring
points. To do so we simply set the preference for a point xi with the
ambiguity measure of that location, that is s(xi,xi) = at(xi) with
at(xi) computed as in equation 3.14. The set of preferences is then
normalized so as to have all values between 0 and 1.

An example of the effects of the Exemplar Base Clustering phase on the
real dataset is shown in Figures 4.2c and 4.2d. Specifically, we can observe
in Figure 4.2c that the exemplar points selected by the procedure are not
uniformly distributed in space but rather they are more concentrated in
areas with high information content as we would expect.

4.3.2 Orienteering end-point baseline heuristics

Here we describe three different baseline end-point heuristics for SBOLSE
that we implemented. Even if they represent common straightforward ap-
proaches to select elements from a set, with the reduction of the number of
orienteering executions, their impact in the reduction of computational com-
plexity of our algorithm is substantial. Specifically, we tested the following
methods:

• Random(p): With this simple heuristic, we randomly select a speci-
fied percentage p of the unclassified locations, in order to become the
set of valid orienteering end points.

• Sparse(p): With this second heuristic, we select from the set of un-
classified locations the specified percentage p of points with the higher
ambiguity value (i.e. the locations with the higher amount of infor-
mation).

• Sample(p): With this last heuristic we perform a discrete random
sampling, where the probability of a point to be selected is weighted
by the ambiguity value of that location.
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(a) (b)

(c) (d)

Figure 4.2: Example of the topological skeletonization and Exemplar Based
Clustering heuristic applied to the data matrix containing the ambiguity
measure for the unclassified points Ut. 4.2a data matrix before the skele-
tonization, a darker color corresponds to an higher value of ambiguity. 4.2b
matrix after the skeletonization operation. 4.2c Exemplars selected with the
EBC heuristic and in 4.2d the corresponding clusters identified with different
colors.

4.4 Theoretical analysis

For what concerns the theoretical analysis of our approach, notice that Go-
tovos et al. [79] with Theorem 1 prove the convergence of the LSE algorithm.
Even though the selection procedure of our SBOLSE algorithm differs from
LSE, we used the same classification rules (Algorithm 1, lines 6-7). As in
LSE, our technique iterates with the while loop until every point is classified.
Hence we can ensure the convergence of the SBOLSE algorithm with a high
quality classification as they do.

The computational complexity of the technique can be described as fol-
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lows. Let’s consider the worst case scenario; this scenario is represented by
the case where at each iteration of the algorithm we move the sensor in a
location adjacent to the current position and we are able to classify only
this new measured location. In this case the while loop of the algorithm has
to be performed |X | times.

The complexity of the body of the loop is the sum of four main compo-
nents:

1. The computation of the Gaussian Process that requires O(|X |3) due
to the need to invert a |X | × |X | matrix.

2. The execution of the buildGraph sub-procedure which has a complexity
O(|Ut|2). The cardinality of set Ut is |X | at the first iteration and
decreases over time according to how many points have been classified.

3. The classification according to the LSE algorithm [79] that requires
O(|X |).

4. The execution of the orienteeringStep sub-procedure.

The complexity of the fourth point depends on the actual heuristics
used and very efficient solutions can be found, O(log2OPT ) where OPT
is the number of nodes visited by an optimal solution [45]. As previously
mentioned in Section 4.3 the major bottleneck is the multiple executions of
the orienteering step that, in the worst case scenario, are |X |−t. Even with a
less efficient implementation of the orienteering heuristic (e.g. a O(|X |3) the
execution of the orienteeringStep sub-procedure is on the order of O(|X |4).

To conclude, the combined complexity of the algorithm is on the order of
O(|X |5). Although the complexity seems very high, this is by far the worst
case scenario. Consider that, in practical applications the algorithm does
not classifies a single point at each iteration but rather a set of new locations.
Moreover, with the use of the skeletonization and the end-point heuristics
the computational effort associated to the orienteeringStep is significantly
reduced, hence, the algorithm can run much faster. In our empirical eval-
uation proposed in Chapter 6, we also detail the actual computation time
required to perform the technique using two different datasets.
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PULSE

5.1 Introduction

As previously introduced in Chapter 4, our contribution presented in this
part of the thesis is inserted in the framework of the level set estimation
problem for continuous sampling mobile sensors. In this chapter we focus
in particular on the need to develop procedures that take into account the
low computation power of the processing units used on the platforms.

Specifically, in what follows we present another algorithm, which we call
Path-Update LSE (PULSE) algorithm. Similarly to the SBOLSE algorithm
presented in Chapter 4, this is specifically designed for continuous sampling
sensors where:

• The cost in terms of energy consumption required to perform an indi-
vidual measurement is negligible.

• It is necessary to optimize the total path of the agent in order to reduce
the battery consumption.

• We need a computationally efficient path selection procedure.

The proposed technique determines an informative path in order to reach
the most interesting location (i.e. the point in space with the highest am-
biguity a(xi) about its classification), moving from the current position
through points that still have to be classified.

In contrast to SBOLSE, in which the orienteering routine considers the
amount of information in each location, this PULSE technique is a greedy
approach that builds a path using only the presence of the information in
a location without taking into account the amount. Moreover, in this case
we do not have a budget that gives us a trade-off between adaptivity and
path planning horizon. The purpose of this algorithm is to develop a fast
baseline technique for continuous sampling sensors that ignores the amount
of information.
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Specifically, the main contributions of this chapter are:

• We propose a novel greedy algorithm called PULSE for selecting mea-
surement paths that exploits a less accurate but computationally faster
path selection procedure. It is used as a baseline strategy for compar-
isons in the continuous-sampling setting.

• We derive a batch variant of PULSE to allow a further trade-off be-
tween the computation time required and the path efficiency.

• As done for the SBOLSE technique, we test our algorithms on a real
world dataset of water pH level and on synthetic datasets (presented
in Chapter 6).

Also in this case the techniques have been introduced for environmen-
tal monitoring operations but they can be generalized to different applica-
tions where mobile sensors are used to model the information content of the
environment. Specifically, applications where a mobile sensor has to take
measurements from the environment with a battery constraint and a low
computation capacity.

5.2 PULSE algorithm

The pseudo-code of Algorithm 5 describes the steps of our PULSE approach.
It is very similar to SBOLSE (differences in lines 8-9-10). The algorithm
maintains at any iteration t three sets of points: the current superlevel Ht

and sublevel Lt sets, as well as the set of unclassified points Ut. At each
iteration t we update the Gaussian Process posterior by integrating the new
information gathered at the preceding iteration (line 6). Then we compute
the confidence intervals Ct(x) for each point x ∈ Ut(x), classify them in one
of the three sets (line 7) and then compute the next sample to be evaluated
using the ambiguity defined by equation (3.14) (line 9). We then compute
a path between the current location xt−1 and the selected point xt (line 10)
using the path selection procedure presented in Algorithm 6. The algorithm
terminates when Ht ∪ Lt = X , i.e. when all points are classified and thus
Ut = ∅. Note that during the execution of the path (Algorithm 5, line 11)
if an agent moves through locations that are already classified, these are
re-evaluated and re-classified considering newly acquired data.

5.2.1 Path Selection

Here we describe in detail the pseudo-code of Algorithm 6. At each time
step t the algorithm keeps track of the starting position xt−1 of the platform
(i.e. the last position) and the destination point assigned by the sample
selection criteria, i.e. the most interesting point xt. In order to select
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Algorithm 5 PULSE algorithm

Input: set X , threshold h, accuracy parameter ε,
prior known data X ⊂ X , starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← X
4: while Ht ∪ Lt 6= X do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut
7: Classify and update Ht, Lt, Ut according to LSE [79]
8: xt−1 ← xt
9: xt ←next location according to LSE [79]

10: path← pathSelection(xt−1,xt, U)
11: Execute path
12: end while
13: H ← Ht, L← Lt

an informative path towards the destination, the path selection procedure
analyzes each point x ∈ Ut, i.e. locations that still have to be classified
and therefore potentially carrying some useful information, selecting a path
{xt−1 = xnext0 ,xnext1 , · · · ,xnextn = xt} with n ≥ 1. Note that the number
of points touched by the agent, n, is automatically determined by the pro-
cedure. In the case of n = 1 the path corresponds to the straight line from
the current position to the selected destination.

Each xnexti point determined by the procedure meets the condition to
always approach the destination point, i.e.

||xnexti − xt|| < ||xnexti−1 − xt|| (5.1)

where ||x′ − x′′|| is the Euclidean distance between locations x′ and x′′. In
more detail, given the two points xnexti−1 and xt, the region of the space
which contains points meeting this condition defines a convex area (see ex-
ample in figure 5.1) and we call this area Ati (Algorithm 6, lines 8-10). The
procedure analyzes all points xi ∈ Ut ∩ Ati and selects as xnexti the closest
point from the previous location, generating the path (Algorithm 6, line 11).

Note that Algorithm 5 differs from the LSE Algorithm proposed by [79]
in the path selection procedure we employ. Specifically, our path selection
procedure selects only points that meet the condition in equation (5.1) (Al-
gorithm 6, lines 6 and 9). As we build the path from xt−1 to xt the area
Ati shrinks and converges towards the destination point xt. This allows the
path to include informative points that lie inside this area (example in Fig-
ure 5.1), while ensuring that the path is going towards the most interesting
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Algorithm 6 pathSelection procedure

Input: last position xt−1, next location xt, unclassified elements Ut
Output: path

1: i← 0
2: xnext0 ← xt−1
3: path← xt−1
4: while xnexti 6= xt do
5: i← i+ 1
6: d← ||xnexti−1 − xt||
7: A← ∅
8: for all x ∈ Ut do
9: if ||x− xt|| < d then

10: A← A ∪ x
11: end if
12: end for

13: xnexti ← minx∈A

(
||xi − xnexti−1 ||

)
14: path← path ∪ xnexti
15: end while

point defined by the ambiguity measure at(x) presented in equation 3.14.

5.3 Theoretical analysis

For what concerns the convergence analysis of this approach the same argu-
ment made for the SBOLSE algorithm in Section 4.4 is valid. Notice that
Gotovos et. al. with Theorem 1 in [79] proves the convergence of their LSE
algorithm. Considering that PULSE uses the same classification and selec-
tion rules of LSE, the path selection procedure builds a path that terminates
in the selected location, and that the information gathered along the path
is never less than 0, the convergence is also valid for the technique proposed
in this chapter.

As previously done for the SBOLSE algorithm in Chapter 4, to describe
the computational complexity of the technique let us consider the worst case
scenario. This scenario is represented by the case where at each iteration
of Algorithm 5 we move the sensor in a location adjacent to the current
position and we are able to classify only this new measured location. In this
case the while loop of the algorithm has to be performed |X | times.

The complexity of the body of the loop is the sum of three main com-
ponents:

1. The computation of the Gaussian Process that requires O(|X |3) due
to the need to invert a |X | × |X | matrix.
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Figure 5.1: Example of runtime execution of the path selection procedure.
The white areas represent location that are still unclassified. The circle
represents the area A. On the left side the beginning of the procedure and
on the right side we can observe the path that has been built after some
iterations.

2. The classification according to the LSE algorithm [79] that requires
O(|X |).

3. The execution of the pathSelection sub-procedure described in Algo-
rithm 6.

As we described in the previous section, our path selection procedure
selects only points that meet the condition in equation (5.1) (Algorithm 6,
lines 6 and 9). As we build the path from the current position to the next
point defined by the ambiguity measure at(x) the procedure selects a set
of informative locations. However, in the worst case scenario that we are
analyzing this path selection procedure has a constant complexity.

To conclude, the overall combined complexity of the PULSE algorithm
is in the order of O(|X |4). Also in this case, although the complexity seems
very high, this is by far the worst case scenario. Consider that, in practical
applications the algorithm does not classifies a single point at each iteration
but rather a set of new locations. In our empirical evaluation proposed in
Chapter 6, we also detail the actual computation time required to perform
the technique using two different datasets.

5.4 Batch variant

In active learning techniques the “batch” concept is a simple variant where
instead of selecting a single point to be labeled a new batch (set) of points
is selected before updating the model.

This same concept has been used by Gotovos et al. [79] in the context
of the level set estimation problem. Specifically, in addition to the LSE

71



Chapter 5. PULSE

algorithm, authors in [79] discuss the batch version where multiple locations
are selected by taking the mutual information into account. The Gaussian
process is then updated only after every location of the batch has been
measured. Although the main goal of the LSE Batch approach is to select
multiple locations and to compute a path between them, their algorithm is
far in spirit from what we propose in this thesis: actually, as in the regular
LSE algorithm, also in the batch variant the length of the path is not a
variable explicitly considered in the choice of the points to be sampled next.
The main reason for this is that in both cases their main goal is to minimize
the number of sampling locations. Moreover, during the movement of the
mobile platform from one location to next one, the monitoring process does
not acquire any further data.

Following this idea, besides the PULSE algorithm we provided a simple
batch variant that aims at selecting a set of informative locations in a single
iteration (i.e. after a single Gaussian process update). This will act as a
trade-off between the path’s efficiency and the computation time required
since we can greatly reduce the number of Gaussian processes updates.

Specifically, we exploit the property introduced in Section 3.1 that the
predictive variance of Gaussian processes (equation 3.7) depends only on the
location of a measurement and not on the measured value itself. Assuming
we will obtain a new sample at some location, it is possible to evaluate the
updated predictive variance, and thus the new ambiguity value, of every
point xi ∈ Ut. This process is repeated adding the location with the new
highest ambiguity to a set.

We can observe the pseudo-code of the batch procedure in Algorithm 7.
After the batch is selected (line 8) it is possible to compute an efficient path
that visits all the locations in such a set. The order in which those locations
should be visited is determined by solving a Traveling Salesman Problem
(TSP) [7] (line 9). Once we have the order of locations to be visited, the
path selection procedure (Algorithm 6) is applied to all pairs of consecutive
locations in order to obtain the final informative path (lines 10-13). This
algorithm allows us to trade-off the adaptivity we would have by updating
the Gaussian process more often in favor of a reduction of the computation
required to compute the path.
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Algorithm 7 PULSE batch algorithm

Input: set X , threshold h, accuracy parameter ε, size of the batch b
prior known data X ⊂ X , starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← X
4: while Ht ∪ Lt 6= X do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut
7: Classify and update Ht, Lt, Ut according to LSE [79]
8: Xt ←set of b locations according to LSE [79]
9: X̂t = 〈xt0 = xt−1,xt1 , . . .xtb〉 ← TSP (Xt)

10: for j = 0 to b− 1 do
11: path← pathSelection(xtj ,xtj+1 , U)
12: Execute path
13: end for
14: xt ← xtb
15: end while
16: H ← Ht, L← Lt
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Chapter 6

Empirical evaluation

6.1 Introduction

In this chapter we present the empirical evaluation of our proposed tech-
niques previously presented in Chapters 4 and 5, comparing them with lit-
erature alternatives on two datasets and analyzing different aspects of the
approaches. More in detail, in Section 6.2 we describe the two datasets
that we used in our experiments; in Section 6.3 we present the main com-
parison between our algorithms and other state-of-the-art competitors and
in Section 6.4 we specifically evaluate the SBOLSE orienteering end-point
heuristics described in Section 4.3. Finally, in Sections 6.5 and 6.6 we present
the complete comparisons among all the experiments performed and draw
conclusions.

The set of algorithms that we compared in our experiments are the
following:

• SBOLSE: Our algorithm described in Chapter 4.

• SB-EBC: SBOLSE algorithm with Exemplar Based Clustering heuris-
tic as described in Section 4.3.1.

• PULSE: Our algorithm as explained in Chapter 5.

• PULSEbXX : This algorithm is the batch variant of PULSE as de-
scribed in Section 5.4.

• CS: This is a variant of LSE as described by [79] for the continuous
measuring setting. Locations on the straight line between the last posi-
tion and the next selected point are analyzed, simulating a continuous
sampling sensor.

• CSbXX : Similar to CS, this is a variant of LSE batch as described
by [79] for the continuous measuring setting.
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• ARS-CIPPn: This a recent adaptive re-planning scheme algorithm
proposed by Hitz et al. in [87]. The number n represents the number
of control points of the B-spline that is optimized by the algorithm.

6.1.1 Setting of the algorithms and aims

Regarding our SBOLSE algorithm and its heuristics variants, we imple-
mented a simple orienteering algorithm inspired by the center of gravity
technique as proposed by Golden et al. in [77]. Notice that the performance
of the SBOLSE technique presented in the following sections depends on
the performance of the orienteering heuristic implemented and this can be
substantially improved (e.g., by using a more advanced heuristic available
in literature). Nevertheless, even with such a simple orienteering heuristic
our techniques can compute informative paths that achieve a high quality
classification while significantly reducing the travel distance required by the
mobile sensor.

For the SBOLSE algorithm with the EBC heuristic we set the measures
required by the affinity propagation algorithm as previously explained in
Section 4.3.1. We performed the skeletonization with a basic technique,
based on morphological operators, as implemented in the MATLAB function
bwmorph.

In the two batch versions, XX identifies the cardinality of the batch set,
i.e. the number of locations in a TSP.

The aims of this empirical evaluation are to assess the quality of the
selected paths, showing that our techniques are competitive in terms of total
traveled distance required to obtain a high quality classification and the
gain in terms of computation time required by our techniques with respect
to the state of the art for the level set estimation problem. We assess
the accuracy of the classification using the F1-score. This is typically used
in information retrieval to measure the accuracy of binary classification.
Here we consider the locations in the superlevel set as positives and the
locations in the sublevel set as negatives. All the described algorithms have
been implemented and tested using MATLAB R2016a on a AMD FX 6300
processor with 16GB RAM.

All the results presented in this chapters refers to experiments where
the starting location has been assumed to be on the top left corner of the
dataset for all the algorithms. However, the variation on the performance
given different starting locations is sufficiently small such that the statistics
presented are representative for any possible starting point.

6.2 Dataset

As mentioned before we performed our experiments on two different datasets,
a real-world and a synthetic dataset.
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The real-world dataset consists of measurements of the pH level extracted
from waters of the Persian Gulf near Doha, Qatar using the boat in Figure
1.1. The data forms a 68×93 grid where each element represents a sampling
location xi that must be classified with respect to a given threshold. Each
point of the grid represents 0.5 square meters of the surface that has been
analyzed. The value associated with that location is the average of all the
samples extracted by the sensors while moving the boat in that portion of
the surface. In our experiments we applied three different thresholds (7.40,
7.42 and 7.44) to classify the scalar field. We then assessed the results
starting from ten random initial priors composed by 10% of the points in
the grid, for a total of 30 tests with every algorithm. These priors were used
to fit the hyper-parameters of an isometric Matérn-3 [149] kernel function.
We can observe the ground truth of this dataset in Figure 6.1.

Figure 6.1: Scalar field of the real-world dataset, i.e. the pH level of waters
extracted in the Persian Gulf near Doha (Qatar).

The synthetic dataset consists of ten 60× 179 grids. The motivation for
using this dataset is to test the techniques with more than 10,000 locations
to classify hence comparing the algorithms on larger instances of the prob-
lem. The dataset has been extracted from portions of CO2 maps1 in order
to obtain a scalar field with a topology consistent with typical environmen-
tal phenomena. We assume that each location represents 1 square meter
of surface to analyze, and we used a threshold value equal to 85% of the
maximum value in the scalar field. We assessed the results with five ran-
dom initial priors for the Gaussian process composed of 10% of the points
in the grid. The priors were used to fit the hyperparameters of an isomet-
ric Matérn-3 [149] kernel function. With five priors per grid and ten grids,
we performed a total of 50 tests with each algorithm. We can observe the
ground truth of one of this dataset in Figure 6.2.

We assume that there are no natural or artificial barriers inside both
datasets that would prevent a mobile sensor to move and that would gen-

1http://oco.jpl.nasa.gov/galleries/gallerydataproducts/
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Figure 6.2: Example of one scalar field of the CO2 synthetic dataset.

erate abrupt changes in the phenomena. In cases were a barrier is present,
the kernel used in the Gaussian process should be adapted accordingly. Al-
though this is an interesting scenario, it falls outside of the scope of the
current empirical evaluation.

6.3 Results

6.3.1 Real-world dataset experiments

For what concerns the real-world dataset, as done in previous approaches [79]
we performed tests to determine the β and ε parameter values that allow a
high accuracy for all the algorithms. The parameter β represents a scaling
factor for the interval described by Equation 3.9 whereas ε is an accuracy
parameter used to relax the classification conditions (Equations 3.11 and
3.12).

Specifically, the scaling parameter β has been set to ensure that the
resulting confidence intervals Ct(x) (Equation 3.10) for every point x contain
the scalar field f(x) with high probability. The accuracy parameter ε has
been chosen after testing different values that vary between 2% and 20% of
the maximum value of the dataset.

For the batch algorithms we performed tests with batches of different
sizes. We did not observe a significant reduction of the total traveled distance
with batches of size larger than 30. Thus, we carried out the comparisons
with batches of 30 points. For the ARS-CIPPn we performed tests with 3-
7-11-15-19 control points. In the following tables we report the results with
7 control points since this configuration has obtained the best results both
in terms of total traveled distance and runtime. The additional results can
be found in Section 6.5.

As we can observe in Table 6.1 the F1-score is consistently higher than
97% for all the algorithms. Regarding the total traveled distance our SBOLSE
algorithm performs very well, with a traveled distance that is lower than all
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Table 6.1: F1-score, total traveled distance (meters) and computation time
(seconds) using the real world pH dataset. x is the average of all 30 experi-
ments and SEx is the standard error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 97.46 0.063 587.8 10.82 11.1 0.27
PULSEb30 97.43 0.060 518.7 6.68 63.5 0.89
CS 98.22 0.039 1560.8 18.58 38.1 0.49
CSb30 97.47 0.055 671.7 13.71 82.4 1.74
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19
ARS-CIPP7 97.57 0.045 736.1 10.30 114.5 1.70

other techniques but with a significantly higher computation time. SBOLSE
with our EBC heuristics represents the best trade-off between total path and
computation required, but with a time that is one order of magnitude lower
than the basic version without the heuristic. Moreover, notice that the per-
formance of SBOLSE depends on the orienteering algorithm implemented.
As previously stated in Section 6.1.1 these can be substantially improved.

We can observe that PULSEb30 represents a good trade-off as well, how-
ever the average path required from the SB-EBC is lower and statistically
significant according to a t-test with α = 0.05. It is possible to observe
a graphical representation of the different paths chosen by CS, SBOLSE,
PULSE and ARS-CIPP in Figure 6.3.

Notice that, results reported in Table 6.1 represents a full execution of
the algorithms until convergence is reached. In case of a limited budget (i.e.,
a limited total travel distance that the mobile sensor can run) such that it
is not possible to classify all points, our SBOLSE and SB-EBC obtain a
clear advantage in terms of F1-score. In Fig. 6.4a it is possible to observe
the F1-score as a function of the traveled distance. We can notice that the
F1-scores of SBOLSE and SBOLSE with the EBC heuristic outperform the
other techniques. This translates directly in an advantage for our techniques
in case with a limited budget. If we would have to interrupt the techniques
before the convergence, due to a limited battery capacity of the mobile
sensor, our techniques would have reached a better classification accuracy.
For example, if we stop after 300 meters in the real world dataset SBOLSE
would have an F1-score of 95.29 with a gain of 1.39 with respect to the next
best competitor ARS-CIPP7 that obtains an F1-score of 93.9.

6.3.2 Synthetic CO2 dataset experiments

As previously done with the real-world dataset, we determined a parame-
ter setting that allowed a high accuracy with all the algorithms. Result of
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(a) (b)

(c) (d)

Figure 6.3: Real dataset experiments. The white areas represent location
that are still unclassified and black lines display a portion of the path selected
by the algorithms: (a) CS, (b) SBOLSE, (c) PULSE and (d) ARS-CIPP.
The starting point in the top left corner is the same for all the algorithms.

experiments on the synthetic dataset are shown in Table 6.2. As obtained
in the real world dataset, also in the synthetic one the SBOLSE algorithm
shows the best performance in term of traveled distance required to obtain
a high quality classification. However in this case the advantage is minimal
(i.e., 1355.6 meters instead of 1356.4 performed by PULSEb30). These re-
sults lead to the conclusion that the advantage of the SBOLSE technique
is dataset dependent. Moreover, notice that the performance of SBOLSE
depends on the orienteering algorithm implemented. As previously stated
in Section 6.1.1 this can be substantially improved.

Also in this synthetic dataset the advantage of SBOLSE comes with a
prohibitive computation time. The best trade-off is obtained using either
the exemplar based clustering heuristic with a minor increase in the path
length (+7.7%) but with a substantial reduction of the computation time (-
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Table 6.2: F1-score, total traveled distance (meters) and computation time
(seconds) using the synthetic CO2 dataset, x is the average of all 50 exper-
iments and SEx is the standard error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 98.22 0.090 1709.4 35.37 23.9 0.75
PULSEb30 98.23 0.092 1356.4 23.08 163.0 4.11
CS 98.66 0.071 5588.1 136.86 99.4 2.91
CSb30 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.99 0.100 1355.6 26.16 3663.8 265.22
SB-EBC 98.03 0.096 1460.8 25.89 168.5 7.95
ARS-CIPP7 98.25 0.089 2616.0 63.44 192.9 4.75

95.5%), or using the PULSE batch algorithm with a comparable path length
and computation time.

Similarly to what explained in section 6.3.1, also by using the synthetic
dataset we can notice a clear advantage of SBOLSE and SB-EBC in terms
of F1-score in case of a limited budget. We can notice in Fig. 6.4b that
the F1-scores of our techniques outperform the other, that is, for a smaller
budget constraint with SBOLSE and SB-EBC it is possible to obtain a
better classification accuracy. For example, if we stop after 1000 meters in
the synthetic dataset SBOLSE would have an F1-score of 98.7 with a gain
of 1.15 with respect to the next best competitor ARS-CIPP7 that obtains
an F1-score of 97.55.

(a) (b)

Figure 6.4: Evolution of the F1-score as a function of the distance traveled:
(a) on a real-world instance; (b) on a synthetic instance.
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6.4 End-point heuristics experiments

In this section we present the empirical evaluation using the orienteering
end-point heuristics with respect to the standard SBOLSE algorithm. We
performed tests with the four heuristics (EBC heuristic presented in Sec-
tion 4.3.1 and orienteering end-point baseline heuristics presented in Section
4.3.2) on both the real world dataset and the synthetic datasets previously
described in Section 6.2. We identify the different techniques as follows:

• SBOLSE-EBC: SBOLSE algorithm with the exemplar based clus-
tering heuristic as described in Section 4.3.1.

• SB-Random(p): SBOLSE algorithm with random sparsification heuris-
tic as described in Section 4.3.2.

• SB-Sparse(p): SBOLSE algorithm with lowest data point sparsifica-
tion heuristic as described in Section 4.3.2.

• SB-Sample(p): SBOLSE algorithm with discrete random sampling
heuristic as described in Section 4.3.2.

In these heuristics, (p) identifies the heuristic parameter (percentage of
points). Specifically, we performed tests varying the percentage parameter
from 90% down to 10% of the points.

6.4.1 End-point heuristics results

Table 6.3: Average time (seconds) on the real-world and synthetic datasets
varying the Random, Sparse and Sample heuristics’ parameter

% of points 100 90 80 70 60 50 40 30 20 10

Real dataset
SBOLSE 1006.2 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SBOLSE-EBC 124.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SB-Random n/a 858.3 762.1 681.9 582.5 479.8 396.1 306.5 200.3 117.6
SB-Sparse n/a 857.1 763.4 676.8 576.2 488.8 389.7 301.0 207.6 111.7
SB-Sample n/a 563.7 533.6 482.8 439.2 390.8 329.2 259.2 192.7 110.4

Synthetic dataset
SBOLSE 3663.8 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SBOLSE-EBC 168.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SB-Random n/a 1544.2 1378.8 1225.1 1038.2 880.2 692.7 537.8 389.5 227.7
SB-Sparse n/a 1555.8 1411.7 1212.3 1047.0 868.8 693.8 537.4 381.0 222,1
SB-Sample n/a 1004.0 924.9 850.1 768.9 663.1 593.0 472.5 349.5 212.4

We obtained a significant reduction in computation time on the real
world dataset. As we can observe on Table 6.3, even with a selection of 90%
of the points we obtained a significant reduction on the computation time
of roughly 15% with random and sparse. We obtained up to a reduction
of roughly 88% when we select only 10% of the points. With the sample
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heuristic we obtain a reduction of 44% up to 89% with the same parameters.
While obtaining a significant reduction on the computation time, we can
observe in Table 6.4 that we have a small increase in the total path length
required. Specifically, with just 10% of the points selected we obtained an
increase in path length of roughly 20-22% with the three random, sparse and
sample heuristics. The trend of the F1-score as a function of the traveled
distance on a real world instance is shown in Fig. 6.5. The trend of SBOLSE,
SB-EBC, and the three other heuristics is very similar, with a distance
traveled that is slightly longer for the heuristics compared to the standard
SBOLSE algorithm.

Figure 6.5: Runtime F1-score comparison on the typical example instance
of the real dataset, varying the path length between SBOLSE, SB-EBC,
SB-Random, SB-Sparse, and SB-Sample algorithms.

For the synthetic dataset we obtained an even greater reduction in com-
putation time. As we can observe on Table 6.3 with a selection of 90% of the
points we obtained a reduction of roughly 58% up to 93% with a selection
of 10% of the points. With the sample heuristic we obtained a reduction
of 72% up to 94% with the same parameters. As previously discussed for
the real-world dataset, the reduction in computation time implies a small
increase in the path length (see Table 6.4). Specifically, with only 10% of
the points selected we obtained an increase of roughly 21-23% with the three
heuristics.
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Table 6.4: Average traveled distance (meters) on the real-world and syn-
thetic datasets varying the Random, Sparse and Sample heuristics’ param-
eter

% of points 100 90 80 70 60 50 40 30 20 10

Real dataset
SBOLSE 473.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SBOLSE-EBC 495.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SB-Random n/a 472.7 486.4 486.6 494.4 494.3 509.9 515.6 530.8 572.7
SB-Sparse n/a 478.5 473.3 494.0 487.8 503.5 500.5 501.7 529.8 578.3
SB-Sample n/a 498.6 498.2 501.4 490.0 503.5 513.1 521.1 530.5 569.8

Synthetic dataset
SBOLSE 1355.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SBOLSE-EBC 1460.8 n/a n/a n/a n/a n/a n/a n/a n/a n/a
SB-Random n/a 1386.1 1396.4 1407.3 1379.7 1438.5 1451.6 1534.8 1517.7 1645.1
SB-Sparse n/a 1368.9 1367.6 1381.8 1367.8 1420.0 1425.7 1443.0 1508.4 1650.6
SB-Sample n/a 1440.2 1401.0 1414.3 1424.3 1469.0 1479.5 1489.9 1546.1 1670.9

6.5 Complete results

For completeness, in Tables 6.5 and 6.6 we report the same results of Tables
6.1 and 6.2 with the additional heuristics presented in Section 4.3.2. Re-
garding the SB-Random, SB-Sparse and SB-Sample we report results with
parameter p = 10 because it represents a good trade-off between time and
path length.

Moreover, in the following tables we also present the complete experi-
ments performed with the technique recently proposed by Hitz et al. in [87].
As mentioned before, in this technique authors use an adaptive re-planning
algorithm that optimizes a B-spline by varying n control points. In our ex-
periments with this technique we have varied the number n of control points,
in particular using n ∈ {3, 7, 11, 15, 19}.

6.6 Conclusions

In this part of the thesis we proposed a novel set of algorithms for a spe-
cific environmental monitoring application called the level set estimation
problem. Our algorithms are specifically designed for continuous-measuring
mobile sensors where the cost to perform a measurement is negligible. In
this context we aim at optimizing the total path length required from the
platform and reduce time required to compute an informative path. As
the results of our empirical evaluation presented in this chapter shows, the
different variants of our techniques are able to obtain a high quality clas-
sification with a shorter path and a lower computation time compared to
state-of-the-art algorithms in literature for the level set estimation problem.

Specifically, the SBOLSE algorithm presented in Chapter 4 implements
an orienteering heuristic solution as a subroutine to select an informative
path that meets a given travel budget. Results show that our approach
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Table 6.5: F1-score, total traveled distance (meters) and computation time
(seconds) using the real world pH dataset. x is the average of all 30 experi-
ments and SEx is the standard error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 97.46 0.063 587.8 10.82 11.1 0.27
PULSEb30 97.43 0.060 518.7 6.68 63.5 0.89
CS 98.22 0.039 1560.8 18.58 38.1 0.49
CSb30 97.47 0.055 671.7 13.71 82.4 1.74
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19
SB-Random(10) 97.35 0.057 572.7 10.16 117.6 5.07
SB-Sparse(10) 97.36 0.068 578.3 11.45 111.7 4.32
SB-Sample(10) 97.32 0.066 569.8 9.57 110.4 3.95
ARS-CIPP3 97.60 0.058 899.2 13.44 147.7 2.57
ARS-CIPP7 97.57 0.045 736.1 10.30 114.5 1.70
ARS-CIPP11 97.64 0.054 812.9 11.95 150.4 2.69
ARS-CIPP15 97.68 0.050 895.8 15.36 187.4 4.18
ARS-CIPP19 97.75 0.056 962.1 11.05 227.7 3.70

significantly outperforms the state-of-the-art algorithms for the level set
estimation problem in terms of total travel distance, while maintaining a
near-optimal classification quality.

On the other hand the PULSE algorithm presented in Chapter 5 reduces
the computation time compared to the other techniques, while remaining
competitive in terms of distance traveled by the mobile sensor and the clas-
sification accuracy obtained.

In general, for applications where the mobile sensor is equipped with
sufficient computation power and the optimization of the traveled distance
is crucial (e.g. limited battery capacity) it is preferable to use the SBOLSE
algorithm. Instead, for application where the computation power is limited
PULSE constitutes the preferable choice. Overall SB-EBC (i.e SBOLSE
with exemplar based clustering heuristic) represents a good trade-off for
most applications.
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Table 6.6: F1-score, total traveled distance (meters) and computation time
(seconds) using the synthetic CO2 dataset, x is the average of all 50 exper-
iments and SEx is the standard error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 98.22 0.090 1709.4 35.37 23.9 0.75
PULSEb30 98.23 0.092 1356.4 23.08 163.0 4.11
CS 98.66 0.071 5588.1 136.86 99.4 2.91
CSb30 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.99 0.100 1355.6 26.16 3663.8 265.22
SB-EBC 98.03 0.096 1460.8 25.89 168.5 7.95
SB-Random(10) 98.05 0.094 1645.1 32.11 227.7 14.28
SB-Sparse(10) 98.05 0.095 1650.6 34.22 222.1 14.98
SB-Sample(10) 98.04 0.093 1670.9 41.70 212.4 13.47
ARS-CIPP3 98.23 0.082 3059.0 75.11 323.7 9.96
ARS-CIPP7 98.25 0.089 2616.0 63.44 192.9 4.75
ARS-CIPP11 98.28 0.089 2777.4 62.30 218.2 5.02
ARS-CIPP15 98.32 0.082 3052.7 61.33 265.0 5.89
ARS-CIPP19 98.39 0.075 3433.2 74.52 319.6 7.43
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Optimizing sampling
locations
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Chapter 7

Gradient descent for
Gaussian processes variance
reduction

7.1 Introduction

As we are describing thorough the thesis, in many analyses we are deal-
ing with a spatial phenomena of interest that is modeled using Gaussian
processes [149]. When tackling the analysis of a spatial phenomena in a
data-driven manner, a key issue, before setting up the actual model, is to
decide on the locations where measurements are going to be taken. The
better our choice of locations, the better the Gaussian process will approxi-
mate the true underlying functional relationship or the fewer measurements
we need to build a model that provides a prespecified level of performance.

In contrast to what we presented in the previous part of the thesis in-
stead of optimizing paths for mobile sensors here we tackle the problem of
optimizing a given set of sensing locations. One example where this is a
common problem to solve is of course environmental monitoring. In envi-
ronmental monitoring it is necessary to choose a set of locations in space in
which to measure the specific phenomenon of interest (e.g. the temperature
of the environment or the pH value of water in rivers or in lakes [88, 160])
or similarly it is necessary to chose the displacement positions of fixed sen-
sors [80, 105, 108]. In both cases however, the process is usually costly and
one wants to select observations that are especially informative with respect
to some objective function.

Recent research in the context of optimizing sampling locations has fo-
cused on selecting a set of measurement so as to minimize the posterior vari-
ance of the Gaussian process [107]. This selection of measurement locations
is basically performed through the use of greedy procedures. In particular,
submodularity is often exploited [103, 105, 145]. Submodularity is an intu-
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itive diminishing returns property (as previously described in Section 3.3),
and the idea behind this technique is that adding a new measurement to a
small set helps more than adding it to a large set of measurements.

Although submodular objective functions allows for a greedy optimiza-
tion with bound guarantees [129], the solution of this technique is inherently
discrete since we can select the sensing points between a given set of possible
locations. Hence, the solution of such a technique can deviate considerably
from the optimum in cases where the sensing location can be arbitrarily
adapted in a continuous domain of interest. In other words, there is defi-
nitely room for improvement, which is the main goal of the work proposed
in this chapter.

Specifically, in what follows we propose a Gradient descent (GD) proce-
dure to minimize the posterior variance of the Gaussian process by adapting
sampling locations and we evaluate its performance. Essentially, we use a
gradient descent algorithm to adapt the sensing locations starting from a set
of initial positions that can be given from another algorithm. The proposed
study falls within the context of continuous optimization motivated by the
fact that in some cases, such as some environmental monitoring applica-
tions, the locations where measurements are performed does not have to be
confined in predetermined set of points whereas approaching this problem
by exploiting submodularity requires a discretization of the space.

More in detail, the main contributions of this chapter are:

• We provide a Gradient descent technique that minimizes the posterior
variance of a Gaussian process.

• We perform an extensive empirical evaluation of the procedure under
different conditions by varying:

– The hyperparameters of the Gaussian process.

– The number of sampling points K.

– The method of initialization of the points.

– The dimensionality of the dataset to prove the validity of the
technique in different contexts besides environmental monitoring
applications.

• We present the results and discuss the applicability and the improve-
ments that our technique offers under the different settings we have
tested. In particular, we show how submodular greedy solutions can
be further improved.

7.1.1 Problem definition

Given a continuous domain D ⊂ Rd that represents a region of the environ-
ment, we want to select a set of K points where to perform measurements in
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order to minimize the total posterior variance of the Gaussian process that
we are using to model the phenomena in that domain.

Specifically, we want to select a set of K measurements taken at locations
K = {µ1,µ2, · · · ,µK} ∈ D such that we minimize the following objective
function:

J({µ1,µ2, · · · ,µK}) =
∑
xi∈X

σ2(xi) (7.1)

where σ2(xi) is the Gaussian process variance computed in point xi as de-
fined by equation 3.7 and X is a set of points where we test the Gaussian
process. For example, in a typical environmental monitoring application
we are interested in generating a model of the phenomena of interest in a
specific region D of the environment and we generate this model by testing
the Gaussian process in a matrix of uniformly distributed point in space.
Notice that the variance computed with equation 3.7 in locations xi ∈ X is
dependent on the set of sampling points K as explained in Section 3.1.1.

J({µ1,µ2, · · · ,µK}) is a multi-dimensional function that represents the
total posterior variance of the Gaussian process. Specifically, given a set of
K measurements and a domain D in d dimensions, the objective function J
is Kd multi-dimensional.

7.2 Implementation

Rather than exploiting the submodularity property of the objective function
in equation 7.1 to come to a greedy subset selection in a discrete domain,
we decide to rely on Gradient descent to optimize the sensing locations in
a continuous manner. Specifically, starting from an initial configuration of
measurement points in the domain, we perform a Gradient descent procedure
to minimize the total posterior variance of the Gaussian process.

The main idea behind our algorithm is to exploit the gradient of the
objective function in equation 7.1 to iteratively re-adapt the locations of
the measurement points across the domain. As mentioned before, the value
of the multi-dimensional objective function J({µ1,µ2, · · · ,µK}) represents
the total posterior variance of the Gaussian process given the K observations
in a d-dimensional space. Following the gradient of the objective function
corresponds to a simultaneous update of all the measurement points in the
domain space. Notice that, submodular greedy approach does not consider
all these points simultaneously and this is what gives our technique an edge
over that approach. To facilitate reading we present the calculation of the
gradient of the objective function separately in Appendix A.

In the direction of the negative gradient we have, in principle, a bet-
ter solution and in our algorithm we take all the necessary precautions to
avoid that the iterative step produces a displacement that would lead to a
worse solution. With this, at every iteration the algorithm is guaranteed to
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obtain an improvement. The full pseudo-code of the procedure is listed in
Algorithm 1.

Algorithm 1 Gradient descent procedure
input: set of initial sampling locations K0 = {µ0

1,µ
0
2, . . . ,µ

0
K}, set X , con-

vergence factor cf

1: i← 0
2: step← 0
3: compute maxD
4: converged← false
5: compute GP given K0

6: compute J(K0)
7: while !converged do
8: i← i+ 1
9: step← step+ 1

10: compute ∇J(Ki−1)
11: improved← false
12: while !improved && !converged do
13: for all µ ∈ Ki−1 do
14: displacement(µ)← µi−1 −∇J(µi−1)/step
15: µi ← µi−1 + displacement(µ)
16: end for
17: compute GP given Ki
18: compute J(Ki)
19: if J(Ki) < J(Ki−1) then
20: improved← true
21: else
22: step← step+ 1
23: Ki ← Ki−1
24: end if
25: converged← true
26: for all µ ∈ Ki do
27: if |displacement(µ)| > cf ·maxD then
28: converged← false
29: end if
30: end for
31: end while
32: end while
33: return Ki

Let us go through the procedure, starting out by describing the inputs
and output that it considers. One of the inputs is the set of initial sampling
points K0 that can be initialized using different choices. For example they
can be chosen randomly or through use of a different techniques, a detailed
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description regarding our choices can be found in the experimental phase in
Section 7.3. The input X represent the set of locations where we want to
evaluate our Gaussian process in order to compute the posterior variance
using equation 3.7. The remaining input (cf) is used to determine the
convergence of the procedure and its use will be clearer in the following
description. The output of the procedure is represented by the final set Ki
of sampling locations after i iterations of the algorithm.

The procedure begins by initializing the required variables (lines 1-4) to
manage the main loop and by computing the total posterior variance given
the initial set of sampling locations K0 (lines 5-6). The main loop (lines 7-
32) iterates until the convergence is reached and it is made up of three main
components: i) the computation of the gradient of our objective function
(line 10); ii) the gradient descent iterative step that allows to minimize the
objective function (lines 11-31), that we better describe in Section 7.2.1; iii)
the check of convergence (lines 25-30) whose function is described in section
7.2.2.

7.2.1 Gradient descent iterative step

Here we describe in details the iterative step (lines 11-31) that allows our
procedure to minimize the objective function. We have previously computed
(line 10) the derivative of the objective function given the current position
of the points in our set Ki−1. The iterative step computes for all the current
measurement locations µ ∈ Ki−1 (lines 13-16) what is the displacement
given the derivative. However, as any gradient descent procedure, we have
to keep into account situations where the iterative step would “jump” over
the current basin of attraction.

As noted earlier, in the direction of the negative gradient the objective
function is decreasing in value and we want to guarantee that our algo-
rithm at every iteration improves the solution. A simple method is to check
whether the current step would make us improve the current solution or
not. To this aim we recompute the value of the objective function (lines
17-18) and verify that this corresponds to a net improvement with respect
to the previous configuration (lines 19-20). Otherwise we roll-back to the
previous configuration (line 23) and recompute a smaller displacement. To
this aim we make use of the additional variable step. We can observe that
this variable is used to compute the amplitude of the displacement of a point
µ (in line 14) with the formula µi−1 −∇J(µi−1)/step.

The step is increased at each iteration of the algorithm at least once (in
line 9) to guarantee a slowdown, and an additional number of times (line
22) to guarantee that at each iteration we obtain an improvement (i.e. we
minimize our objective function).
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7.2.2 Convergence

As shown in Algorithm 1, as part of the inputs we have cf which is used to
determine the convergence of the algorithm. This parameter is intended as
a threshold to determine whether the procedure has to terminate or not. cf
specifies what is the lowest percentage (with respect to the dataset diameter)
of displacement that any points we are adapting can move. At the beginning
of the procedure we compute the diameter of the dataset maxD (line 3).
Later, inside the main loop of the procedure we check the convergence (lines
25-30). When all the points in Ki received a displacement that is lower than
cf ·maxD we consider the procedure terminated.

The cf parameter acts as a trade-off between the precision of the solution
and the computation (number of iterations) required to converge. For small
values the algorithm is allowed to go through its iterations as long as at
least one of the points in space is moving by a small amount. Larger values
will make the procedure stop earlier with a solution that may of course be
further from an optimum than when small values are used.

7.3 Empirical evaluation

Since we want to test the performance of our procedure under different
conditions we generated datasets with domains from 1 up to 5 dimensions.
Specifically, we have generated cubic datasets with equally distributed do-
main points X . The cardinality of the domain |X |, that is the number of
points on which we evaluate the Gaussian process, has been adapted to be
at least 1000 points. The two dimensional dataset is simply a set of equally
distributed points on a grid, while the three dimensional dataset is a set of
equally distributed points on a cube, etc. (see Figure 7.1). Notice that in
particular the two and three dimensional datasets are particularly suited to
represent a typical instance in case of environmental monitoring application.
In fact, usually in environmental analysis we are interested in modeling the
property of a phenomena in a specific sector of the environment.

One of the most widely used kernel in many contexts even besides spatial
phenomena modeling, is the Gaussian one, also known as squared exponen-
tial kernel:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
(7.2)

which is therefore the obvious choice in our experiments. The hyperparam-
eters of the kernel can vary considerably however. Hence, to generally study
the performance of our gradient descent procedure we varied these in our
experiments. Specifically we used 20 different length-scale l and 15 different
σf . The former describes the smoothness property of the true underlying
function while the latter the standard deviation of the modeled function. As
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Figure 7.1: Left: 2-d dataset (1024 points). Right: 3-d dataset (1000 points)

we can observe in equation 3.7 these are fundamental to determine the vari-
ance of the Gaussian process. Moreover, as mentioned in the background
Section 3.1.1 we assume that predictions are made using noisy observations,
hence in our experimental phase we also used 10 different σn.

In addition to the different number of dimensions of the datasets and
the hyperparameters previously described, we have tested the procedure by
adapting a different number K of measurement points which varies from 2
up to 7. The number of sampling points is reasonable for applications with
datasets of comparable size. The case of a single point has been excluded
since the submodular greedy technique is optimal by definition.

Some starting locations of the sampling points are required to initialize
our gradient descent algorithm. Here we initialized them using the submod-
ular greedy procedure in order to measure the magnitude of the possible
improvements and to see under what conditions we can obtain them. The ad-
ditional input of the procedure as described in Section 7.2.2 is cf = 1/1000.

To summarize, by considering the different hyperparameters, dimension-
ality of the datasets and number of measurement points, we have performed
90,000 different experiments that allows us to characterize and study the
improvement obtainable with the gradient descent procedure with respect
to the widely used submodular greedy technique.

Moreover, we have also performed the 90,000 experiments by initializing
the points randomly instead of using a submodular solution, this allows us to
study the average improvement obtainable without the needs to previously
perform a different algorithm. In addition we have selected a subset of the
hyperparameters and datasets to perform a test with many different random
initializations on the same instances.

The results and study of the experiments are described in the next sec-
tion.
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7.4 Results

We describe the results from different points of view and comment on the
applicability of the technique we proposed. Specifically:

• We present the results of the Gradient descent procedure as a function
of the hyperparameters of the Gaussian process (section 7.4.1).

• We discuss the results and applicability of the technique varying the
number of sampling points and the dimensionality of the domain (sec-
tion 7.4.2).

• We speculate about the initialization of the sampling points by com-
paring the results of Gradient descent staring from a configuration of
points as a submodular greedy procedure would select and a random
initialization (section 7.4.3).

7.4.1 Results as a function of the hyperparameters

To explain the performance of gradient descent as a function of the hyperpa-
rameters of the Gaussian process, we take as example the two plots in Figure
7.2. In these pictures we can observe the % of improvement that gradient
descent obtains with respect to the submodular solution by varying the hy-
perparameters in the two dimensional dataset when using 5 sampling points:
the vertical axis reports the length-scale l of the kernel and the horizontal
axis reports the standard deviation σf of the function. The two pictures
represent these improvements by fixing a single standard deviation of the
noise measurement σn; the one to the right with a σn that is almost three
times the one to the left.

Based on these we can make the following observations:

• Independently of σf and σn when we use very small length-scales (top
rows of the two pictures in Figure 7.2) the advantage we can obtain
with gradient descent is very low. The reason why this happens is
that with small length-scales the contribution in variance reduction
given by an observations is mostly concentrated in a very narrow po-
sition. To observe this phenomena take as an example Figure 7.3a.
Consider that we are trying to estimate where to make two observa-
tions, as long as they are a little separated one another we are already
obtaining most of the variance reduction possible. With very small
length-scale the position where we make observations influences little
to nothing the final amount of posterior variance. Hence with gradient
descent in these cases we cannot obtain an advantage with respect to
the submodular greedy technique.
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Figure 7.2: Results as a function of the hyperparameters. Horizontally
are variations in the standard deviation σf and on the vertical axis in the
length-scale l. Colors represent the % of variance reduction of GD relative
to the submodular greedy solution. These results refer to the adaptation of
5 points in the 2-dimensional dataset for a fixed σn. Specifically in the right
image σn is about three times higher then in the left one.

• When the length-scale of the kernel becomes bigger (as an example
Figures 7.3b and 7.3c) the reduction in variance given by a measure-
ment point has an effect on a larger portion of the domain, hence the
location where the measurements are taken affect the total amount of
posterior variance reduction. In this case we observe that the locations
selected by the gradient descent procedure obtain an advantage with
respect to the submodular greedy technique.

• When the length-scale becomes bigger we notice that the σf and σn
parameters affect the results differently. Consider, for instance, the
left picture in Figure 7.2. We can observe that for small values of σf
we obtain a small advantage and vice versa. These results are shifted
to the right when the σn parameter increases (right picture in Figure
7.2). This show that the ratio σf/σn affects the quality of the results:
the higher the ratio the higher the improvements we can obtain.

7.4.2 Varying the number of points and dimensionality

In this section we study the performance of gradient descent with respect to
the submodular greedy solution by varying the number of sampling points
K and the number of dimensions of the domain. In tables 7.1 and 7.2
we report the percentage of variance reduction that the gradient descent
procedure allows to obtain with respect to the total posterior variance of
the Gaussian process when the measurement locations are selected by the
submodular greedy technique. Specifically, each entry of the table reflects
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(a)

(b) (c)

Figure 7.3: Plots of the variance of a Gaussian process with a single sampling
point in the middle of the domain using the squared exponential kernel with
three different length-scales.

the improvement obtained for a specific combination of number of points
and dimensionality of the domain.

Table 7.1 represents the average % gain of gradient descent with respect
to the submodular greedy solution. Specifically each entry represents the
average over all the 3000 hyperparameters for a specific combination of di-
mensionality of the domain and number of measurement points. As we can
observe, in general the gradient descent procedure allows us to improve sig-
nificantly the sobmodular solutions for small dimensionality and number of
points.

Table 7.2 instead represent the maximum improvement that gradient
descent can obtain with respect to the submodular greedy solution on a
specific combination of dimensionality of the domain and number of mea-
surement points. Specifically the improvement reported in each entry of
the table is the maximum value encountered between all the possible 3000
combination of hyperparameters for the specific number of sampling points
K and dimensionality of the domain. Also in this case we can observe that
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Table 7.1: Average % gain of gradient descent with respect to the submod-
ular greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 32.83 18.23 17.60 17.05 14.76 8.50
2-D 4.14 16.93 19.68 9.16 13.66 14.48
3-D 1.03 2.83 8.79 8.00 10.55 8.20
4-D 0.32 0.97 1.94 5.06 3.46 4.91
5-D 0.01 0.60 1.07 1.67 3.89 2.20

Table 7.2: Maximum % gain of gradient descent with respect to the sub-
modular greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 59.91 86.77 89.80 89.15 71.57 71.72
2-D 21.11 60.27 54.91 33.36 76.67 72.27
3-D 6.23 15.84 52.09 29.91 41.23 31.00
4-D 6.59 11.48 12.17 31.11 20.73 22.57
5-D 2.99 8.80 8.23 17.54 40.09 22.64

in general gradient descent produces better results for small dimensionality
and number of points. For a graphical representation of the execution of the
gradient descent procedure on an example instance see Figure 8.3.

7.4.3 Random initialization

Here we report the results similarly to the previous section. In this case
the gradient descent procedure has been initialized with points in randomly
selected locations across the domain.

Table 7.3: Average % gain of gradient descent with respect to a single
random configuration.

Number of points (K)
2 3 4 5 6 7

1-D 38.81 44.97 45.57 46.62 47.14 46.59
2-D 19.69 34.98 36.39 35.80 36.96 38.59
3-D 18.32 17.95 32.27 30.13 30.87 30.73
4-D 17.16 14.61 16.92 30.32 27.37 25.94
5-D 15.90 13.43 12.92 15.92 28.02 25.11

Table 7.3 represents the average and table 7.4 the maximum improve-
ment of gradient descent with respect to the random initial collocation of
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Table 7.4: Maximum % gain of gradient descent with respect to a single
random configuration.

Number of points (K)
2 3 4 5 6 7

1-D 99.38 99.33 99.59 99.78 99.74 99.59
2-D 78.28 99.09 97.36 96.85 94.41 96.48
3-D 69.95 81.10 98.44 96.63 94.12 88.85
4-D 62.85 66.11 76.19 96.71 94.23 94.37
5-D 59.92 58.77 62.33 75.27 95.58 97.10

points. These results represent the gain in terms of percentage of variance
reduction with respect to the variance of the Gaussian process with the mea-
surement points in random locations. As we can observe, since the random
collocation of point can represent a very bad quality solution compared to
the submodular greedy procedure, results show much bigger improvements.

A more interesting point of view is offered in table 7.5. Here we compare
the total posterior variance of the Gaussian process after the gradient descent
adaptation from a random initialization with the total posterior variance
after the gradient descent adaptation starting from the submodular greedy
solution.

Table 7.5: Maximum % gain of gradient descent starting from a random
configuration with respect to gradient descent starting from the submodular
greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 43.37 75.97 74.02 39.10 53.18 36.90
2-D 14.15 34.63 31.88 35.27 52.05 52.13
3-D 9.68 15.80 30.15 16.44 35.86 21.94
4-D 4.90 7.74 14.09 26.64 15.33 15.28
5-D 1.23 7.00 7.03 7.20 26.68 21.44

Specifically, table 7.5 reports the maximum improvements that has been
encountered by varying the 3000 hyperparameters. Although, the result can
vary considerably across the hyperparameters, results show that from a ran-
dom initialization of points we can obtain in some cases better results than
using a submodular greedy procedure to select the starting configuration.

Notice that the aforementioned tables (7.3, 7.4 and 7.5) report results
considering a single random initialization per instance. Since the selection
of the initial measurement points is subject to a great variance we also
performed a more detailed test on a small subset of cases. Specifically, we
have selected the two dimensional dataset and we use gradient descent to
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adapt the location of two points and the three dimensional dataset with six
points. By fixing also a specific σn parameter, we performed experiments by
using 100 randomly initialization for each of the 300 combinations of σf and
l. Results are presented in Figure 7.4. As we can observe, when we perform
multiple randomly initialized executions on average we obtain a spectrum
of improvements similar as what shown in previous Figure 7.2.

Figure 7.4: Average gain over 100 randomly initialized execution of gradient
descent. Left with 2 points in the 2-dimensional dataset and right 6 points
in the 3-dimensional dataset.

7.5 Conclusions

In this chapter we proposed a Gradient descent procedure to minimize the
posterior variance of a Gaussian process and the performance of the tech-
nique has been analyzed under different settings in order to show the gen-
erality of the approach. Results show that in many cases it is possible to
obtain a significant improvement with respect to a random initialization or
the well-known submodular greedy procedure. Although with a random ini-
tialization the performance can vary considerably, results show that in some
cases it is possible to obtain better solutions than with a submodular greedy
initialization.

The proposed study falls within the context of continuous optimization
motivated by the fact that in some applications, such as environmental mon-
itoring, the locations where measurements are performed does not have to
be confined in predetermined points in space, but rather the domain is con-
tinuous. Approaching this context by exploiting submodularity requires a
discretization of the space. On the other hand Gradient descent does not
requires the domain to be discrete and it can iteratively improve the solution
by freely move the measurement points in a continuous manner. A natural
evolution of these contributions is represented by the use of different kernels
(e.g. anisotropic kernels), allowing to study and define the properties and
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the performances in different scenarios.
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Chapter 8

Heuristic for Gaussian
processes variance reduction

8.1 Introduction

Similarly to what discussed in Chapter 7, here we present an additional
contribution in the context of optimizing a set of sampling locations in order
to minimize the Gaussian process posterior variance.

As previously described, the selection of measurement locations is usu-
ally performed through the use of greedy procedures (such as submodular
optimization) that operates in a discrete space. Specifically they optimize
the sensing locations by selecting them from a given set of feasible points.
We showed by proposing a gradient descent procedure that the variance re-
duction can be widely improved if we can optimize the sensing locations in
domain of interest that is continuous and not discrete.

Although the contribution proposed in the previous chapter allows us
to study how the sensing selection can be improved in a continuous setting
under different conditions (hyperparameters of the Gaussian process, dimen-
sionality of the domain and number of sampling locations), as any gradient
descent procedure the selection of a parameter or the implementation of
some mechanism that controls the learning rate is required as we described
in Section 7.2.1. Moreover, the convergence of a gradient descent procedure
usually requires a significant computational effort and time.

For this reason, in this chapter we propose a novel iterative heuristic
approach to reduce the posterior variance of a Gaussian process but specifi-
cally designed to solves the issues described above. Our technique does not
require the tuning of any parameter to determine how the sensing locations
evolve at each iteration (learning rate) and represents a trade-off between
the quality of solutions and the associated computation time.

More in detail, our contributions presented in this chapter of the thesis
can be summarize as follows:
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• We propose an iterative heuristic approach to optimize sensing loca-
tions by minimizing the Gaussian process posterior variance.

• We prove the approximation of the heuristic with respect to the real
objective function.

• We perform an empirical evaluation on the same datasets presented
in the previous chapter, showing the performance of the technique in
terms of gain in variance reduction and in computation time. Also in
this case we performed our tests by varying:

– The hyperparameters of the Gaussian process.

– The number of sampling points K.

– The method of initialization of the points.

– The dimensionality of the dataset to prove the validity of the
technique in different contexts besides environmental monitoring
applications.

8.1.1 Problem definition

The problem definition that we report here for convenience is the same as
presented in Section 7.1.1.

Given a continuous domain D ⊂ Rd that represents a region of the envi-
ronment, we want to select a set of K points where to perform measurements
in order to minimize the total posterior variance of the Gaussian process that
we are using to model the phenomena in that domain.

Specifically, we want to select a set of K measurements taken at locations
K = {µ1,µ2, · · · ,µK} ∈ D such that we minimize the following objective
function:

J({µ1,µ2, · · · ,µK}) =
∑
xi∈X

σ2(xi) (8.1)

where σ2(xi) is the Gaussian process variance computed in point xi as de-
fined by equation 3.7 and X is a set of points where we test the Gaussian
process. For example, in a typical environmental monitoring application
we are interested in generating a model of the phenomena of interest in a
specific region D of the environment and we generate this model by testing
the Gaussian process in a matrix of uniformly distributed point in space.
Notice that the variance computed with equation 3.7 in locations xi ∈ X is
dependent on the set of sampling points K as explained in Section 3.1.1.

J({µ1,µ2, · · · ,µK}) is a multi-dimensional function that represents the
total posterior variance of the Gaussian process. Specifically, given a set of
K measurements and a domain D in d dimensions, the objective function J
is Kd multi-dimensional.
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8.2 Implementation

Rather than relying on a gradient descent procedure to optimize equation
8.1, here we propose a technique that is inspired by the Lloyd’s algorithm
for K-means [116]. Specifically, starting from an initial configuration of
measurement points in the domain, we perform an iterative procedure to
minimize the total posterior variance of the Gaussian process.

The main idea behind our heuristic is to represent the sampling locations
as the centroid of a procedure inspired by soft K-means clustering and to
iteratively re-adapt the locations of the measurements points across the
domain.

The basic notions about soft K-means have been previously described in
Section 3.6.1. Here we start by describing the classical Lloyd’s procedure
for K-means re-adapted to the case of soft clustering [13]. Its pseudo code
is reported in Algorithm 2.

Algorithm 2 Pseudo code for soft K-means clustering
input: set of K randomly initialized centroids {µ0

1,µ
0
2, . . . ,µ

0
K}

1: t← 0
2: repeat
3: // compute all indicator variables
4: for i = 1 to K do
5: for j = 1 to |X | do

6: zi,j =
e−β
∣∣∣∣xj−µti∣∣∣∣2

K∑
l=1

e−β
∣∣∣∣xj−µtl∣∣∣∣2

7: end for
8: end for
9: // update all centroids

10: for i = 1 to K do

11: µt+1
i =

∑
j zi,jxj∑
j zi,j

12: end for
13: t← t+ 1
14: until centroids stabilize

As we can observe in Algorithm 2 the procedure iteratively computes
the indicator variables zi,j (which represent the degree of belonging of point
j to the cluster i) and subsequently updates the centroids of the clusters.

The heuristic that we propose is similar in spirit to this soft K-means
procedure since we also iteratively compute a set of indicator variables and
subsequently the new position of centroids. In our case however, a ‘centroid’
µ represents a sampling location, hence the indicator variable zi,j will rep-
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resent the degree of which the variance of point xj is reduced by sampling
in position µj .

The pseudo code of our technique is listed in Algorithm 3.

Algorithm 3 Pseudo code of our heuristic
input: set of K initial sampling locations K0 = {µ0

1,µ
0
2, . . . ,µ

0
K},

convergence criteria

1: t← 0
2: repeat
3: for i = 1 to K do
4: // compute GP variance given sampling locations Kt \ µti
5: Γ = GP |Kt\µti
6: // compute indicator variables
7: for j = 1 to |X | do

8: zi,j = Γ(xj)
σ2f

σ2f + σ2n
e
−

∣∣∣∣xj − µti
∣∣∣∣2

l2

9: end for
10: // update sampling location

11: µt+1
i =

∑
j zi,jxj∑
j zi,j

12: end for
13: t← t+ 1
14: until convergence criteria are satisfied

Please note that our heuristic listed in Algorithm 3 has been specifically
designed for the squared exponential kernel:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
(8.2)

We will better detail how the iterative procedure of the heuristic updates
the sampling locations in the next section.

8.2.1 Description of the heuristic

During iteration t for each sampling point i (for loop in lines 3-12) the
iterative step of the heuristic is composed of three components:

1. Line 5 - We compute Γ which represent the Gaussian process variance
(using equation 3.7) at every location xj ∈ X , given Kt \ µti, that is
the set of sampling location at time t excluded µti.

2. Line 8 - We compute the soft indicator variables zi,j for each xj ∈ X .
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3. Line 11 - We compute the location of sampling point µt+1
i for the next

iteration t+ 1.

On an abstract level we can think of the execution of the algorithm in
this terms: an indicator variable zi,j (computed as in line 8) represent the
attractive force that a domain location xj ∈ X exert on sampling point µi.
As mentioned before zi,j represent the degree of which the variance of point
xj is reduced by sampling in position µj . We compute this force by taking
into account how the variance of the Gaussian process is already effected by
the presence of the other sampling locations Kt \ µti.

The choice of using:

σ2f
σ2f + σ2n

e
−

∣∣∣∣xj − µti
∣∣∣∣2

l2 (8.3)

as scalar factor for the variance Γ(xj) in location xj represent a good choice
as dictated by Theorem 1.

Theorem 1. Using a squared exponential kernel, in a Gaussian process with
a single sampling point in a generic location µ, the variance of this Gaussian
process at any location x is equivalent to the multiplication of the variance of
the Gaussian process without any sampling point and 1 − f(x), where f(x)
is a Gaussian function. Specifically:

σ2(x) = σ2f
(
1− f(x)

)
(8.4)

with f(x) = ae−
||x−b||2

2c2 for some a, b and c that are dependent on the hyper-
parameters of the kernel.

Proof. Given the equation of the variance of a Gaussian process:

σ2(x) = k(x,x)− kT∗ (K + σ2nI)−1k∗ (8.5)

and the equation of the squared exponential kernel:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
= σ2f exp

(
− ||x− x′||2

2l2

)
(8.6)

for a single sampling point in a generic location µ we obtain:
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σ2(x) = k(x,x)− k(x,µ)

(
k(µ,µ) + σ2n

)−1
k(x,µ)

= k(x,x)− k(x,µ)2

k(µ,µ) + σ2n

= σ2f −

(
σ2fe
− ||x−µ||2

2l2

)2

σ2f + σ2n

= σ2f −
σ4fe
− ||x−µ||2

l2

σ2f + σ2n

= σ2f

(
1−

σ2f
σ2f + σ2n

e−
||x−µ||2

l2

)
= σ2f

(
1− ae−

||x−b||2

2c2
)

With a =
σ2f

σ2f + σ2n
, b = µ and c =

l√
2

Since the indicator variable zi,j represents an attractive force propor-
tional to the amount of variance reduction obtainable in location xj by
sampling in position µj , consequently, the update step of the sampling loca-
tions (line 11) represents the sum of the contributions from all the attractive
forces from the domain locations xj ∈ X .

The main loop of the procedure (lines 2-14) iterates until some conver-
gence criteria of the procedure are met. These can be defined in different
ways. In our implementation we used two criteria. Specifically, one con-
dition is that the procedure has to always improve the solution at each
iteration, hence it terminates when a new iteration produces a configuration
that is not reducing the variance of the Gaussian process further. The sec-
ond condition is based on a convergence factor cf that is used in the same
way as presented in the gradient descent procedure (Section 7.2.2). Specif-
ically, this parameter is intended as a threshold to determine whether the
procedure has to terminate or not. cf specifies what is the lowest percent-
age (with respect to the dataset diameter) of displacement that any points
we are adapting can move. As described in the previous chapter, the cf
parameter acts as a trade-off between the precision of the solution and the
computation (number of iterations) required to converge. For small values
the algorithm is allowed to go through its iterations as long as at least one
of the points in space is moving by a small amount. Larger values will make
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the procedure stop earlier with a solution that may of course be further from
an optimum than when small values are used.

In the next section we describe the approximation that our heuristic is
performing by comparing how its iterative procedure adapts the sampling
locations with respect to what a gradient descent algorithm (as the one we
analyzed in Chapter 7) would do under the same conditions.

8.2.2 Approximation performed by our heuristic

First of all, observe once again the objective function in equation 8.1. As
previously mentioned given K sampling location in a d-dimensional space
this function isKd-dimensional. Specifically, each dimension of the objective
function represent the position of a sampling point in one of the dimensions
of the domain. Observe for example Figure 8.1a, here we can see a bi-
dimensional objective function that refers to the problem of adapting two
sampling points in a mono-dimensional domain (see Figure 8.1b).

As we described in the previous chapter, the idea behind a gradient de-
scent algorithm is that given a point in the objective function at iteration
t (that represent a specific configuration of sampling locations Kt in the
domain) we compute the gradient in that point with respect to any dimen-
sion. Computing the derivative for a specific dimensionality of the objective
function corresponds to computing the direction in which a single sampling
point µi has to move along a single dimension d of the domain given the
current configuration of the other sampling points Kt \ µti.

For a graphical representation of this concept let’s take look again at
the images in Figure 8.1. The current configuration of sampling points is
K = {µ1 = 25,µ2 = 50}. The value of the objective function (Figure 8.1a)
in the point J(25, 50) represent the sum of the variance (Figure 8.1b) along
the entire domain. Computing the derivative in J(25, 50) along the first
dimension of the objective function correspond to computing the derivative
of the section of the objective function given the second dimension, i.e.
µ2 = 50 (Figure 8.1c). Respectively, computing the derivative along the
second dimension of the objective function correspond to computing the
derivative of the section of J given the first dimension, i.e. µ1 = 25 (Figure
8.1d).

The heuristic proposed in this chapter iterates in a similar way. However,
the objective function optimized is an approximation of the original one in
equation 8.1. Specifically, as described in Theorem 2, at each iteration the
point in the objective function that represents the current configuration of
sampling locations Kt moves along each axis in the same direction as gradi-
ent descent would do on an approximated objective function.
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(a) (b)

(c) (d)

Figure 8.1: (a) Example of the objective function given 2 sampling points
in a mono-dimensional domain. (b) Plot of the variance of the Gaussian
process with sampling points K = {µ1 = 25,µ2 = 50}. (c) Section of the
objective function given µ2 = 50 and varying µ1. (d) Section of the objective
function given µ1 = 25 and varying µ2.

Theorem 2. Given that Γ > 0, the direction of movement of a sampling
point µ is in the same direction as gradient descent would compute in the

location µ on the objective function Γ ∗
(
1− σ2

f

σ2
f+σ

2
n
e−

(x−µ)2

l2
)
. That is:

sign

(
µ−

∫
Γ(x)

σ2
f

σ2
f+σ

2
n
e−

(x−µ)2

l2 x dx∫
Γ(x)

σ2
f

σ2
f+σ

2
n
e−

(x−µ)2
l2 dx

)
= sign

(
d

dx

(
Γ∗
(
1−

σ2f
σ2f + σ2n

e−
(x−µ)2

l2
))

(µ)

)
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Proof.

To simplify the notation let a =
σ2f

σ2f + σ2n

sign

(
d

dx

(
Γ ∗
(
1− ae−

(x−µ)2

l2
))

(µ)

)

For the differentiation property of the convolution
d

dx
(f ∗ g) =

df

dx
∗ g = f ∗ dg

dx

= sign

((
Γ ∗ 2ax

l2
e−

x2

l2

)
(µ)

)

= sign

((∫
Γ(τ)

2a(x− τ)

l2
e−

(x−τ)2

l2 dτ

)
(µ)

)

= sign

(∫
Γ(τ)

2a(µ− τ)

l2
e−

(µ−τ)2

l2 dτ

)

= sign

(
2

l2

∫
Γ(τ)ae−

(µ−τ)2

l2 µ− Γ(τ)ae−
(µ−τ)2

l2 τ dτ

)
Since

2

l2
> 0

= sign

(
µ

∫
Γ(τ)ae−

(µ−τ)2

l2 dτ −
∫

Γ(τ)ae−
(µ−τ)2

l2 τ dτ

)

= sign

(
µ−

∫
Γ(τ)ae−

(µ−τ)2

l2 τ dτ∫
Γ(τ)ae−

(µ−τ)2
l2 dτ

)

In Theorem 2 the left side of the equation represents the direction of
movement of a sampling point µ along an axis as computed by our heuristic
(line 11). This movement correspond to the movement that gradient descent
would compute in the location µ of the function:

Γ ∗
(

1−
σ2f

σ2f + σ2n
e−

(x−µ)2

l2

)
(8.7)

We previously showed in theorem 1 that the variance at any location x
of a Gaussian process with a single sampling point in a generic location µ
is equivalent to the multiplication of the variance of the Gaussian process

without any sampling point and 1− σ2
f

σ2
f+σ

2
n
e−

(x−µ)2

l2 .

By definition of the convolution, equation 8.7 is computing the integral

of the multiplication between Γ and 1− σ2
f

σ2
f+σ

2
n
e−

(x−µ)2

l2 by shifting one over
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the other. This represents an approximation of the section of the objective
function J(µ|K \µ), that is, the section of the objective function varying µ
given the other sampling points K \ µ.

If we look to the plots in Figure 8.1, we are for example approximating
the section J(µ1|µ2 = 50) in Figure 8.1c by computing Equation 8.7 where
Γ represent the variance of the Gaussian process given µ2.

8.3 Empirical evaluation

Here we present the empirical evaluation of our heuristic approach. Sim-
ilarly to what we have done for the gradient descent procedure presented
in Chapter 7, here we want to test the performance of our heuristic ap-
proach under different conditions. To this aim we used the same datasets
and settings as before.

To sum up, we have datasets with domains that ranges from 1 up to 5
dimensions with cardinality |X | of at least 1000 points. We used 20 different
length-scale l, 15 different σf and 10 different σn to set the hyperparameters
of the square exponential kernel and the noise of measurement respectively.
The procedure has been tested by adapting K sensing locations with K ∈
{2, 3, 4, 5, 6, 7}, the number of sampling points is reasonable for applications
with datasets of comparable size. Since the heuristic requires a set of initial
sampling locations, also in this case they have been initialized using the
solutions provided by the submodular greedy procedure.

These empirical evaluations allows us to determine the degree of im-
provement that the heuristic obtains with respect to the submodular greedy
procedure along with a comparison with the results previously obtained
with gradient descent. Moreover, we also analyze the performance in terms
of computation time proving that the heuristic approach represents a good
trade-off between quality of the solution and computation time with respect
to gradient descent.

In order to obtain a fair comparison the cf parameter used in the con-
vergence criteria (as explained in Section 8.2.1) has been set to the same
value as in the previous experiments with gradient descent, i.e. cf = 1/1000
and all the described algorithms have been tested using the same machine
equipped with an AMD FX 6300 processor with 16GB RAM.

To summarize, by considering different combinations of hyperparame-
ters, dimensionality of the dataset and number of sampling points, we have
performed 90,000 experiments that allows to characterize and study the
improvement obtainable with the heuristic presented in this chapter. More-
over, we also performed the 90,000 experiments by initializing the points
randomly instead of using the submodular solutions. We detail the result of
such experiments in the next section.
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8.4 Results

As previously done in Section 7.4 for the gradient descent technique, here we
analyze the results of the empirical evaluation of the heuristic from different
points of view. Specifically:

• We present the advantage of the heuristic with respect to the submod-
ular initialization as a function of the hyperparameters used in the
Gaussian process (Section 8.4.1).

• We analyze the performance of the technique varying the number of
sampling points and the dimensionality of the domain (Section 8.4.2).

• We provide the results using an initial configuration of sampling points
randomly generated (Section 8.4.3).

• We compare our techniques (heuristic and gradient descent) in terms
of the computation time required (Section 8.4.4).

8.4.1 Results as a function of the hyperparameters

To explain the performance of the heuristic as a function of the hyperparam-
eters of the Gaussian process, we take as example the two plots in Figure
8.2. These plots specific for the heuristic are the counterpart of the plots
in Figure 7.2 for gradient descent. More in detail, in this pictures we can
observe the % of improvement that the heuristic obtains with respect to the
submodular solution by varying the hyperparameters in the two dimensional
dataset by adapting 5 points: vertically the length-scale l of the kernel and
horizontally the standard deviation σf of the function. The two pictures
represent these improvements by fixing a single standard deviation of the
noise measurement σn; the one to the right with a σn that is almost three
times the one to the left.

The discussion presented in Section 7.4.1 still holds also for the heuristic
approach. In fact, we can observe that in general the advantage obtainable
with the heuristic as a function of the hyperparameters follows the same
pattern as in gradient descent.

With very small length-scale the position where we make observations
influences little to nothing the final amount of posterior variance. Hence, in
these cases we cannot obtain an advantage with respect to the submodular
greedy technique. On the other hand, when the length-scale becomes bigger
we notice that the σf and σn parameters plays a role in the quality of
the variance reduction obtainable. Specifically, the ratio σf/σn affects the
quality of the results: the higher the ratio the higher the improvements we
can obtain.

If we compare the images for the heuristic (Figure 8.2) with their coun-
terpart for gradient descent (Figure 7.2), we notice that the improvements
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Figure 8.2: Results as a function of the hyperparameters. Horizontally are
variations in the standard deviation σf and on the vertical axis in the length-
scale l. Colors represent the % of variance reduction of the heuristic relative
to the submodular greedy solution. These results refer to the adaptation of
5 points in the 2-dimensional dataset for a fixed σn. Specifically in the right
image σn is about three times higher then in the left one.

offered by the heuristic are confined to a smaller area, i.e, to a smaller portion
of hyperparameter combinations. This is indeed induced by the fact that
the heuristic (as demonstrated in Theorem 2) operates on an approximation
of the objective function.

8.4.2 Varying the number of points and dimensionality

Here we study the performance of the heuristic with respect to the submod-
ular greedy solution depending on the number K of sampling locations and
the dimensionality of the domain. In tables 8.1 and 8.2 we report the aver-
age and maximum percentage gain of variance reduction that the heuristic
obtains with respect to the total posterior variance given by the submodular
greedy solution. Specifically, each entry of the tables reflect the improve-
ment obtained in a specific combination of dimensionality of domain and
number of sampling points.

Table 8.1: Average % gain of the heuristic with respect to the submodular
greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 24.02 12.32 14.55 14.95 14.58 6.87
2-D 1.76 5.58 7.57 4.81 4.80 5.65
3-D 0.16 0.43 1.48 0.86 0.93 1.54
4-D 0.01 0.03 0.16 0.50 0.11 0.17
5-D 0.00 0.03 0.19 0.43 1.01 0.23
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Table 8.2: Maximum % gain of the heuristic with respect to the submodular
greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 69.59 82.38 80.84 75.82 86.43 89.13
2-D 8.44 27.13 46.69 43.43 52.72 60.15
3-D 1.15 3.23 8.98 8.85 11.32 14.69
4-D 0.10 0.25 1.03 4.67 1.18 7.01
5-D 0.08 0.52 2.24 5.00 14.22 6.82

In more details, Table 8.1 represent the average % gain of the heuristic
with respect to the submodular greedy solution. This average is computed
over all the 3000 combination of hyperparameters for a given configuration
of dimensionality of the domain and number of sampling points. In Table
8.2 we report the maximum % gain encountered between all the possible
3000 combination of hyperparameters.

In general the results obtained follow the same trend of the those pro-
posed for the gradient descent approach. If we compare the average improve-
ments of the heuristic in Tables 8.1 with those of gradient descent in Table
7.1, we notice that the advantage of the heuristic are lower for the reasons
explained in the previous section. However, if we compare the maximum
improvements of the heuristic in Tables 8.2 with those of gradient descent
in Table 7.2 we notice that in some cases (e.g. 2 points in one dimension) the
heuristic is able to achieve a better result, meaning that in some restricted
cases the heuristic converges to a better solution than gradient descent even
with the same convergence conditions.

For a graphical comparison of the execution of both gradient descent
and the heuristic algorithms on an example instance see Figure 8.3.

8.4.3 Random initialization

Similarly to the discussion above, here we report results of the heuristic
empirical evaluation when the procedure has been initialized with a set of
randomly chosen sampling locations across the domain.

Tables 8.3 and 8.4 refers respectively to the average and maximum im-
provements of the heuristic with respect to the random initial collocation
of points. These results represent the gain in terms of percentage of vari-
ance reduction with respect to the variance of the Gaussian process with the
measurement points in random locations. As we expected, since the random
collocation of point can represent a very bad quality solution compared to
the submodular greedy procedure, results show much bigger improvements.

However, similarly to what observed for the gradient descent results, also
for the heuristic approach a more interesting point of view is showed in Table

115



Chapter 8. Heuristic for Gaussian processes variance reduction

(a)

(b)

Figure 8.3: Experiments on the 2-dimensional dataset with 5 sampling
points. (a) Execution of the gradient descent technique and (b) execution
of the heuristic.

8.5. Here we present the comparison of the total posterior variance obtained
with the heuristic when initialized with a random configuration of sampling
location with respect to the total posterior variance when initialized with
the submodular solution.

Specifically, in Table 8.5 we show the maximum improvements encoun-
tered among all the 3000 combinations of hyperparameters. Since the ran-
domly generated sampling locations can vary considerably this is reflected
in the quality of the results. However what Table 8.5 shows is that in some
cases the heuristic is able to obtain better results with a random initializa-
tion rather then using a submodular greedy procedure to select the starting
configuration.

The aforementioned tables present results considering only a single ran-
domly generated initialization of sampling points per instance (i.e. per com-
bination of hyperparameters, dimensionality of domain and number of sam-
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Table 8.3: Average % gain of the heuristic with respect to a single random
configuration.

Number of points (K)
2 3 4 5 6 7

1-D 25.43 22.65 23.23 23.90 24.44 25.18
2-D 15.83 15.31 14.15 12.77 13.22 13.79
3-D 15.57 9.83 12.52 9.79 8.23 7.99
4-D 14.85 9.42 8.00 10.71 9.21 7.71
5-D 14.27 9.27 7.05 7.16 9.65 8.74

Table 8.4: Maximum % gain of the heuristic with respect to a single random
configuration.

Number of points (K)
2 3 4 5 6 7

1-D 97.54 98.15 99.19 99.80 99.78 99.95
2-D 74.91 94.43 87.57 84.49 85.30 89.82
3-D 65.43 64.66 88.37 75.29 55.94 67.26
4-D 64.93 58.35 61.02 90.83 74.40 70.95
5-D 58.81 53.68 47.70 54.30 83.79 75.78

pling points). Since the selection of the initial configuration of sampling
points can vary considerably along the domain, we also performed a more
detailed test on a small subset of cases.

In Figure 8.4 we show results varying the length-scale l and σf and
by fixing a specific σn parameter on two specific cases. In particular, we
have selected the two dimensional dataset and we used the heuristic by
randomly initializing two sampling locations 100 times. The same for the
case of six points in the three dimensional dataset. We can observe that by
performing multiple randomly initialized executions, on average we obtain
a spectrum of improvements similar as what previously shown in Figure 8.2
and comparable to the related results for the gradient descent technique in
Figure 7.4.

8.4.4 Computation time comparison

On top of not having to tune a parameter, or to implemented a mechanism
that controls the learning rate of the procedure, the main advantage offered
by our heuristic is a fast computation time. In what follows, we report the
results comparing the run time required by our heuristic with the gradient
descent technique presented in the previous chapter.

In Table 8.6 we report the computation time for the two procedures.
Also in this case, each entry of the table represents the average over the
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Table 8.5: Maximum % gain of the heuristic starting from a random con-
figuration with respect to the heuristic itself starting from the submodular
greedy solution.

Number of points (K)
2 3 4 5 6 7

1-D 68.81 91.85 94.42 89.69 51.40 74.83
2-D 22.34 48.10 49.40 35.12 67.00 68.31
3-D 9.38 19.08 31.85 20.79 12.46 7.59
4-D 8.22 9.91 10.28 15.38 8.24 3.62
5-D 0.40 5.69 10.36 9.39 9.84 3.72

Figure 8.4: Average gain over 100 randomly initialized execution of the
heuristic. Left with 2 points in the 2-dimensional dataset and right 6 points
in the 3-dimensional dataset.

3000 combinations of hyperparameters for a specific configuration of dimen-
sionality of the domain and number of sampling points. As we can observe
the computation times for the heuristic algorithm constitute a fraction of
those for the gradient descent procedure.

Given that the heuristic is much faster but obtains a smaller advantage
with respect to gradient descent, a more interesting comparison is offered in
Table 8.7.

As we can observe in this last table, in most cases the heuristic is able
to obtain a high percentage of improvement with a fraction of the time. For
example if we look at the case of two points in a one dimensional domain,
we observe that with only 11.6% of computation time it is able to obtain
73.1% of the variance improvement.

Although results reported in this chapter and in the previous one refers
to experiments that vary considerably from one to another (given the wide
variability of hyperparameters and datasets) we can give an even more con-
cise description. If we average the computation times in Table 8.6 we see
that the heuristic takes 0.40 seconds per instance whereas gradient descent
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Table 8.6: Computation times in seconds of the heuristic and gradient de-
scent (both with submodular initialization). Each entry represent the aver-
age over the 3000 hyperparameters combinations for a specific dimensional-
ity of the domain and number of sampling locations.

Computation time (s)
Gradient descent Heuristic

2 3 4 5 6 7 2 3 4 5 6 7

1-D 1.12 1.70 1.87 2.55 2.53 3.13 0.13 0.05 0.17 0.19 0.21 0.13
2-D 2.13 2.81 6.53 4.08 7.27 10.92 0.24 0.29 0.40 0.20 0.31 0.66
3-D 2.05 2.84 4.27 7.15 11.07 12.63 0.13 0.21 0.77 0.83 0.61 0.86
4-D 3.00 6.10 7.88 9.46 18.27 17.32 0.14 0.24 0.69 0.92 0.96 0.89
5-D 3.15 7.29 14.96 20.95 20.59 25.76 0.03 0.10 0.31 0.40 0.32 0.60

Table 8.7: Percentage of time and percentage of improvement in variance
reduction of the heuristic with respect to gradient descent.

% of Time % Improvement
2 3 4 5 6 7 2 3 4 5 6 7

1-D 11.6 2.8 9.3 7.6 8.3 4.3 73.1 67.6 82.7 87.7 98.8 80.8
2-D 11.2 10.4 6.2 4.9 4.3 6.0 42.5 33.0 38.5 52.5 35.1 39.0
3-D 6.4 7.5 18.1 11.6 5.5 6.8 15.5 15.1 16.8 10.7 8.8 18.7
4-D 4.5 4.0 8.8 9.7 5.2 5.1 4.2 2.6 8.3 10.0 3.3 3.5
5-D 0.8 1.3 2.0 1.9 1.5 2.3 0.5 5.7 17.3 26.0 25.9 10.3

takes 8.05. Now, if we average the improvement results in Table 8.1 for
the heuristic and in Table 7.1 for gradient descent we obtain 4.19 and 8.42
respectively. We can therefore conclude observing that the heuristic obtains
50% of the improvement that gradient descent can achieve but with only 5%
of the computation time, thus constituting an excellent compromise between
quality of the results and computation time required.

8.5 Conclusions

In this chapter we presented a novel heuristic algorithm to minimize the pos-
terior variance of a Gaussian process. The proposed technique falls within
the same context as the gradient descent approach proposed in the previous
chapter. These contributions are motivated by the fact that in some applica-
tions, such as environmental monitoring, the locations where measurements
are performed does not have to be confined in predetermined points in space,
but rather the domain is continuous. The heuristic does not requires the
domain to be discrete and it can iteratively improve the solution by freely
moving the measurement points in a continuous manner.

The proposed contribution has been analyzed under different settings in
order to show the advantages and the generality of the approach. Although
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the improvements are lower than the one that gradient descent can achieve,
the heuristic with a fraction of the computation time should be able to better
scale to larger instances while still improving with respect to submodular in
a context where sampling locations can be adapted in a continuous domain.
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monitoring applications
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Chapter 9

QUBO for sensor placement

9.1 Introduction

Several problems in artificial intelligence and pattern recognition, such as
the ones discussed in the previous parts of this thesis, are computationally
intractable due to their inherent complexity and the exponential size of
the solution space. Hence, the development of approximated and heuristic
approaches.

Quantum information processing could provide a viable alternative to
combat such a complexity. As discussed in the introduction chapter (Section
1.4.1) a notable work in this direction is due to the recent development of the
D-Wave computer, whose processor has been designed to solve Quadratic
Unconstrained Binary Optimization (QUBO) problems. We presented in
Section 2.3 different works in literature that investigate the use of a QUBO
formulation to address typical artificial intelligence and pattern recognition
problems.

In this part of the thesis we also investigate this possibility by encoding
optimization problems related to environmental monitoring applications into
QUBO models. More in detail, in this chapter we start by tackling a problem
that falls within the same context as what presented in Part III of the
thesis. Specifically, we want to optimize a set of sensing locations in order
to minimize the posterior variance of a Gaussian process model.

However, in contrast to what previously done in Part III where we opti-
mize in a continuous manner, here we consider the scenario where the sam-
pling locations can be selected from a finite discrete set of predetermined
available locations. Namely, the domain of interest X is discretized. In this
context our direct competitors are discrete (combinatorial) techniques such
as the greedy submodular optimization [103, 105, 145] (see Section 2.2 for
related work in this context).

We can summarize the contributions of this chapter as follows:

• We propose a QUBO model to optimize the sensing locations and
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minimize the posterior variance of a Gaussian process.

• We provide a mathematical demonstration that the optimum of our
QUBO model satisfies the constraint of the problem.

• We study the performance of the proposed QUBO model with respect
to submodular greedy and random sampling selections.

9.1.1 Problem definition

The definition of the problem described in this chapter is very similar to
what was presented in the two contributions of Part III of the thesis. Given
a Gaussian process and a discretized domain X , we want to select a set of
K points within X where to perform measurements in order to minimize
the total posterior variance of the Gaussian process. Specifically we want
to select a set of K measurements taken at locations K = {x1,x2, · · · ,xK}
such that we minimize the following objective function:

J({x1,x2, · · · ,xK}) =
∑
xi∈X

σ2(xi) (9.1)

where σ2(xi) is the Gaussian process variance computed in point xi as de-
fined by Equation 3.7. Notice that the variance computed with Equation
3.7 in locations xi ∈ X is dependent on the set of sampling points K as
explained in Section 3.1.1.

However in this case, our goal is to model a QUBO objective function
(Equation 3.20) that approximates our problem:

O(z1, . . . , zn) ≈ J({x1,x2, · · · ,xK}) (9.2)

9.2 QUBO formulation of our problem

In this section we describe our QUBO model for the Gaussian process poste-
rior variance minimization problem with a discrete domain. For a reference
on QUBO models see Section 3.5.

Given a discrete domain X the starting point to build our QUBO model is
represented by a complete graph composed of exactly |X | nodes. Specifically,
in a complete graph each node is connected to all the others, hence the total

number of edges is
|X |(|X | − 1)

2
.

In order to explain how we set the values of such graph, we decompose
the study and the description of the model into two parts:

1. We describe how to set values directly related to the variance of the
Gaussian process.

2. We describe how to set values in order to implement the constraint of
the problem (i.e, the number of sampling points must be exactly K).
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9.2.1 Variance values

As previously mentioned, given a domain X which represents the set of can-
didate sampling locations, we build a graph composed by |X | nodes where
each node corresponds to a specific location of the domain. Since our prob-
lem requires to select a set of sampling points such that the posterior variance
of the Gaussian process is minimized, a natural representation is to assign
to each node of the graph the amount of variance reduction obtainable by
sampling the Gaussian process in the location represented by that node.
Specifically, the value of node i is:

αi , J({xi})− J(∅) (9.3)

Since the objective function of a QUBO instance has to be minimized
and the objective of our problem is to minimize the posterior variance of a
Gaussian process, with Equation 9.3 we set αi values as the negative amount
of variance reduction. This is guaranteed by the properties of Gaussian
processes. Selecting a node gives us an improvement (i.e, a lower value of
the QUBO objective function) that is equivalent to the amount of variance
reduction obtainable by adding a sampling point in the location represented
by node i of the graph.

We can imagine these αi as “selecting forces”, in fact the amount of
variance reduction obtainable is a force that attracts a specific location of
the domain to be selected as a candidate sampling point. However, when we
select two sampling points, the total amount of variance reduction is lower
than the sum of the reduction obtainable from the two sampling points
individually. Formally:

J(∅)− J({xi,xj}) <
(
J(∅)− J({xi})

)
+
(
J(∅)− J({xj})

)
(9.4)

As a consequence, in our QUBO objective function we have to keep into
account the mutual interaction between sampling points. To this aim in our
QUBO graph we set edges values as follows:

βi,j , J({xi,xj})− J(∅)− αi − αj
= J({xi,xj})− J(∅)− J({xi}) + J(∅)− J({xj}) + J(∅)
= J({xi,xj})− J({xi})− J({xj}) + J(∅) (9.5)

The total variance reduction obtainable with two sampling points is pro-
portional to the distance between the two locations. Points close to each
other would have a high mutual interaction and as a consequence the value
βi,j between these locations would be high. We can imagine these βi,j al-
most as the opposite of a “selecting force”, discouraging the simultaneous
selection of points close to each other. Please note that this is dependent on
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the length-scale of the process encoded in the hyperparameters of the kernel
used.

Values βi,j are guaranteed to be always positive as we prove in the fol-
lowing proposition.

Proposition 1. Values βi,j are guaranteed to be higher that 0.

Proof. Given Equation 9.4:

J(∅)− J({xi,xj}) <
(
J(∅)− J({xi})

)
+
(
J(∅)− J({xj})

)
J(∅)− J({xi,xj}) < 2J(∅)− J({xi})− J({xj})
− J(∅)− J({xi,xj}) + J({xi}) + J({xj}) < 0

J(∅) + J({xi,xj})− J({xi})− J({xj}) > 0

Values αi and βi,j as described above depends exclusively from the Gaus-
sian process. However, this is not enough to guarantee that the minimum
of the QUBO objective function represents a solution where exactly K sam-
pling points are selected. To overcome this problem in the next section we
describe how to implement such constraint.

9.2.2 Implementation of the constraint

In general, to implement a constraint into an unconstrained problem we have
to encode it as penalties in the objective function. Since a QUBO model
has to be minimized, any combination that does not satisfy the constraint
must have a higher value to ensure that it does not represent the optimal
solution.

In what follows we describe how to implement the constraint of our prob-
lem into a complete graph. Specifically, a feasible solution has to represent
a set of exactly K sampling locations. This is known as the cardinality
constraint and is common in QUBO problems. However, in what follow we
present our derivation that is useful to implement it in relation with values
αi and βi,j computed from the variance of a Gaussian process.

Specifically, we further divide the description of our implementation of
this constraint in two separate parts:

1. We describe how to guarantee that exactly K nodes are selected in an
zero-value graph (i.e. a weighted graph with zero values on every node
and every edge).

2. We describe how to guarantee that the constraint is strong enough
given that we want to implement it in a graph with values computed
using Equations 9.3 and 9.5.
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Selecting K nodes

In order to implement our constraint, we have to guarantee that the objective
function is minimized if and only if the solution represents a configuration
with exactly K nodes selected as candidate sampling points. For any other
configuration the objective function must have a higher value.

Starting from a zero-value graph, we need to add some values to the
nodes and edges to implement this constraint. Let assume that we assign
the same value A ∈ R to every node and the same value B ∈ R to every
edge. In a complete graph, a configuration where n nodes are selected leads
to the following summation of values:

Bn(n− 1)

2
+An (9.6)

If we want to guarantee that exactly K nodes are selected Equation 9.6
must have its minimum value when n = K.

Proposition 2. Given the function Bn(n−1)
2 + An, for any B > 0 if A =

−BK + B
2 the minimum is in n = K.

Proof.
Bn(n− 1)

2
+An =

Bn2

2
− Bn

2
+An

With B > 0 the quadratic function is a parabola that opens upwards and
the minimum of the function is where the derivative is equal to 0.

∂

∂n

(Bn2
2
− Bn

2
+An

)
= 0

Bn− B

2
+A = 0

Now we want to fix the derivative to be 0 when n = K.

BK − B

2
+A = 0

A = −BK +
B

2

With Proposition 2 we have shown that it is possible to implement the
constraint for any K, hence also in the restricted case of our problem when
K ∈ N[2,|X|−1]. This restriction is an inherent property of the problem since
the cases for K = 1 or K = |X| are trivial.
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Guarantee the strength of the constraint

In the discussion above we have shown how to implement the constraint in
a zero-value graph. However, in our problem we have to guarantee that it is
satisfied in a complete graph that is already populated with values as shown
in Section 9.2.1. Now we show how values A and B must be set such that
the energy penalties are strong enough to guarantee that the constraint is
always satisfied.

Given A = −BK + B
2 Equation 9.6 becomes:

Bn(n− 1)

2
−BKn+

Bn

2
=
Bn2

2
−BKn (9.7)

We want to analyze how this function increases as we move away from
n = K that should represent the minimum. Specifically, given l ∈ N we
analyze how this function increases when n = K + l and when n = K − l.

[Bn2
2
−BKn

]
n=K+l

−
[Bn2

2
−BKn

]
n=K

=

B(K + l)2

2
−BK(K + l)−

(BK2

2
−BK2

)
=
Bl2

2
(9.8)

[Bn2
2
−BKn

]
n=K−l

−
[Bn2

2
−BKn

]
n=K

=

B(K − l)2

2
−BK(K − l)−

(BK2

2
−BK2

)
=
Bl2

2
(9.9)

From Equations 9.8 and 9.9 we can observe that the constraint act as an
energy penalty by increasing the value of the objective function quadratically
with the difference of number of nodes selected with respect to a given K.

Note that this constraint is generic and can be applied to any other
problem where a specific given number of nodes has to be selected. From
the mathematical point of view of a QUBO function the constraint built so
far guarantees that exactly K binary variables must have value 1 in order
to minimize the function. Moreover, any feasible solution that satisfies the
constraint starts with the same energy value as expressed by Equation 9.10,
leaving the feasible solutions to ‘compete’ for which one is the optimal given
a specific instance of the problem.

BK(K − 1)

2
−BK2 +

BK

2
= −BK

2

2
(9.10)

The strength of the energy penalty is directly dependent on value B. In
order to guarantee that the constraint is satisfied in a non zero-value graph
(i.e. a weighted graph with non-zero weights) we have to selected B big
enough to overcome additional ‘forces’.
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From a practical point of view, since B ∈ R+ we can just select a very
big number to guarantee that the constraint is satisfied. For our specific
problem (and objective function) we show in the next section that it is
possible to compute a bound for B.

9.2.3 Ensuring a lower bound for the constraint

We want to compute a lower bound for B such that the constraint is satisfied
in a generic weighted graph with values computed as presented in Section
9.2.1. Let start by making the following considerations:

• The constraint is satisfied if and only if the minimum of the QUBO
objective function corresponds to a solution with exactly K nodes
selected.

• The strength of the constraint (i.e. the energy penalty) as computed

in Equations 9.8 and 9.9 is
Bl2

2
, where l ∈ N represents the difference

from K on the number of selected points.

• Values αi computed with Equation 9.3 are always negative.

• Values βi,j computed with Equation 9.5 are always positive.

Given these considerations, we can compute the strongest energy value
that a non feasible solution can have to deviate from a feasible one. In
other terms, we can compute what is the highest contribution to the QUBO
objective function that a configuration that does not satisfy the constraint
can have. Once we compute this value, we can select B such that the energy
penalty overcomes the worst case scenario. In what follow we analyze the
two possible cases.

Configuration with more nodes selected

Let A be the set of αi values computed with Equation 9.3. As a reminder,
each of these αi values represent the amount of variance reduction obtain-
able in a specific location of the domain. We can define An as the set of the
n lowest values in A:

An ,

{
A0 = ∅
An = An−1 ∪min(A \ An−1)

(9.11)

Since each αi is a negative value and we want to minimize the QUBO
objective function, the contribution of each node represents an improvement.
Informally, we can imagine that the more sampling points we add in the
domain the lower the total remaining variance would be. On the other hand
βi,j values opposes to the selection of many sampling points.
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In a configuration where K + l nodes are selected the strongest contri-
bution of values that are trying to deviate from a feasible solution with K
sampling points is the following:∑

αi∈Al

|αi|︸ ︷︷ ︸
Contribution of additional nodes

−
(

(K + l)(K + l − 1)

2
− K(K − 1)

2

)
βi,j︸ ︷︷ ︸

Contribution of additional edges

(9.12)
We can now compute an upper bound for this quantity as follows:∑

αi∈Al

|αi| −
(

(K + l)(K + l − 1)

2
− K(K − 1)

2

)
βi,j <∑

αi∈Al

|αi| − 0 ≤

l|min(A)| ≤
l2|min(A)| (9.13)

To ensure that the energy penalties of the constraint are strong enough
to overcome any configuration with more than K nodes selected, we need
to impose Equations 9.8 and 9.9 to be higher than the upper bounded force
applied by non-feasible configuration as computed in Equation 9.13, specif-
ically:

Bl2

2
> l2|min(A)|

B > 2|min(A)| (9.14)

Configuration with less nodes selected

Similarly to what we have done above, now we have to compute a bound
for B such that the energy penalties of the constraint are strong enough to
overcome any configuration with less than K sampling points.

Let B be the set of βi,j values computed with Equation 9.5. We can
define Bn as the set of the n highest values in B:

Bn ,

{
B0 = ∅
Bn = Bn−1 ∪max(B \ Bn−1)

(9.15)

Since each βi,j is a positive value and we want to minimize the QUBO
objective function, in a configuration where K − l nodes are selected the
strongest contribution of values that are trying to deviate from a feasible
solution with K sampling points is the following:
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∑
βi,j∈B(K(K−1)

2 − (K−l)(K−l−1)
2

) βi,j︸ ︷︷ ︸
Contribution of removing edges

− l|αi|︸︷︷︸
contribution of removing nodes

(9.16)

where K(K−1)
2 − (K−l)(K−l−1)

2 represents the number of extra edges if we
select K sampling points as opposed to K − l. We can now compute an
upper bound for this quantity as follow:

∑
βi,j∈B

(
K(K−1)

2 − (K−l)(K−l−1)
2 )

βi,j − l|αi| <

∑
βi,j∈B

(
K(K−1)

2 − (K−l)(K−l−1)
2 )

βi,j − 0 ≤

(
K(K − 1)

2
− (K − l)(K − l − 1)

2

)
max(B) =(

Kl − l2

2
− l

2

)
max(B) =

l2

2

(
2K

l
− 1− 1

l

)
max(B) <

2Kl2

2
max(B) (9.17)

To ensure that the energy penalties of the constraint are strong enough
to overcome any configuration with less than K nodes selected, we need to
impose Equations 9.8 and 9.9 to be higher then the upper bounded force
applied by non-feasible configuration as computed in Equation 9.18, specif-
ically:

Bl2

2
>

2Kl2

2
max(B)

B > 2K max(B) (9.18)

Given the nature of the problem and the generality of the model that has
to be valid for any possible hyperparameters combination of the Gaussian
process, we cannot infer which one between Equations 9.14 and 9.18 imposes
a bigger value of B. However, for any instance of the QUBO objective
function we can easily compute a feasible value for B as follows:

B > max
(

2|min(A)| , 2K max(B)
)

(9.19)
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9.2.4 The complete model

The final QUBO model can easily be expressed as a complete weighted graph
whose values are a combination of what presented in Section 9.2.1 and the
constraint explained above. More in details, each node of the graph will
have value:

ai , αi −BK +
B

2
(9.20)

and each edge of the graph will have value:

bi,j , βi,j +B (9.21)

To conclude, the final QUBO model can be expressed as follows:

O(z1, ..., zn) =

|X |∑
i=1

(
J({xi})− J(∅)−BK +

B

2

)
zi+∑

1≤i<j≤|X|

(
J({xi, xj})− J({xi})− J({xj}) + J(∅) +B

)
zizj (9.22)

with B computed as described by Equation 9.19.

9.2.5 Optimized variant

Notice that values βi,j computed with Equation 9.5 represent the differ-
ence between the variance reduction obtainable with two sampling points
acquired at the same time and the sum of the variance reduction obtain-
able with the two points acquired individually. However, βi,j is not taking
into account how the real variance of a Gaussian process is affected by the
presence of additional measurement points.

In general, the posterior variance of a Gaussian process is monotonically
decreasing with the number of sampling points. Hence, to better represent
the real variance reduction of a Gaussian process in case we have more than
2 sampling points, the βi,j values should be lower than what computed with
Equation 9.5.

For this reason we now propose a variant of the model where we multiply
by a weight value w each βi,j computed with Equation 9.5. This w multiplier
is intended as a scaling factor for the difference in the variance reduction,
specifically:

βi,j , w
(
J({xi,xj})− J(∅)− αi − αj

)
= w

(
J({xi,xj})− J({xi})− J({xj}) + J(∅)

)
(9.23)

132



9.3. Empirical Evaluation

By setting 0 < w ≤ 1 we can better approximate the real variance of a
Gaussian process for cases where we have 3 or more sampling points. We will
show in the empirical evaluation (Section 9.3) that this additional parameter
allows us to obtain better results.

9.3 Empirical Evaluation

In what follows we present the results of the empirical evaluation of our
QUBO model for Gaussian process posterior variance reduction. Notice that
we are not proposing an optimization method for quadratic unconstrained
binary problems, instead we want to show that the QUBO objective func-
tion represented by our model is a good approximation for the problem of
minimizing the posterior variance as explained in Section 9.1.1 Equation 9.2.
The main objectives of this empirical evaluation are:

1. Test the model under different conditions, specifically:

• Using different hyperparameters of the Gaussian process to show
the generality of the approach (similarly to what we show in
Chapters 7 and 8).

• Varying the number of sampling points K to study the perfor-
mance of the QUBO model.

2. Show a comparison between the optimal solution of the QUBO model
with respect to submodular optimization.

3. Show a comparison between the optimal solution of the QUBO model
with respect to a random sampling solution (used as a simple baseline
technique).

9.3.1 Dataset and setup

In this empirical evaluation we use two different 2-dimensional cubic datasets
with equally distributed domain points X similarly to what presented in
Section 7.3 and Figure 7.1. However, since in this case we have to compute
the optimum of the QUBO objective function, the cardinality |X | (number
of points on which we evaluate the Gaussian process) of the datasets needs
to be widely reduced. Specifically, our two datasets are composed by 25 and
36 domain points respectively.

We tested our model by training the Gaussian process using the squared
exponential kernel reported here for convenience:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
(9.24)
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Regarding the hyperparameters of the kernel, in our tests we used two
different length-scale l, two different σf and two different σn. As previously
mentioned throughout the thesis, l describes the smoothness property of the
true underlying function, σf describes the standard deviation of the modeled
function and σn the standard deviation of the noise of the observations (see
Section 3.1.1 for more details). These hyperparameters gives us a total of 8
different combinations to test the model under different conditions.

For the optimized variant of the model as presented in Section 9.2.5, we
performed experiments using 19 different w parameters, specifically from
0.1 up to 1 with steps of 0.05. Notice that using w = 1 corresponds to the
standard version of the model as described by Equation 9.22.

To run the experiments and compute the optimum value of the QUBO
objective function we used CPLEX optimization library. For more details
on the optimization using CPLEX please refer to Appendix B.

All the above mentioned combinations of hyperparameters and datasets
have been tested by adapting a different number K of measurement points
which varies from 2 up to 7. The case of a single point has been excluded
since the submodular greedy technique is optimal by definition.

Moreover, regarding the comparison with a random procedure, for each
of the described combination of hyperparameters, dataset and number of
sampling points K, we have generated 100 randomly selected solutions.

9.3.2 Results

Figures 9.1 and 9.2 show the aggregated results of the experiments previously
described for the dataset with 25 and 36 domain locations respectively. In
these plots we can observe the total remaining variance of the Gaussian
process (in logarithmic scale for the sake of representation) by varying the
number K of sampling points. Lines in these charts represent the average
over the eight combinations of hyperparameters used in the experiments
and the error bars represent the standard errors of the mean. The only
exception concerns the line that represent the random technique which is
the average over 8 × 100 experiments (8 combination of hyperparameters
and 100 randomly selected combinations of sampling points).

First of all we notice that in general the optimized variant of the QUBO
model (presented in Section 9.2.5) with the strength of the quadratic terms
modulated by the w parameter, allows us to obtain much better results
compared to the ‘standard’ QUBO model (which corresponds to use w = 1),
proving that indeed a good tuning of that parameter provides an advantage
for our QUBO model.

Moreover, we can observe that the optimum solutions of our QUBO
model (by tuning the w parameter) in the first dataset (Figure 9.1) are
comparable with submodular selection technique when using 2 sampling
points, worst with 3 and better in all the other cases. A similar situation
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Figure 9.1: Posterior variance of the Gaussian process by varying the number
K of sampling points on the dataset with a domain composed of 25 locations.
The results represent the average over the 8 combination of hyperparameters
used during the experiment and the error bars represent the standard error
of the mean.

is true for the second dataset (Figure 9.2) where we have in some cases a
comparable results, in some worst and in the remaining better results than
submodular. On average the solutions obtained with a random selection
of sampling points perform worst than both submodular and the QUBO
model.

As we can observe for both the datasets (Figures 9.1 and 9.2) the trend
for all the techniques tested is the same. As expected, by adding more mea-
surement locations the variance of the Gaussian process decreases. However,
the interleaving of the curve representing our QUBO model and the curve
representing the submodular selection shows that the optimum of the QUBO
model represents indeed a good approximation of the objective function of
our problem.

9.4 Conclusions

In this chapter we proposed a novel QUBO model to tackle the problem of
optimizing sampling locations in order to minimize the posterior variance of
a Gaussian process. The strength of this contribution is the proposal of a
completely alternative method that can be used by non-classical computing
architectures (quantum annealer) and therefore benefit from research in this
field.
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Figure 9.2: Posterior variance of the Gaussian process by varying the number
K of sampling points on the dataset with a domain composed of 36 locations.
The results represent the average over the 8 combination of hyperparameters
used during the experiment and the error bars represent the standard error
of the mean.

Although the w parameter of our model has to be determined empirically,
results shows that the optimum of the QUBO objective function represents a
good solution for the above mentioned problem, obtaining comparable and
in some cases better results than the widely used submodular technique.
Moreover, values βi,j as computed in Equation 9.5 could be replaced with
values computed with different techniques such as the one proposed in our
heuristic in Chapter 8.

Nevertheless, we believe that our contribution with this QUBO model
takes an important first step towards the sampling optimization of Gaussian
processes in the context of quantum computation.
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Chapter 10

QUBO for biclustering

10.1 Introduction

As we discussed in the previous chapter, quantum information processing
could provide a viable alternative to the optimization process in artificial
intelligence and pattern recognition problems. In what follow we will tackle
the problem of biclustering (introduced in Section 3.6.3).

While clustering has been widely used to find patterns in data, the use of
biclustering (sometimes called co-clustering or sub-space clustering) is more
recent and has been used mainly to analyze biological data and particularly
microarray gene data. However, recently, biclustering has been applied to
the analysis of data acquired by mobile platforms for environmental monitor-
ing applications [44]. In this context, the goal is usually to identify situations
of interest (e.g., mobile platform moving upstream or downstream) using a
minimal set of features.

Similarly to what proposed in Chapter 9 here we formulate a quadratic
unconstrained binary optimization (QUBO) model for the biclustering prob-
lem. The contribution of this work can be summarized as follows:

• We introduce the first QUBO model for the biclustering problem.
More specifically, we formulate the biclustering problem as a repeated
search for the most coherent biclusters following well-known approaches
[16, 47] where biclusters are extracted one at a time from the data-
matrix (one-bicluster problem).

• We analyze the model and give mathematical proofs of its correct-
ness, i.e., that the optimal solution of the QUBO model is the optimal
solution for the one-bicluster problem.

• We perform an empirical evaluation showing that our model outper-
forms in terms of quality the state-of-the-art biclustering approaches
(i.e., BICRELS [172] and FLOC3 [184]).
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• We discuss the practical applicability of our model by means of exper-
iments performed on the the D-Wave 2XTM architecture.

Overall, our key contribution is a QUBO formulation for the biclustering
problem that can be solved by quantum annealing machines. Our investi-
gation on the D-Wave quantum annealer shows that such QUBO model is
a viable approach for small-sized data matrices and the proposed principles
might be used as a foundation to tackle larger datasets.

10.2 The QUBO model for biclustering

As already mentioned, biclustering has been used in various application do-
mains with different techniques. In its most general form the biclustering
problem can be defined as the simultaneous clustering of rows and columns
of a given data-matrix [120]. The goal is then retrieving the subsets of rows
and columns that have a coherent behavior, where “coherence” is defined ac-
cording to the specific application domain (e.g., Euclidean distance, Pearson
correlation).

In our contribution, we formulate the problem of biclustering as a se-
quential search for the most coherent bicluster. This is a widely employed
technique in the literature [16, 47, 61], and consists in extracting biclusters
one by one from the data-matrix (we call it one-bicluster problem). Once
we extract a bicluster we then need to “mask” it in the data matrix before
looking for the next one. There exist different heuristics in the literature
addressing this problem: for example, one way to address this problem is
to replace the obtained bicluster with background noise in the original data
matrix [47].

In this section we focus only on the problem of extracting one bicluster
and we detail our QUBO formulation for this problem. In particular, we
first describe a binary model for the one-bicluster problem and then, we
show how such a model can be encoded as a QUBO.

10.2.1 A binary model for one-bicluster

We now present the objective function for the binary one-bicluster problem
and in what follows we explain how it is derived. Given a real-valued data
matrix A with N rows and M columns, the objective function for the binary
one-bicluster problem is the following:

arg max
(c1,1,...,cN,M )

(∑
i,j

ai,jci,j −
∑
i,j,t,k

Oi,j,t,kci,jct,k +
∑
i<t

Bi,t

)
(10.1)

where 1 ≤ i, t ≤ N ; 1 ≤ j, k ≤M .
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In the first two terms, we have NM binary variables ci,j that encode
whether a given entry ai,j of the data matrix A belongs to the bicluster or
not (where ci,j = 1 indicates that the entry ai,j does belong to the bicluster).
In this equation, we can identify two forces:

• One that encourages points to group together, namely the first term
in (10.1).

• One that avoids points that are not coherent to be in the same group,
namely the second term in (10.1). Such term is based on a value Oi,j,t,k
which measures the coherence between two points ai,j and at,k.

The function Oi,j,t,k depends on which kind of biclusters we wish to ana-
lyze. In particular, following the relevant literature (e.g., [173]) we consider
two types of coherence:

Constant: Which aims at penalizing points that have a different activation
level and hence identifies biclusters that have a single coherent value.

Oi,j,t,k = w|ai,j − at,k| (10.2)

Additive: Which identifies biclusters that encode an evolution of the acti-
vation values over columns.

Oi,j,t,k = w(ai,j − at,j + at,k − ai,k)2 (10.3)

In both equations (10.2) and (10.3), the weight w can be adjusted to balance
such two forces: setting w to high values favors the coherence of the points
inside the biclusters, while setting w to low values favors the creation of
large biclusters. The set of valid values for such weight is R+; however,
setting high values could lead as a result to biclusters composed of a single
element. The appropriate value to set depends on the data context and
must be determined experimentally as shown in [61].

In order to solve our problem, we need to restrict the feasible variable
assignments so that only valid assignments correspond to a bicluster. In
other words, we need to rule out assignments that do not correspond to a
subset of rows and columns that have all entries selected (see Figure 10.1b
for an example of a non-valid assignment). To do so, we add one constraint
stating that, given two rows of the output matrix C, they have to share the
same configurations or one of them must be zero. The constraint between
rows i and t is expressed in equation (10.1) by the term:

Bi,t =


0, if (

∑
k ci,k = 0) ∨ (

∑
k ct,k = 0)

∨ (
∑

k(ci,k − ct,k) = 0)

−∞, otherwise

(10.4)
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Such constraint ensures that there is a permutation of rows and columns
that forms a sub-matrix with all entries selected (i.e., visually a full rectangle
of ones).

Another interesting way to look at an admissible configuration is that it
can be described by fixing the same value for all the elements of a column
with an exception for the elements that belong to a disabled row. For
example, considering Figure 10.1a (before permutations), the configuration
can be expressed as: Columns {1, 3, 4} take value 1, columns {2, 5} take
value 0 and row 2 is disabled (all the element are 0). Hence, any admissible
configuration can be uniquely identified by this type of description. This
description is useful to better understand the QUBO model we describe
next.

C =


1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
1 0 1 1 0

 −→


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0


(a)

C =


1 0 1 1 0
0 0 0 0 0
1 0 0 1 0
0 1 1 1 0


(b)

Figure 10.1: Example of: a valid assignment and its permutation that results
in a full rectangle of ones (10.1a); an invalid assignment, no permutation can
result in a full rectangle of ones (10.1b)

10.2.2 The QUBO model for the one-bicluster problem

In this section we provide a QUBO formulation for the binary model de-
scribed above. Similarly to the presentation proposed in Chapter 9, we
detail the description of the model by providing initially a version that does
not considers the constraints required by the problem and subsequently we
describe how we add energy penalties that implements them. For this rea-
son, let us start with a QUBO representation that does not consider the
bicluster constraint (i.e., the Bi,t elements in equation (10.1)).

To build such model by using the graph-based representation of QUBOs,
we create a node xi,j for each variable ci,j . Considering that the QUBO
formulation has to be minimized, we then assign a coefficient −ai,j to each
node. For each pair of nodes (xi,j , xt,k) we assign to the edge between
them a positive value Oi,j,t,k calculated according to the equations (10.2) or
(10.3). Note that the latter has value 0 for points on the same row or the

140



10.2. The QUBO model for biclustering

same column, hence for such measure, the horizontal and vertical edges are
absent from the graph. The corresponding objective function for the QUBO
problem will then be:

arg min
(x1,1,...,xN,M )

(∑
i,j

−ai,jxi,j +
∑
i,j,t,k

Oi,j,t,kxi,jxt,k

)
(10.5)

where 1 ≤ i, t ≤ N ; 1 ≤ j, k ≤ M . It is easy to see that the assignment
that maximizes function (10.1) without the bicluster constraint is the same
that minimizes the QUBO objective function (10.5). Figure 10.2 shows a
graphical representation of such a simplified QUBO model for a 2× 2 input
data matrix.

−a1,1x1,1 −a1,2 x1,2

−a2,1x2,1 −a2,2 x2,2

O1,1,1,2

O
1
,1
,2
,1

O
1,1,2,2

O 1,
2,
2,
1

O
1
,2
,2
,2

O2,1,2,2

Figure 10.2: A graphical representation of our QUBO model for a 2 × 2
data-matrix, the (red) dotted edges are absent in case of additive coherence
measure (10.3).

Now, in order to consider the bicluster constraint, we must add some
extra nodes to the QUBO model so as to ensure that the assignments gen-
erated are valid (i.e., they represent a subset of rows and columns). As
mentioned in Section 10.2.1 an admissible configuration should set all vari-
ables in the same column to the same value except for the variables that
belong to disabled rows. To express this, we create two types of constraints:
column constraints and row constraints.

A column constraint ensures that all variables in a column have the same
value (either 0 or 1). To do so, we add to each node a positive coefficient V
and we add a new node to the graph with a coefficient equal to N(B − V )
where B > V . We call this new node the column switch and we indicate with
sj the variable that corresponds to the node switch for column j. Finally,
we set the coefficient of the edges between the column switch and the N
nodes to −B (see Figure 10.3 for a graphical representation). Intuitively,
if k of the N nodes are selected and the switch is not active (i.e., si = 0),
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we add to the objective function a value kV . If we select the switch and
the k nodes, we add k(V − B) + N(B − V ). Since we are minimizing the
objective function the best configuration will be either selecting all nodes
(with a contribution of N(V − B) + N(B − V ) = 0) or not selecting any
node (again with a contribution of zero). All other configurations will add
a positive value to the objective function.

V x1,j

V x2,j

..
.

V xN,j

N(B − V ) sj

−B

−B

−B

Figure 10.3: Graphical representation of a column constraint.

xi,1 xi,2

...

xi,M
ri

G

G

G

Figure 10.4: Graphical representation of a row constraint.

A row constraint should force all variables in a row to be zero when a
specific condition holds (i.e., we decide to not consider that row). To enforce
this, we add a new node to the graph with a coefficient 0 and we call this
new node the row switch. We indicate with ri the variable that corresponds
to the node switch for row i (see Figure 10.4 for a graphical representation).
Then, we set the edges between the row switch and the M nodes to a
positive coefficient G. Intuitively, when the ri = 0 any configuration for the
M nodes contributes with a null value to the objective function; hence, they
are equally desirable. However, if rj = 1, then selecting any of the M nodes
will increase the objective function of a value G. Hence, in this case, the
best configuration is the one that does not select any of the M nodes.

Finally we combine the first graph (Figure 10.2) without the bicluster
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V − a1,1

x1,1

V − a1,2

x1,2

r1

G

G

V − a2,1

x2,1

V − a2,2

x2,2

r2

G

G

2(B − V )

s1

−B

−B
2(B − V )s2

−B
−B

V −B

V −B

V −B

V
−
B

O 1,
1,
2,
2
+
O 1,

2,
2,
1

Figure 10.5: Graph of the complete model for N = 2 and M = 2 with the
additive coherence similarity metric (equation (10.3)) and the simplification
proposed at the end of this section.

constraint (from now on called the inner graph) with the row and column
constraints and by adding from each row switch to every column switch an
edge with coefficient V − B. The objective function has now the following
form:

arg min
(x1,1,...,xN,M )

∑
i,j

(
V xi,j −Bxi,jsj +Gxi,jri

+ (V −B)risj + (B − V )sj − ai,jxi,j

+
∑
t,k

Oi,j,t,kxi,jxt,k

) (10.6)

Notice that in principle to ensure that a set of nodes are either all O or
1 an additional variable (column switch) is not necessary. However, in this
case the column switches combined with the row switches with the additional
introduce term (V −B)risj are convenient in order to ensure that our QUBO
formulation is a proper model for the one-bicluster problem.

Specifically, now we can show that for all valid solutions, the extra con-
straints (i.e., row and column constraints) contribute with a zero value, while
for all non-valid solutions they contribute with a strictly positive value. In
particular, we prove the following theorem:

Theorem 3 (Model validity). Given a model of a data-matrix with N rows
and M columns and values B > V > 0 and G > B − V, for all assignments
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that do not violate a row or a column constraint such extra constraints pro-
vide a null contribution to the objective function. For all other configura-
tions, the contribution is > 0.

Proof. Given the objective function in equation (10.6), we can observe that
in each addend of the summation the terms that depend from the combined
constraint structure are:

V xi,j −Bxi,jsj +Gxi,jri + (V −B)risj + (B − V )sj . (10.7)

Hence, each of these addends depend exclusively on three binary variables,
namely a node from the inner graph xi,j and the two switches ri and sj .
Now we compute the value of the term for the combined constraint structure
equation (10.7) exhaustively for all eight cases of the three variables:

1. [xi,j = 0, ri = 0, sj = 0]: 0

2. [xi,j = 0, ri = 0, sj = 1]: B − V

3. [xi,j = 0, ri = 1, sj = 0]: 0

4. [xi,j = 0, ri = 1, sj = 1]: V −B +B − V = 0

5. [xi,j = 1, ri = 0, sj = 0]: V

6. [xi,j = 1, ri = 0, sj = 1]: V −B +B − V = 0

7. [xi,j = 1, ri = 1, sj = 0]: V +G

8. [xi,j = 1, ri = 1, sj = 1]: V −B +G+ V −B +B − V = V −B +G

For cases 1,3,4,6 which represent a valid assignment where all the inner
graph nodes are in compliance with the switches (i.e., do not violate row or
a column constraints), the contribution is 0. For all the other configurations
which represent a non-valid assignment, the contribution is greater that 0
(this is because B > V > 0 and G > B − V ).

In order to complete the model, we have to identify the appropriate
values for V , B and G. To do so, we observe that a configuration that does
not comply with all the switches constraints should increase more than the
decrease in value that can derive from taking such a configuration in the
inner graph, namely the values assigned to the structure should be high
enough to ensure that the objective function does not minimize for the
non-valid configurations. Although intuitively we can simply choose high
values, to maintain the range of possible values as small as possible, we
investigate what the lowest admissible ones are. Let us indicate with R a
configuration for the row switches, S a configuration for the column switches,
X a configuration for the inner graph nodes in compliance with the switches
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and X a configuration where any subset of X does not comply with the
corresponding switches.

We can then show the following theorem:

Theorem 4 (Determining V,B,G). Given the specific switches configura-
tions R and S and the valid solution (X,R, S), we have that:

O(X,R, S)−O(X,R, S) > 0

⇐⇒(
V > Vm ∧B > Bm ∧G > Gm

) (10.8)

for all invalid solutions (X,R, S), where

Vm = max
i,j
{ai,j}

Bm = V + max
i,j

{
− ai,j +

∑
t,k

Oi,j,t,k

}
Gm = B − V + max

i,j
{ai,j}

(10.9)

Proof. Similarly to what we did for Theorem 1, we now compute the value
of equation (10.6) for all configurations of the three binary variables xi,j , ri
and sj :

1. [xi,j = 0, ri = 0, sj = 0]: 0

2. [xi,j = 0, ri = 0, sj = 1]: B − V

3. [xi,j = 0, ri = 1, sj = 0]: 0

4. [xi,j = 0, ri = 1, sj = 1]: V −B +B − V = 0

5. [xi,j = 1, ri = 0, sj = 0]: V − ai,j +
∑
t,k

Oi,j,t,kxt,k

6. [xi,j = 1, ri = 0, sj = 1]: V −B +B − V − ai,j +
∑
t,k

Oi,j,t,kxt,k =

− ai,j +
∑
t,k

Oi,j,t,kxt,k

7. [xi,j = 1, ri = 1, sj = 0]: V +G− ai,j +
∑
t,k

Oi,j,t,kxt,k

8. [xi,j = 1, ri = 1, sj = 1]: V − B + G + V − B + B − V − ai,j +∑
t,k

Oi,j,t,kxt,k = V −B +G− ai,j +
∑
t,k

Oi,j,t,kxt,k

In order to ensure the desired behavior, the difference between a non
eligible configuration (X,R, S) and an eligible configuration (X,R, S) must
be higher than 0. Let us impose this condition to the difference between the
previous eight cases:
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• [5]−[1] > 0⇒ V − ai,j +
∑
t,k

Oi,j,t,kxt,k > 0

• [7]−[3] > 0⇒ V +G− ai,j +
∑
t,k

Oi,j,t,kxt,k > 0

• [8]−[4] > 0⇒ V −B +G− ai,j +
∑
t,k

Oi,j,t,kxt,k > 0

• [2]−[6] > 0⇒ B − V + ai,j −
∑
t,k

Oi,j,t,kxt,k > 0

Because the coherence measure Oi,j,t,k is always greater or equal to 0, we
are now ready to determine the minimum value to assign to V , B and G.
From the first difference [5]−[1], we have:

V > max
i,j
{ai,j} = Vm

From the last difference [2]−[6] we have that:

B > V + max
i,j

{
− ai,j +

∑
t,k

Oi,j,t,k

}
= Bm

And from the third one [8]−[4] we have:

G > B − V + max
i,j
{ai,j} = Gm

The second one [7]−[3] holds because of V and G already defined.

10.2.3 Properties of the model

Theorems 3 and 4 ensure that, by building the model as described above,
for any valid configuration (i.e., a configuration that describes a bicluster),
the contribution of the column and row constraints to the objective function
is null. For all valid assignments the objective function reported in equation
(10.6) reduces to equation (10.5), hence the configuration that minimizes
(10.6) is the same that maximizes equation (10.1) (i.e., the most coher-
ent bicluster). Moreover, for any non-valid assignment (i.e., an assignment
that does not encode a bicluster) the contribution of the row and column
constraints will be strictly positive hence such configuration will always be
discarded in favor of a valid assignment.

The proposed model can be further simplified. In particular, we can
reduce the number of edges (quadratic terms) by observing that if a couple of
nodes (in the inner graph) on different rows and columns are active (i.e., two
nodes on the opposite corners of a rectangle) also the other two nodes on the
other diagonal of the rectangle must be active to comply with the switches.
The terms Oi,j,t,kxi,jxt,k and Ot,j,i,kxt,jxi,k either contribute both or none
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to the objective function. Hence, we can add both values Oi,j,t,k +Ot,j,i,k to
a single edge and remove the other one. Hence, regardless of the coherence
measure used, we can remove half of the diagonal edges. An example of the
complete simplified model is shown in Figure 10.5.

As for space complexity, given an input matrix N ×M , the model has
NM + N + M binary variables. The number of edges depends on the
coherence metric used. In particular, for the constant coherence equation
(10.2), we have in the worst case (i.e., when all the coherence measures are
different from 0) NM(NM − 1)/2−NM(N − 1)(M − 1)/4 + 3NM edges.
For the additive coherence equation (10.3), we must insert into the model
only the diagonal edges (see Figure 10.5); hence, the total number of edges,
in the worst case, is NM(N − 1)(M − 1)/4 + 3NM .

Our main motivation for this contribution is to investigate the possi-
bility to exploit the quantum annealing process to solve the biclustering
problem. Based on the above analysis, the main computational bottleneck
for our model is space requirements. While the worst-case analysis reveals a
polynomial complexity for what concerns space, typical application domains
for biclustering can involve data matrix with a large number of rows and
columns (i.e., thousands of genes and hundreds of experiments). For such
numbers, the space requirement for our model becomes an issue that needs
an adequate treatment. To this purpose, in the next section, we also pro-
pose a sparsification method in order to simplify the model by eliminating
a given percentage of edges using a heuristic. Moreover, following previous
approaches [62], we use a decomposition technique in order to aggregate
biclusters extracted from sub-matrices.

10.3 Empirical evaluation

Having described and analyzed QUBO model for biclustering, here we present
its empirical evaluation. In what follows we first describe the methodol-
ogy we used to perform the experiments and then we present the results
obtained by following established evaluation protocols for biclustering tech-
niques [173].

10.3.1 Evaluation Methodology

The main goals of our empirical evaluation are:

1. Validate the accuracy of the QUBO model for biclustering comparing
it with state-of-the-art approaches (BICRELS [172] and FLOC3 [184]).

2. Evaluate how the removal of edges from the model affects the quality
of the solutions.
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3. Evaluate the quality of our model through a widely exploited biclus-
tering dataset [146].

4. Assess the applicability of the model on current state-of-the-art quan-
tum processing units (i.e., the D-Wave architecture).

To this aim, we created a synthetic dataset so as to accurately measure
the performance of our approach. In particular, the dataset is composed of
10× 10 matrices with a constant random-positioned bicluster that occupies
the 25 percent of the elements. Then, we added a Gaussian noise to each
matrix, where the standard deviation of such Gaussian noise is a percentage
of the difference between the mean of the entries belonging to the biclusters
and the mean of all the others. In particular, we considered 5 different
percentage values from 0 (no noise) to 0.2. We generated a set of 15 matrices
per noise level for a total of 75 matrices. This dataset allows us to measure
the accuracy of the algorithms by comparing the bicluster extracted from
the models with the ground-truth (i.e., the bicluster that is present in the
data-matrix). Given C the set of elements of the bicluster found and L the
set of elements of the real bicluster, to measure such accuracy we use two
established metrics [173]:

• Purity = |C ∩ L|/|C| which represents how many elements of the
solution belong to the real bicluster.

• InversePurity = |C ∩ L|/|L| which represents how many elements of
the real bicluster have been found.

10.3.2 Validating the accuracy of the QUBO model

For each of the 75 matrices of the dataset, the QUBO form has been solved
by using the CPLEX optimization library and by applying 24 different
weights w (constant for each Oi,j,t,k) to the similarity measure (equation
(10.3)), for a total of 1800 tests.

Here we present the results of Purity and Inverse Purity as a function
of the noise level. For each noise level we analyzed and set the parameters
of the procedures with the values that gives the best average result on the
15 matrices with that noise level. Please note that the optimal value of
w, which influences the size of the ideal biclusters, depends on the data
context and has to be determined empirically. Solving each instance takes
milliseconds; hence, the overhead to determine the optimal value of w is not
an issue. Note that this is the same protocol used in [61]. Results in Figure
10.6 show that our QUBO model significantly outperforms BICRELS and
FLOC3 in terms of quality of the bicluster extracted.

148



10.3. Empirical evaluation

Figure 10.6: Mean performance over the 15 matrices for each noise level
of our QUBO model, BICRELS and FLOC3. The error bars represent the
standard error of the mean.

10.3.3 Sparsification of the model

We can observe that our model exhibits some degree of redundancy. In
particular not all the edges in the ‘inner graph’ (that represent the similarity
measurements between points of the input matrix), affect with the same
weight the selection of the optimal solution. For example, assume we know
the sub-matrix that forms the most coherent bicluster, intuitively many of
the edges internal to such sub-matrix will have a low value (because the
elements of the bicluster are coherent). As a consequence, most of such
edges could be removed from the model. For this reason, we tested how the
model behaves by removing different percentages of edges from the inner
graph of the 1800 instances previously described. Specifically, we removed
from 0 to 90% (with steps of 10%) of the edges for a total of 18,000 tests.

Note that sparsification is only intended to be a practical heuristic to
address larger matrix, but we cannot provide any guarantees on how this
affect optimality. In contrast, our aim is to investigate whether simple spar-
sification heuristics could maintain a good level of accuracy while providing
significant reductions in space for the model. While assessing which edges
are redundant (without knowing the bicluster) is not straightforward, the
empirical evaluation shows that some simple heuristics do provide a signifi-
cant gain.

In more detail, our procedure for sparsification computes a value for each
internal edge and then sort edges according to such value. We then remove
a specific percentage X (with X ∈ {0, 10, 20, . . . , 90}) of these edges. We
tried different values for the edges that are all based on a combination of
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the function Oi,j,t,k and the values of the matrix entries that relates to this
function (i.e., ai,j , at,k, ai,k, at,j).

The different heuristics we tested are:

• Edge value sparsification: In this heuristic we eliminate edges from
the inner graph by choosing the desired percentage with the lowest
value, that is the edges between nodes with the lowest additive coher-
ence measure Oi,j,t,k calculated according to equation (10.3).

• Inverse edge value sparsification: This heuristic is the inverse
of the previous one. Here we eliminate edges from the inner graph
by choosing the desired percentage with the highest value, that is
the edges between nodes with the highest additive coherence measure
Oi,j,t,k calculated according to equation (10.3).

• Ratio sparsification: In this heuristic we eliminate edges from the
inner graph by choosing the desired percentage with the lowest ratio

Oi,j,t,k
ai,j + at,k + ai,k + at,j

, where Oi,j,t,k is the additive coherence measure

calculated according to equation (10.3).

• Inverse ratio sparsification: This heuristic is the inverse of the pre-
vious one. Here we eliminate edges from the inner graph by choosing

the desired percentage with the highest ratio
Oi,j,t,k

ai,j + at,k + ai,k + at,j
,

where Oi,j,t,k is the additive coherence measure calculated according
to equation (10.3).

• Random sparsification: We used as an additional comparison base-
line a random sparsification where we remove a specific percentage X
(with X ∈ {0, 10, 20, . . . , 90}) of the edges.

Our results confirm that with these simple heuristics it is possible to
achieve similar level of accuracy with approximately half the edges of the
QUBO model. Overall the ‘Inverse ratio sparsification’ shows the better
performance. Figure 10.7 reports a comparison of the ‘Inverse ratio sparsi-
fication’ heuristic against the random approach.

10.3.4 Evaluation on benchmarking data-set

We evaluated our model on the benchmarking synthetic dataset introduced
in [146].1 The matrices proposed in that dataset contains 100× 50 entries.
Such matrices cannot be directly analyzed by our approach due to the space
complexity associated with our model (see Section 10.2.3). However, follow-
ing previous approaches [62], we can extract biclusters from sub-matrices

1Available at http://www.tik.ee.ethz.ch/sop/bimax (Scenario I – Noise)
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Figure 10.7: Average of Purity and Inverse Purity varying noise level for
both random and heuristic sparsifications described in Section 10.3.3. Error
bars represents the standar error of the mean.

and then aggregate the results. In particular, in our experiments, we con-
sider a 10×10 window that selects a portion of the data matrix and we shift
this windows over the data with a full coverage and an overlap degree of
5 rows/columns. We call each sub-matrix a kernel. The proposed protocol
consists of the following three steps:

1. Generate the bicluster set. We extract one bicluster from each kernel
using the additive coherence.

2. Aggregate the results. We group the biclusters provided by step 1
by using a similarity based clustering algorithm (Affinity Propagation
[73]). We defined as similarity between two biclusters the number of
rows/columns they share.

3. Retrieve the final bicluster. Please notice that the coherency in biclus-
ters obtained at the previous step is not guaranteed. For this reason,
we assign to each bicluster a score, exploiting the objective function
(equation 10.1), i.e., evaluating the objective function for such biclus-
ter. This step is repeated for all groups obtained in step 2 and by
keeping the best solution (according to the objective function) we keep
the most coherent solution.

The accuracy of the resulting biclusters has been assessed with the same
metrics used in [146], i.e., the Gene Match Score which is a measure of
similarity between the retrieved biclusters and the real ones. Results in
Figure 10.8 shows that our method is competitive with other state-of-the-
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art approaches (see Figure 2a in [146]), confirming the potentials of the
proposed approach.

Figure 10.8: Performance evaluation on benchmarking dataset as explained
in Section 10.3.4. The relevance reflects to what extent the generated biclus-
ters represent true biclusters in the gene dimension. In contrast, recovery
quantifies how well each of the true biclusters is recovered by the biclustering
algorithm.

10.4 D-Wave experiments

The D-Wave machine is able to minimize an objective function expressed
in accordance to the Ising Model of statistical mechanics. This model can
be arranged in a graph whose nodes represent the qubits and the edges
represent interactions (couplers) between them.

The energy of the Ising model is expressed by the Hamiltonian:

H(σ1 . . . σn) =
∑
〈i j〉

Jijσiσj +
∑
j

hjσj (10.10)

where σ ∈ {+1,−1} and hj is the external magnetic field in site j. The
interaction between the qubits in site i and the one in site j is given by Jij
and it can be either ferromagnetic (Jij < 0 that tends to align the qubits)
or anti-ferromagnetic (Jij > 0 that tends to misalign the qubits). The Ising
energy minimization problem is equivalent through an arithmetic transfor-
mation to a quadratic unconstrained binary formulation. This means that
minimizing the latter corresponds to finding the ground state energy of the
associated Ising model [23] or vice versa.

Due to the engineering difficulties for the physical realization of the pro-
cessor, the D-Wave machine has a well defined, fixed architecture in terms
of qubits and couplers. In particular it is composed by unit cells, i.e groups
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of eight qubits disposed as a complete bipartite graph (see Figure 10.9a or
equivalently Figure 10.9b).

These unit cells are disposed in a two dimensional matrix, where the
left hand nodes within each unit cell connect to the relative nodes in the
up/down unit cells and the right hand nodes connect to the relative nodes
in the left/right unit cells (see Figure 10.10a or equivalently Figure 10.10b).
The topology of this structure is the so called chimera graph.

(a) (b)

Figure 10.9: D-Wave unit cell as shown in [83]. Figures 10.9a and 10.9b are
equivalent representations.

10.4.1 Minor embedding process

Different problems require different QUBO formulations and as a conse-
quence graphs with different connectivity. In order to embed a problem into
the fixed D-Wave architecture previously presented, we can choose between
two possible options:

1. Formulate the QUBO model by taking into account the fixed structure
of the hardware graph. That is, create a QUBO model that is directly
mappable onto the chimera graph.

2. Create a logical formulation (a logical graph as we did in our QUBO
models described both in Chapters 9 and 10) and subsequently embed
it into the physical chimera structure through an operation called the
minor embedding, where a minor of the hardware graph is calculated.

In graph theory, according to Wagner’s Theorem [179], a graph H is a
minor of a graph G if a graph isomorphic to H can be obtained from a
subgraph of G by successive application of these three operations:

• Deletion of an edge.
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(a)

(b)

Figure 10.10: Graphical representation of the chimera graph of a D-Wave
chip with 128 qubits, Figures 10.10a and 10.10b are equivalent representa-
tions.

• Deletion of a node that is isolated after an edge deletion.

• Contraction of an edge.

An edge contraction is the act of removing the edge and simultaneously
merging the two nodes with all their incident edges. A small example is
shown in Figure 10.11.

Without assumptions on the input and target graphs, finding the opti-
mal minor (i.e. the graph that uses the lowest possible number of physical
qubits) is NP-hard. Although with a fixed input graph there is in principle
a polynomial time algorithm due to the Robertson-Seymour theorem [151],
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Figure 10.11: Example of the contraction operation on the red (dotted)
edge, before (Figure 10.11a) and after (Figure 10.11b).

the proof is non-constructive and in practice we are limited to heuristics or
complete algorithms that are intractable.

However, a non-optimal minor embedding can work properly in order
to solve an instance with the D-Wave at a price of devoting more physical
qubits than the optimal embedding. Heuristics in order to solve this problem
has been developed and more detail on the minor embedding techniques for
the D-wave device can be found in literature [40,51,52,97].

10.4.2 Embedding the QUBO model in the D-Wave archi-
tecture

In this section, we report the results of the embedding process performed
on a D-Wave 2XTM machine. The D-Wave 2XTM machine that we used
is hosted at NASA Ames Research Laboratory and has 12 × 12 unit cells
for a total of 1152 qubits,2, see [60] for more details on its hardware and
performance.

As explained, the minor embedding process determines a mapping of
the physical qubits into the problem’s variables, i.e., which physical qubits
should represent which variable of the logical QUBO formulation. Note
that, even if the number of nodes of the model is smaller than the number
of qubits of the processor, it is not always possible to find a valid embedding.
In particular, the embedding into the hardware architecture usually requires
more variables, since some nodes are represented by several physical qubits
(a “chain” of qubits) due to the sparse connectivity of the hardware graph.
All the experiments described here have been performed by applying the
embedding process to our model using the official D-Wave libraries that

2Note that only 1097 of 1152 qubits are operational.
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implements the heuristic proposed by Cai et al. [40].
The parameters we used in the embedding process are those standard

provided by the D-Wave. Moreover, we perform only a single embedding
attempt with standard parameters. This approach, also followed in litera-
ture, (e.g., [136]), is based on the Cai et al. heuristics [40] mentioned before
which may be very suboptimal. As done in [177], [147] and [142], we could
study an optimal choice of the parameters that is more appropriate for the
biclustering problem. This may lead to a better performance of the D-Wave
on our problem.

For our experiments on the D-Wave, we randomly generated the follow-
ing instances (matrices) for the biclustering problem:

• 100 instances of a size of 4× 4 and with bicluster of 2× 2

• 100 instances of a size of 5× 5, 50 of which with a bicluster 2× 3 and
50 with a bicluster 3× 2

• 100 instances of a size of 6× 6 and with bicluster of 3× 3

All these instances are without noise and from these we generated the
QUBO models using the additive coherence measure (equation 10.3) with a
weight parameter w = 1. Results of the number of physical qubits required
after this embedding phase can be observed in the histograms with a Gaus-
sian distribution fit in Figure 10.12a for the 4 × 4 instances, Figure 10.12b
for the 5 × 5 instances and Figure 10.12c for the 6 × 6 instances. In Table
10.1 we report the aggregated results with mean and standard deviation of
the number of physical qubits required per instance.

Table 10.1: Results of the embedding phase: number of physical qubits
required to embed an instance.

Size Min Max µ σ

4×4 94 139 112.03 8.45
5×5 220 321 271.33 20.90
6×6 511 757 634.37 49.41

We can observe that the number of physical qubits required grows signif-
icantly as the instance size increases. With just a starting matrix of 6×6, we
already require almost half of the available physical qubits. As previously
mentioned, this is due to the fact that the few available connections between
physical qubits on the D-Wave architecture necessarily lead to the use of a
high number of physical qubits to represent a single logical qubit. In fact,
our biclustering model consists of fully connected sub-components which
leads to a quadratic overhead even for the most efficient embedding [30].
More details on the number of physical qubits required to represent a single
logical one after the embedding phase can be observed in Figure 10.13a for
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(a)

(b) (c)

Figure 10.12: Results of the embedding phase: number of physical qubits
required to embed (a) the 4 × 4 instances, (b) the 5 × 5 instances and (c)
the 6× 6 instances.

the 4× 4 instances, Figure 10.13b for the 5× 5 instances and Figure 10.13c
for the 6× 6 instances.

In Table 10.2 we report the aggregated results with mean and standard
deviation of the number of physical qubits required per single logical qubit.
As reported in all the cases, for some logic qubits, the embed requires a
minimum of 1 physical qubits. However, the maximum number required
grows as the instance dimension increases. Specifically, the maximum num-
ber required for some qubits in the 6 × 6 instances is 30, which it is three
times the maximum required number for the 4× 4 instance.

10.4.3 Suitability of D-Wave for biclustering problem

Before tackling an optimization problem with a quantum annealing device,
as suggested by King et al. [95] it is crucial to ensure that the problem shows:

• global frustration, i.e., it requires a non trivial combinatorial optimiza-
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(a)

(b) (c)

Figure 10.13: Results of the embedding phase: number of physical qubits
per logical qubit in (a) the 4 × 4 instances, (b) the 5 × 5 instances and (c)
the 6× 6 instances.

Table 10.2: Results of the embedding phase: number of physical qubits per
logical qubit varying instance size.

Size Min Max µ σ

4×4 1 10 4.67 1.72
5×5 1 17 7.75 3.04
6×6 1 30 13.22 5.37

tion. An Ising model is frustrated when the competition between fer-
romagnetic and anti-ferromagnetic couplings leads to a ground state
where the interaction energies between qubits cannot be simultane-
ously minimized.

• local ruggedness, i.e., the problem presents a landscape with tall and
thin barriers.

As biclustering is known to be NP-hard, we expect that its logical
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Ising/QUBO formulation straightforwardly displays global frustration. In
fact, it is possible to show such a behavior even in the limit of a 1-dimensional
matrix biclustering, which can be seen as the building block of any biclus-
tering instance (see Figure 10.14).

In this trivial case, the geometry of the problem is reduced to a complete
graph with three vertices. A frustrated behavior, with two ferromagnetic
couplings and an anti-ferromagnetic one, prevails when the magnitudes of
the weights associated with the three edges become of the same order,3 i.e.,
when the B parameter is significantly larger than V .

V − a1,1

x1

r1

G

B − V

s1

−B
V −B

Figure 10.14: Graph of the complete model for N = 1 and M = 1.

If we consider an arbitrary N × M biclustering instance, frustration
increases because of the presence of NM triangular loops as shown in Figure
10.14, which share vertices among themselves. Moreover, as we can see from
equation 10.9, since B has a linear dependence on N and M , while V does
not, this automatically pushes the model in a V � B highly frustrated
regime when increasing N or M .

Usually, the complex landscape typical of frustrated systems only guar-
antees the presence of many local minima and maxima and it does not imply
that barriers separating them are tall and narrow enough for quantum an-
nealing to work properly. In our biclustering model, such condition of local
ruggedness is given by the QUBO formulation, since the geometry of the
problem results in clusters of nodes which are internally ferro-magnetic cou-
pled [95]. This feature, from the point of view of the energy landscape,
translates into the presence of high and narrow barriers separating min-
ima. To summarize, the complexity of our biclustering model results in
a macroscopically interesting landscape with multiple local minima (global
frustration) and the particular geometry of the problem guarantees the high

3Note that parameter G can always be chosen close to B.
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and narrow barriers in the landscape (local ruggedness).

10.4.4 D-Wave experiments results

The objective of this experimental phase is to determine whether the D-
Wave 2XTM machine is able to retrieve the optimal solution of the QUBO
objective functions of the instances previously described. The D-Wave takes
as input the number of reads a num reads parameter which identifies the
number of states (output solutions) to read from the solver in each pro-
gramming cycle (which we set as described later) along with other hardware
specific parameters for which we used the default values of the machine (e.g.,
the default annealing time for every read of 20 microseconds). In this ex-
perimental phase, we solved every instance previously described in Section
10.4.2 with the following protocol:

• We solved the QUBO instance using the CPLEX library in order to
find the configuration that gives the optimum of the objective function.
For more details on the optimization using CPLEX please refer to
Appendix B.

• We run the instance on the D-Wave 2XTM machine. Specifically, we
run a programming cycle asking for 10,000 reads. Hence the D-Wave
samples the objective function 10,000 times and returns the 10,000
solutions.

• We process the sampled solutions comparing them to the one obtained
with CPLEX, in order to check if the optimum has been found.

• If the optimum has not been found, we repeat the process with a
new programming cycle (we set the maximum iteration to 1000 cycle.
However, it was not necessary to perform so many cycles as can be
seen in the following results).

Regarding the 4 × 4 instances, as we can observe in Figure 10.15, we
obtained most of optimum solution in just one programming cycle and no
more than 4 cycles was required to solve all the 100 instances. As expected,
the number of cycles required grows as the instance size increases. In more
details, regarding the 5 × 5 matrices, we also obtained most of the times
the optimum in one cycle and solved all 100 instances in no more than 55
cycles and regarding the 6× 6 we always obtained the optimum solution in
less then 550 cycles. Specifically, just one 6× 6 instance required 550 runs,
we solved all the other 99 instances in up to 228 cycles. We also report in
Figure 10.16 the average number of cycles required per instance size. These
results lead to the conclusion that it was always possible to get the optimal
solution for all generated QUBO instances.
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Figure 10.15: Histogram of the number of instances where the optimum of
the objective function has been found after a specific number of program-
ming cycles, varying the instance size.

As previously done in literature [150], we compute the probability of
success Ps for a 20µs annealing time (which is the annealing time we used
for a single read). For each set of instances of the same dimension, we

then compute the expected number of runs k =
ln(0.01)

ln(1− Ps)
required to

obtain a 99% success probability and multiply it for 20µs to compute the
total annealing time required to obtain a 99% success. Results are shown
in Figure 10.17. Although solving such small instances with CPLEX takes
milliseconds, with these experiments we have demonstrated the feasibility of
using the D-Wave to solve the biclustering problem. We expect with further
developments of the D-Wave machine to be able to solve bigger instances
and reduce the annealing time required.

10.5 Conclusions

In this chapter we investigated the possible use of quantum annealing in or-
der to solve biclustering problems. In particular, we introduced a quadratic
unconstrained binary optimization model for the one-bicluster problem and
analyzed its properties and correctness.

To cluster the elements of an input data-matrix we used as similarity con-
cept two different coherence measures, namely the constant and the additive
coherence. Such measures allows to find biclusters with different properties.

We intensively tested our model with different parameters using the ad-
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Figure 10.16: Average number of programming cycles required to find the
optimum solution of the QUBO objective function varying the instance size.

Figure 10.17: Expected total annealing time in microseconds to 99% success
for the three instance sizes.

ditive coherence measure on a synthetic dataset. A comparison of the results
against state-of-the-art techniques shows the validity of our approach. In
particular our model is able to retrieve biclusters with a higher accuracy,
significantly outperforming the previous approaches.

Moreover, for a deeper analysis, we investigated different sparsification
heuristics in order to mitigate the space complexity of the model, showing
that it is possible to obtain a significant gain in space while maintaining a
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good quality of the solutions.
As for the practical applicability of quantum annealing to solve the bi-

clustering problem, we have tested our model by means of real experiments
on a D-Wave 2XTM machine. Results suggest that the use of a quantum
annealing approach is feasible only for small matrices. This is due to the
current architecture of the D-Wave processor.

Although the use of sophisticated representations techniques to amelio-
rate the limitations imposed by current experimental hardware [21] or the
use of frameworks to test the statistical significance of the discovered bi-
clusters by filtering the solutions with state-of-the-art statistical tests [86]
is outside of the scope of this contribution, we believe that further devel-
opments of the D-Wave machine including the use of a larger number of
qubits with higher connectivity could allow us to practically use quantum
annealing for hard real-world problems involving biclustering. Thus, the
model that we proposed takes an important step toward the effective use of
quantum annealing for solving the biclustering problem.
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Chapter 11

Conclusions and future work

In many environmental monitoring applications the data collection process
must consider limited resources. As a consequence, it is fundamental to
carefully select the sampling locations in order to maximize the information
obtained from the environment. In thesis we proposed novel solutions for
several interesting problems in this field. Our approaches to address infor-
mation gathering problems are characterized by different properties such as
the efficiency of the computation or the strategy of acquisition of data from
the environment.

As a matter of fact, problems involving environmental monitoring appli-
cations can be distinguished into two macro areas depending on the strategy
of acquisition of data from the environment. When the information gath-
ering process is performed using mobile sensors (such as unmanned ground
vehicles, unmanned aerial vehicles or autonomous surface vessels) the key
problem is the generation of sensing trajectories constrained by the limited
resources available, such as, battery lifetime or computational capabilities
of the mobile platform. Instead, when the information gathering process is
performed using a set of fixed sensors, the key problem is the selection of
the locations where to carry out the deployment, constrained by the limited
number of sensors available.

Our thesis is inserted in the above mentioned scenarios and our contri-
butions range between these two macro areas. Specifically:

• For the case of mobile sensors, in Part II of the thesis, we focus on the
problem known as level set estimation. In the level set estimation prob-
lem we have an unknown scalar field that represents an environmental
phenomena of interest. The objective is to partition each location of
the scalar field into two groups that represent location either above
or below a given threshold level. The objective is to gather as much
information as possible from the environment in order to model the
unknown scalar field and be able to classify each location.

Unlike other approaches in the literature, we consider the case where
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mobile platforms with low computational power can continuously ac-
quire measurements with a negligible cost. This scenario requires to
optimize sensing trajectories by considering that we can obtain data
throughout the entire path executed by the sensor.

In this context we propose two novel algorithms specifically designed
to solve this problem minimizing the computational effort. Specifi-
cally, SBOLSE (Chapter 4) that casts informative path planning into
an orienteering problem and PULSE (Chapter 5) that exploits a less
accurate but computationally faster path selection procedure.

We evaluated the performance of our algorithms both on a real world
and a synthetic dataset. Results show that our techniques are able
to obtain a high quality classification with a shorter path and a lower
computation time compared to state-of-the-art algorithms in literature
for the level set estimation problem.

• In the context of fixed sensors, in Part III of the thesis, we focused
on the variance minimization of a Gaussian process. When modeling
an unknown phenomena using a Gaussian process a key problem is
to decide on the locations where measurements are going to be taken
while considering constraints on the number of available sensors.

Unlike other approaches in literature that consider only a set of avail-
able sampling location to choose from, we consider the case where
sampling location can be chose from a domain of interest that is con-
tinuous, e.g. a portion of the a body of water.

In this context we proposed two novel techniques specifically designed
to select a set of sampling location from a continuous domain in order
to minimize the posterior variance of a Gaussian process. Specifically,
a gradient descent procedure (Chapter 7) to iteratively improve an
initial set of observations and a novel heuristic technique (Chapter 8)
that behaves as gradient descent on an approximated objective func-
tion but with a much faster computation time.

We evaluated our techniques with different settings and results show
that in many cases it is possible to obtain a significant improvement
with respect the well-known submodular greedy procedure used in
literature.

The above mentioned contributions are composed by a set of classical
heuristic algorithms. In addition to that, in Part IV of the thesis, we also
investigate the possibility of using a quantum computation approach in the
context of information gathering optimization. The emergence of quantum
information processing could provide a viable alternative to combat the in-
trinsic complexity of several hard optimization problems.
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A notable progress in this direction is due to the recent development
of the D-Wave quantum annealer, whose processor is designed to solve
Quadratic Unconstrained Binary Optimization (QUBO) problem. As a con-
sequence many works in literature investigate the possibility of using quan-
tum annealing to address hard artificial intelligence problems by proposing
their QUBO formulation.

In this context we proposed two QUBO models designed to solve two
specific problems in the context of information gathering for environmental
monitoring applications. In more details:

• We propose (in Chapter 9) a QUBO model that falls within the same
context of Gaussian process variance reduction. In contrast to the
others two contributions (gradient descent and heuristic) presented in
this thesis, our QUBO model formulates the problem in a discrete
manner, i.e. sampling points can be chosen from a given set of feasible
locations.

Results of our empirical evaluation shows that the optimum of the
QUBO objective function represents a good solution for the problem
obtaining comparable and in some cases better results than the widely
used submodular technique. Hence, the model we proposed takes an
important step towards sampling optimization of Gaussian process in
the context of quantum computation.

• We propose (in Chapter 10) a QUBO model for the biclustering prob-
lem. Biclustering, also known in other scenarios as subspace cluster-
ing, is a term used to encompass a large set of data mining techniques.
Although biclustering is widely used in different scenarios (e.g. gene
expression microarray data analysis), recent work has adopted biclus-
tering for the analysis of data in environmental monitoring applica-
tions.

We investigated the use of quantum annealing for biclustering prob-
lems, in particular we evaluated by testing our model by means of
experiments on a D-Wave 2XTM machine. Results shows a practical
applicability of quantum annealing for small instances of the problem.

Our contributions proposed in this thesis open several new research pos-
sibilities which extend to different aspects of environmental monitoring ap-
plications:

• The techniques proposed in the context of mobile sensors can be ex-
tended in various ways. For example, a natural extension is repre-
sented by the application of multiple platforms. In this case the al-
gorithms proposed could be extended through the use of techniques
derived from the multi-agent system literature.
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Another possible interesting research direction is given by the intro-
duction of additional constraints on the planned trajectories. Since
many different mobile robots are employed during monitoring opera-
tions, these constraints could represent the physical maneuver capa-
bilities (e.g steering capacity) of the specific drones used in a given
application.

• In the context of optimizing sensing locations to minimize the poste-
rior variance of the Gaussian process, the techniques we proposed are
designed and tested with the most common used squared exponential
kernel. A natural evolution of these contributions is the application of
different kernels, allowing to study and define the properties and the
performances in different scenarios.

Moreover, a possible extension is the introduction of additional con-
straints that define specific properties that the sampling locations must
satisfy. For example the enforcement of a maximum distance such that
sensors can reliably communicate one with the other.

• Regarding our QUBO model for the Gaussian process posterior vari-
ance reduction, we proved that the optimum of the objective function
represents a good solution for the problem. However, as future work
an empirical evaluation using a D-Wave quantum annealer is necessary
to determine the degree of precision and the utility of the model.

The increasing use of sensor networks and mobile platforms in real-world
applications requires effective computational models and efficient solution
techniques. Overall, this thesis provides novel contributions in the context
of information gathering optimization for environmental monitoring appli-
cations. We believe that our work provides a novel set of tools that allows
to address these challenging real-world applications under new perspectives.

This thesis shows that the use of QUBO approaches are effective and flex-
ible for environmental monitoring applications. The study of new quantum
computation techniques for environmental monitoring and mobile sensors
control and exploration constitutes an interesting evolution of the topics
covered in this thesis. However, we believe that the use of such models, cou-
pled with the development and advances in the quantum computing field can
provide significant advances beyond environmental monitoring applications.
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Appendix A

Calculation of the gradient

This appendix refers to the calculation of the gradient used in the gradient
descent procedure presented in Chapter 7.

Given the objective function:

J({x1,x2, · · · ,xK}) =
∑
xi∈X

σ2(xi) (A.1)

where σ2(x) is the Gaussian process variance computed as defined by
equation 3.7 that we report here below for convenience:

V[f∗] , σ2(x∗) = k(x∗,x∗)− kT∗ (K + σ2nI)−1k∗ (A.2)

we want to compute the gradient ∇J . As mentioned before in Section
7.1.1 given the set of K measurements and a domain X in d dimensions, the
objective function J is a Kd multi-dimensional function. The gradient of a
multi-variable scalar function denotes the vector of partial derivatives with
respect to the components. In what follows we will present the derivative
with respect to a single component, that is the derivative of the function
with respect to the position of a candidate sampling point.

Moreover, for the sum rule of derivatives
∂

∂x
(u + v) =

∂u

∂x
+
∂v

∂x
we

can simply show the derivative of the Gaussian process variance in a single
point xi. The complete derivative will be the sum of the single variance’s
derivatives.

For the sake of readability of the calculations we slightly change the
syntax of the variance in a point x as follows:

σ2(x) = k(x, x)− k(x, t)T
(
k(t, t) + σ2nI

)−1
k(x, t) (A.3)

where t identifies the vector of sampling points and the partial derivative
∂

∂ti,d
σ2(x) indicates the derivative of the variance in x by moving a candidate

sampling location ti along d-th dimension:

171



Appendix A. Calculation of the gradient

∂

∂ti,d
σ2(x) = −

[
0 · · · 0 ∂

∂ti,d
k(x, ti,d)0 · · · 0

](
k(t, t) + σ2nI

)−1
k(x, t)

+ k(x, t)T
(
k(t, t) + σ2nI

)−1[ ∂

∂ti,d

(
k(t, t) + σ2nI

)](
k(t, t) + σ2nI

)−1
k(x, t)

− k(x, t)T
(
k(t, t) + σ2nI

)−1[
0 · · · 0 ∂

∂ti,d
k(x, ti,d)0 · · · 0

]T
(A.4)

Where ∂
∂ti,d

(
k(t, t) + σ2nI

)
=



0 . . . 0 ∂
∂ti,d

k(t1, ti,d) 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0
... 0 . . . 0

∂
∂ti,d

k(ti,d, t1) . . . . . . ∂
∂ti,d

k(ti,d, ti,d) . . . . . . ∂
∂ti,d

k(ti,d, tn)

0 . . . 0
... 0 . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 0 ∂
∂ti,d

k(tn, ti,d) 0 . . . 0


(A.5)

where
∂

∂ti,d
k(x, x′) denote the partial derivative of the kernel function

used in the Gaussian process regression.
This approach is general to any derivable kernel function k(x, x′). How-

ever, as discussed in the empirical evaluation (Section 7.3), in our exper-
iments for the gradient descent contribute of the thesis we are using the
squared exponential kernel:

k(x,x′) = σ2f exp

(
− (x− x′)T (x− x′)

2l2

)
(A.6)

that in the case of a d-dimensional domain can be rewritten as:

k(x,x′) = σ2f exp

(
−

[x1 − x′1, · · · , xd − x′d][x1 − x′1, · · · , xd − x′d]T

2l2

)
(A.7)

Hence, the derivative of this specific kernel function obtained by moving
a candidate training point ti along the d-th dimension is:

∂

∂ti,d
k(x, ti,d) =

σ2f (xd − ti,d)
l2

exp

(
− [x1 − t1, · · · , xd − td][x1 − t1, · · · , xd − td]T

2l2

)
(A.8)
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CPLEX model

In order to optimize the QUBO models presented in Chapters 9 and 10
using ILOG CPLEX Optimization Studio, each QUBO instance has been
linearized using the following procedure:

• For each node i in the QUBO graph, we create a variable xi with a
coefficient equal to the value inside the node itself.

• For each edge in the QUBO graph between two nodes i and j:

– We create a new variable xk with a coefficient equal to the value
of the edge itself.

– We create two constraints (using the syntax required by CPLEX):

1. xk = 1 -> xi + xj = 2

2. xk = 0 -> xi + xj <= 1

• We bound the variables to be binary {0, 1}.

The total number of variables in the CPLEX linear form is equal to the
number of nodes and edges combined. For example, given the following
QUBO instance graph:

-2

x1

1

x23

its linear formulation using CPLEX syntax is shown in Figure B.1
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Figure B.1: Example with CPLEX syntax of a linearized QUBO problem.
Variable x3 represents the edge between nodes x1 and x2.
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Sommario

L’obiettivo del monitoraggio ambientale è quello di raccogliere informazioni
dall’ambiente e generare un accurato modello per uno specifico fenomeno di
interesse.

Possiamo distinguere le varie applicazioni di monitoraggio ambientale in
due macro aree a seconda della strategia di acquisizione dei dati dall’ambiente.
Nel primo caso, l’utilizzo di sensori fissi dispiegati nell’ambiente consente di
monitorare con un flusso costante di informazioni che provengono da un
insieme predeterminato di luoghi nello spazio. Diversamente, l’uso di pi-
attaforme mobili consente di scegliere in modo adattivo e rapido le posizioni
di rilevamento in base alle esigenze. Per alcune applicazioni (ad esempio il
monitoraggio dell’acqua) ciò può ridurre significativamente i costi associati
al monitoraggio rispetto alle classiche analisi effettuate da operatori umani.

Tuttavia, entrambi i casi condividono un problema comune da risolvere.
Il processo di raccolta dei dati deve tenere in considerazione risorse limitate
e il problema chiave è scegliere dove eseguire osservazioni (misurazioni) al
fine di acquisire le informazioni dall’ambiente nel modo più efficace possibile
e ridurre l’incertezza sui fenomeni analizzati. Possiamo generalizzare questo
concetto sotto il nome di information gathering. In generale, massimizzare
le informazioni che possiamo ottenere dall’ambiente è un problema NP-hard.
Di conseguenza, ottimizzare la selezione dei punti di campionamento diventa
cruciale in questo contesto.

Nel caso di sensori mobili il problema di ridurre l’incertezza su un pro-
cesso fisico richiede di calcolare traiettorie di campionamento vincolate dalle
limitate risorse disponibili, come ad esempio la durata della batteria della pi-
attaforma o la potenza di calcolo disponibile a bordo. Questo problema viene
solitamente definito come Informative path planning (IPP). Nell’altro caso,
l’osservazione con una rete di sensori fissi richiede di selezionare in anticipo
le posizioni specifiche in cui i sensori devono essere dispiegati. Solitamente,
il processo di selezione di un insieme limitato di postazioni informative viene
eseguito risolvendo un problema di ottimizzazione combinatoria che modella
il processo di raccolta delle informazioni.

Questa tesi si concentra sui problemi sopra citati. Nello specifico, indaghi-
amo diversi problemi e proponiamo innovativi algoritmi ed euristiche legati
all’ottimizzazione delle tecniche di raccolta di informazioni per applicazioni

193



Sommario

di monitoraggio ambientale, sia nel caso in cui vengano utilizzati sensori mo-
bili che fissi. Inoltre, studiamo anche la possibilità di utilizzare un approccio
di computazione quantistica nel contesto dell’ottimizzazione della raccolta
di informazioni.
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