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ABSTRACT 

 

It is widely recognized that the immune system can be highly affected by 

tumors through a plethora of mechanisms that allow avoiding an efficient 

recognition and eradication of cancer cells. Among these mechanisms, tumor 

secretome, including tumor-derived soluble factors (TDSFs) and, more recently, 

extracellular vesicles (EVs), is currently drawing much attention in the immune-

oncology field. Particularly, by interacting either with stromal or other tumor 

cells, tumor-derived exosomes (TEX) have been demonstrated as key regulators 

in cancer development, as well as on the metastatic process. Since myeloid-

derived suppressor cells (MDSCs) are critical contributors to the aforementioned 

processes, we investigated the TEX-MDSCs interaction, highlighting the main 

functional consequences of this crosstalk. Indeed, we could demonstrate a TEX-

mediated effect on MDSC suppressive functions, which was even more striking in 

the case of bone-marrow naïve monocytes. Furthermore, we demonstrated that 

this is mainly mediated by iNOS engagement on myeloid cells, possibly induced 

by molecules enriched within TEX. In addition, the injection of TEX derived from 

high metastatic cancer cells in naïve tumor-free mice before the tumor challenge 

with a low metastatic cell line induced an increased spread of cancer cells in the 

lungs of TEX-treated mice. In the attempt to dampen TEX detrimental effects in 

tumor models, we blocked exosome secretion through GW4869 drug 

administration, which did not ameliorate the spread of metastatic cells. On the 

contrary, by targeting one of the TEX-downstream mediators, i.e. a member of the 

S100 proteins family, tumor-bearing mice displayed a restrained suppressive 

tumor network and a strong reduction in the metastatic incidence. Finally, we 

demonstrated that S100A8/A9 sera levels negatively correlated with distant 

metastasis-free survival in pancreatic ductal adenocarcinoma (PDAC) patients. In 

conclusion, our preliminary data highlighted the urgency of developing novel and 

more effective therapeutic approaches based on a full characterization of TEX-
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induced pathways in myeloid cells within the local tumor milieu and, moreover, at 

distal sites of metastasis.    
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SOMMARIO 

 

E’ ampiamente riconosciuto che il sistema immunitario può essere profondamente 

influenzato dal tumore attraverso una serie di meccanismi che consentono di 

evitare un efficiente riconoscimento ed eradicazione delle cellule cancerose. Tra 

questi meccanismi rientra il rilascio di fattori solubili (TDSFs) e, più 

recentemente, di vescicole extracellulari, che attualmente stanno attirando molta 

attenzione nel campo dell’immuno-oncologia. In particolare, gli esosomi derivati 

da tumore (TEX), interagendo con cellule stromali e/o tumorali, rappresentano dei 

regolatori cruciali sia del processo di tumorigenesi che del processo metastatico. 

Poiché le cellule soppressorie di origine mieloide (MDSCs) contribuiscono in 

modo critico ai suddetti processi, abbiamo studiato l'interazione TEX-MDSCs, 

evidenziandone le principali conseguenze funzionali. Nel dettaglio, abbiamo 

potuto dimostrare un effetto mediato da TEX sulle funzioni soppressive delle 

MDSCs, ancora più evidente nel caso di monociti naïve isolati da midollo osseo, 

probabilmente legato all’induzione di iNOS da parte di molecole contenute 

all'interno di TEX. Inoltre, in vivo, il pre-condizionamento con TEX derivanti da 

una linea di tumore fortemente metastatica in animali naïve prima dell’inoculo di 

una linea tumorale poco metastatica ha permesso di evidenziare un incremento 

della disseminazione distale di cellule maligne. Successivamente, nel tentativo di 

contrastare gli effetti dannosi di TEX nei modelli tumorali, abbiamo bloccato la 

secrezione degli esosomi attraverso il farmaco GW4869, che, tuttavia, non è 

riuscito a contrastare la diffusione delle cellule metastatiche. Al contrario, il 

blocco di uno dei mediatori a valle di TEX, ovvero una proteina della famiglia 

S100, si è rilevato efficace nel determinare un forte miglioramento del 

microambiente tumorale soppressivo in un modello di tumore mammario, insieme 

ad una sensibile riduzione dell'incidenza metastatica. Abbiamo inoltre dimostrato 

che alti livelli plasmatici delle proteine S100A8/A9 correlano negativamente con 

la sopravvivenza libera da metastasi in pazienti affetti da adenocarcinoma duttale 

del pancreas (PDAC). In conclusione, i nostri dati preliminari hanno evidenziato 

l'urgenza di sviluppare approcci terapeutici nuovi e più efficaci basati su una piena 
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caratterizzazione dei processi indotti da TEX nelle cellule mieloidi sia all'interno 

del milieu locale del tumore che, soprattutto, nei siti distali di metastasi. 
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 INTRODUCTION  

 

Chapter 1: The immune system in cancer 

 

1.1. Tumor microenvironment 

The growth and the establishment of a neoplastic mass, named as 

tumorigenesis, can be described as a complex and multifactorial process, where 

many cellular and extracellular factors are playing an active role. In last decades, 

the importance of a deep understanding of the environment surrounding the tumor 

has clearly emerged, leading to a promising and dynamic field of scientific 

research focusing on tumor microenvironment (TME). One of the first scientists 

who highlighted the importance of the TME was Stephen Paget, who formulated 

the “seed and soil” theory back in the late 19th century. Paget’s concept remained 

dormant until the middle seventies of the 20th century, when small groups of 

people revisited Paget’s ideas, focusing either on the functions of cellular and 

humoral immune components in TME and the angiogenesis process as key 

components of tumorigenesis and metastatic spread [1]. From there on, the 

research field on the TME moved forward, expanding and enlarging its scope to 

new frontiers, including studies on the interactions either between the 

extracellular matrix (ECM) and tumor cells or between fibroblasts and tumor 

cells. Indeed, structural components of the TME include the tumor lymphatic and 

blood vessels, the ECM, where collagen and hyaluronic acid represent the most 

abundant factors, and the stromal cells surrounding the tumor. Among these, three 

main categories can be identified: angiogenic vascular cells, cancer-associated 

fibroblastic cells (CAFs, including activated tissue fibroblasts, activated 

adipocytes, a-smooth muscle actin (a-SMA) myofibroblasts and mesenchymal 

stem cells) and infiltrating immune cells [2]. Focusing on the cellular components 

of TME, it is known for example that angiogenic vascular cells represent an 

important tool for an optimal supply of nutrients and oxygen, which allows cancer 

cells to partially avoid cell death that would otherwise result from hypoxia and 

lack of survival factors and serum-derived nutrients. For instance, it has been 
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shown that the disruption of the tumor vasculature can increase the efficacy of 

anti-tumoral treatments in preclinical human tumor xenograft models [3]. 

Furthermore, angiogenic vascular cells are responsible for the production of 

paracrine trophic factors and for modulating cancer cell dissemination and 

seeding. Other crucial TME cellular components are CAFs, able to promote tumor 

progression in many different ways, such as by secreting matrix-metallo proteases 

(MMPs), multiple growth factors, stemness-factors or other molecules that induce 

the epithelial-to-mesenchymal transition (EMT) process [4]. The infiltrating 

immune cells, which can vary depending on type and location of the tumor, 

include T cells, B cells, macrophages, inflammatory monocytes, myeloid-derived 

suppressor cells (MDSCs), neutrophils, mast cells and platelets, all playing a 

pivotal role in almost all the hallmarks of cancer [5]. Thus, it is currently widely 

Figure 1. The ten characteristics of cancer: the interplay with the tumor microenvironment. 

The process of tumorigenesis is mainly based on the complex crosstalk that exists between 

cancer cells (light blue cells) and the surrounding stoma components. Cancer cells become more 

and more able to avoid their elimination by acquiring ten principle characteristics: A) unlimited 

multiplication; B) escaping from growth suppressors; C) promoting invasion and metastasis; D) 

resisting apoptosis; E) stimulating angiogenesis; F) maintaining proliferative signalling; G) 

elimination of cell energy limitation; H) evading immune destruction I) genome instability and 

mutation; J) tumor-enhanced inflammation. (Adapted from Wang M et al; J. Cancer, 2017) 
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recognized that cancers develop in complex tissue environments, which they 

depend upon for growing, invading and eventually reaching secondary sites of 

disease. The bidirectional interaction between cancer cells and the above 

mentioned associated stroma components represents a powerful relationship that 

influences either disease initiation, progression and patient prognosis and, on the 

other hand, the TME itself, establishing a crosstalk that can be highly detrimental 

for the outcome of the neoplastic disease.  

Concerning one of the two sides of this crosstalk, it has been proven how 

tumor microenvironments are deeply influenced by the ten main characteristics of 

cancer (Figure 1). Among these characteristics, the ability of evading immune 

distraction is part of a complex process (fully described in the next paragraph), 

named cancer Immunoediting theory, by which tumor cells progressively acquire 

the ability to avoid the detection by the immune system or to limit the extent of 

immune-mediated killing.  

 

1.2. Cancer Immunoediting  

 The cancer Immunoediting theory was formally enunciated and published 

by Robert Schreiber in 2002 [6], overcoming and ameliorating what was known to 

be the cancer immunosurveillance hypothesis of Burnet and Thomas [7]. This first 

hypothesis embodied the idea that the immune system could be considered as a 

“surveyor” that can constantly monitor the whole organism’s homeostasis, 

recognize and destroy nascent potentially transformed cells. However, in the last 

decade it has emerged that the hypothesis advanced by Burnet and Thomas in 

1970 represents just one phase of a more complex process that is established by 

the crosstalk between the emerging cancer cells and the immune components. 

Particularly, the cancer Immunoediting theory underlines how normal cells, 

subjected to common oncogenic stimuli, can eventually undergo transformation 

and become tumor cells, thus starting the process of cancer immunoediting, which 

develops in three distinct phases: elimination, equilibrium and evasion. At the 

early stages of tumorigenesis, tumor cells can express distinct tumor-specific 

antigens and generate pro-inflammatory signals that can alarm different 

components of the immune system. In the elimination phase the immune system is 
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able to recognize and eradicate cancer cells thanks to the activation of both innate 

and adaptive immune components, such as macrophages, natural killer cells 

(NKs), natural killer T cells (NKT) or γδ T cells. If the elimination phase occurs 

efficiently, all tumor cells are cleared and the tissue physiological homeostasis is 

re-established. Otherwise, if a portion of tumor cells is able to survive, the 

equilibrium phase arises: immune and tumor cells start a dynamic process where 

the first can carry out a selective pressure on the transformed cells that might lead 

to the survival of new cancer cell variants, which have acquired the ability to 

resist, suppress or avoid the immune attacks by accumulating several mutations. 

Eventually, these cell variants are able to step into the escape phase, where the 

immune system is no longer capable of controlling and/or eradicating the threat 

given by the neoplastic transformation, thus resulting in the growth of the tumor 

mass.  

The ability of tumor cells to escape the immune eradication relies on many 

different mechanisms, which concern intrinsic characteristics of the transformed 

cells themselves or that can be related to their ability of altering the effector 

mechanisms of the immune system. Regarding the main characteristics that cancer 

cells may own, many evidences clearly proved that they can lose the expression of 

tumor-specific antigens (especially those that are more immunogenic), thus 

avoiding an effective recognition, or, moreover, they can negatively modulate the 

expression of the major complex of histocompatibility II (MHCII), resulting in a 

diminished capacity of antigen presentation [8]. Nevertheless, cancer cells are able 

to downregulate the expression of death receptors in order to increase their 

survival and maintaining their uncontrolled proliferative property.  

Simultaneously, the growing tumor can create a suitable tollerogenic 

framework for its development either by the expression of molecules that affect 

the functionality of the effector immune cells (e.g. programmed death ligands 1/2) 

or by the continuous release of TDSFs, including cytokines, chemokines and 

metabolites [9]. All these TDSFs favor the recruitment of immunosuppressive 

populations, such as T regulatory cells (Tregs), which act by avoiding the 

generation and activation of effector cytotoxic T cells (CTLs), or NKT cells, able 

to inhibit the CTLs’ functions. Moreover, TDSFs affect also the normal 
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hematopoiesis inducing the alteration of the natural commitment of other immune 

cells such as macrophages, neutrophils and dendritic cells (DCs) and an aberrant 

expansion and accumulation of immature myeloid cells with immunosuppressive 

features like myeloid-derived suppressor cells (MDSCs), which will be deeply 

described in the following paragraph.  

 

1.3 Myeloid-derived suppressor cells 

 Myeloid-derived suppressor cells (MDSCs) represent a pool of different 

and heterogeneous populations of cells characterized by their myeloid origin, 

immature state and ability to potently suppress T lymphocytes’ functions. Firstly 

described by Strober and colleagues as natural suppressor (NS) cells, this 

population has started to be identified as “MDSCs” just in 2007, when the term 

was coined in order to highlight its main properties [10]. In physiological 

conditions, these cells act in order to inhibit T cell immunity, thus avoiding 

aberrant continuous responses that might be detrimental for the organism. 

However, acute-phase conditions, such as chronic infection, sepsis or cancer lead 

to normal and abnormal/emergency myelopoiesis that is controlled by the 

production of granulocytic or monocytic growth factors (GM-CSF, G-CSF and 

M-CSF) leading to the production of mature and immature myeloid cells from 

precursors in the bone marrow (BM), including MDSCs. Their pivotal role in the 

establishment of a favorable microenvironment for the tumor growth has been 

highlighted by several evidences, which have showed their expansion occurring in 

different solid and hematologic neoplasms in both mouse model [11] and human 

patients [12]. Furthermore, the levels of circulating myeloid cells can be 

prognostic of a poor clinical outcome in different human cancers, such as breast 

cancer and non-small lung cancer [13, 14]. 

Although the heterogeneous nature of MDSCs, numerous studies in mice 

have led to the identification of two main subsets with different phenotypic and 

biological properties: monocytic (M)-MDSCs and polymorphonuclear (PMN)-

MDSCs. Both the subpopulations share the CD11b myeloid marker but can be 

easily distinguished by the different expression of the two main Gr-1 epitopes, 

Ly6C and Ly6G. M-MDSCs (Gr-1lo/intCD11b+Ly6ChiLy6G-) display the highest 
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Figure 2. The MDSC regulatory functions in tumor progression. MDSCs are able to affect the 

tumor microenvironment via direct immune (green left panel) or non-immune mechanisms 

(orange right panel). In detail, MDSCs may act by inducing T regulatory cells or reprogramming 

macrophages towards the pro-tumorigenic M2 phenotype, or by interfering with T cell migration 

and viability. In addition, thanks to the activation of enzymes like iNOS, ARG1 and IDO1, they 

determine the depletion of essential metabolites for T cell survival and activation, and, morevor, 

they can secrete ROS and RNS, responsible for the alteration of important functions of T cells. 

Concerning the non-immune mechanisms exerted by MDSCs, it has been demonstrated their 

involvement in the promotion of metastases (by the release of factors that contribute to the 

EMT, MET, invasion and migration processes), in angiogenesis and vasculogenesis induction, 

as well as in tumor cell stemness promotion. (Adapted from Ugel et al. JCI, 2015)  

immunosuppressive activity in an antigen-non-specific manner, whereas PMN-

MDSCs (Gr-1lhiCD11b+Ly6CloLy6G+) are less immunosuppressive and exert 

their function by antigen-specific mechanisms [11, 15]. Indeed, besides the 

phenotypical characterization, what really defines MDSCs are their suppressive 

regulatory properties, which can directly cause immune dysfunction or that can be 

considered as “non-immune” related mechanisms [9]. Among the main direct 

immune-regulatory functions of MDSCs three enzymes, arginase 1 (ARG1), 

indoleamine-2,3-dioxygenase 1 (IDO1) and nitric oxide synthase 2 (NOS/iNOS), 

play an essential role (Figure 2) [16]. Indeed, these enzymes, by depleting 

essential aminoacids, such as L-arginine (by ARG1 and NOS2 activity) [17], L-

tryptophan (by IDO1 and IDO2) and L-cysteine (whose transport is altered) [18], 

induce an impairment of T cell proliferation and function. Moreover, MDSCs can 

inhibit T lymphocytes fitness by producing reactive oxygen species (ROS) or 

reactive nitrogen species (RNS) [19]. ROS, primarily produced by NADPH 
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oxidase 2 (NOX2), are highly released during injury or damage and, as already 

proved, their inactivation can revert the immunosuppressive capacity of MDSCs 

towards T cells. Indeed, ROS and RNS, which are produced by MDSCs, provoke 

the nitration of essential surface receptors of T cells: for instance, the nitration of 

tyrosine residues on T cell receptor (TCR), or on CD8 molecules, changes the 

conformation of the TCR abolishing antigen-specific recognition [20]. 

Furthermore, in MDSCs isolated from tumor-bearing mice, the up-regulation of 

NOX2 activity and ROS release lead to the enhancement of several NOX2 

subunits, thus creating a detrimental feed forward loop causing high amount of 

ROS released. Another direct immune-regulatory mechanism is related to the 

MDSC expression of the T cell-inhibitory receptors ligands, such as programmed 

death ligands 1/2 (PD-L1/2), which bind to PD-1, B7-1/2 (binding CTL-A4) and 

FASL (binding FAS), all associated to the inhibition of T cell responses. More 

specifically, it has been demonstrated that the tolerogenic and immunosuppressive 

environment created by tumors critically depends on the transcription factor 

C/EBP, as demonstrated by the evidence that its lack in myeloid cells results in a 

full abrogation of their activity on antigen-activated CD8+ T cells [21]. 

Furthermore, in 2013 Sonda and colleagues unveiled a direct miR-142-3p-Cebpb 

interaction that promotes myeloid cells differentiation toward immunosuppressive 

cells [22]. 

In addition, MDSCs are able to exert their regulatory properties by several 

indirect mechanisms, such as interfering with T cells migration and viability and 

inducing specific subpopulations of regulatory cells, like antigen-specific Tregs, 

and M2-macrophages by tumor-growth factor  (TGF-β) and interleukin-10 (IL-

10) release respectively. Finally, MDSCs not only play a role in creating an 

immunosuppressive microenvironment but they can also favor tumor growth and 

metastatic spread by non-immune related mechanisms [23]. For instance, through 

the secretion of soluble mediators like vascular endothelial factor (VEGF), 

bombina variegata peptide 8 (Bv8), matrix metalloproteasis 9 (MMP-9) and/or 

TFG and hepatocyte growth factor (HGF), they can induce tumor 

neoangiogenesis and EMT, a condition in which cells acquire improved spreading 

features. Interestingly, MDSCs located in the pre-metastatic niche may release the 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/t-cell-receptor
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cd8
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proteoglycan versican inducing also the opposite process (MET) allowing tumor 

cells to seed and colonize the organ [24]. At the same time, in vitro experiments 

unveiled that MDSCs are able to determine a stem-like phenotype in cancer cells 

based on TGF, EGF and/or HGF release, finely tuning tumor senescence [25]. In 

addition, they exert this activity either via the secretion of soluble mediators such 

as IL-1RA [26] or with direct effect on cancer stem cell expansion [27], as well as 

via miRNA-mediated gene regulation [25].  

In humans, after twenty years of intensive research, scientists of the field 

elaborated a multiparametric flow cytometry panel for MDSCs characterization 

and enumeration, which allows the simultaneous detection of all the human 

subsets. Similarly to what previously described in mice, MDSCs can be divided in 

two main cell subsets: M-MDSCs (CD11b+CD14+HLA-DR-/loCD15-), PMN-

MDSCs (CD11b+CD14- CD15+) and a third group, called “early stage MDSC” 

(eMDSCs, Lin-HLA-DR-CD33+) comprising more immature progenitors [28]. A 

useful marker for the identification of the most suppressive MDSCs subset is the 

-chain of IL-4R; in fact, its expression on MDSCs of colon cancer and 

melanoma patients correlates with a more immunosuppressive phenotype [29]. 

Recently, MDSCs have been indicated as predictive marker of response in 

advanced melanoma patients treated with anti-CTLA-4 antibody ipilimumab, 

since clinical responders to the therapy showed significantly less Lin-CD14+HLA-

DR-cells [30]. However, since human MDSCs display a high plasticity and 

surface markers shared with common myeloid subsets, in order to state them as 

proper MDSCs it is necessary to integrate the phenotypic characterization 

demonstrating their in vitro suppressive ability. Giving this and other evidences, a 

deep investigation of which are the strategies that may be pursued in order to 

target MDSCs in cancer becomes crucial, in order to switch the tolerogenic and 

pro-tumorigenic TME to a more responsive and efficient one.  

 

1.4 MDSC regulation and recruitment 

Besides the immunoregulatory properties belonging to MDSCs, many 

research groups are focusing on how these cells are recruited and regulated during 

tumor progression and metastatic spread. As previously mentioned, TSDFs 
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include cytokines and chemokines that are responsible for the generation, 

expansion and recruitment of MDSCs at tumor site. Concerning the most relevant 

cytokines, tumor-derived GM-CSF has been demonstrated to play a pivotal role in 

the generation of MDSCs; indeed, in combination with IL-6, IL-1β, prostaglandin 

(PG) E2, tumor necrosis factor (TNF)-α or VEGF is able to mediate, in humans, 

the generation of highly suppressive MDSCs from CD33+ peripheral blood 

mononuclear cells (PBMCs) isolated from healthy donors [31]. IL-6 is another 

cytokine that is critically responsible for MDSCs generation and survival, as 

highlighted by Wu and colleagues, who demonstrated that increased IL-6 

concentrations correlated with MDSC frequencies and their immunosuppressive 

functions in tumor-bearing hosts [32]. VEGF and TGF-β have also been 

demonstrated to have a strong impact on the regulation of hematopoiesis and on 

the MDSC generation and expansion. For instance, the combination of the two 

factors is able to prevent dendritic cells (DCs) maturation, to polarize myeloid 

cells towards an immunosuppressive phenotype and to partecipate to the induction 

of tumor-associated macrophages (TAMs) [33]. Other well-known factors 

involved in MDSC expansion and activation, which may vary according to the 

tumoral context, include: granulocyte CSF (G-CSF), macrophage CSF (M-CSF), 

stem cell factor, TGF-β, TNF-α, prostaglandin E2, the S100 proteins S100A9 and 

S100A8, and interleukin (IL)-1β.  

Once generated and expanded, MDSCs are recruited to the TME through 

specific chemokines that allow MDSC migration inside the cancer site. 

Chemokines are small (8–14 kDa), structurally related chemotactic molecules that 

regulate trafficking of various cells (including leukocytes) through interactions 

with specific seven-transmembrane, G protein-coupled receptors. The pattern of 

chemokines responsible for MDSC recruitment has been shown to be dependent 

on the MDSC subset and on the tumor model. One of the most well described 

mechanism of recruitment involves the chemokine (C-C motif) ligand (CCL) 2 

and its receptors in the attraction of M-MDSCs [34]. Furthermore, chemokine (C-

X-C motif) ligand (CXCL) 8 and CXCL12 can determine a dramatic MDSC 

accumulation in gastric and ovarian cancer microenvironment, whilst in the 

context of a breast cancer mouse model CXCL12 seems to exert the opposite 
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effect [35]. Other groups have then underlined the major role of other type of 

chemokines, such as CCL3, CX3CL1, and CCL5, the latter recently highlighted 

as strong activator of the hypoxia-inducible factor (HIF)-1α signalling cascade 

causing upregulation of VEGF expression, in turns responsible for MDSC 

generation and activation [36].  

In the last few years, it has emerged that MDSCs could also be induced 

and expanded in response to extracellular vesicles (EVs) released from cancer 

cells, as tools to increase the ability of escaping from the immune control. 

Therefore, it becomes important to study not only how soluble inflammatory 

factors are able to affect the TME, but also to include in the analysis tumor-

derived EVs, which are of critical importance in understanding the network 

between the cancer cells and the immune ones.  
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Chapter 2: Tumor-derived exosomes 

 

2.1 Extracellular vesicles: features and functions 

 Every known organism, from the simplest to the most evolved one, 

requires efficient cell-to-cell communications in order to develop a complex 

network between the different types of cells that is essential both in physiological 

and pathological conditions. In order to communicate, cells must be able to send 

and receive signals, which in turn may trigger a variety of responses according to 

the type of signal and recipient cells. This communication may occur through 

direct interaction that requires cell-to-cell contact, as in the case of group of cells 

that signal across gap junctions; this mechanism allows triggering a coordinated 

response to a signal that only one of the cells may have received [37]. Concerning 

another form of direct signalling, two cells may bind to one another via interaction 

between proteins on the cell surface, thus starting an intracellular signalling 

resulting in a specific cell response. This kind of signalling is critically important 

for the immune system, where immune cells take advantage of cell-surface 

markers to recognize “self” cells, as well as, infected and transformed ones, in 

order to activate specific tolerogenic or immunogenic programs, respectively. 

Nonetheless, normal and altered cells can also communicate by the release into 

interstitial spaces and into body fluids of soluble factors (cytokines and 

chemokines) and/or of bilayered membrane-bound vesicles, both allowing the 

delivery of messages not only locally but also at the systemic level. In regard to 

extracellular vesicles (EVs), the last few years have seen a massive increase of the 

amount of groups who have been focusing in this promising research topic, 

especially in light of the strong evidences that highlight the prominent role of EVs 

in the context of cancer and metastasis [38]. By now, it is generally accepted that 

cells release several EVs populations with distinct biophysical features and 

biological functions. According to the most common classification, microvesicles, 

apoptotic bodies and exosomes are among the EVs populations most widely 

studied and well characterized (Figure 3).  
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Microvesicles 

These common EVs are small membrane-enclosed bodies whose dimensions can 

range between 100 and 1000 nanometres (nm) and are formed by the outward 

budding of the cell membrane. Once generated, microvesicles can enable the 

horizontal transfer of cargoes that include molecules and effectors, thus affecting 

the extracellular milieu with consequences for the surrounding environment. For 

instance, it has been shown that microvesicles found in the circulatory system 

contribute to the coordination of the pro-coagulatory response [39] by the 

exposure of tissue factor, a transmembrane protein that acts as cofactor for the 

VIIa factor (FVIIa), the primary biological initiator of the coagulation cascade. 

Moreover, microvesicles play a major role in inflammation, exerting both pro-

inflammatory [40] and anti-inflammatory [41] effects on their environment. In 

both cases, this may occur principally through the transfer of bioactive molecules, 

like cytokines and chemokines, to target cells. Indeed, it is already established, for 

example, that microparticles derived from N-formyl peptides (fMLP)-stimulated 

polymononuclear cells can induce the expression of IL-6 and monocyte 

chemotactic protein 1 (MCP-1) in endothelial cells, thus resulting in their 

activation [40]. If microvesicles are released by cancer cells they are commonly 

Figure 3. General classification of EVs. Extracellular vesicles are normally classified according 

to their size and mechanism of secretion. Briefly, exosomes (left) are defined as membrane-bound 

vesicles ranging from 30 to 100 nm in greatest dimension, and they originate from multivesicular 

bodies (MVBs) within the cell. Microvesicles (middle), ranging from 100 to 1000 nm, are released 

from cell membrane surfaces during activation or apoptosis of all eukaryotic cells, whilst apoptotic 

bodies (right), sized from 1 to 5 μm, are commonly generated during the latest stages of the 

apoptotic process. (Adapted from Chen et al., Gen. Prot. Bioinformatics, 2017) 
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named as “oncosomes”, term that highlights their origin and their ability to 

transfer oncogenic properties to target cells. Recently, it has been suggested a 

distinct role for oncosomes in tumor progression, which might play a selective 

metabolic function over the other EVs subclasses. Particularly, Minciacchi and 

colleagues have demonstrated that oncosomes are enriched in proteins able to 

affect glutamine metabolism in recipient cancer cells, such as HSPA5 (Heat shock 

protein 70 family protein 5) and GOT1 (Glutamate oxaloacetate transaminase 1), 

leading to metabolic derangement in tumor cells and tumor-stroma associated 

with cancer cell proliferation [42]. Furthermore, oncosomes are known to be able 

to horizontally transfer metalloproteinases, RNA, caveolin-1, and the GTPase 

ADP-ribosylation factor 6, being biologically active towards cancer cells, 

endothelial cells, and fibroblasts, thus potentiating advanced disease [43].  

 

Apoptotic Bodies 

The release of these vesicles into the extracellular milieu represents the ending 

phase of the apoptotic cell death, during which cells disintegrate and generate 

apoptotic bodies (AB) and apoptotic microvesicles, also known as ectosomes. 

Sized from 1 to 5 μm, apoptotic bodies contain parts of the dying cells and are 

generally engulfed by phagocytic cells, where their inner components may be 

recycled. Moreover, it has been suggested that membrane-bound fragmentation of 

the apoptotic cell might be important for chemotactic signalling to mononuclear 

phagocytes, as macrophages can be attracted by CX3CL1/fractalkine released 

from apoptotic lymphocytes via caspase- and Bcl-2 regulated mechanisms [44]. 

Interestingly, apoptotic bodies contribute to antigen presentation via direct and 

cross-presentation mechanisms in several disease settings, such as autoimmunity, 

antimicrobial immune responses and organ/transplant rejection. In this regard, it 

has been recently shown that apoptotic vesicles generated from dendritic cells and 

B16-F1 melanoma cells present on their surfaces MHC II molecules, suggesting 

their potential ability of activating CD4+ T cells [45]. Finally, apoptotic bodies can 

carry a variety of biomolecules, such as vesicle-associated cytokines and/or 

damage-associated molecular patterns (DAMPs), which could directly modulate 

immune cells. This happens for example in some autoimmune diseases, where 
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high mobility group box protein B1 (HMGB1) derived from peripheral blood 

mononuclear cells and T cells can be found in apoptotic vesicles [46]. 

 

Exosomes 

Among the EVs subpopulations, exosomes probably represent the most well 

studied and characterized one, as many research groups are putting efforts in the 

investigation of their regulatory properties, both in physiological and pathological 

conditions. Exosomes, observed via electron microscopy, can be defined as 

spherical-to-cup shaped, bilayered, membrane-bound nanovesicles, whose 

dimensions may vary from 30 to 100 nm. They are characterized by the 

phenotypic expression of specific surface molecules that are commonly used to 

identify them. The most frequent ones are the surface tetraspanins, CD9, CD63, 

CD81, CD82, and other markers like intracellular adhesion molecule-1, αvβ3 

integrin, Alix, CD80, CD86, CD96, Rab-5b and the MHC class I and class II 

complexes.[47-49]. The pattern of molecules expressed on exosomes surface can 

be highly different depending on the origin of the secreting cell; for instance, 

exosomes containing waste and less-needed products are likely to have surface 

molecules that instruct macrophages to remove them [50]. On the contrary, 

exosomes that are released from cancer cells, may result enriched in some 

proteins, like heat shock proteins (HSPs), whose expression has been associated to 

tumor progression [51]. Regarding their inner content, it is widely assessed that 

exosomes can transfer to target cells a variety of different molecules, including 

either proteins (enzymes, cytoskeletal proteins, signal transduction proteins, heat 

shock proteins and multivesicular bodies (MVBs) biogenesis proteins), RNA 

molecules, such as mRNA and/or miRNA, and also lipids. The type of content 

boarded depends on both the secreting cell type and its status, meaning that what a 

cell secretes is associated to the cell function and condition. Besides their size and 

surface markers, what distinguishes this type of vesicles is their origin within the 

cells; indeed, exosomes generate from MVBs, which then fuse with the plasma 

membrane for the release of vesicles in the extracellular microenvironment. The 

regulation of this process requires multiple molecular factors, like the complex 

ESCRT (Endosomal Sorting Complex Required for Transport), which is directly 
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responsible for cleaving the membrane buds and allowing the vesicles release, 

together with the syndecan 1-syntetin and Alix proteins. Moreover, other factors 

including calcium, calcium ionophores, phosphatidylinositol 3-kinase, heat, 

ischemia, cellular stresses, pH, phorbol esters and loss of cellular attachment, are 

all somehow affecting the release of exosomes, suggesting how complex might be 

the regulation of this process. Once secreted, exosomes provide autocrine, 

paracrine and endocrine signals by interacting with the target cells and 

contributing to intercellular communication. However, how exosomes from 

different origins target specific cells is still to be fully elucidated. Some insights 

come from the evidence that exosomes, as well as the other types of vesicles, can 

initiate a signalling by an antigen-antibody interaction in the recipient cell and/or 

by the activation of a receptor on the cell membrane of the target cell. Active 

uptake of exosomes by dendritic cells, for example, seems to be mediated by the 

direct interaction with surface molecules like CD9, CD11a, CD54, CD81 and 

αvβ3, although the blocking of these signalling proteins with antibodies cannot 

completely abrogate exosomes internalization, unveiling that combinations of 

surface signals might be necessary for this process [52]. Nevertheless, exosomes 

can also be taken up via endocytosis or fuse directly with the plasma membrane, 

thus releasing their cargoes into the cytosol of target cells. The final aim of these 

ways of interactions is to vehicle signals and information critical for establishing a 

physiological network between cells. In this regards, as already mentioned, 

exosomes may serve as “cleaners” because of their ability to export waste 

products, no-longer useful molecules as cells differentiate and harmful molecules. 

More importantly, to date there are several evidences underlying their roles in the 

intercellular communication between “normal” immune cells. Among these roles, 

it has been demonstrated that exosomes are involved in the establishment of 

maternal-fetal tolerance, as proved by the fact that placental exosomes can carry 

immunosuppressive and anti-inflammatory molecules, such as FAS ligand, ULBP 

1 o 5 that bind to the NKG2D receptor [53], or the chromosome 19 miRNA 

cluster [54]. Furthermore, exosomes can play an important role also in the 

processing of antigens by APCs (Antigen Presenting Cells). Indeed, it has been 

shown that exosomes can either enhance CD4+ T cells activation, by expressing 
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MHC class II-peptide complexes, which are derived from peptide-pulsed DCs 

[55], or they can drive CD8+ T cell responses, as demonstrated by Charlotte 

Admyre for monocyte-derived-DCs exosomes on autologous T cells from human 

pheripheral blood samples [56]. Giving this information, there is no doubt about 

the potent regulatory properties of exosomes; therefore, it is not surprising that 

also transformed cells may take advantage of these tools to shape and affect their 

environment in a detrimental way. 

 

2.2 Exosomes as important drivers of tumorigenesis  

Cancer cells can exploit a variety of mechanisms in order to avoid their 

recognition and eradication by the immune system, and the secretion of vesicles 

with immunomodulatory properties likely well contribute to this aim. The key role 

of tumor-derived exosomes (TEX) in cancer is strongly supported by the latest 

evidences showing the plethora of effects of TEX on different actors within the 

tumor microenvironment (Figure 4). Particularly, TEX have the ability to decrease 

the immune surveillance of tumors, and, on the other hand, they can mediate non-

immune functions on primary malignant lesions. One of the main pro-tumorigenic 

effects of TEX concerns the induction of a decrease in the proliferation and 

cytotoxicity of NKs and T cells. In this regard, it has been shown that NKG2D 

ligand-expressing exosomes may serve as decoys with a powerful ability to down-

regulate the cognate receptor and impair the cytotoxic function of NKs [57]. The 

impairment of the NK functions might also be due to the TEX cargo, like TGFβ1, 

which can post-transcriptionally up-regulate mature microRNA-1245 expression, 

thus leading to the down-regulation of NKG2D and impairment of the NKG2D-

mediated immune responses [58]. Furthermore, TEX have been found to directly 

affect T cells viability and cytotoxicity. Indeed, TEX from kidney 

adenocarcinoma cells contain Fas ligand that allow them to trigger Jurkat T cells 

apoptosis in vitro [59], as well as TEX isolated from sera of patients with oral 

cancer have been shown to effectively induce activated T cells apoptosis via the 

expression of Fas ligand [60]. In addition, the transfer of molecules as Trail or 

related molecules (e.g. TNFα) can cause apoptosis of activate T lymphocytes by 

suppressing CD3ζ chain and Jak3 [61]. Another mechanism by which TEX may 
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promote tumorigenesis is by decreasing the number and/or activity of APCs, 

including DCs, reducing tumor-associated antigens presentation and therefore, 

anti-tumoral responses. In this regard, it has been demonstrated that exosomes 

from Lewis Lung Carcinoma (LLC)-, or 4T1 breast cancer cells, can block the 

differentiation of myeloid precursor cells into CD11c+ DCs and induce cell 

apoptosis [62]. Interestingly, TEX may also induce CD14+ cells to shift towards 

immunosuppressive CD14+ HLA-DR-/low cells, which in turn can release TGFβ 

and inhibit T cells activity [63]. The establishment of an immunosuppressive 

microenvironment also happens through the accumulation and induction of both 

Tregs, via TGFβ1 and IL-10, and MDSCs populations, which have a critical role 

in tumorigenesis. Exosomal TGFβ, which is able to increase prostaglandin E2 

(PGE2) expression, seems to have a key role in the accumulation of MDSCs in 

renal cell carcinoma [64], whereas pancreatic ductal adenocarcinoma (PDAC)-

derived exosomes can enrich the microenvironment in MDSCs in a SMAD4-

dependent manner [65], therefore suggesting that different mechanisms may 

participate in MDSCs recruitment depending on the cancer type. Besides MDSCs 

accumulation at tumor site, it is crucial how TEX modulate their activation: 

indeed, recently it has been proved that the interaction between exosomal HSP70 

and MDSCs determines the suppressive activity of the latter via phosphorylation 

of Stat3 (p-Stat3) and this occurs in a TLR2-MyD88-dependent manner [66]. 

More importantly, in a human setting of chronic lymphocytic leukemia (CLL), in 

response to TEX monocytes and macrophages have been proved to skew towards 

pro-tumorigenic phenotypes, including the release of tumor-supportive cytokines 

and the expression of immunosuppressive molecules such as PD-L1, giving 

important insights regarding the therapeutic potential of a deep comprehension of 

TEX-mediated immunosuppressive effects [67]. 

As above mentioned, an important “non-immune” pathway by which TEX 

affect the tumor microenvironment relies on their ability to stimulate 

angiogenesis, thus allowing the supply of oxygen and nutrients to the developing 

tumor. Specifically, malignant cells in hypoxic and similar environments can 

secrete exosomes containing TGFβ and VEGF that are known to be involved in 

angiogenesis stimulation. Furthermore, TEX can directly target vascular 
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endothelial cells, as demonstrated in gastric cancer where exosomes deliver miR-

130a from gastric cancer cells into vascular cells to promote angiogenesis and 

tumor growth by targeting c-MYB [68]. TEX can further sustain tumorigenesis 

thanks to the autocrine signalling that they are able to induce in cancer cells 

themselves, which in many cases inhibits the apoptotic process and increases cell 

proliferation and invasion. This has been proved for example for gastric cancer 

exosomes, which allow the promotion of tumor cell proliferation via PI3K/Akt 

and MAPK/ERK pathways [69], or for prostate cancer (PCa), where exosomes 

carrying Survivin, an inhibitor-of-apoptosis (IAP) protein family member, have 

been detected in PCa patients with disease progression, suggesting its critical role 

Figure 4. Multiple roles of exosomes in tumorigenesis. Exosomes released from tumor cells (red 

dots) can deeply contribute to the tumorigenesis process and to the dissemination of cancer cells 

by different mechanisms. Once secreted in the tumor microenvironment (A) exosomes (red dots) 

may participate to the formation of the pre-metastatic niche (B) by activating dendritic cells and 

macrophages, stimulating tumor cell proliferation and angiogenesis, differentiating fibroblast into 

myofibroblasts and degrading extracellular matrix thus favouring cell invasiveness and migration. 

Moreover, they can modulate the immune system towards a more favorable and 

immunosuppressive environment, thanks to the induction of cytotoxic T cell apoptosis, 

differentiation of T helper cells into T regulatory cells and reduction of NK cells proliferation (C). 

Finally, they may act directly on the bone marrow inducing the mobilization of bone marrow-

derived cells (BMDC) that are then recruited to tumor and pre-tumor tissue where they contribute 

to cancer development (D). (Adapted from Tickner J et al., Frontiers in Oncology, 2014).  
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in favouring the resistance to apoptosis [70]. Notably, TEX are also involved in 

inducing changes in fibroblasts towards myofibroblasts, a phenomenon that can 

lead to the degradation of the extracellular matrix and increased production of 

pericellular hyaluronic acid, thus facilitating the invasion of neoplastic cells; how 

TEX can thus facilitate the metastatic spread of malignant cells will be further 

described during this discussion. Finally, it is worth mentioning another major 

feature of TEX, which consists in their ability of conferring to malignant cells 

chemoresistance against numerous, but not all, chemotherapeutic drugs. As 

exosomes are physiologically programmed to get the cells rid of waste products 

and less-needed molecules, they can also export potentially harmful products, 

such as chemotherapeutic drugs like cisplatin and doxorubicin [71], but not 5-

fluorouracil [72]. Moreover, in the breast cancer context, HER2+ exosomes can 

bind to anti-HER2 antibodies (for example, Herceptin®), therefore limiting their 

bioavailability and therapeutic efficacy. Consequently, sustained tumor growth is 

permitted via interactions between HER proteins on the surface of tumor cells and 

growth factors/EGFR ligands in the tumor microenvironment [73]. Thus, 

exosome-induced chemoresistance is now emerging as a novel mechanism that 

still needs clarifications in order to be efficiently contrasted.  

 

2.3. Novel opportunities regarding TEX in the clinical approaches 

Having pinpointed all the principle ways by which cancer cells may 

modulate their microenvironments by the release of exosomes, it is worthwhile 

describing how the understanding of these mechanisms could be exploited in the 

clinical approaches (Figure 5). Some steps forward have been recently made in the 

identification of exosomal markers that can be used as novel biomarkers for the 

early detection of tumors. Interestingly, TEX mirror the molecular features of the 

original neoplastic lesions; for example, TEX circulating in patients with 

glioblastoma multiforme and high-grade gliomas contain neural markers (e.g. LI-

NCAM and CD171) [74], as well as those from melanoma patients are enriched in 

molecules involved in melanin synthesis and other melanoma markers (e.g. Melan 

A/Mart1) [75]. In addition, other groups highlighted the presence of Claudin 4 in 

exosomes isolated from the blood of patients with ovarian carcinoma [76] and 
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serine 2-ETS related gene, prostate cancer antigen 3 and transmembrane protease 

enriched in TEX present in urine samples of patients with prostate cancer [77]. All 

these evidences strongly suggest that the detection of these exosomal biomarkers 

may aid in the therapeutic efficacy of diagnosis, in the prediction and clinical 

decisions, including early detection, and in determining prognosis. Nevertheless, 

it has been demonstrated that, when specific biomarker panels (“exosomal 

signatures”) are identified, their measurement in the exosomal fraction may result 

more effective in solving clinical issues than their measurement in the whole 

bodily fluids [74]. In parallel, targeting TEX that are proved to be harmful to the 

organism by favouring tumor progression and metastatic spread, could represent 

another important therapeutic strategy. To this aim, at the systemic level TEX 

could be decreased taking advantage of an instrument, termed as hemopurifier, 

which allows the selective removal of TEX through immobilized antibodies that 

bind their surface molecules [78]. On the other hand, TEX could be specifically 

targeted to reduce the TEX-mediated immunosuppression of immunity in cancer 

patients. Although these approaches may be theoretically feasible, their 

complexity, together with the lack of a strong specificity in targeting TEX, have 

pushed the researchers to pursue other types of strategies based on exploiting 

exosomes as cell therapy surrogates or as drug delivery vehicles. Concerning the 

first strategy, TEX that are expressing specific TAA could be used directly as 

“vaccines” to stimulate an anti-tumoral response [79]; indeed, a number of animal 

studies indicate that antigen-containing exosomes can induce a specific immune 

response that can protect against tumor progression or various infections. 

Alternatively, TEX can be used to pulse DCs in order to obtain DCs-derived-

exosomes capable of initiating cytotoxic T lymphocytic responses [80]. The 

clinical use of exosomes is also being investigated by commercial and academic 

organizations as vehicles to deliver chemotherapeutics, small molecules, agents of 

gene therapy, and/or to target cells more specifically than systemic administration. 

This could be feasible due to the fact that TEX can be specifically absorbed by 

neoplastic cells. For instance, Ohno and colleagues have pinpointed that 

exosomes, engineered to express the transmembrane domain of platelet-derived 

growth factor receptor fused to the GE11 peptide, which binds specifically to 



 INTRODUCTION 

28 
 

epidermal growth factor receptor (EGFR), can efficiently deliver the tumor 

suppressor miRNA let-7a to EGFR-expressing breast cancer cells and, moreover, 

they can inhibit breast cancer development in vivo [81]. Similarly, it has been 

recently proposed a novel strategy for engineering exosomes to make them bind 

specifically to HER2/Neu+ breast cancer cells and to deliver siRNA molecules 

against TPD52 gene, whose expression is associated with the increased 

anchorage-independent growth and cell proliferation [82]. The biocompatibility 

and toxicity profiles of exosomes, which are natural carriers of different sort of 

molecules in vivo, support their application in drug delivery systems. However, 

some issues remain to be solved, such as the normal clearance mechanisms that 

Figure 5. Exosome-based applications in clinics. In the latest years, it is becoming increasingly clear 

that exosomes provide opportunities for therapeutic applications. First of all, the enrichment of 

tumor-associated antigens expressed on tumor-derived exosomes renders these vesicles feasible 

for detecting them in liquid biopsies and for utilizing them as biomarkers in many types of 

cancers. Secondly, tumor-derived exosomes alone, or DCs-derived exosomes, might be useful as 

cell therapy surrogates to trigger specific anti-tumoral responses by adaptive immune cells. Third, 

given the natural function of carriers, exosomes could be engineered to express surface markers 

capable of binding to specific target cells, and loaded with a variety of possible therapeutic 

molecules that can be either drugs or silencing small molecules. (Adapted from Stremersch S. et 

al., J. Control Release, 2016)  
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limit a long-lasting effect, or the immunogenicity and toxicity of exosomes, which 

can arise depending either on the animal models used in testing or on the source 

and composition of exosomes themselves. 
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Chapter 3: The metastatic process 

 

3.1. Invasiveness, migration and spread of malignant cells 

It is widely accepted throughout the oncology field that the main threat given by 

cancer is often associated to the metastatic potential of the primary tumor. 

Nevertheless, cancer remains the leading cause of death worldwide, and it is 

estimated that metastases are responsible for almost 90% of cancer deaths [4]. In 

addition, the majority of patients with metastatic disease display just a 

temporary response to conventional treatments, thus highlighting that further 

elucidations in this field are strikingly urgent. In general terms, the metastatic 

process can be defined as a complex multi-step process of transformed cells 

spreading from the primary tumor to surrounding tissues and to distant sites. 

Given the numerous barriers and immune defences that cancer cells must 

overcome, less than 0.1% of them can successfully reach a secondary site and 

develop distal metastases; therefore, the metastatic process is considered as highly 

inefficient. In solid malignancies, this process, generally defined as “metastatic 

cascade”, requires that cancer cells acquire the ability to invade surrounding 

tissues, infiltrate into the vasculature and thus colonize distal sites [83]. 

Tumor cells display an impressive variety of invasion strategies, which 

could be alternatively performed in order to adapt to changing and challenging 

environments. Among these strategies, two fundamentally different patterns of 

invasive growth can be distinguished: collective (group) cell migration and single 

cell migration. Collective cell migration (and subsequent invasion) is commonly 

found in several cancer types, such as breast cancer, epithelial prostate cancer, 

large cell lung cancer, melanoma, rhabdomyosarcoma, and most prominently in 

squamous cell carcinomas. The process involves whole groups of cells that 

migrate interconnected by adhesion molecules, such as cadherins, and other 

communication junctions [84]. Particularly, cancer cells form protrusions 

(pseudopodia) at the leading edge, which can interact with the cytoskeleton actin 

via integrins involvement, and proteolytic degradate the extracellular matrix, thus 

creating a space for the tumor to invade. For instance, it has been proved, using 

time-resolved multimodal microscopy, that HT-1080 fibrosarcoma and MDA-
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MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen 

remodelling by segregating the anterior leading group of cells of the tumor, 

containing 1 integrin, the matrix metalloproteases MT1 (MT1-MMP) and F-actin 

[85]. In the case of single cell invasion (also named as individual cell migration), 

tumor cells independently of each others invade the surrounding tissues via two 

different types of movements: mesenchymal (fibroblast-like) and amoeboid, 

which can be shifted from one type to the other to adapt to the characteristics of 

the microenvironment [86]. Acquiring the ability to detach from the tumor mass 

and invade the surrounding tissues require undergoing certain changes, among 

which one of the most relevant is the acquisition of the morphological and 

phenotypical properties of mesenchymal cells. This morphogenetic 

transformation, called “epithelial-to-mesenchymal transition or EMT, is 

characterized by deep cellular morphology changes, alteration of cell–to-cell and 

cell–to-matrix interactions, as well as the development of migratory behavior and 

invasiveness [87]. At the molecular level, it is widely demonstrated that multiple 

complex signalling systems are required for the induction of EMT. The 

diminished expression of E-cadherin, which contributes to the cell-cell adhesion, 

is one of the key events of EMT, and, therefore, many factors are involved in its 

regulation. For instance, zinc finger proteins (ZEB1, ZEB2), bHLH protein 

(Twist), and the Snail family of zinc finger proteins (Snail, Slug) are known to 

transcriptionally repress E-chaderin, thus favouring EMT. Furthermore, recent 

independent studies revealed that the miR-200 family (miR-200a, miR-200b, 

miR-200c, miR-141, and miR-429) and miR-205 play critical roles in regulating 

EMT, targeting the E-cadherin repressors ZEB1 and ZEB2 [88, 89].  

Besides the intrinsic changes that cancer cells undergo to increase their 

potential migratory and invasive properties, a critical element that can permit or 

restrain the invasion of primary tumor cells is the local remodelling of the host 

microenvironment and in particular the ECM. Tumor-associated ECM is 

constantly remodelled in order to create a path for reaching distal sites; this 

process has been suggested to be due to the clustering of integrins and other 

receptors, thus downstream activating intracellular kinase signalling pathways, 
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which subsequently determine, among other things, EMT and cancer cell 

migration and invasion [90]. 

 Although the acquisition of migratory and invasive properties of cancer 

cells are strictly necessary for the metastatic process, the effective spread of 

malignant cells requires other critical processes, such as the so called “angiogenic 

switch” [91], which consists in the alteration of the local balance between pro-

angiogenic and anti-angiogenic factors. Indeed, cancer cells, in order to reach 

distal sites, need to activate cellular programs that allow them to overcome the 

endothelial barrier and enter the bloodstream. Tumor angiogenesis (i.e. the growth 

of new blood vessels around the primary tumor) is driven by the secretion of pro-

angiogenic growth factors (such as VEGF), recruitment of immune cells, and 

alteration of the perivascular ECM either by tumor cells or by surrounding stromal 

cells. This process leads to the generation of leaky tumour vessels, which are 

thought to facilitate the dissemination of cancer cells throughout the body.  

Finally, in the last years numerous efforts are being invested in the 

understanding of the phenotypical and molecular changes that identify the 

formation of the pre-metastatic niche [92]. This is because it is widely 

demonstrated that, for the metastatic process to be efficient, it is crucial the 

“assembling” of a favourable environment that allows cancer cells to take roots at 

distal sites, as well as it is essential for their survival and outgrowth [93]. 

Furthermore, the deep investigation of the early events in the development of the 

metastatic spread, could give important insights in the early detection and cure of 

aggressive diseases. Pre-metastatic niche formation is initiated with the above 

mentioned local changes, such as the induction of vascular leakiness and the 

remodelling of stroma and extracellular matrix, followed by systemic effects on 

immune cells. All of these processes are mainly induced by the pro-metastatic 

secretome, which includes soluble factors released by primary tumor cells: VEGF 

and placenta growth factor (PLGF), as well as pro-inflammatory cytokines and 

chemokines, such as TNFα and TGFβ released by melanoma B16 cells, were the 

first molecules discovered to support the formation of the pre-metastatic niche in 

the lung [94]. In addition, another important factor for the vessel barrier 

breakdown, essential for the extravasation of cancer cells at secondary sites, is the 
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MMP9 enzyme, produced at high levels by myeloid progenitor cells within the 

pre-metastatic lung. Indeed, it has been shown that the activation of this enzyme 

leads to ECM remodelling and formation of a proliferative, immunosuppressive 

and inflamed environment within the lung [95]. Systemically, the seeding of 

cancer cells in a favorable and tolerogenic environment like the pre-metastatic 

niche implies the recruitment of specific subsets of the immune system. 

Particularly, bone marrow derived cells (BMDCs) like macrophages, CD11b+ 

myeloid cells (including MDSCs, tumor-associated neutrophils, tumor-associated 

macrophages and Tregs) and VEGFR1+ haematopoietic progenitor cells (HPCs), 

are commonly recruited in the pre-metastatic niche, favoring the assessment of an 

immunosuppressive environment (Figure 6). 

 

 

Figure 6. The pre-metastatic niche formation. Primary cancer cells produce tumor derived 

secreted factors (TDSFs) and extracellular vesicles (EVs) that, acting both on bone marrow and on 

blood vessels, can favour the formation of a tolerogenic environment in distal organs. Indeed, 

these factors contribute to the ECM remodelling, the establishment of a hypoxic environment and, 

furthermore, to the recruitment of immune cells (VEGFR+ HPC, CD11b+ myeloid cells from the 

BM, MDSCs, TANs, TAMs and Tregs from the blood circulation, thus determining favourable 

conditions for cancer cells seeding (Adapted from Peinado H. et al, Nature Reviews, 2017).  

For instance, MDSCs, which can either be recruited to the niche or they may 

develop from tissue-resident myeloid populations, are known to support the 
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tolerogenic environment through different mechanisms, as by suppressing 

interferon-γ (IFNγ)-mediated immune responses, inducing pro-inflammatory 

cytokines [95] or releasing high levels of MMP9, a crucial regulator of ECM 

remodelling and the angiogenic switch [96]. Interestingly, many recent evidences 

have highlighted that also tumor-derived exosomes play a pivotal role in 

facilitating the spread of malignant cells by promoting the metastatic niche-

formation [38]. TEX, indeed, can travel long distances and carry tumoral cargoes 

at distal organs, thus allowing an “undisturbed” transport of pro-tumorigenic and 

pro-metastatic molecules affecting the recipient environment. 

 

3.2. TEX role in favouring the metastatic spread 

 Tumor-derived exosomes contribution in potentiating the aggressiveness 

and outgrowth of the primary tumor by autocrine and paracrine effects is 

combined to a major role also in facilitating the spread of malignant cells at distal 

organs. Nevertheless, TEX are involved in a variety of processes associated to the 

metastatic spread, such as the promotion of invasion and migration of tumor cells, 

the conditioning of lymph nodes, the generation of pre-metastatic niches, the 

organotropism of metastases, as well as the modulation of bone marrow and 

stromal components like fibroblasts, endothelial cells, myeloid- and other 

immune-related cells [97]. Invasion and migration of cancer cells are two main 

aspects that could be highly conditioned by TEX. In 2015, Harris D.A. and 

colleagues have shown in vitro that exosomes isolated from intermediate-

metastatic (MCF-7 transfected with Rab27) or highly metastatic breast cancer 

cells (MDA-MB-231) could transfer invasion-promoting molecules to 

tumorigenic, but not metastatic, MCF-7 breast cancer cells [98]. According to the 

authors, this may occur either by the TEX-mediated horizontal transfer of specific 

pro-metastatic molecules, as miR-10b, which was identified as an important 

component promoting invasion of breast cancer cells [99], or by providing matrix 

attachment for migrating cells, such as fibronectin [100]. Important insights 

concerning the pro-metastatic functions of TEX come from studies of metastases 

of melanoma. Particularly, exosomes from melanoma cells were shown to induce 

the production of collagen 18, laminin 5, and mitogen-activated protein kinase 
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(p38), all matrix components that may support the growth of metastatic cells and, 

in addition, they can stimulate the production of αvβ3 integrin, ephrin receptor β4, 

and stabilin 1, which aid in the recruitment of malignant cells to the ipsilateral 

sentinel lymph node [101]. Importantly, TEX can also increase metastases either 

by inducing the expression of angiogenetic factors like VEGF, TNFα and 

hypoxia-inducible factor 1α, or by transferring miRNAs and proteins that in turn 

promote the metastatic spread. Exosomes derived from several types of cancer 

cells, indeed, can deliver EGFR to endothelial cells and may induce angiogenesis 

through VEGF/VEGFR2 pathway [102]. Moreover, melanoma-derived exosomes 

carrying miR-9, which directly targets E-cadherin (CDH1) leading to increase 

cancer cell motility and invasiveness, have been shown to activate JAK-STAT 

signaling in ECs [103], promoting migration and neovascularization. The clinical 

relevance of this finding is strongly evident in the context of breast cancer, where 

miR-9 has been defined as metastamiR (metastasis-regulatory microRNA) and 

it has resulted highly upregulated in breast cancer cells compared to healthy 

mammary tissues [104]. 

 The generation of the pre-metastatic niche is another important step of 

the metastatic process in which tumor-derived exosomes are known to play a 

critical role. As already mentioned, the establishment of special niches in 

(pre)metastatic organs involves the stimulation of local stromal cells by tumor-

derived factors, including vesicles, and chemokines that attract tumor cells and 

hematopoietic progenitors. To this aim, TEX have been shown to modulate target 

cells in several ways, hereafter summarized by some examples. The study of pre-

metastatic niches in the lymph nodes and the lungs of rat pancreatic 

adenocarcinoma models has unveiled that exosomes, independently of the highly 

or poorly metastatic origin cells, can favor cancer cell embedding and growth in 

pre-metastatic niches in a CD44v6-dependent manner. CD44v6, indeed, is 

involved in c-MET activation and upregulation of its downstream genes, 

including uPAR, responsible for initiating a pro-metastatic signaling through its 

association with integrins, EGFR, PDGFR and vitronectin [105]. Notably, TEX 

can further support the process by enhancing the permeability of lung ECs, as 

demonstrated by the injection of B16-F10 fluorescently-labeled exosomes and 
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their rapid detection in the organ blood vessels and subsequently in the target 

organs [106]. Interestingly, different authors have demonstrated via gene 

expression profiling that in lung tissues B16-F10 exosomes were able to up-

regulate genes involved in the pre-metastatic niche formation (e.g. S100A8 and 

S100A9), and TNFα as mediator of vascular permeability [107]. As part of the 

pre-conditioning of the metastatic organ, tumor-derived exosomes can support the 

formation of an immunosuppressive microenvironment also by regulating immune 

cells functions. In 2010, Liu Y. and colleagues have shown that melanoma B16-

derived exosomes induced a switch of myeloid cells towards COX2, IL6, VEGF 

and arginase expressing MDSCs in the lung, in a manner that was dependent on 

MyD88, in turn leading to an increase of the metastatic potential [108]. Similarly, 

in the context of breast cancer, as previously mentioned in this introductory part, 

the TEX-mediated induction of PD-L1 expression in monocytes and macrophages 

recruited in the pre-metastatic niche may further enhance the establishment of a 

tolerogenic microenvironment [67].  

Lastly, it is worth mentioning an important finding in this field that has 

pinpointed the relevance of TEX in affecting metastatic organotropism, i.e. where 

malignant cells deriving from a specific primary tumor preferentially take root at 

distal sites [109]. According to the authors, both in immune-compromised and 

immune-competent models, the organ specificity of exosome biodistribution is 

strictly related to the organotropic distribution of the cell line of origin and, 

moreover, this is dependent on the pattern of integrins expressed on exosomes 

surfaces. Particularly, they found that integrin alpha 6 (ITGα6), and its partners 

ITGβ4 and ITGβ1, were highly expressed in lung-tropic exosomes, whilst ITGβ5, 

which associates only with ITGαv, was detected primarily in liver-tropic 

exosomes, therefore justifying why different types of cells in the analyzed organs 

were responsible for the up-taking of specific types of exosomes (Figure 7). At a 

functional level, in order to unveil the downstream effects of exosomal interaction 

with target cells, they performed un unbiased analysis of gene expression by RNA 

sequencing in Kupffer cells educated with highly or poorly metastatic exosomes, 

and they found cell migration genes, among which S100A8 and S100P, as the 

most abundantly upregulated in the highly-metastatic exosomes educated cells.  
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Figure 7. Metastatic organotropism mediated by TEX. The specific pattern of expression of 

integrins on TEX surfaces is able to prime specific distal organs before the arrival and seeding of 

cancer cells. This exosomes-target cells interaction causes the activation of intracellular pathways 

within the recipient cells leading to the upregulation of genes, such as those belonging to the S100 

family, known to support cell migration and invasiveness. Eventually, these events render distal 

organs favorable and permissive environments for the survival and growth of malignant cells. 

(Adapted from Liu Y. and Cao X, Cell Res., 2016) 

 

Accordingly, tumor-derived exosomes-educated lung fibroblasts strongly 

upregulated S100A4, -A6, -A10, -A11, -A13 and -A16, thus confirming that TEX 

may trigger signalling pathways and inflammatory responses in target cells 

rendering the environment permissive for the growth of metastatic cells. 

 

3.3. S100 proteins in the metastatic process 

 Since their first detection in 1965 by Moore and colleagues [110] as acidic 

cytoplasmic proteins specific for the nervous system, S100 proteins have been 

deeply investigated either in homeostasis or in disease conditions. The S100 

protein family, which can be found only in vertebrates, represents the largest 

group of EF-hand signaling proteins (i.e. Ca2+ binding proteins) in humans, and 

are described as typically symmetric dimers with each S100 subunit containing 

four α-helices [111]. Target binding is commonly Ca2+ dependent and post-
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translation modification can affect S100-target complex formation and 

intracellular localization. According to these differences, S100 proteins are 

functionally divided in three main subgroups: those that exert only intracellular 

regulatory effects, those with both intracellular and extracellular functions and 

those that mainly display extracellular regulatory functions. In general, S100 

proteins can participate to local intercellular communication, as well as coordinate 

biological processes over long distances, following the interaction with a variety 

of target proteins including cytoskeletal subunits, enzymes, receptors (among 

which RAGE (Receptor for Advanced Glycosylation End-products), TLR4 (Toll-

like receptor 4), G-protein-coupled receptors, and IL-10R (Interleukin-10 

Receptor)) and transcription factors [112]. In homeostasis, S100 proteins are 

involved in many physiological processes, such as the regulation of proliferation, 

differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation 

and migration/invasion, suggesting how their aberrant expression and/or 

regulation may represent a critical event in disease progression. Indeed, focusing 

on the main topic of this dissertation, recent in vivo evidences suggest a prominent 

role of most S100 proteins in the active contribution to pro-tumorigenic processes 

like cell proliferation, immune evasion, angiogenesis and metastatic spread. This 

critical role is quite evident just looking at the expression pattern of S100 proteins 

in cancer, where it is widely assessed that, in most of cancer types, upregulation 

of numerous S100 proteins may occur. A peculiar pattern of S100 proteins 

depending on both the stage and the subtype of cancer can be observed. For 

instance, there are several evidences demonstrating S100B upregulation in 

malignant melanoma [113], S100A4 and S100A10 for brain tumor [114] and, 

more importantly, S100P in all human cancers examined. Furthermore, a strong 

alteration of many of the S100 proteins, i.e. S100A1, S100A4, S100A6, S100A7, 

S100A8, S100A9, S100A11, S100A14 and S100P, is often found in breast cancer 

[115], where their upregulation correlate with the aggressiveness of the disease. 

Given these evidences, the understanding of the mechanisms behind S100 

proteins expression represents a useful starting point in order to move towards 

new therapeutic approaches. The complex regulatory network, often cancer 

specific, that controls S100 proteins expression includes epigenetic mechanisms 
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and signal transduction pathways. Several examples of epigenetic modulation of 

S100 proteins expression have been described: illustrative cases can be found in 

the context colon cancer, where seven S100 genes are directly targeted by histone-

lysine methyltransferase MLL2 [115]. Alternatively, they can be overexpressed 

due to the epigenetic regulation of miRNAs, as for S100A4 that has been 

described to be post-transcriptionally regulated by tumor suppressor miRNAs 

(miR-505c-5p and miR-520c-3p), which in turn may be epigenetically silenced in 

colorectal cancer [116]. In addition, the regulatory mechanisms modulating S100 

proteins include many signaling pathways, such as the WNT-β-catenin or the 

cAMP/CREB pathways for regulating S1004 and S100P expression respectively 

in a colon cancer setting [117, 118]. Nonetheless, S100A8 and S100A9 are known 

to be regulated by diverse signaling pathways depending on the specific type of 

cancer. For instance, in liver cancer it has been demonstrated that these two S100 

family members are NF-B (Nuclear Factor kappa-light-chain-enhancer of 

activated B cells) target genes that support malignant progression of 

hepatocellular carcinoma (HCC) cells by activation of ROS and protection against 

apoptosis [119]. Alternatively, S100A8 and S100A9 could be regulated either by 

CEBP-signaling in prostate cancer [120], or they could be expressed as a 

downstream result of the S100 signalling cascade, entering a feedback loop that 

further promotes tumorigenesis.  

 Although it is certainly important investigating the mechanisms 

responsible for S100 proteins regulation, given the strikingly evidences that 

correlate their expression to the aggressiveness of cancers, it is evident the 

necessity to stress how these proteins affect the disease progress, especially in 

terms of promotion of the metastatic spread. To this aim, the example of breast 

cancer could be particularly illustrative. For instance, S100A7, apart from 

mediating pro-survival effects in ERα-negative breast cancer cells, it can improve 

their invasiveness via upregulation of MMP9 secretion and EGFR signaling [121]; 

moreover, it can facilitate the recruitment of TAMs, which support the metastatic 

process [122]. Another important player in breast cancer aggressiveness is 

represented by S100A4 (also known as metastatin, which clearly suggests its 

involvement in the metastatic process), whose overexpression has been found to 
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increase the migratory capacity of breast cancer cells, likely by binding to several 

cytoskeletal and adhesion proteins, such as F-actin and liprin 1 [123]. 

Interestingly, also tumor-associated stromal cells may facilitate the metastatic 

process, as demonstrated for S100A4+ fibroblasts, which are required for the 

colonization of breast tumor cells to the lungs [124]. Lastly, it is worthwhile 

highlighting the role of S100A8/S100A9 heterodimer in contributing to the 

dissemination of cancer cells, as their upregulation strongly correlates with the 

invasiveness of breast cancer ductal carcinoma. Tumor-derived factors have been 

shown to upregulate S100A9 in myeloid precursors that, subsequently, promotes 

MDSCs accumulation to the detriment of more mature immune cells 

differentiation, such as macrophages and dendritic cells. Furthermore, S100A8 

and S100A9 are responsible for maintaining an autocrine feed forward loop, via 

binding to RAGE on MDSCs surface, which is critical for MDSCs recruitment 

and activation, thus supporting an immunosuppressive environment. More 

importantly, several evidences have demonstrated that these two S100 family 

members are also involved in the formation of the pre-metastatic niche [125]. 

Back in 2006, Hiratsuka and colleagues proved that this is a multistep process in 

which primary tumors first stimulate the expression and accumulation of S100A8 

and S100A9 in lungs (by secreting TNFα, VEFG-A and TGF), which can act as 

chemotactic factors for CD11b+ myeloid cells. These, once recruited and 

accumulated, could further amplify the S100A8/A9 abundance in the pre-

metastatic phase, thus facilitating cancer cells migration to the lungs in the proper 

metastatic phase [126]. More recently, it has been demonstrated that primary 

breast cancer cells can induce the accumulation of MDSCs within the brain to 

form "pre-metastatic soil" enriched in inflammation mediators, such as S100A9, 

that attract additional myeloid cells and metastatic tumor cells, thus confirming 

the critical role of these mediators in the pre-metastatic niche formation [127].
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AIM OF THE STUDY 

 

In 2011, Hanahan and Weinberg clearly assessed that evading immune 

distraction is a critical step in tumor progression and therefore should be 

considered as a new hallmark of cancer [5]. Indeed, tumor cells display a plethora 

of diverse mechanisms that can allow to avoid their detection and recognition 

from the immune system, and, moreover, the effective activation of immune cells 

for the eradication of the neoplastic threat. It is well established that among these 

cells are myeloid populations, which could be deeply affected by tumor-derived 

soluble factors, such as cytokines and chemokines, which might modulate their 

recruitment and functions. Nevertheless, cancer cells may create a favorable 

tolerogenic environment also by releasing exosomes, whose features of natural 

carriers throughout the whole organism could be exploited by the tumor to affect 

both the local tumor framework and future distal sites of disease. However, 

despite many insights are coming from the recent literature, a deep understanding 

of the mechanisms behind exosome-mediated effects in the tumor extracellular 

milieu is certainly needed. In light of this, the first part of our project aimed at 

assessing the ability of TEX to affect the MDSC regulatory functions in vitro, as 

these cells are strongly involved in determining an immunosuppressive TME. 

Therefore, we first wanted to investigate the ability of tumor-derived exosomes to 

interact with myeloid cells, both in vitro and in vivo, and, secondly, to look for the 

functional consequences of this interaction in terms of immunosuppressive ability. 

Moreover, we exploited possible pathways that were likely responsible for the 

observed effects, in order to find putative candidates to target for abrogating the 

detrimental TEX-mediated effects. Moreover, since our data showed that TEX 

were relevant also for supporting the pre-metastatic niche formation and 

consequent spread of malignant cells, the second aim of our project was to study 

their contribution in this context. Particularly, we drew our attention to the 

understanding of how TEX may modulate myeloid cells, both in bone marrow and 

lung, thus promoting their shift towards immunosuppressive phenotypes, as well 

as a higher recruitment at distal sites of metastases. Finally, these investigations 

were exploited to generate proofs of concepts concerning possible strategies 
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targeting the downstream mediators of TEX, which might be useful in the 

development of new therapeutic approaches.  
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MATERIAL AND METHODS 
 

1. Cell lines. 

The E0771 (H-2b) breast cancer cell line (CH3 BioSystems), derived from 

C57BL/6 mice was cultured in RPMI 1640 (Life Technologies, Carlsbad, CA, 

USA) supplemented with 2 mM L-glutamine (Euroclone, Milano, Italy), 10 mM 

HEPES (Euroclone, Milano, Italy), 20 μM β-mercaptoethanol (Sigma-Aldrich, 

Saint Louis, MO, USA), 150 U/ml streptomycin (Euroclone, Milano, Italy), 200 

U/ml penicillin (Euroclone, Milano, Italy) and 10% heat-inactivated fetal bovine 

serum (FBS; Invitrogen, Carlsbad, CA, USA). The MCA-derived spontaneously 

metastasizing sarcoma MN-MCA1 cell line (a kind gift of Prof. Antonio Sica; 

Istituto Humanitas, Milan, Italy) was grown in DMEM (Euroclone, Milano, Italy) 

supplemented with 2 mM L-glutamine (Euroclone, Milano, Italy), 10 mM HEPES 

(Euroclone, Milano, Italy), 150 U/ml streptomycin, 200 U/ml penicillin 

(Euroclone, Milano, Italy) and 10% heat-inactivated FBS (Invitrogen, Carlsbad, 

CA, USA). The murine immortalized fibroblast cell line NIH/3T3-J2 (kind gift of 

Prof. H. Green; Harvard Medical School, Boston, MA) immortalized mouse 

fibroblasts was grown in DMEM (Euroclone, Milano, Italy Lonza) supplemented 

with 10% heat-inactivated Bovine Calf Serum (Sigma-Aldrich, Saint Louis, MO, 

USA) and all the other components described above. All these cell lines were 

tested to be free from Mycoplasma contamination by PCR screening. 

 

2. Mice. 

C57Bl/6 mice were purchased from Charles River Laboratories Inc. (Calco, Italy). 

OT-1 TCR-transgenic mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J), 37B7 TCR-

transgenic mice and CD45.1+ congenic mice (B6.SJL-PtrcaPepcb/BoyJ) were 

from Jackson Laboratories (Bar harbor, ME, USA). B10;B6-Rag2tm1Fwa Il2rgtm1Wjl 

(RAG2-/- γc-/-) mice were obtained by Taconic (Denmark). All animal experiments 

were approved by Verona University Ethical Committee 

(http://www.medicina.univr.it/fol/main?ent=bibliocr&id=85) and conducted 
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according to the guidelines of Federation of European Laboratory Animal Science 

Associations (FELASA). All animal experiments were in accordance with the 

Amsterdam Protocol on animal protection and welfare. 

 

3. Exosomes isolation and quantification. 

Exosomes from E0771, MN-MCA1 and NIH/3T3-J2 cell lines were purified from 

culture conditioned media by a combination of consecutive ultracentrifugations as 

previously described [128]. Briefly, all cell lines were cultured as described 

above, but using an exosome-depleted FBS (i.e. FBS that underwent the 

consecutive ultracentrifugations procedure). After 72 hours, when cells were at 

60% to 70% of confluence, conditioned medium was collected, centrifuged 10 

min at 300 x g, 4°C to remove cell debris, and filtered with a 0.22 μm filter. The 

resulted cell-free medium was concentrated by ultracentrifugation at 100.000 x g, 

4°C for 2 hours. The supernatant was then carefully removed, and, after having 

washed exosome-containing pellets in 1 mL of ice-cold PBS, a second 

ultracentrifugation (100.000 x g, 4°C for 2 hours) was performed. The isolated 

exosomes were then suspended in ice-cold PBS, quantified as amount of total 

proteins using a colorimetric assay (Bradford) and then stored at -80°C. 

 

4. Analysis of EVs size. 

The measurement of the mean size of isolated EVs was estimated through a 

Dynamic Light Scattering (DLS) analysis using a Zetasizer Nano ZS (standard 

laser beam λ = 632.8 nm; Malvern, Westborough, MA, USA). Samples were 

prepared diluting the exosomes solution to a final concentration in a range from 

0.1 mg/mL to 1.0 mg/mL. Five different measurement were then performed for 

each sample.  

 

5. Flow cytometric analysis of exosome-coated beads. 

For exosomes surface antigens detection by flow cytometric analysis, exosomes 

needed to be previously treated to coat aldehyde/sulfate latex beads (Life 
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Technology, Carlsbad, CA, USA). Briefly, 15 µg of isolated exosomes were 

incubated with 5 µl of 4 mm diameter beads for 15 minutes at room temperature 

on a tube rotator wheel. After the addition of filtered PBS to a final volume of 1 

ml, samples were incubated on a tube rotator wheel for other 30 minute. Samples 

were then saturated with 2M glycine and PBS 2% BSA for 30 minute on the 

rotator wheel and then washed with PBS 2% BSA for three times. For the 

detection of exosomal surface antigens exosome-coated beads were incubated 

with FITC conjugate anti-CD9 (clone M-L13, BD Bioscience), PE-conjugated 

anti-CD63 (clone HSC6, eBioscience) antibodies for 1 h at 20°C, stirring. After 

two washings steps, samples were analyzed by FACSCanto II (BD Biosciences). 

Each analysis included IgG-matched isotype controls. Events were gated 

according to light-scattering properties, selecting single-bead populations. 

 

6. Exosomes staining with PKH26 dye. 

Exosomes isolated from the conditional media of the above described cell lines 

were fluorescently labelled using PKH26 dye (Sigma-Aldrich, Saint Louis, MO, 

USA), which is able to aspecifically bind to lipidic membrane. In brief, 100 µg of 

exosomes were incubated with 6 µl of PKH26 dye (4 µM) in a total volume of 2 

ml of Diluent C. Samples were put on a rotator wheel for 5 minutes at room 

temperature and afterwards the reaction was blocked adding an equal volume of 

filtered PBS-BSA 1%, incubating for other 5 minutes in a rotator wheel. 

Exosomes were then concentrated using Vivaspin® 500 Centrifugal Concentrator 

with a molecular cutoff of 300000 MW (Sartorius, Gottingen, Germany) at 2,000 

rpm, 4°C. Unconjugated dye was removed by several washing step with PBS for 2 

times. PBS without exosomes was treated with the same procedure as a negative 

control. The efficiency of exosome labeling was analyzed using a 

spectrophotometer, measuring the absorbance at 549,84 nm. PKH26-labelled 

exosomes were used for evaluating the uptake ability of recipient cells, either in 

vitro or ex vivo. 
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7. PKH26-labelled exosomes uptake in vitro. 

MDSCs were differentiated in vitro from murine bone marrow cells as previously 

described [129]. In order to assess the ability of taking up exosomes, PKH26-

labelled exosomes were used for flow cytometry analysis. Particularly, fluorescent 

exosomes (20 µg for each well) were added to the MDSCs culture at different 

time points (36, 24, 12 and 6 hours) starting from the 3rd day of differentiation of 

the cells. Afterwards, cells were collected and stained with the LIVE/DEAD 

Fixable Aqua Dead Cell Stain Kit® (ThermoFisher, Waltham, MA, USA) for 

gating the viable cells, and the following antibodies to detect the subpopulations 

of MDSCs: PerCP-Cy5.5 conjugated anti-CD11b (clone M170), V450 conjugated 

anti-Ly6C (clone HK1.4) and APC-Cy7 conjugated anti Ly6G (clone RB6-8C5). 

 

8. Ex vivo PKH26-labeled exosomes tracking. 

PKH26-labelled exosomes were retro-orbitally injected into C57BL/6 (20 µg of 

exosomes/mouse). At 12, 24 and 36 hours after injection, mice were sacrificed 

and various tissues were harvested (lung, spleen, liver, blood and BM) for ex vivo 

fluorescence quantification using flow cytometry. Additionally, immune 

populations in the lung, spleen, and BM that had taken up PKH26-labelled 

exosomes were assessed. 

 

9. Confocal analysis. 

MDSCs, previously incubated with PKH26-labelled exosomes for 24 h, were let 

adhere on 14-mm round Menzel-Glaser glass for 2h then fixed with 4% 

paraformaldehyde for 10 minutes at room temperature. After extensive wash with 

PBS, the cells were incubated for 1 hour at room temperature with PBS containing 

FcR blocking reagent (Miltenyi) diluted 1:25. Cells were then stained with anti-

Ly6C FITC (HK1.4 clone) in PBS for 2h at room temperature, in the dark. Slides 

were then washed with PBS 0.05% Tween- 20 and cells were then stained with 

4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) diluted 1:500 in PBS for 

10 minutes at room temperature, in the dark. After extensive washes with PBS, 

coverslips were mounted with ProLong Gold antifade Mounting media 
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(ThermoFisher Scientific) in Superfrost Plus adhesion microscope slides 

(ThemoFisher Scientific) and acquired by confocal microscopy (TCS SP5, Leica 

Microsystems CMS GmbH, Wetzlar, Germany). Cells were located and 

positioned using bright field illumination (BF). Fluorescence images were 

captured sequentially, using a 405-nm laser line for DAPI, a 488-nm laser line for 

FITC and 543-nm laser line for PKH26. Images were analyzed by LAS AF Lite 

2.0.2 (Leica Microsystems CMS GmbH) and NIH-Image J programs (Bethesda, 

USA). Images (512x512 pixels in TCS SP5 system) were acquired with a 63x oil 

immersion objective. 10 different fields of each coverslip were taken randomly. 

Exposure times of each channel were kept constant over the whole series after 

calibrating on a bright representative sample to avoid saturated pixels. 

 

10. Mouse proliferation assay. 

To analyze cell proliferation, an in vitro labelling system was used to trace 

multiple cell divisions using dye dilution by flow cytometry. The 

immunosuppressive activity was evaluated plating in vitro differentiated MDSCs, 

or freshly isolated myeloid cells from the bone marrow or the tumor of C57BL/6 

mice, in 96 wells plate at a final concentration of 24% of total cells in culture in 

presence of splenocytes from 37B7 or OT-1 transgenic mice, labelled with 1 μM 

CellTrace (Thermo Fisher Scientific, Waltham, MA, USA) and diluted 1:10 with 

CD45.1+ splenocytes, in the presence of TRP-2180-188 peptide (1 μg/ml final 

concentration). After 3 days of co-culture, cells were stained with APC-Cy7 

conjugated anti-CD45.2 (clone 104, eBioscience, Thermo Fisher Scientific, 

Waltham, MA, USA) and PerCP-Cy5.5 conjugated anti-CD8 (clone SK1, 

eBioscience, Thermo Fisher Scientific, Waltham, MA, USA), and CellTrace 

signal of gated lymphocytes was analyzed. We performed FACS evaluation with a 

FACS-Canto II (BD, Franklin Lakes, NJ, U.S.A.) to determine the percentage of 

division of CD8+ cells, thus calculating the percentage of suppression of MDSCs 

or myeloid cells (FlowJo software, Tree Star, Inc. Ashland, OR, USA). 
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11. Real-time PCR.  

Total RNA from MDSCs or murine myeloid cells was isolated by TRIzol reagent 

(Thermo Fisher Scientific, Waltham, MA, USA). For exosomal RNA, Norgen’s 

Exosome RNA Isolation Kits was used according to manufacturer’s instructions. 

The amount and purity of isolated RNA was then analyzed by ND-1000 

Spectrophotometer (NanoDrop Technologies). cDNA was prepared using the 

Euroscript M-MLV reverse transcriptase kit (Euroclone, Milano, Italia) and Real 

Time PCRs were run using 2x SYBR Green master mix (ABI, Thermo Fisher 

Scientific, MA, USA). All samples were normalized using GAPDH endogenous 

control primers. Post qRT-PCR analysis to quantify relative gene expression was 

performed by the comparative Ct method (2−ΔΔCt). 

 

12. ELISA for S100A8/A9 detection. 

Human or murine sera were collected and kept at -80°C after having removed cell 

debris and erythrocitic contaminants. ELISA for detecting the heterodimer 

S100A8/A9 (R&D, Minneapolis, MN, USA) were performed following 

manufacturer’s instructions.  

 

13. Exosome education. 

In order to investigate the role of exosome in the pre-metastatic niche formation, 

8-week-old C57BL/6 female mice were “educated” with the retro-orbital injection 

of 5 µg/mouse of exosomes isolated from a highly metastatic tumor cell line (MN-

MCA1), every 2 days for 3 weeks, whilst control mice received an equal volume 

of filtered PBS. After exosomes conditioning, mice were challenged with a tumor 

cell line with a low metastatic potential. Specifically, pre-conditioned mice were 

orthotopically injected in the mammary fat pad with 0.5x106 E0771 cells. To favor 

distal dissemination, primary tumors were removed at a volume of 600 mm3 and 

mice were sacrificed after 2 weeks after the surgery.  
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14. In vivo blocking of exosome secretion. 

C57BL/6 mice were challenged with the highly metastatic cell line MN-MCA1 

(0.1x106/mice) in order to evaluate the effect of blocking exosome secretion on 

the metastatic spread. GW4869 inhibitor of nSMase2-dependent exosome 

secretion (Sigma-Aldrich, Saint Louis, MO, USA) was given at 2.5 mg/kg 

intraperitoneally every two days. When tumors reached a volume of 600 mm3 

mice were sacrificed and lungs were collected for further analyses.  

  

15. In vivo blocking of S100A9. 

C57BL/6 mice were injected in the mammary fat pad with 0.5x106 E0771 cells. 

The S100 inhibitor Tasquinimod (Cayman Chemicals, Ann Arbor, MI, USA), was 

given orally every two days (5 mg/kg in a final volume of 100 µl). Primary tumors 

were removed when reached a volume of 600 mm3 to favor distal dissemination, 

while continuing with the Tasquinimod treatment until sacrifice, when various 

tissues were collected for performing phenotypical and functional evaluations.  

 

16. Lung metastases count. 

For the in vivo experiments, lungs were harvested at sacrifice and fixed in 10% 

neutral buffered formalin (BioOptica) for metastases detection and quantification. 

The number of lung metastases was determined by two pathologists, 

independently and in a blind fashion, using a Leica DMRD optical microscope 

(Leica). 

 

17. Patients. 

57 treatment-naïve resectable patients with histologically proven non-metastatic 

PDAC and 9 healthy donors were included in the study. Peripheral blood samples 

were prospectively collected from all patients before surgical resection. Clinico-

pathologic features of patients included age, gender, tumor location, tumor size, 

differentiation status, lymph node involvement and TNM stage, patterns of 

https://www.google.it/search?q=Ann+Arbor&stick=H4sIAAAAAAAAAOPgE-LSz9U3KE_KMUo2UmIHszOMtTQyyq30k_NzclKTSzLz8_Tzi9IT8zKrEkGcYqv0xKKizGKgcEYhAD0vcE1BAAAA&sa=X&ved=2ahUKEwiY54fptaneAhVowIsKHZIIDJEQmxMoATASegQIBBAH
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resection margins. Distant metastasis free survival (dmFS) was determined from 

the time of surgery until metastatic PDAC tumor recurrence.  

 

18. Statistical Analysis. 

All data are presented as mean ± standard error (SE) of the mean. Statistical 

analyses were carried out using SigmaPlot (Systat Software, San Jose, CA), or 

GraphPad Prism software program (GraphPad Software, San Diego, CA) and the 

statistical language R for human data. For statistical comparison of two groups, 

non-parametric Mann-Whitney Wilcoxon test was used. For the comparison of 

more than two group ANOVA test was used. A value of p < 0.05 was considered 

significant. Survival curves were drawn by Kaplan-Meier estimates and compared 

by log rank test. The optimal cutoff thresholds of biomarkers were obtained based 

on the maximisation of the Youden’s statistics J=sensitivity+specificity+1 [130] 

using an R-based software as described in Budczies et al [131]. 
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RESULTS 
 

1. Isolation and characterization of exosomes from immortalized cell lines 

In order to investigate in vitro the tumor-derived exosome 

immunoregulatory properties, we applied a well-characterized size-based isolation 

technique, the ultracentrifugation, to purify exosomes from two murine tumor cell 

lines, MN-MCA1 (fibrosarcoma) and E0771 (breast cancer) and from NIH/3T3-J2 

(murine fibroblasts, hereafter named 3T3-J2) as healthy control. We collected 

conditioned media of cell lines after 72 h of culture and performed several 

centrifugation steps to discard cell debris and bigger vesicles, as reported in 

Figure 8A. We could classify the isolated extracellular vesicles as exosomes 

thanks to the use of a Zetasizer Nano ZS instrument: indeed, the isolated vesicles 

sized between 10 and 100 nm; particularly, MN-MCA1-derived exosomes mean 

diameter was 56.94 nm ± 46.34, whilst E0771 and 3T3-J2 ones were 58.71 nm ± 

39.28 and 50.70 nm ± 39.58 respectively (Figure 8B-C-D, upper panels). 

Moreover, we confirmed that we effectively isolated exosomes by looking for the 

Figure 8. Isolation and characterization of exosomes. A) Experimental schedule for 

isolating exosomes from conditioned media of the immortalized cell lines MN-MCA1, E0771, 

NIH/3T3-J2. B-C-D) In the upper panels the measurements of exosomes size by dynamic light 

scattering are shown (mean ± SD of five measurements). Bottom panels show the mean 

fluorescent intensity for the exosomal markers CD9 and CD63. Isotype antibodies (grey) were 

used as negative controls.  
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presence of surface markers that are commonly used to identify them, i.e. CD9 

and CD63. For this purpose, exosomes coupled to 4-mm diameter 

aldehyde/sulfate latex beads were analyzed by flow cytometer using anti-mouse 

CD9 and CD63 antibodies and matched isotype antibodies as controls. All 

exosomes isolated expressed both markers (Figure 8B-C-D, bottom panels) on 

their surfaces, confirming that the purification procedure was correctly performed 

and, moreover, that these markers are exposed independently of the exosome 

nature, either cancerous or normal.  

 

2. Exosomes are effectively taken up by myeloid cells  

It is well established that exosomes can mediate intercellular communication by 

different mechanisms that include direct interactions with receptors on target cells 

surfaces, thus activating intracellular pathways, or fusing their membranes with 

the recipient cells and transferring their cargoes. Particularly, EVs released from 

tumor cells generally target myeloid cells, such as MDSCs, whose modulation 

may aid cancer cells to grow and disseminate. Briefly, we differentiated MDSCs 

starting from bone marrow cells isolated from femurs of C57BL/6 mice for 4 days 

with a combination of GM-CSF and IL-6 (Figure 9A), as previously described by 

our group [129]. To verify whether MDSCs could effectively take up exosomes, 

we previously labelled them with the common fluorescent red-emitting dye 

PKH26, which aspecifically binds to lipid membranes. The protocol for exosomes 

staining was also applied to an equal volume of PBS, which was used to exclude 

from the analysis the signal given by clusters of dye which can eventually be 

formed. The uptake experiments were performed by incubating MDSCs with 20 

μg of PKH26-labelled exosomes or PBS for each well at 36, 24 and 12 h before 

the flow cytometry analysis, which allowed us to evaluate the percentage of cells 

positive for the dye, therefore identifying those interacting with exosomes. 

Particularly, our data indicated that among the two main subsets of mouse 

MDSCs, M-MDSCs (CD11b+Ly6ChighLy6G-cells) and PMN-MDSCs 

(CD11b+Ly6ClowLy6G+ cells) (Figure 9B), the majority of PKH26+ cells were 

found within the M-MDSC subset, both when incubated with tumor-derived 

exosomes (TEX) and fibroblasts-derived exosomes (“healthy” exosomes, named 

HEX) at each of the time point considered (Figure 9C). 
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Moreover, we could confirm the effective interaction of labelled TEX or HEX by 

M-MDSCs also by confocal analysis (Figure 9D). Finally, we wanted to prove 

that also in vivo exosomes are able to interact with immune cells, and especially 

with the myeloid compartment. As showed in Figure 9E, MN-MCA-derived-

labelled exosomes systemically injected in C57BL/6 mice could be easily detected 

in immune cells after 24h, in almost all organs analyzed through ex vivo 

fluorescence quantification performed by flow cytometry. Interestingly, myeloid 

cells (red bars) resulted as the main CD45+ cell subset to be involved in the 

interaction with TEX, with peaks around 80-90% in lung and blood, whilst CD3+ 

T cells and B220+ B cells were just partially interested. 

 

Figure 9. PKH26+-exosomes are effectively 

taken up by myeloid cells both in vitro and 

in vivo. A) Experimental schedule for 

evaluating PKH26-exosomes uptake by bone 
marrow-derived MDSCs. B) Gating strategy 

for M-MDSCs (blue) and PMN-MDSCs  

(light blue). C) PKH26+ cells gated on single cells after 12, 24 or 36h of incubation. Values 

were normalized excluding PKH26+ cells resulting from
 
exosomes remaining on cell surfaces 

and subtracting the fluorescence value of the PBS control. D) Confocal analysis representing 

M-MDSCs after 24h of incubation with labelled TEX or HEX. E) In vivo tracking of MN-

MCA1-labelled exosomes. The histograms refer to the 24h time point and represent the 

percentage of immune cells that took up labelled exosomes. Statistical analysis was 

performed by ANOVA test; *p0.05, ** p0.01, *** p0.001. 
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3. TEX but not HEX can enforce immunosuppressive functions in MDSCs  

Since we demonstrated that exosomes can be efficiently engulfed by MDSCs, we 

moved forward to explore the main effects resulting from this interaction. There is 

already evidence that highlights the critical impact of TEX in modulating TME 

and especially immune cells, by interacting with receptors and/or via the release 

of specific cargoes. In this context, we planned to mimic in vitro the interaction 

between TEX and MDSCs, which is likely to happen during tumorigenesis, in 

order to have insights about the mechanisms by which these vesicles can modulate 

MDSC functions. Briefly, we took advantage of the above described setting, 

treating MDSCs for 24h with TEX or HEX and then collecting them for 

performing the functional assay (Figure 10A). Our results clearly demonstrated 

that MDSCs treated with either MN-MCA1-or E0771-derived exosomes, were 

able to increase their suppressive properties when co-cultured at different ratios 

Figure 10. TEX can skew MDSCs towards a more immunosuppressive phenotype. A) 

Representative scheme of the functional in vitro experiments with MDSCs. B) Functional 

suppression assays performed on MDSCs treated with MN-MCA1-, E0771- or 3T3-J2-

derived exosomes. Suppression percentages were calculated based on proliferating activated 

CellTrace+CD8+
 
cells at the end of a co-colture with different amount of TEX/HEX-treated 

MDSCs (24%, 12% and 6% of the final co-culture). C) Real Time PCRs on MDSCs. Fold 

changes were calculated on the untreated samples. D) Representative functional assay (left 

panel) and Real Time PCR (right panel) performed on FACS-sorted Ly6C+ cells isolated 

from WT bone marrow and treated 24h with TEX or HEX. The TruCountTM tubes were 

used to determine the absolute cell number of CD8+cells in the samples. Statistical analysis 

was performed by ANOVA test; *p0.05, ** p0.01, *** p0.001. 
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for 3 days with antigen-specific activated CD8+ T cells (Figure 10B), suggesting a 

modulation induced by vesicles released from cancer cells. Moreover, we did not 

observe any impact on immunosuppressive function on MDSCs treated with 

exosomes isolated from normal 3T3-J2 cells. We then looked for the possible 

mechanisms that could explain the increase in immunosuppression. Not 

surprisingly, we found an increased PD-L1 expression in MDSCs (data not 

shown), which is in line with data recently published for human CD14+ 

monocytes [67]. More interestingly, performing a Real-Time PCR on candidate 

genes involved in immunosuppression, we could appreciate a significant increase 

in Inos mRNA levels in TEX-treated MDSCs that was not observed for the HEX-

treated ones, whilst Ido1 and Arg1 levels were not affected (Figure 10C). These 

findings were then confirmed by performing the same kind of experiment on 

FACS-sorted Ly6C+ cells isolated from the bone marrow of C57BL/6 mice, in 

order to investigate whether monocytes, which are not commonly 

immunosuppressive under tumor-free conditions, could acquire a different 

phenotype in presence of TEX. Indeed, we observed that activated CD8+ T cells 

lost almost all their proliferative properties in presence of TEX-, but not HEX-, 

treated monocytes (Figure 10D, left panel). Furthermore, Inos, Arg1 and Ido1 

mRNA levels were modulated similarly to what was previously demonstrated for 

in vitro differentiated MDSCs (Figure 10D, right panel), providing a proof of 

concept about the influence of TEX treatment. 

 

 4. Inos is likely to be involved in TEX-mediated modulatory functions 

We the explored whether TEX were able to increase MDSC suppressive functions 

in vitro by upregulating Inos expression rather than other immunomodulatory 

enzymes. In order to assess this aspect, first we differentiated MDSCs from bone 

marrow cells of different mouse strains, i.e. C57BL/6 (WT), as well as mice 

genetically deficient for either Inos, Ido1 or Arg1 genes. Interestingly, when 

incubated for 24h with either MN-MCA1-derived or E0771-derived exosomes, 

only iNOS KO MDSCs did not display an increased suppression of T cell 

proliferation, as it occurred for WT, IDO1 KO or ARG1 KO MDSCs (Figure 

11A). 
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Notably, in three independent experiments we could confirm a significant 

difference in the immunosuppressive functions of WT MDSCs compared to iNOS 

KO MDSCs, whose immune modulatory properties were not even slightly 

affected by the treatment with TEX (Figure 11B), highlighting a possible role of 

the iNOS enzyme as downstream regulator induced by TEX in MDSCs. These 

data made us pointing our attention to potential upstream mediators leading to 

iNOS activation, in turns eventually contributing to the in vitro increased 

immunosuppression. Therefore, a further investigation on TEX cargoes was 

strictly necessary. Particularly, we focused on the transcriptome contained in TEX 

and HEX, since it is known that the transfer of miRNAs and mRNAs mediates 

many of the regulatory functions of TEX. To this aim, total RNA from both TEX 

and HEX was isolated, cDNA retro-transcribed and RT-PCRs performed on 

candidate genes. It is already known that different molecules, such as LPS, IFN-γ, 

ROS and TNFα, are able to induce iNOS by activating several intercellular 

Figure 11. TEX-mediated effects on MDSCs occur in an Inos-dependent manner. A) 

Representative plot of the functional assay performed either on either WT MDSCs or 

MDSCs deficient for Ido1, Arg1 or Inos respectively, treated 24h with TEX. B) 

Functional assays comparing WT MDSCs and iNOS KO MDSCs suppressive properties 

when pre-treated 24h with TEX. C) RT-PCRs on exosomes’mRNA contents. Fold 

Change values were calculated on the 3T3-J2 exosomes values and GAPDH used as 

endogenous control. Statistical analysis was performed by ANOVA test; ** p0.01, *** 

p0.001. 
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pathways that converge on NF-κB activation and Inos transcription. Interestingly, 

among all the possible mediators able to upregulate Inos, TNFα mRNA resulted 

one of the most abundant in TEX compared to HEX, whose values were used as 

controls (Figure 11C). Although just two batches of E0771-derived exosomes 

could be tested, it is important to underline that in both cases TNFα levels were 

strikingly higher than the control, which led us to speculate that TNFα could 

represent a possible upstream mediator of the TEX-mediated Inos up-regulation 

and functions.  

 

5. TEX contribute to the pre-metastatic process by acting on myeloid cells  

The critical role of tumor-derived exosomes in immunosuppression by modulating 

myeloid cells has clearly emerged from recent evidences and highlighted by our 

described data. Nevertheless, we wanted to verify whether a similar mechanism 

could be exploited by neoplastic cells also for the pre-metastatic niche formation, 

which represents one of the crucial step in favoring the spread of cancer cells. In 

order to elucidate this aspect, we took advantage of an experimental protocol, 

which we defined as “exosome education”, which allowed us to examine the 

ability of exosomes isolated from highly metastatic cells to influence infiltrating 

myeloid cells of tumor-free C57BL/6 mice, to increase the metastatic spread of a 

low metastatic cell line. Briefly, MN-MCA1-derived exosomes, or an equal 

volume of vehicle for the control group, were retro-orbitally injected, every 2 days 

for 3 weeks, to “educate” tumor-free mice (Figure 12A). Subsequent 

characterization of infiltrating immune cells in the lung confirmed no significant 

changes in immune composition and, in particular, in myeloid cells frequency 

compared to mice of control group (data not shown). After 3 weeks of pre-

conditioning, educated mice (n=24) and control mice (n=25) were challenged with 

5x105 E0771 breast cancer cells, a poorly metastatic cell line, in the mammary fat 

pad. When the tumor reached a volume of 600 mm3, the primary mass was 

surgically removed to avoid the death of the hosts and therefore allow detection of 

tumor cell dissemination. At sacrifice, myeloid cells were isolated from lungs and 

bone marrows and examined by RT-PCR (Figure 12B). Interestingly, as further 

confirmation of  in vitro evidence, we could observe both in lung and bone 

marrow a significant upregulation of Inos, previously hypothesized as important 
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player in the TEX-mediated immunosuppression, together with a strong 

downregulation of Ido1, suggesting the existence of a dichotomy between the two 

enzymes in this setting. Furthermore, in lung myeloid cells we found a slight 

increase in the immunosuppressive cytokine Il-10, whereas Tnfα was strongly 

induced in both organs of educated mice compared to the control group, 

supporting our hypothesis of a TNFα-iNOS axis triggered by TEX in myeloid 

cells. Moreover, in the lung of educated mice, we could appreciate an trend 

towards upregulation of the S100 gene member S100a8, as well as both S100a8 

and S100a9 in the bone marrow. These two important members of the S100 

proteins family are known to be important chemotactic factors for the recruitment 

of myeloid cells favoring the metastatic spread [132]. Notably, these data agree 

Figure 12. Mice educated with highly metastatic TEX displayed a strong increase in the 
dissemination of poorly metastatic cancer cells. A) Experimental schedule of «exosome 

education». B) Real Time PCRs on selected genes, involved in immunosuppression and 

metastatic spread, of CD11b+cells isolated from lung and bone marrow of either PBS- or TEX-

treated mice (3 mice for each group). Fold Changes were calculated over the PBS controls and 

GAPDH used as normalizer gene. C) Lung micrometastases count (left panel) and metastasis 

incidence (right panel) at sacrifice of WT mice (PBS n=25, EXO n=24 pooled from 2 

independent experiments). D) Lung micrometastases count (left panel) and metastasis incidence 

(right panel) at sacrifice of RAG2-/-c-/- mice (PBS n=5, EXO n=8). Statistical analyses were 

performed by Mann-Whitney Wilcoxon test, *p0.5; **p 0.01; ***p 0.001. 
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with recent evidences that have underlined how exosomes can both modulate 

myeloid precursors towards immunosuppressive populations and, furthermore, 

they can act as chemotactic factors in the lungs leading to higher recruitment and 

activation of suppressive myeloid subsets [133]. Thus, we speculated that the 

TEX-mediated establishment of this immunosuppressive and pro-metastatic 

phenotype in myeloid cells could be relevant in favoring the pre-metastatic niche 

formation and thus seeding of cancer cells. Indeed, in two independent 

experiments, TEX-conditioned mice displayed a significant increment in lung 

metastases number, as well as in tumor metastases incidence, compared to PBS-

treated control mice (Figure 12C). To further confirm the prominent role of the 

myeloid compartment in this process, we then performed the same experiments in 

RAG2-/-c-/- mice, which lack mature T and B cells as well as NK cells. Although 

all mice of both groups displayed a numerous amount of lung metastases due to 

the lack of a fully competent immune system, the increase in lung metastases 

number mediated by TEX-education was still detectable, therefore indicating a 

role of the innate immunity in the interaction with exosomes, in turns favoring the 

spread of cancer cells (Figure 12D). It is worth mentioning, however, that immune 

competent mice could partially control metastatic spread unless exposed to TEX, 

differently from the immune deficient ones.  

 

6. Blocking exosomes secretion does not decrease the spread of cancer cells to 

the lungs 

After having proved that TEX may be pivotal in the formation of an 

immunosuppressive and pro-metastatic environment within the pre-metastatic 

niche, we then wondered whether blocking exosomes secretion could represent a 

useful strategy to impair TEX-mediated detrimental effects. To this aim, we used 

a neutral sphingomyelinase inhibitor, named GW4869, which is the most widely 

used pharmacological agent for blocking exosome generation [134]. In details, 

GW4869 is able to block the enzymatic activity of the sphinghomyelinase N-

SMase2, therefore inhibiting the ceramide-mediated inward formation of 

multivesicular bodies (MVBs) and release of mature exosomes from MVBs 

(Figure 13A). For the purpose of our project, we set up an in vivo protocol in 

which C57BL/6 mice were ortothopically injected in the femoral quadriceps with 
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the highly metastatic cell line MN-MCA1 (1x105 cells/mouse) and treated with 

the exosome blocking agent GW4869 (2.5 mg/kg i.p) every two days (Figure 

13B). Tumors were left growing for 25 days while continuing with the treatments 

and, when primary mass reached 600 mm3, lungs were collected for evaluating the 

number of micrometastases. Surprisingly, in two independent experiments (CTRL 

n=20; GW4869 n=19), the treatment with GW4869 did not impair the metastatic 

spread to the lungs, neither in terms of number of metastases (Figure 13C) or of 

metastases incidence (data not shown), therefore suggesting that more specific 

approaches in blocking TEX-mediated effects were needed in order to obtain a 

therapeutic benefit.  

 

7. The in vivo blocking of S100A9 can modulate myeloid cells affecting both 

immunosuppression and metastatic spread 

The lack of efficacy of blocking exosome secretion led us to speculate that, 

although TEX are increased in some types of cancer and are likely the most 

abundant vesicles released, presumably the GW4869 nonspecific inhibitory 

functions are also impairing important physiological processes in cells other than 

the transformed ones. Therefore, we moved to investigate other possible strategies 

that could be pursued in order to abrogate the detrimental effect of tumor-derived 

exosomes, both in the tumor microenvironment as well as at distal sites. Among 

Figure 13. GW4869 inhibitor of 

exosome secretion does not impair 

the spread of malignant cells. A) 

Exosome secretion scheme involving 
the N-SMase2 mediated ceramide 

synthesis, essential for exosomes 

biogenesis in MVBs. B) Experimental 

protocol for blocking exosome 

secretion in vivo in C57BL/6 mice. C) 

Lung metastases count at sacrifice 

(CTRL n=20; GW4869 n=19). 
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all possible targets, we focused on S100 family members S100A8 and S100A9, 

whose expression was previously shown to be increased in myeloid cells of 

exosomes-educated mice (see page 58). More importantly, S100A8 and S100A9 

are widely considered as key modulators of myeloid cells (particularly of 

MDSCs), both by contributing to their recruitment in pre-metastatic organs and, 

furthermore, by directly regulating their functions [135]. Giving these premises, 

we decided to interfere with S100A9 by using Tasquinimod, a small molecule oral 

inhibitor that has shown anti-angiogenic, antitumor and immune-modulatory 

Figure 14. Blocking S100A9 in vivo can have beneficial effects on tumor growth and 

metastatic spread. A) S100A8/A9 heterodimer quantification on plasma of tumor-bearing 
mice (injected with MN-MCA1 or E0771 cell lines) compared to tumor-free mice. B) 

Experimental setting for the in vivo blocking of S100A9. C) Average of primary tumor growth 

over time in control or Tasquinimod-treated mice (Untreated n=10; Tasquinimod n=10). D) 

Functional suppressive assay performed on CD11b+ cells isolated from tumors of control (n=3) 

or treated mice (n=3). The results show the percentage of suppression (left panel) and a 

representative proliferation plot (right panel). E) Flow cytometry analysis of lung infiltrating 

total myeloid cells, Ly6C+ or Ly6G+ cells and macrophages (Mφ). All percentages were 

expressed on total CD45+ cells. F) Lung micrometastases count (left panel) and metastases 

incidence (right panel). Statistical analysis was performed by ANOVA test; *p0.05, ** 

p0.01, *** p0.001. 
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properties in preclinical models of prostate cancer and other solid tumors. First, 

we verified that circulating S100A8/A9 heterodimer was significantly increased in 

cancer, as demonstrated by two different models of tumor-bearing mice (Figure 

14A). Importantly, S100A8/A9 could not be detected in tumor cells conditioned 

media (data not shown), suggesting that stromal cells are the main responsible for 

their secretion. As E0771-bearing mice showed the highest levels of S100A8/A9, 

C57BL/6 mice were challenged with E0771 cancer cells and treated every two 

days by oral gavage with the S100A9 inhibitor Tasquinimod (n=10) or an equal 

volume of sterile water (n=10). The treatments were continued after the primary 

mass removal until sacrifice, when tumors and lungs were collected (Figure 14B) 

and analyzed. Interestingly, Tasquinimod-treated mice displayed a significant 

reduction in growth of the primary tumor (Figure 14C), which could be associated 

with a strong and significant decrease in the ex vivo suppressive functions of 

CD11b+ cells isolated from tumors of treated mice compared to controls (Figure 

14D). These data highlighted that blocking S100A9 protein may result in the 

impairment of the myeloid-mediated immunosuppressive milieu thus rescuing a 

functional immune response that can effectively control tumor growth. 

Furthermore, we further analyzed the recruitment of myeloid cells in lung by flow 

cytometry. Indeed, Tasquinimod-treated mice showed a significant decrease in 

CD11b+ infiltrating the lung, which is also reflected in the lower percentages of 

Ly6C+Ly6G- cells (M-MDSCs) and Ly6ClowLy6G+ cells (PMN-MDSCs), whilst 

macrophages were just partially affected (Figure 14E), leading us to speculate that 

also the favorable suppressive environment for cancer cells dissemination within 

the lungs could be compromised. Notably, we could indeed observe a strong 

decrease both in the number of lung metastases and metastasis incidence in treated 

mice compared to controls (Figure 14F, left and right panels respectively), which, 

although not statistically significant, gave us important insights about the possible 

efficacy of the drug in affecting the metastatic spread.  

 

8. High levels of circulating S100A8/A9 in cancer patients are predictive of 

poor distant metastasis-free survival 

After having proven the in vivo beneficial effects by interfering with S100A9 

signaling, we wondered whether we could translate our findings in a human 
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cancer setting. Many of the S100 proteins are already known to be highly 

overexpressed in different types of human cancer, and, particularly, S100A8 and 

S100A9 are abundant in colorectal, breast, prostate and lung cancer, among the 

others. However, few data are available about one of the most aggressive and 

metastatic cancers, i.e. pancreatic cancer. In this regard, we recently demonstrated 

that pancreatic ductal adenocarcinoma (PDAC) is not an “immune desert” as 

previously thought, and a high number of tumor-infiltrating CD45+ cells can be 

found in patients’ biopsies (data in publication). Thus, we wondered whether the 

aggressiveness and invasive potential of PDAC cells could be associated to high 

amount of circulating S100A8/A9. To elucidate this aspect, we enrolled a cohort 

of 57 PDAC patients and 9 age- and sex-matched healthy donors (HD). Clinico-

pathologic features of patients were reported in Figure 15A and include age, 

gender, tumor location, tumor size, differentiation status, lymph node involvement 

and TNM stage, patterns of resection margins. PDAC and HD sera were analyzed 

by ELISA for the quantification of S100A8/A9 heterodimer. A significant 

increase in patients’ samples compared to the control group was evidenced 

Figure 15. PDAC patients display high levels of circulating S100A8/A9, which negatively 

correlates with distant metastasis-free-survival. A) Clinical characteristics of the study 

population. B) S100A8/A9 protein levels in sera of PDAC patients (n=57) compared to healthy 

donors (n=9). C) Correlation between S100A8/A9 sera concentration in PDAC patients and the 

distant metastasis-free-survival (patients with S00A8/A9 values above or below the cutoff 

value are represented in red and black respectively). Statistical analyses were performed by 

Mann-Whitney Wilcoxon test, **p<0.01. Survival curves were drawn by Kaplan-Meier 

estimates and compared by log rank test. 
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(Figure 15B), confirming the possibility to exploit S100A8/A9 as diagnostic 

biomarker in PDAC patients. More importantly, sera concentration of these 

proteins negatively correlated with the distant metastasis-free-survival (dmFS): 

particularly, when S100A8/A9 levels were found above the cutoff value of 425 

pg/ml, which allowed the division of PDAC patients in two different clusters, the 

dmFS at 3 years was almost halved (Figure 15C). In conclusion, these data 

highlighted that S100A8/A9 concentration could represent a useful tool also as 

prognostic factor for the metastatic potential of the disease, therefore possibly 

allowing more prompt and efficacious therapeutic approaches.  
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DISCUSSION 
 

The complexity and multi-step process of tumor development and 

progression has been extensively studied over the past 50 years and it is now 

widely recognized. Particularly, it has clearly emerged that cancer cells, despite 

all accumulated mutations, do not act alone in cancer progression but instead they 

can employ and modulate normal cell types that may serve as active collaborators 

toward a neoplastic phenotype. A striking evidence is represented by the fact that 

cancer cells are not capable of forming tumors when injected into a nonmalignant 

environment, such as developing embryos [136], which clearly justify why cancer 

is now considerable as an “ecological disease”, modulated by many components 

of TME. For instance, tumor cells have been shown to direct contrast T cells 

fitness by expressing immune checkpoint molecules, such as PD-L1/PD-L2, as 

demonstrated by the efficacy and enthusiastic outbreak concerning immune 

checkpoint inhibitors strategies. Secondly, tumors can indirectly influence the 

framework of microenvironment by modulating both stromal and immune cells 

through their secretome, which includes TDSFs and EVs. As previously reported, 

among extracellular vesicles TEX are the most well-studied and characterized: 

indeed, their abundance in cancer patients and evidence of their modulatory 

properties are pushing researchers to investigate their role in pathogenesis. Hence, 

for the aims of this project, we specifically focused on the crosstalk and 

interactions between TEX and the supporting myeloid cells composing TME in 

mice, since they are crucial in the aforementioned neoplastic processes. First, we 

took advantage of mouse immortalized cell lines to isolate exosomes from their 

conditioned media. Among the available isolation methods, we chose the 

ultracentrifugation protocol because of its simplicity, little technical expertise 

requirement and relatively low time consumed. Indeed, we could efficiently 

isolate exosomes, as confirmed both by the diameter mean size and by the surface 

expression of CD9 and CD63 markers, which are commonly used to mark 

exosomes. However, a more complex panel of surface markers could allow a 

better characterization of exosomes of different origins; in fact, several companies 

are now developing flow cytometry strategies for performing an in vitro broad 
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characterization of extracellular vesicles, which may unveil useful tumor-specific 

surface markers.  

 Subsequently, being interested in the TEX-myeloid cells interaction, we 

moved to evaluate the ability of in vitro differentiated MDSCs to uptake 

exosomes, mimicking what it is likely to happen in TME, where MDSCs 

constitute a major population involved in the establishment of a permissive 

milieu. Interestingly, our in vitro data demonstrated that MDSCs can interact with 

exosomes independently of their tumor or normal origin and, furthermore, that M-

MDSCs, whose ability of engulf labelled exosomes was also shown by confocal 

analysis, represent the major subset involved in this process. This could be 

explained by the fact that monocytic cells are particularly prone to detect, 

recognize and eventually engulf particles, including vesicles, in turn activating 

intracellular pathways. Although recent evidences suggested a temperature-

dependent and actin-dependent uptake mechanism by ex vivo MDSCs [137], the 

exact mechanism by which this interaction occurs is still to be clarified. More 

importantly, by ex vivo flow cytometry analysis we could also observe that 

PKH26-labelled-TEX were preferentially taken up by myeloid cells, rather than 

B220+ B cells and CD3+ T cells, in almost all organs analyzed, thus highlighting 

the central role of the innate immune system in the interaction with TEX. 

Therefore, we plan to characterize deeper this process by dissecting which are the 

specific myeloid cell subsets mainly involved in TEX given ex vivo, and, 

moreover, we could study this interaction directly in vivo through the injection of 

trackable engineered tumor cell lines (e.g. carrying GFP-linked CD9) [138].  

 Since we were interested in how TEX could modulate myeloid cells, we 

took advantage of the MDSC setting to test the functional consequences of TEX 

interaction. As recently reported by our group [139], to assess the extent of the 

MDSC suppressive ability it is mandatory to perform functional in vitro assays 

that give a quantitative and reliable proof of their functions. Notably, TEX, but 

not HEX, could enforce the immunosuppressive ability in MDSCs, and, more 

importantly, they conferred potent suppressive properties to Ly6C+ monocytes 

isolated from the bone marrow of tumor-free mice. These data are consistent with 

previous findings regarding TEX contribution to immunosuppression [140], 

which can be either direct (such as by expressing PD-L1 themselves) or indirect 

through the modulation of suppressive cell types. In our setting, we discovered 
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that TEX-treated MDSCs displayed a significant increase in Inos expression, 

rather than other known MDSC-related immunosuppressive enzymes (i.e. Ido1 

and Arg1), which was partially mirrored by BM-Ly6C+ cells, leading us to 

speculate of a possible indirect immunosuppressive TEX-mediated process. To 

better unveil the specific downstream mediators of the enhanced suppressive 

ability of MDSCs after TEX treatment, we exploited MDSCs differentiated from 

the bone marrow of mice lacking Inos, Ido1 or Arg1. The functional suppressive 

assay revealed that only iNOS KO MDSCs did not enhance their suppressive 

functions when incubated with TEX, whereas all the other KO MDSCs behaved 

similarly to the WT control. Given this proof of concept, we confirmed the 

involvement of iNOS by three independent functional assays where we could 

observe the same lack of TEX-mediated suppressive increase. It is important to 

emphasize that iNOS is a key mediator of M-MDSCs suppressive function, which 

were above described as the main subset involved in the interaction with TEX, 

thus suggesting a possible association between TEX uptake and iNOS 

upregulation. Although the expression regulation of iNOS has been extensively 

studied in various types of cells, including myeloid cells in vitro [141] the 

molecular mechanism underlying iNOS expression regulation in MDSCs in 

cancer is for the most part unknown. For this reason, we looked to the 

transcriptome within TEX and HEX to investigate whether differences in 

candidate molecules, known to upregulate Inos, could be detected. Among them, 

TNFα mRNA levels were increased both in MN-MCA1-derived exosomes and, 

particularly, in E0771-derived exosomes, compared to 3T3-J2-derived controls. 

Although not statistically significant, this enrichment in TNFα, which was 

particularly evident in the case of the breast tumor model, made us hypothesize 

that the horizontal transfer of this cytokine to MDSCs may trigger an intracellular 

pathway leading to NF-B activation, in turns responsible for the up-regulation of 

Inos [142].  

We next moved to an in vivo setting where we could investigate TEX 

involvement in the pre-metastatic niche formation, where the MDSC recruitment 

and activation have been shown to be crucial. First, we demonstrated that the 

continuous exposure of C57BL/6 mice to MN-MCA1-derived exosomes before 

the tumor challenge was sufficient to modulate broadly CD11b+ cells both in lung 

and in bone marrow. Particularly, as a further confirm to our in vitro data, 
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myeloid cells isolated form TEX-conditioned mice, showed a significant up-

regulation of Inos compared to control mice, likely contributing to the 

establishment of a suppressive environment. Moreover, Tnfα was also strongly 

upregulated by TEX-conditioning in myeloid cells within both organs analyzed, 

supporting the hypothesis about TNFα-iNOS axis, whereas, surprisingly, Ido1 

was significantly downregulated, thereby suggesting a dichotomy between iNOS 

and IDO1, as proven for iNOS and ARG1 in the context of infections [143]. To 

investigate this aspect, we plan to use the CRISPR/CAS9 technology in order to 

delete the Tnfα gene in tumor cell lines, isolate TEX and investigate whether 

iNOS up-regulation is eventually abrogated. In addition, although not striking, the 

slight increase in the S100 family member S100a8 in the lung, as well as both 

S100a8 and S100a9 in the bone marrow of TEX-conditioned mice, emphasized 

the hypothesis of TEX as promoter not only of a more suppressive phenotype in 

myeloid cells but also of pro-metastatic properties. It was previously 

demonstrated that the up-regulation of S100A9 in myeloid precursors inhibits DC 

and macrophage differentiation, inducing the MDSC accumulation [144]; in 

addition, TDSFs including VEGF-A, TGFβ and TNFα can stimulate S100A8/A9 

in pre-metastatic lung, which are able to act as chemoattractant for CD11b+ cells 

[126], thus creating a favorable microenvironment promoting tumor spread. 

Indeed, our data clearly demonstrated that TEX-education could significantly 

increase the spread of a poorly metastatic cell line (i.e. E0771), either in C57BL/6 

mice or in mice lacking T, B and NK cells, enforcing the hypothesis of a critical 

role of myeloid cells in this process. 

 

Having assessed the detrimental effects of TEX both in 

immunosuppression and in favoring the metastatic spread, next step of our project 

concerned the attempt to block TEX secretion. In order to do that, we exploited 

GW4869, a molecule that can block the ESCR-independent exosome 

biogenesis/release by inhibiting the nSMase-2 enzyme. Its beneficial effects have 

been previously demonstrated in Lewis lung carcinoma- (LCC-) bearing mice, 

which displayed a lower number of lung multiplicities when treated with GW4869 

compared to controls [145]. To appreciate better a possible decrease in the spread 

of cancer cells, we injected a highly metastatic cell line (MN-MCA1) in C57BL/6 

mice, which received GW4869 treatment every two days until sacrifice. 
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Surprisingly enough, blocking exosomes secretion did not provide any beneficial 

effect, as demonstrated by comparing the number of lung metastases of mice in 

both experimental arms. We hypothesized that this inefficacy could be due to the 

nonspecific activity of the inhibitor, which may compromise also the 

physiological exosomes-mediated network between normal cells. Alternatively, 

GW4869, although widely used to block exosomes release, has been recently 

shown to induce a significant increase in the secretion of microvesicles in human 

tumor cell lines, an activity that may mediate other important functions in TME 

[146]. All things considered, we plan to block selectively exosomes release by 

deleting RAB35 in tumor cell lines, inject them in mice and look for the 

metastatic spread, thus avoiding the aforementioned limitations of using GW4869.  

Subsequently, we wondered whether blocking a downstream mediator of TEX-

modulation in myeloid cells could instead ameliorate the neoplastic disease both 

at primary tumor as well as at future distal sites of metastases. Therefore, we 

pointed our attention to S100A8 and S100A9 proteins, since we found them 

increased in infiltrating myeloid cells after TEX-education and, furthermore, they 

were identified as potent amplifiers of inflammation, tumor invasion and 

metastases in cancer [147]. Thereby, we attempted to validate our hypothesis in 

E0771-bearing mice through the oral administration of Tasquinimod, which 

inhibits S100A9. Primary tumor growth was significantly decreased in treated 

mice compared to those of the control group. We speculate that this could be due 

to the impairment of MDSC suppressive functions caused by the drug, as 

demonstrated through the functional assay performed on CD11b+ cells isolated 

from tumors. The most relevant finding was obtained after looking at drug effects 

in the lungs of Tasquinimod-treated mice compared to controls: indeed, we could 

demonstrate a significant decrease in lung-infiltrating, total myeloid cells, 

together with a strong reduction in MDSC subsets, whilst macrophages were not 

particularly affected. These data gave us a confirmation of the efficacy of the 

drug, as S100A9 participates to the recruitment of myeloid cells into the pre-

metastatic niche, in turns favoring the seeding of migrating cancer cells. 

Nonetheless, as expected, either lung metastases number and metastatic incidence 

in the lung were strongly reduced by blocking S100A9 engagement. Therefore, 

although Tasquinimod is currently under investigation mainly in the context of 

prostate cancer [148], our preliminary data suggest that a possible application in 
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other types of solid cancer might be pursued. Particularly, S100A8/A9 

heterodimer expression has been found increased in many tumors, including 

gastric, colon, bladder, ovarian, thyroid, breast, skin and pancreatic [149], thus 

being considered as a potential therapeutic target. We assessed the possible role of 

S100A8/A8 in PDAC progression by measuring its concentration in PDAC 

patients’ sera (n=57) compared to healthy donors (n=9). More importantly, we 

demonstrated its relevance in metastatic spread by the providing evidence of a 

negative correlation between circulating levels of S100A8/A9 and the dmFS, thus 

paving the way for the therapeutic targeting of S100 proteins in patients, in 

combination with different anti-cancer immunotherapies, as an approach to 

control metastases dissemination.  

In conclusion, we believe that a combination of a specific TEX-targeting strategy 

coupled with the block of S100A8/A9 signaling in myeloid cells, for instance 

using Tasquinimod-carrying liposomes specific for monocytes, may represent a 

novel strategy to ameliorate the favorable immunosuppressive environment 

established by primary tumors through exosomes, eventually leading to beneficial 

effects either locally and/or in terms of control of distal metastases spread.
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