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1. ABSTRACT 

 

Pancreatic adenocarcinoma (PDAC) is one of the most aggressive and devastating 

human malignancies. Late diagnosis is due to an absence of specific symptoms at ini-

tial stages. In about 70% of PDACs, the tumor suppressor gene TP53 is mutated gen-

erally resulting in conformational changes of mutant p53 (mutp53) proteins, making 

an important key in the carcinogenesis process not only through loss of wild type ac-

tivity, but also through gain of specific mutant functions. In contrast to the tumor 

suppressive roles of wild-type p53, mutant p53 proteins support cancer progression 

by enhancing the ability of cancer cells to invade and metastasize, to confer chemo-

resistance, and to stimulate genomic instability. We focused our attention on novel 

molecular mechanisms by which gain of function (GOF) mutant p53 proteins play 

their oncogenic roles promoting cancer cell proliferation and chemoresistance. The 

main project is based on intracellular alterations induced by mutant p53 in cancer 

metabolism and reactive oxygen species (ROS) production, contributing to cancer 

development and aggressiveness. ROS are highly reactive byproducts of mitochon-

drial oxidative phosphorylation and are implicated in a plethora of biological events 

addressed to sustain each aspect of human cancer being able to act as second mes-

sengers in cellular signaling.  In particular, we unveiled that mutp53 is able to inhibit 

SESN1 expression and consequently the amount of SESN1/AMPK complex, result-

ing in the downregulation of the AMPK/PGC-1α/UCP2 axis and ROS production. In 

this way GOF mutant p53 proteins, contrarily to its wild-type p53 counterpart, lead i) 

antiapoptotic effects, ii) proliferation and iii) chemoresistance in PDAC cells. These 

oncogenic roles given by GOF mutp53 are also detected through another mechanism 

that supports glycolytic metabolism in PDAC cells. Indeed, we demonstrated that 

mutant p53 prevents the nuclear translocation of the glycolytic enzyme glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) stabilizing its cytoplasmic localization, 

thus supporting glycolysis of cancer cells and inhibiting cell death mechanisms me-

diated by nuclear GAPDH. We further show that the prevention of nuclear localiza-

tion of GAPDH is mediated by both stimulation of AKT and repression of AMPK 

signaling, and is also associated with the formation of SIRT1:GAPDH complex. The 

blockage of GAPDH mutp53-dependent cytoplasmic stabilization is able to restore 
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the sensitivity of PDAC cells to the treatment with gemcitabine, permitting cancer 

cells to acquire sensitivity to anti-glycolytic drugs and suggesting a potential person-

alized therapeutic approach in human cancers carrying mutant TP53 gene. In addi-

tion, we addressed our research on the extracellular roles of mutant p53 in the tumor 

microenvironment of PDAC cells. The cancer secretome is a rich repository to find 

useful information for both cancer biology and clinical oncology. A better under-

standing of biological features that are common or peculiar to different tumors could 

allow the identification of specific prognostic/predictive biomarkers for early diagno-

sis and tumor progression monitoring. This is particularly relevant for PDAC, which 

has extremely high mortality rate and is mainly due to lack of recognizable symp-

toms and exact assays for early detection. The objective of this study was to recog-

nize a specific signature of biomarkers secreted by PDAC cells carrying GOF mutant 

p53. Comparing the secretome of p53-null PDAC cells before and after ectopic over-

expression of R273H-mutp53 and R175H-mutp53, we found 23 differentially secret-

ed proteins by both mutant p53 isoforms that might constitute a secreted signature 

driven by the hot-spot p53 mutants in PDAC. Furthermore, we also studied the func-

tional effect of mutp53-driven secretome on cancer cells showing its influence on 

proliferation, chemoresistance, apoptosis, autophagy, and cell migration. These data 

constitute a prerequisite for the identification of a secreted biomarker signature for 

the early identification of mutant p53 PDAC patients. In conclusion, the discovery of 

novel mechanisms by which hot-spot mutant p53 isoforms induce pancreas cancer 

growth is crucial to identify specific and personalized therapies for PDAC patients 

bearing mutant TP53 gene, representing a major therapeutic challenge for modern 

molecular oncology.  
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2. SOMMARIO 

 

L’adenocarcinoma pancreatico duttale (PDAC) è una malattia letale e rappresenta 

una delle principali cause di morte per cancro. La diagnosi tardiva è dovuta ad un'as-

senza di screening efficaci che permettano di diagnosticarlo nei primi stadi della ma-

lattia. Ciò si traduce in un frequente ritardo nella diagnosi, che spesso viene diagno-

sticata solo quando il tumore è già in uno stadio avanzato e si è diffuso in altre parti 

del corpo. In più del 70% dei casi è presente un gene TP53 mutato nelle cellule 

PDAC. P53 è un fattore di trascrizione che regola il ciclo cellulare e ricopre una im-

portante funzione di soppressore tumorale. La maggior parte delle mutazioni presenti 

nel gene che codifica per p53 sono mutazioni missenso che causano l’espressione di 

isoforme di p53. Così, la proteina mutata non solo perde la sua funzione wild type ma 

può acquisire nuove proprietà biologiche chiamate gain-of-function (GOF) le quali 

contribuiscono allo sviluppo della patologia neoplastica. Lo scopo di questa tesi è 

stato quello di scoprire nuovi meccanismi molecolari attraverso i quali la proteina 

p53 mutata contribuisce alla progressione tumorale ed alla chemioresistenza al fine 

di identificare dei potenziali target terapeutici. Uno di questi meccanismi identificati 

è incentrato sullo studio delle specie reattive dell’ossigeno (ROS), che sono note in-

durre instabilità genomica ed altre alterazioni che favoriscono lo sviluppo di patolo-

gie quali il cancro. In questa tesi dimostriamo che le diverse isoforme di p53 mutata 

inducono alti livelli di ROS, attraverso l’inibizione di proteine antiossidanti, quali 

UCP2, ed identifichiamo una via di regolazione che coinvolge l’asse 

SESN1/AMPK/PGC-1α/UCP2. In questo modo, dimostriamo che p53 mutata favori-

sce la crescita delle cellule tumorali e chemioresistenza. Queste capacità oncogeniche 

date dalla proteina p53 mutata vengono riscontrate attraverso un secondo meccani-

smo incentrato sul metabolismo energetico delle cellule tumorali. Infatti, un altro 

obiettivo della tesi è incentrato sulla regolazione intracellulare dell’enzima glicolitico 

GAPDH (gliceraldeide 3-fosfato deidrogenasi) da parte della proteina p53 mutata 

con conseguente modulazione della proliferazione delle cellule tumorali. GAPDH è 

una proteina multifunzionale, capace di svolgere altri ruoli oltre al suo ruolo princi-

pale di enzima glicolitico. I risultati ottenuti dimostrano che p53 mutata stabilizza la 

proteina GAPDH nel citosol, stimolando l’effetto Warburg e impedendone 
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l’attivazione di meccanismi di morte cellulare indotti dal GAPDH nucleare. Investi-

gando come questo avvenga, scopriamo che la stabilizzazione di GAPDH nel citosol 

data da p53 mutata, avviene atttraverso la stimolazione della proteina chinasi AKT e 

dalla repressione della chinasi AMPK ed è inoltre associata alla formazione del com-

plesso GAPDH:SIRT1. Inoltre, il blocco della traslocazione nucleare del GAPDH da 

parte di p53 mutata rende più sensibili le cellule PDAC al trattamento di droghe anti-

glicolitiche; in questo modo GAPDH potrebbe essere un target terapeutico per questo 

tipo di cancro che possiede il gene TP53 mutato. Il secondo progetto si basa sullo 

studio di biomarcatori secreti in cellule di PDAC con p53 mutato. Una migliore 

comprensione delle caratteristiche biologiche comuni e/o specifiche nei diversi tumo-

ri potrebbe consentire l'identificazione di specifici biomarcatori prognostici e/o pre-

dittivi per la diagnosi precoce e il monitoraggio della progressione tumorale. Questo 

è maggiormente richiesto in tumori come PDAC a causa della mancanza di sintomi e 

saggi riconoscibili per la diagnosi precoce. Il secretoma del cancro rappresenta il mi-

croambiente tumorale che svolge un ruolo chiave nei processi che promuovono la 

formazione dei tumori come l'angiogenesi e l'invasione. Confrontando il secretoma di 

cellule PDAC non esprimenti la proteina p53, con quelle in cui si ha una sovrae-

spressione ectopica di R273H-mutp53 e R175H-mutp53, abbiamo trovato 23 protei-

ne differenzialmente secrete da entrambe le isoforme mutanti di p53 che potrebbero 

costituire dei potenziali marcatori specifici per l’identificazione precoce di PDAC 

con p53 GOF. Inoltre, abbiamo anche studiato l'effetto funzionale del secretoma gui-

dato da p53 GOF nelle cellule tumorali mostrando la sua influenza sulla proliferazio-

ne, la chemioresistenza, l'apoptosi e l'autofagia, così come sulla migrazione delle cel-

lule. In conclusione, la scoperta di nuovi meccanismi mediante i quali p53 mutato 

stimola la progressione tumorale è importante per identificare terapie specifiche e 

mirate in tumori, esprimenti geni mutati per p53, che rappresentano una delle princi-

pali sfide terapeutiche per la moderna oncologia molecolare. 
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3.  INTRODUCTION 

 

 Pancreatic cancer is one of the most frequent causes of tumor-associated deaths, and 

its incidence has recently increased in the western world [1]. There are different 

types of pancreatic cancer divided into two main groups; exocrine tumours that start 

in the exocrine cells where enzymes which help food digestion are made; endocrine 

tumours, also known as neuroendocrine tumours, that start in the endocrine cells 

which release insulin and other hormones. Most pancreatic cancers are exocrine and 

ductal adenocarcinomas [2]. Pancreatic ductal adenocarcinoma (PDAC) is the most 

common type of pancreatic malignancy and has a poor prognosis, with a dismal 

overall 5-year survival rate of 5% [3].  Late diagnosis due to an absence of specific 

symptoms at initial stage, together with high metastatic potential, resistance to thera-

pies, and a lack of biomarkers and screening methods, are the main causes of poor 

prognosis in PDAC. Standard treatments for advanced disease include therapy with 

gemcitabine (2′,2′-difluoro-2′-deoxycytidine; GEM) with a response rate of less than 

20% [4]. Therefore, the identification of effective targets and novel therapeutic strat-

egies to improve GEM effects in PDAC have been the topic of extensive investiga-

tion in the last few years [5]. PDAC presents genetic heterogeneity with a high num-

ber of mutations. Among the various important genes alterated in PDAC, TP53 gene 

is the best-documented ones [6]. 

 

 

3.1 TUMOR SUPPRESSOR p53: THE GUARDIAN OF THE GENOME 

                      

P53 is one of the most important protein involved in signaling pathways that prevent 

tumour formation and progression. It is a transcription factor, with a modular struc-

ture formed by distinct functional domains: i) N-terminal transactivation domain 

(amino acid aa 1-73), which interacts with the transcriptional machinery [7]; ii) pro-

line rich-regions (aa 63-97), which is required for p53 stabilization; iii) DNA binding 

domain (aa 93-312), that binds the responsive element on DNA and proteins that 

positively or negatively affect p53 activity, such as MDM2 or 53BP1 respectively 
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[8]; iv) oligomerization domain (aa 325-355),which is essential for tetramer for-

mation and represents the active form of p53 [9] and v) C-terminal regulatory do-

main, containing residues post-translationally modified which are involved in modu-

lation of its stability [10] (figure 1). 

                                                                                                                              

 

 

 

 

 

                                      

Figure 1. Multifunctional domains of p53. The p53 monomer consists of various multifunctional do-

mains [11]. 

 

A lot of studies shows p53 at the centre of a molecular network that transduces sig-

nals deriving by stress conditions [12]. Under the non-stressed condition, the p53 

protein is maintained at a low level in cells by the proteasome degradation pathway. 

MDM2, an E3 ubiquitin ligase, is the most critical negative regulator for p53 [13]. In 

response to a wide variety of stress signals, including DNA damage, nutritional star-

vation, hypoxia, the p53 protein is stabilized through post-translational modifications 

by a variety of enzymes. These enzymes include kinases, phosphatases, acetyltrans-

ferases, deacetylases, ubiquitin ligases, deubiquitinases, methylases, and sumoylases 

[8]. Once activated, p53 acts as a transcription factor and it becomes able to promote 

the coordinated expression of many target genes through the binding to specific 

DNA sequence in the regulatory regions of its target genes [14]. In this way, p53 

regulates a wide range of cellular biological processes to maintain genomic integrity 

and prevent tumor formation, including cell cycle arrest, apoptosis, senescence, en-

ergy metabolism, anti-oxidant defense, autophagy, etc. (figure 2) [14], [15]. Because 

of its role as a key integrator in translating diverse stress signals into different cellu-

lar outcomes, p53 has been namely the “guardian of the genome”. 
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Figure 2: The p53 pathway in tumor suppression. Activation of the transcription factor p53 in re-

sponse to different types of cellular stress can lead to cell survival as well as cell elimination. [15]. 

 

The importance of the p53 pathway in tumor suppression is strongly highlighted by 

the observation that mutations of the TP53 gene are very frequent in human cancers. 

Indeed, whereas somatic TP53 mutations contribute to sporadic cancer, germline 

TP53 mutations cause a rare type of cancer predisposition known as Li-Fraumeni 

Syndrome (LFS) which is not associated with site-specific tumours, but rather with a 

variety of tumour types occurring at a relatively early age [16]. Accordingly, the ab-

sence of p53 predisposes to spontaneous development of neoplastic disease, as ob-

served in p53 knockout mouse models [17]. Furthermore, somatic mutations in the 

TP53 gene are one of the most common alterations in human cancers, occurring in 

more than 50% of cancer patients [18]. In patients with wild-type TP53 gene , the 

p53 pathway is often compromised through the amplification of negative regulators, 

such as MDM2 [19] or the inactivation of upstream factors, as Chk2, ATM or 

p14ARF [20], [21]. 
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3.2 MUTANT p53 AND ITS ONCOGENIC ROLE  

Mutations in the TP53 gene are among the most common gene-specific alterations in 

human cancers.The frequency of TP53 gene mutations can vary considerably be-

tween cancer types, ranging from 10% in haematopoietic malignancies [22] to 50–

70% in ovarian [23] and pancreas [24] cancers. Most of tumor suppressor genes, such 

as RB (retinoblastoma-associated protein), APC (adenomatous polyposis coli), and 

VHL (Von Hippel-Lindau tumor suppressor), are frequently inactivated by deletion 

or truncation mutations in tumors, resulting in the decreased or loss of expression of 

their proteins. Interestingly, the majority of p53 mutations in human cancer are mis-

sense mutations for more than 70% of them, which usually result in the expression of 

full-length mutant p53 proteins [25]. Although p53 mutations have been found in all 

coding exons of the TP53 gene, the majority of mutations occur in the p53 DNA-

binding domain, resulting in the loss of DNA-binding activity of mutant p53. In gen-

eral, the p53 missense mutations can be classified into two main categories which are 

commonly referred to as “DNA‑contact” and “conformational” mutations [26]. The 

first group includes mutations in residues directly involved in DNA binding, such as 

R248Q and R273H. The second group comprises mutations that cause local (such as 

R249S and G245S) or global (such as R175H and R282W) conformational distor-

tions. The majority of p53 missense mutations occur at six ‘mutational hot-spots’ in 

the DNA-binding domain of p53, including residues R175, G245, R248, R249, 

R273, and R282 (figure 3)[26], [27].  

                                                                                                                                                                             

 

 

 

 

                           

 

 

             

                Figure 3. The distribution of hot-spot mutations along the p53 sequence [26]. 
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While wild-type p53 protein is kept at a low level in cells by the proteasome degra-

dation pathway under non-stressed conditions, mutant p53 protein usually accumu-

lates to a high level in tumors, and the underlying mechanisms are not fully under-

stood [27]. It has been well-documented that many tumor-associated mutant p53 pro-

teins not only lose their tumor suppression functions, but also gain new oncogenic 

functions, totally independent on wtp53, which is termed the gain-of-function (GOF) 

of mutant p53, acquiring different GOF activities, including promoting cell prolifera-

tion, anti-apoptosis, metabolic changes, migration, invasion, angiogenesis, and me-

tastasis (figure 4) [28], [29].  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Selected oncogenic properties of mutant p53 proteins and their underlying mechanisms. 

Key cancer hallmarks and selected molecules that are associated with mutant p53 GOF [28]. 

 

Mutant p53 GOF contributes to cancer progression through direct interaction with 

proteins altering their function or through the transcriptional activation or repression 

of target genes and downstream molecules (figure 5) [29]. For example, mutant p53 

has been shown to interact with the transcription factor NF-Y, and to up-regulate the 

expression of NF-Y target genes [30]. Furthermore, p53 mutants can bind and inacti-

vate two homologues of the p53 family, p63 and p73.Given that they share amino ac-
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id sequence identity in the DNA-binding domain, p53, p63 and p73 should have re-

dundant functions in the regulation of gene expression [31]. 

                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Mutant p53 and its interaction network. As part of its gain of function, mutant p53 interacts 

with different proteins to enhance or inhibit their activities. TF, transcription factor; X, any protein 

other than a transcription factor or transcriptional cofactor; MAR, matrix attachment region DNA el-

ement; mp53, mutant p53 [29]. 

 

The interaction between mutant p53 and p63/p73 are related with many aspects of 

the GOF of mutant p53, such as chemoresistance, migration, invasion, and metastasis 

[31]. In addition, most of mutant p53 isoforms are able to oligomerize with the wild-

type protein encoded by the second allele, inhibiting its function, forming a hetero-

tetramer unable to bind DNA, revealing a dominant negative function of mutant p53 

[28]. An additional mechanism by which mutant p53 induces cancer progression is 

the up-regulation or down-regulation of a number of genes involved in different as-

pects of tumorigenesis, such as c-Myc, Fos, PCNA, IGF1R, EGR1, NF-κB, BCL-xL, 

IGF2, VEGFA, and others [28]. Furthermore, mutant p53 is also able to regulate 

non-coding RNA ,such as miRNAs, inducing or repressing the expression of certain 
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miRNAs to mediate new oncogenic activities [32]. Taken together, the modulation of 

gene transcription and the interference with pivotal signalling pathways are im-

portant mechanisms by which p53 mutants exert their oncogenic functions. 

 

Chemoresistance 

 

Chemoresistance causes reversion disease and metastasis, contrasts the development 

of the clinical outcome for the cancer patients, and remains the main obstacle to can-

cer therapy [33]. Several mechanisms are involved in chemoresistance, one of which 

is the involvement of oncogenes. One typical feature of mutant p53 proteins is their 

ability to confer an elevated drug resistance to cancer cells. The overexpression of 

various tumour-associated p53 mutants can render cancer cells more resistant to the 

effect of chemotherapeutic drugs [34], [35] whereas knockdown of endogenous mu-

tant p53 sensitizes cancer cells to killing by such molecules [36]. The correlation be-

tween p53 mutation status and sensitivity to cytotoxic drugs has been confirmed by a 

large study conducted by the National Cancer Institute, USA, where 60 cell lines and 

more than 100 anticancer drugs were examined [37]. However, the way in which p53 

influences drug resistance depends on different parameters including the way of ac-

tion of the drug, genetic variations during carcinogenesis, and the kind of cancer 

[38]. For example, our group and others demonstrated that the treatment with the 

drug gemcitabine stabilizes mutant p53 in the nuclei of the cells and induces the ex-

pression of mutp53-target genes, as CdK1 (cyclin-dependent kinase 1) and CCNB1 

(G2/mitotic-specific cyclin-B1), which are both involved in mitosis and cell prolifer-

ation, leading to gemcitabine resistance in pancreatic cancer cells [35], [39]. In te-

mozolomide-resistant glioma cells, a correlation between mutant TP53 gene and 

MGMT (O6-methylguanine DNA-methyl-transferase) expression was detected. 

While temozolomide kills cells by alkylating O6-guanine, MGMT in turn repairs al-

kylation. Therefore drug resistance may be caused by MGMT up-regulation [40]. In 

conclusion, mutant p53 is not only a crucial player in carcinogenesis, but it is also re-

lated with resistance to recognized cytotoxic anticancer drugs, such as gemcitabine, 

cisplatin, epirubicin, 5-fluorouracil, methotrexate and many other chemotherapeutics.  
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Therapeutic Strategies to Restore Wild-Type Activity to Mutant p53                                                                                                                  

Many different mutations and phenotypes allow a variety of strategies are being ex-

plored to target tumors expressing mutant p53s (Figure 6) [41]. Re-folding of this 

mutated and accumulated p53 leads to restoration and activation of defective pro-

teins, resulting in high levels of active p53 with wild-type functionality and apoptotic 

cell death [42]. A variety of compounds that might restore wild-type p53 confor-

mation and function have been characterized [42]. 

 

 

 

 

 

 

 

 

Figure 6: Strategies restoring p53 wild-type function. These strategies include promotion of mutant 

p53 degradation through the proteasome and autophagy pathways, restoration of wild-type p53 activi-

ty, interference with the interaction between mutant p53 and other proteins, and interference in signal-

ing pathways downstream of mutant p53 [41]. 

 

The compound that represents an innovation in the reactivation of p53 is P53-

Reactivation and Induction of Massive Apoptosis-1 (PRIMA-1). Treatment with this 

compound upregulated wtp53-target genes, such as BAX, PUMA and NOXA [43] 

and induced activation of caspases -2, -3 and -9 [44]. Under physiological conditions, 

PRIMA-1 and its methylated analogue PRIMA-1Met (also known as APR246)  are 

converted into a reactive intermediate compound, MQ, which covalently binds to the 

core domain of p53 [45]. Due to their aberrant folding, mutant p53 proteins may ex-

pose cysteine residues, which are hidden in the core domain of wt-p53 [44]. This can 

lead to the formation of inter- and intramolecular disulfide bonds, locking mutant 



17 

 

p53 in an inactive conformation and causing protein aggregation. Thiol modification 

by reactive compounds, such as MQ, prevented the formation of such disulfide bonds 

and thus promoted correct folding and restoration of the wild-type function [45]. Alt-

hough the fact that nuclear levels of both p53 and MDM2 are normally kept at low 

levels due to a regulatory circuit, a deregulated MDM2/p53 balance (e.g. by overex-

pression of MDM2) reduces the tumor suppressive functions of p53 [12]. Due to this 

antagonizing effect of MDM2 on p53, small molecules mimicing p53-binding resi-

dues can block the MDM2-p53 interaction. With this interaction blocked, p53 is no 

longer controlled by MDM2 and is reactivated in tumor cells harboring wt-p53 [46]. 

However, MDM2 is not the only a negative regulator of p53 and therefore other ef-

fects have to be considered. Again, p53 is involved in a complex network with sever-

al other actors. For example, it is also regulated by the proteins SirT1 (Sirtuin 1) [47] 

or Wip1 (wt-p53 induced phosphatase/PPM1D) [48]. Numerous MDM2 inhibitors 

have been developed during the past few years [49]. For example, RITA (Reactiva-

tion of p53 and Induction of Tumor cell Apoptosis) bound to the N-terminus of p53 

(residues 1-63) and induced a conformational change, which transmitted from the N-

terminus to the core and to the C-terminal domain, promoting the disruption of p53 

and MDM2 complex [50]. This led to p53 accumulation and induction of p53-

dependent apoptosis in a variety of tumor cell lines of different origin. Autophagy al-

so plays a role in mutant p53 degradation. The degradation of mutant p53 was pro-

moted by proteasomal inhibition and depended on functional autophagy machinery 

[51]. However, mutant p53 can inhibit autophagy [52], [53], indicating that the rela-

tionship between autophagy and mutant p53 is complex and the inhibition of autoph-

agy by mutant p53 can further improve the overexpression of this oncognenic pro-

tein. Another small molecule named RETRA has been suggested to destabilize the 

interaction between p73 and mutant p53 [54]. Instead of targeting mutant p53 direct-

ly, another approach is to identify common pathways regulated by mutant p53 pro-

teins in order to target these downstream pathways for therapeutic intervention [41]. 
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3.3 CANCER METABOLISM: THE WARBURG EFFECT             

Tumorigenesis is dependent on the reprogramming of cellular metabolism as both di-

rect and indirect consequence of oncogenic mutations. The alterations in intracellular 

and extracellular metabolites that can accompany cancer-associated metabolic repro-

gramming have effects on gene expression, tumor microenvironment and the genera-

tion of signaling molecules such as reactive oxygen species (ROS) [55]. The com-

mon feature of this altered metabolism in cancer cells is increased glucose uptake 

and fermentation of glucose to lactate. Cellular metabolism of glucose to CO2 and 

H2O in normal adult cells is accomplished through the oxidative phosphorylation 

pathway that leads to the generation of ATP in the presence O2. The Warburg effect, 

also called aerobic glycolysis, is the best known metabolic shift that occurs in cancer 

cells to support the biosynthetic requirements of uncontrolled proliferation [56]. Dur-

ing this phenomenon, even in the presence of oxygen and totally functioning mito-

chondria, tumour cells adopt glycolysis for their energy necessities and undergo both 

high rate glucose uptake and lactate production, as compared with normal cells (fig-

ure 7) [57], [58]. Per unit of glucose, aerobic glycolysis is an inefficient way of gen-

erating ATP compared to the amount obtained by mitochondrial respiration [59]. 

However, the rate of glucose metabolism through aerobic glycolysis is higher such 

that the production of lactate from glucose occurs 10-100 times faster than the com-

plete oxidation of glucose in the mitochondria [60]. In this situation, the increased 

glucose consumption is used as a carbon source for anabolic processes needed to 

support cell proliferation [61]. In fact, this excessive organic substrate is also used 

for the de novo generation of nucleotides, lipids, and proteins. Furthermore, having a 

rate-limiting demand for ATP, proliferating cells are in an increased need of reducing 

equivalents in the form of NADPH obtained by the penthose phosphate pathway 

(PPP) [61]. A proposed mechanism for considering the biosynthetic function of the 

Warburg Effect is the regeneration of NAD+ from NADH in the pyruvate to lactate 

step that concludes aerobic glycolysis. This process may also influence the homeo-

stasis of ROS generation by affecting the concentration of reducing equivalents in 

the mitochondria [62]. Finally, Warburg effect is also able to induce acidification of 

the microenvironment and other metabolic crosstalk, favoring cancer cell growth 

[62]. 
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Figure 7: Warburg effect. Schematic representation of the differences between oxidative phosphory-

lation, anaerobic glycolysis, and aerobic glycolysis [61]. 

 

The opposite regulation on Warburg effect by Wild type and Mutant p53 

Recent studies have shown that regulating energy metabolism is a critical role of 

wtp53 in tumor suppression [63]. Indeed, wt-p53 is described to regulate glycolysis, 

mitochondrial oxidative phosphorylation, pentose phosphate pathway (PPP), and li-

pid metabolism in cells. Functionally, wt-p53 represses glycolysis and the Warburg 

effect through multiple mechanisms as transcriptional regulation of genes involved in 

the glycolytic metabolism, including TIGAR (TP53-induced glycolysis and apoptosis 

regulator) and Parkin [64], [65]. For example, p53 transcriptionally blocks the ex-

pression of glucose transporters, as GLUT 1-4, and induces the expression of TIGAR 

which decreases the intracellular concentrations of fructose-2,6-bisphosphate, and 

thus reduces glycolysis and deflects glucose catabolism to the PPP [65]. On the con-

trary, tumor-associated mutant p53 was reported to promote tumor metabolic chang-

es as a novel gain-of-function in promoting tumor development [66]. Mutant p53 en-

courages the Warburg effect both in cultured cells and mutp53 knock-in mice. This 

effect mainly occurs through promoting the translocation of GLUT1 (glucose trans-

porter 1) to the plasma membrane, which is mediated by activated RhoA/ROCK sig-

naling [66]. In addition, mutant p53 was reported to induce the expression of glyco-

lytic enzyme hexokinase II, which could promote glycolysis [67]. 
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3.4 NON-METABOLIC FUNCTIONS OF GLYCOLYTIC ENZYMES IN CAN-

CER 

In addition to their canonical roles in glycolysis, recent studies progressively un-

covered some non-metabolic functions of glycolytic enzymes in tumorigenesis, 

becoming emerging targets for therapeutic intervention [68]. Emerging evidence 

showed that most glycolytic enzymes are deregulated in cancer cells and play im-

portant roles in tumorigenesis and all essential glycolytic enzymes can be translo-

cated into nucleus where they participate in tumor progression independently of 

their canonical metabolic roles [69]. These non-canonical functions include anti-

apoptosis, regulation of epigenetic modifications, modulation of transcription fac-

tors and co-factors, DNA repair activity, suggesting that these multifaceted glyco-

lytic enzymes not only function in canonical glycolytic metabolism but also direct-

ly link metabolism to epigenetic and transcription programs implicated in tumor-

igenesis [70]. The trafficking of metabolic enzymes to the nucleus could be caused 

by covalent modifications or by forming new protein-protein interactions or pro-

tein complexes [71], [72]. However, the precise mechanisms at the basis of the 

regulation of these non-metabolic functions of the glycolytic enzymes are still 

largely unknown. 

 

Multifaceted roles of GAPDH  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that 

catalyzes the reversible conversion of glyceraldehyde-3-phosphate (G-3-P) to 1,3-

diphosphoglycerate in the cytosol of the cells. GAPDH acts as a homo tetramer 

containing four identical 37 kDa subunits [73]. It initially was identified as a gly-

colytic enzyme involved exclusively in cytosolic energy production [73]. Howev-

er, emerging evidence indicates that GAPDH is a multifunctional protein display-

ing diverse activities distinct from its conventional metabolic role [74]. Its plei-

otropic role is largely affected by ability of GAPDH to bind different macromole-

cules in the cell and by post-translational modifications in different amino acid 

residues such as phosphorylation, ADP ribosylation, and acetylation [75]. Specifi-

cally, several studies have demonstrated that the GAPDH has a variety of other 
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functions, including DNA repair, transcriptional regulation, membrane fusion and 

transport, autophagy, cell death and nuclear tRNA export [75], [76]. The multi-

functional roles of GAPDH are strictly associated to its intracellular localization, 

which is not restricted to the cytosol for glycolytic energy production [76]. Indeed, 

after specific stimuli GAPDH can translocate in other subcellular compartments, 

such as nuclei in which it exerts a critical role in the regulation of cell death-

related gene transcription, stimulation of apoptosis and modulation of cell fate. 

GAPDH has been also observed in the mitochondria, in which its binding to the 

voltage-dependent anion channel (VDAC) has been suggested to promote the re-

lease of proapoptotic proteins, such as cytochrome c (CytC) and apoptosis-

inducing factor (AIF) [77]. On the other hand, GAPDH is involved in a series of 

age-related neurodegenerative disorders [78] and in tumor development and pro-

gression [79], promoting tumor-specific GAPDH transcriptional/post-

transcriptional regulation and aging as prosurvival factor [80], [81]. For example, 

a study showed that GAPDH may translocate to the nucleus when cells encoun-

tered certain stress conditions such as oxidative stress. Specifically, oxidative 

stress-induced S-nitrosylation of GAPDH could promote translocation of GAPDH 

to the nucleus, where it could interact with Sp1 under oxidative stress conditions, 

and activate SNAIL transcription, promoting EMT and metastasis through its non-

enzymatic function in the nucleus [82]. Our group demostrated that the inhibition 

of antioxidant uncoupling proteins UCP2 triggers PDAC cell death by ROS-

dependent nuclear translocation of GAPDH [83] and later, we discovered that the 

synergistic PDAC cell growth inhibition given by everolimus and genipin treat-

ment was due to a massive GAPDH nuclear translocation observed both in vitro 

and in mice xenograft [84]. Thus, understanding the biological functions of 

GAPDH beyond glycolysis will improve the ability to effectively target this en-

zyme in cancer therapy.  
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3.5 THE ENERGY SENSOR AMPK AND ITS REGULATION BY MUTANT 

p53. 

AMP-activated kinase (AMPK) is a highly conserved serine/threonine protein ki-

nase complex and a central metabolic sensor located at the crossroad between 

metabolic and signaling networks [85]. AMPK is a heterotrimeric complex com-

posed of a catalytic α-subunit and two regulatory subunits, β and γ [86]. The γ-

subunit enables AMPK to respond to changes in the ATP-to-AMP ratio as it con-

tains domains that bind adenine nucleotides. Upon changes in the ATP-to-AMP or 

ATP-to-ADP ratio, AMPK is activated by an allosteric mechanism that stimulates 

its kinase activity phosphorylating downstream targets to redirect metabolism to-

wards increased catabolism and decreased anabolism [86]. The two major up-

stream kinases responsible for AMPK activation are the tumor suppressor LKB1 

and Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2). LKB1 acti-

vates AMPK during energy stress, whereas CaMKK2 activity is induced by in-

creased intracellular Ca2+ levels, regardless of the energy status of the cells [87]. 

AMPK restores ATP levels during metabolic stress by inhibiting ATP-consuming 

biosynthetic pathways while simultaneously activating pathways that regenerate 

ATP through the breakdown of macromolecules. In particular, AMPK phosphory-

lates several transcription factors (or co-factors) that are themselves master regula-

tors of biosynthetic pathways (figure 8). In this way, AMPK can acutely restore 

energy balance but also reprogram cell metabolism transcriptionally in response to 

prolonged energetic decreases [87]. For example, AMPK promotes glucose uptake 

by phosphorylating TBC1D1 (TBC domain family, member 1) and TXNIP (thi-

oredoxin-interacting protein), which control the translocation and cell-surface lev-

els of glucose transporters GLUT4 and GLUT1, respectively [88]. It also promotes 

autophagy through several mechanisms like the activation of ULK1 (unc-51-like 

autophagy-activating kinase 1), which triggers the initiation of the autophagic cas-

cade [88]. Regarding mutp53, it is able to inhibit AMPK signaling in head and 

neck cancer cells directly binding to the AMPKα subunit, thus gaining its onco-

genic function and stimulating anabolic growth of cancer cells, in contrast to its 

wild type counterpart [89]. 
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Figure 8: Substrates of AMPK regulate multiple metabolic processes in cells. AMPK is phos-

phorylated and activated by LKB1 and CAMKK2 in response to several stimuli.  Its phosphoryla-

tion induces metabolic changes through the phosphorylation of substrates [87]. 

 

Mutp53s can directly interact with both AMPKα1 and AMPKα2 mainly through 

their DNA-binding domain (DBD), while the N-terminus of mutp53s is responsi-

ble for blocking the interaction between AMPKα and its upstream kinase LKB1 

inhibiting its Thr172 phosphorylation and consequently preventing its activation 

[89]. Finally, our group revealed another mechanism by which mutp53 is able to 

inhibit AMPK-signaling [52]. In particular, p53 blocks AMPK by down-regulating 

Sestrin1/2 expression which are a class of proteins that can directly interact with 

AMPK subunits favoring their phosphorylation by upstream kinases and thereby 

resulting in AMPK signaling stimulation [52], [90]. Importantly, AMPK was re-

cently identified as a negative regulator of the Warburg effect through inhibition 

of the hypoxia-induced factor 1 (HIF-1) pathway [91]. Therefore, the inhibition of 

AMPK by GOF mutp53s, which relieves the suppression of HIF-1 by AMPK, is 

expected to increase HIF-1 protein expression and thus lead to increased glucose 

influx and glycolysis. These phenomena could represent a further mechanism of 

GOF mutp53 to promote the Warburg effect and drastic metabolic changes in can-

cer cells.  
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3.6 THE ONCOGENE AKT AND ITS REGULATION BY MUTANT p53 

Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mam-

mals comprises three highly homologous members known as PKBalpha (Akt1), 

PKBbeta (Akt2), and PKBgamma (Akt3) [92]. PKB/Akt is activated in cells ex-

posed to diverse stimuli such as hormones, growth factors, and extracellular ma-

trix components. A well-known upstream target of Akt is phosphatidylinositol-3 

kinases, PI3Ks, which is a lipid kinase family and a key enzyme in the generation 

of the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) 

[93]. This allows the translocation of Akt from the cytoplasm to the plasma mem-

brane, altering its conformation to allow subsequent phosphorylation by the phos-

phoinositide-dependent kinase-1 (PDK-1) [94]. PKB/Akt is then released from the 

membrane and translocates to other subcellular compartments.  Phosphorylation of 

Akt results in full activation of Akt kinase activity and the subsequent regulation 

of multiple cellular processes, including the transmission of growth factor-

dependent survival signal [95]. In particular, Akt inhibits apoptosis by phosphory-

lating and inactivating pro-apoptotic Bcl-2 family members, as Bad, and by inhib-

iting the release of cytochrome c. In addition, Akt changes mitochondrial mem-

brane potential induced by multiple apoptotic stimuli, in a caspase-independent 

manner, and it acts maintaining mitochondrial integrity [96], [97]. In addition, 

Akt-regulated signalling plays a critical role in numerous processes which are 

known to be hallmark of cancer cells [98]. Akt regulates the transcription of death 

genes by phosphorylating forkhead family transcription factors or increasing the 

transcription of survival genes by activating NF-κB and CREB transcription fac-

tors [98]. Furthermore, it regulates energy metabolism by multiple mechanisms, 

including the expression and membrane translocation of glucose transporters. Akt 

may also indirectly activate the important rate-controlling enzyme phosphofructo-

kinase-1 (PFK1) by directly phosphorylating and activating phosphofructokinase-2 

(PFK2) [99] whose principal reaction product, fructose-2,6-bisphosphate (Fru-1,6-

P2), is a potent allosteric activator of PFK1. Furthermore, Akt affects not only 

glycolysis, but is also able to improve mitochondrial respiration and oxidative 

phosphorylation [100], [101]. In fact, inhibiting Akt activation decreases ATP 
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production; activities of complexes I, II, and III; the mitochondrial membrane po-

tential (ΔΨm); and F0F1-ATPase activity [100]. 

Intriguingly, there is a connection between p53 and Akt. Phosphorylation of 

MDM2 by Akt has been reported to result in the translocation of MDM2 to the nu-

cleus, where it promotes the ubiquitination of p53, reducing wtp53 levels and 

promoting tumour growth [102]. Mutant p53-R273H is able to regulate PI3K/AKT 

signaling pathway, inducing Akt expression [103]. DAB2IP is a negative modulator 

of PI3K/AKT signaling, because it binds AKT limiting its activation in response to 

various stimuli [104]. It has been discovered that mutp53 binds and inhibits DAB2IP, 

favoring insulin-induced AKT activation in cancer cells [105]. In vitro studies have 

also shown increased transformation in cells having a combination of PI3K/Akt 

pathway activation and mutp53, as well as increased invasiveness of tumour cells 

[106]. Thus, Akt is an excellent candidate master regulator responsible for the 

classical biochemical features of cancer cells. Furthermore, it may constitute a 

“Warburg kinase” that can be specifically targeted to alter cancer cell energy me-

tabolism for therapeutic benefit. 

 

3.7 AUTOPHAGY: THE INTRACELLULAR DEGRADATION SYSTEM 

Autophagy is a cellular catabolic degradation response to starvation or stress 

whereby cellular proteins, organelles and cytoplasm are digested and recycled 

[107]. Basal autophagy also has an important homeostatic function, maintaining 

protein and organelle quality control. Autophagy is controlled mainly by the ki-

nase mammalian target of rapamycin (mTOR; also known as FRAP1), which is a 

downstream component of the PI3K pathway [107]. Autophagosomes are double-

membrane vesicles that sequester cytoplasm and organelles. The autophagy-

regulated or Atg proteins are required for the activation of autophagy, the for-

mation of autophagosomes, the sequestration of intracellular constituents, and the 

targeting and fusion of autophagosomes to lysosomes [108]. One of the most 

common events in human cancer is the downstream kinase mTOR activation of the 

PI3K pathway. Autophagy was initially thought to be a tumor-suppression mecha-

nism. Indeed, autophagy deficiency causes oxidative stress, activation of the DNA 
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damage response promoting cancer cell growth [109]. Nevertheless, cancer cells 

also rely on autophagy in many cases due to the increased metabolic and biosyn-

thetic demands imposed by deregulated proliferation [110]. Wild type p53, in or-

der to react to genotoxic or environmental stimuli, triggers autophagy in cancer 

cells through various mechanisms, as the stimulation of the nutrient energy sensor 

AMP-activated protein kinase (AMPK), the inhibition of the mammalian target of 

rapamycin (mTOR)[111]. On the contrary, mutant p53 proteins counteract autoph-

agy through several mechanisms as the stimulation of Akt/mTOR pathway or 

through ATG12 repression [112]. Thus, the impact of autophagy regulation in the 

development of cancers and in response to therapies assumes increasing im-

portance. 

 

3.8 REACTIVE OXYGEN SPECIES IN CANCER 

Reactive oxygen species (ROS) are highly reactive radicals, ions or molecules that 

can readily oxidize other molecules including lipids, amino acids, proteins, and 

nucleic acids [113]. ROS can appear from numerous intracellular sources; among 

them, the most important are mitochondria [114]. In mitochondria, ROS are pro-

duced as an inevitable byproduct of oxidative phosphorylation. The electron 

transport chain encompasses complexes I-IV and ATP synthase on the mitochon-

drial inner membrane. Superoxide is generated at complexes I and III and released 

in the intermembrane space or in the mitochondrial matrix [115]. Under normal 

physiological conditions, the intracellular levels of ROS are steadily maintained to 

prevent cells from damage. Detoxification from ROS is facilitated by non-

enzymatic molecules (i.e. glutathione, flavenoids and vitamins A, C and E) or 

through antioxidant enzymes like superoxide dismutases (SODs), catalase or glu-

tathione reductase, which specifically scavenge different kinds of ROS. Reactive 

oxygene species have been detected in almost all cancers where they promote 

many aspects of tumor development and progression [116]. In cancer cells high 

levels of reactive oxygen species can result from increased metabolic activity, on-

cogene activity, increased cellular receptor signaling and other events [117], [118]. 

Indeed, ROS in cancer are involved in in a plethora of biological events addressed 
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to sustain each aspect of cancer progression summarized in figure 9, like cell cycle 

progression and proliferation, cell survival and apoptosis, energy metabolism, cell 

motility, angiogenesis and maintenance of tumor stemness [116], [119]. Reactive 

oxygen species, particularly hydrogen peroxide, can act as second messengers in 

cellular signaling [120]. Indeed, ROS generation can activate several signaling 

pathway like the PI3K/Akt signaling, MAPK/Erk1/2pathway [116].The non-

radical ROS hydrogen peroxide H2O2 regulates protein activity through reversible 

oxidation of its targets including protein tyrosine phosphatases or kinases, receptor 

tyrosine kinases and transcription factors [121]. Lipids are others cellular targets 

of ROS attacks. ROS react with polyunsaturated or polydesaturated fatty acids to 

initiate lipid peroxidation [122]. However, the role of ROS in cancer biology is 

ambiguous, indeed despite many studies attributed to ROS a pivotal role in pro-

moting many events, many others have highlighted that a severe increase in ROS 

can induce cell death following a “non-specific” damage of macromolecules such 

as the irreversible oxidation of lipids, proteins or DNA [119]. Therefore, ROS rep-

resent an “Achilles heel” of cancer cells and new therapeutic improvement could 

be reached playing on this sophisticated redox cellular balance. 
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Figure 9: ROS play multiple roles in the hallmarks of cancers. Contribution of oxidants is indicated 

for each point [123] 

 

UCP2: a key antioxidant player 

The UCPs belong to the superfamily of anion transport carriers of the mitochondrial 

inner membrane [124] and some of them are involved in thermogenesis and regula-

tion of mitochondrial ROS.  UCP2 has been found in several tissues, including liver, 

brain, pancreas, adipose tissue, immune cells, spleen, kidney, and the central nervous 

system [125]. UCP2 acts as an important sensor of mitochondrial oxidative stress 

controlling the production of mitochondrial ROS. As revealed by studies with UCP2-

null mice, its antioxidant function is generally implicated in cyto-protective activities 

[126]. The uncoupling of oxidative phosphorylation is a short circuit in which the 

transport of protons from the intermembrane space to the matrix bypasses ATP syn-

thase resulting in a decrease of mitochondrial inner membrane potential; leakage of 

electrons from electron transport chain ETC and ROS generation (figure 10). Minor 

increases in the mitochondrial membrane potential induce ROS formation, whereas 

slight decreases can substantially diminish their production, without greatly lowering 
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the efficiency of oxidative phosphorylation [127]. Hence, the mild uncoupling of mi-

tochondrial oxidative phosphorylation may represent the first line of defense against 

oxidative stress [127]. According to this pattern, UCP2 can dissipate the proton gra-

dient to prevent the proton-motive force from becoming excessive, thus decreasing 

ROS produced by electron transport [128]. Mitochondrial superoxide ion is consid-

ered the initial and leading molecule of ROS signaling and is generally converted in-

to hydrogen peroxide (H2O2) by superoxide dismutases. In addition, upon reaction 

with H2O superoxide ion can generate hydroxyl radicals (•HO) implicated in lipid 

damage and protein oxidation [128]. Thus, UCP2 acts as a sensor of mitochondrial 

oxidative stress controlling the production of mitochondrial ROS and regulating re-

dox-sensitive cytosolic signaling pathways. In addition to its antioxidant role, UCP2 

may acts as a direct metabolic regulator contributing to the Warburg phenotype, 

promoting pyruvate efflux from mitochondria, restricts mitochondrial respiration, 

and increases the rate of glycolysis in cancer cells [129]. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Uncoupling protein 2 uncoupling activity in oxidative phosphorylation. ROS: Reactive ox-

ygen species; UCP2: Uncoupling protein 2; SOD: Superoxide dismutase; Mn-SOD: Manganese-

superoxide dismutase [130]. 

 

The regulation of UCP2 can occur at various levels as transcriptional, translational 

and protein turn over regulation or post-transcriptional modifications [131].  One of 
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the most important mechanisms of the transcriptional regulation of UCP2 is mediated 

by the peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-

1α) [132], that has been shown to stimulate Ucp2 gene expression via two thyroid 

hormone response elements TREs located in the proximal Ucp2 promoter region 

[133]. PGC-1α can also indirectly induce Ucp2 gene expression by the link with 

sterol regulatory element-binding protein (SREBP) [134]. SREBP isoforms are 

known to regulate Ucp2 gene expression via either one of the two E-box motifs pre-

sent on Ucp2 promoter [134]. 

 

Sestrins: crucial role in antioxidant defenses 

The Sestrins constitute a family of stress-inducible proteins upregulated in cells ex-

posed to a variety of environmental stresses including DNA damage, oxidative stress 

and energy deficiency. They contribute to redox homeostasis through the regulation 

of adenosine monophosphate-dependent protein kinase (AMPK)-mammalian target 

of rapamycin (mTOR) signaling, leading to inhibition of cellular anabolism and 

augmentation of catabolic processes such as beta-oxidation  [135]. Sestrin-dependent 

activation of AMPK and suppression of mTORC1 activity are also critical for main-

taining basal autophagy [136]. Thus, Sestrins can be important for autophagic elimi-

nation of dysfunctional mitochondria that leak electrons and produce pathogenic 

amounts of ROS.  All members of Sestrin family are induced by oxidative stress, alt-

hough they are subject to different induction mechanisms (figure 11) [137], [138]. 

Sesn1 is induced by hydrogen peroxide in a p53-dependent manner [139], whereas 

induction of Sesn2 by oxidative stress is only partially p53-dependent [140]. Silenc-

ing of either Sesn1 or Sesn2 in human fibroblasts significantly inhibit cell prolifera-

tion and accelerate cell senescence triggered by ROS accumulation [137]. The 

Sestrins were also shown to mediate the antioxidant activities associated with the p53 

and FoxO transcription factors. While high levels of oxidative stress can lead to cell 

death through p53- and FoxO-dependent apoptotic gene transcription, low levels of 

oxidative stress cause moderate activation of p53 and FoxO that can induce Sestrins 

to reduce oxidative stress and prevent cell death [139], [141]. Despite their involve-

ment in tumor suppression and genome protection, Sestrins are still expressed in 
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many cancers and might actually be required for maintaining the viability of cancer 

cells as part of the antioxidant defense system under certain conditions [142]. 

 

 

 

 

 

 

 

Figure 11: Regulation of Sestrin expression by oxidative stress. p53,Nrf2 and AP-1 are required for 

Sestrins induction  upon oxidative stress [143] 

 

 

3.9 THE IMPORTANCE OF SECRETOME AND TUMOR MICROENVIRON-

MENT 

 

Secretome is referred to as the rich, complex set of molecules secreted from living 

cells, and is a vital aspect of cell–cell communication in eukaryotes. Proteins, lipids, 

micro-RNAs (miRNAs) and mRNAs are secreted into the extracellular space by a 

cell, tissue, organ, or organism at any given time and conditions [144]. Chronic per-

turbations in the secretome are often associated with altered cellular phenotypes in-

dicative of pathological conditions [145], including obesity, diabetes, chronic in-

flammation and cancer. The widest application of secretome has been in the devel-

opment of new diagnostic biomarkers for human disease classification like cancer 

[146]. Proteins of secretome play a key role in cell signaling, homeostasis, immune 

response, communication and migration [147]. Examples of secretory proteins in-

clude hormones, digestive enzymes, cytokines, chemokines, interferons (IFNs), col-

ony-stimulating factors (CSFs), growth factors, and tumor necrosis factors (TNFs). 

The secretome of many cell types, including cancer cells, is released by distinct se-

cretory processes. The best characterised of these pathways, the ‘classical’ or endo-



32 

 

plasmic reticulum (ER)-Golgi pathway has traditionally been considered responsible 

for the majority of protein secretion. Proteins secreted through this pathway contain 

an N-terminal signal peptide that is crucial for recognition by the secretory apparatus. 

Classically secreted proteins are synthesised in the rough ER before transport to the 

Golgi apparatus in COPII-containing transport vesicles [148]. During passage 

through the Golgi, cargo proteins may be modified by processes such as proteolytic 

cleavage or glycosylation. Cargos are then sorted into secretory vesicles at the trans-

golgi network (TGN), and secretion is achieved when Golgi-derived vesicles con-

taining the secreted proteins are trafficked to and fuse with the plasma membrane, re-

leasing their contents to the extracellular environment [149]. Whilst the majority of 

cytokines, growth factors and extracellular matrix components are believed to be 

classically secreted, several factors are known to be secreted via Golgi-independent, 

‘non-classical’ pathways. These non-classical secretion pathways are, in general, less 

characterised than classical secretory events [150]. The need for developing more ef-

fective cancer biomarkers and therapeutic modalities has led to the study of cancer 

cell secretome as a means to identify and characterize diagnostic and prognostic 

markers and potential drug and therapeutic targets [151]. 

 

The role of secreted proteins in cancer 

In addition to various pathological events, such as genomic instability and induction 

of oxidative stress, tumorigenesis and cancer progression may also strongly depend 

on extrinsic factors secreted by cancer cells. Secreted factors play a critical role in 

the tumour–microenvironment communications, representing a signal to cells at dis-

tant sites and affecting their phenotype (figure 12)  [144]. The development of an ad-

verse tumour microenvironment as the consequence of the crosstalk between cancer 

and stromal cells is one of the causes of low efficiency to cancer treatments. Indeed, 

it is reported that solid tumours take advantage of a co-evolution of neoplastic and 

stromal cells and that the extracellular matrix (ECM) plays a dynamic role in cancer 

invasion and migration. This complex cancer-microenvironment system is also 

strongly influenced by impaired vascularization and by interaction with the immune 

system cells [152]. Many biological pathways, such as NF-κB, MAPK, IL-1 are in-

volved to orchestrate this complex crosstalk system [144], [153]. Those secreted fac-
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tors, i.e. cytokines/chemokines, proteases, growth and angiogenic factors may regu-

late the crosstalk between stroma–cancer cells and tumour microenvironment. The 

amount of any constituent of the secretome can be regulated by alterations to de novo 

synthesis, to its half-life and to trafficking processes [154]. Furthermore, many of 

cancer cell-secreted proteins/enzymes/molecules can stimulate drug resistance 

through autocrine/paracrine mechanisms [155]. Thus, it’s becoming fundamental to 

study specific secreted biomarkers which may clinically predict resistance mecha-

nisms to specific drugs. 

 

 

 

 

 

 

 

 

 

Figure 12: The tumour secretome and the hallmarks of cancer. The well-known secreted factors and 

the biological pathways involved. The secreted factors contribute to the hallmarks of cancer shown in 

the figure [144]. 

 

Mut p53 and tumour microenviroment 

A novel mechanism to drive invasion by mutant p53 is the manipulation of tumour 

microenviroment [156]. Mutp53 proteins trigger the production and release of pro-

inflammatory and immunomodulatory cytokines to stimulate an inflammatory can-

cer-associated microenvironment and to repress the immune system [156]. Indeed, 

mutp53 proteins, contrary to the wild-type counterpart, upregulate the expression of 

chemokines like CXCL5, CXCL8 and CXCL12 through the NF-κB-dependent path-

way, highlighting a further molecular mechanism by which mutp53 proteins exert 
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their oncogenic activity [157]. Loging and Reisman showed that mutp53 proteins are 

able to repress the transcription of TIMP-3, which is crucial in the extracellular ma-

trix (ECM) turnover and construction, contributing to increased activity of secreted 

MMPs in the ECM and, subsequently, to tumour invasion and metastasis [158]. 

Toschi et al. showed that, in human melanoma cells carrying mutp53 proteins, the re-

introduction of wtp53 overcomes the mutp53 GOF and reduces cancer cell invasion 

into the ECM due to inhibition of secreted MMP-2 [159]. Another crucial element 

supporting the motility of tumour cells and their metastatic potential is covered by 

extracellular pH decrease [160]. This phenomenon is mainly related to the stimula-

tion by mutp53 proteins of secreted lactate and implies an alteration of metabolism of 

cancer cells carrying mutant TP53 gene. Tumour-derived lactate is able to induce in-

flammation and immune deficiency [160]. Low extracellular pH can induce expres-

sion and activity of many proteases, including MMP-2, MMP-9, cathepsin-B and ca-

thepsin-L, enabling cancer cells to invade the surrounding tissue and generate metas-

tasis. Lactate secretion can increase IL-17A production by both T-cells and macro-

phages, promoting chronic inflammation in tumour microenvironment [161], [162] 

Several studies attribute to mutp53 proteins also a critical role in tumour–stroma in-

teraction [163] and the role of mutp53 proteins in the induction of the pro-angiogenic 

extracellular mediator VEGF [164]. Thus, mutp53 proteins play a crucial role in the 

promotion of Warburg effect in cancer cells that, through both stimulation of lactate 

production and reduction of extracellular pH, makes the tumour microenvironment 

suitable to cancer cell invasion and tumour dissemination. 
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4. AIMS OF THE STUDY 

 

PDAC is the fourth leading cause of cancer-related deaths due to disease presentation 

at an advanced stage, early metastasis and generally a very limited response to radio 

and chemotherapy [1]. Mutations in the TP53 gene occur in over 50% of human can-

cers, where most of them are missense mutations resulting in the expression of mu-

tant forms of p53 [2]. In addition, p53 mutated proteins acquire new biological prop-

erties referred to as gain-of function (GOF) that contribute to the induction and 

maintenance of cancer [14]. Despite different models have been proposed to explain 

the GOF activities of mutant p53 in cancer, the detailed mechanisms remain largely 

unknown. The main aim of my PhD research was to discover novel molecular mech-

anisms by which GOF mutant p53 proteins promote PDAC cell proliferation and 

chemoresistance to identify specific and personalized therapies in tumors bearing 

mutant TP53 gene. Thus, the aims of this thesis can be summarized as follows:  

- to investigate novel mechanism by which mutant p53 oncogenic proteins regulate 

cancer metabolism. In particular, we focused on the ROS production in cancer cell 

mitochondria, identifying a signaling pathway involved, and on the regulation of the 

subcellular localization of the glycolytic enzyme glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) in pancreatic cancer cells bearing mutant p53 gene. We studied 

if mutp53s can support cell proliferation and chemoresistance, by stabilizing the cy-

toplasmic localization of GAPDH or by ROS production though 

SESN1/AMPK/PGC-1α/UCP2 axis.  

-to recognize a specific signature of biomarkers secreted by PDAC cells carrying 

GOF mutant p53. We analyzed PDAC secretome by untargeted MS-analysis and 

compared secretome of p53-null PDAC cells before and after ectopic overexpression 

of R273H-mutp53 and R175H-mutp53, as compared to the mock vector used as con-

trol. We also investigated the functional role of mutp53-driven secretome, studying 

its influence on proliferation, chemoresistance, apoptosis and autophagy, as well as 

cell migration. These data constitute a prerequisite for the identification of a secreted 

biomarker signature for the early identification of mutant p53 PDAC patients. 
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5. MATERIAL AND METHODS 

 

5.1 Cell culture 

Pancreatic adenocarcinoma PaCa3 (WTp53), Panc1 (mutant p53-R273H), and 

AsPC1 (p53-null) cell lines were grown in in RPMI 1640 medium (Thermo Fisher, 

Milan, Italy), supplemented with 10% FBS and 50 µg/ml gentamicin sulfate 

(BioWhittaker, Lonza, Bergamo, Italy), and incubated at 37 °C with 5% CO2. These 

cell lines were kindly provided by Dr. Aldo Scarpa (University of Verona, Italy). The 

clones C9 (mock) and H1 (stably expressing mutant p53-R273H) of the p53-null 

H1299 cells were kindly provided by Dr. Riccardo Spizzo (Centro di Riferimento 

Oncologico, National Cancer Institute, Aviano, Italy). All the cell lines were 

routinely tested to confirm lack of mycoplasma infection. 

 

5.2 Drugs and chemicals 

Gemcitabine (2’,2’-difluoro-2’-deoxycytidine; GEM) was provided by Accord 

Healthcare (Milan, Italy) and solubilized in sterile bi-distilled water. 2-deoxyglucose 

(2-DG) was obtained from Sigma (Milan, Italy), solubilized bi-distillated sterile wa-

ter and stored at −80 °C until use. The GAPDH inhibitor (S)-benzyl-2-amino-2-(S)-

3-bromo-4,5-dihydroisoxazol-5-yl-acetate (AXP3009) has been designed and synthe-

tized in the laboratory of Dr. Paola Conti at the Department of Pharmaceutical Sci-

ences (University of Milan, Italy). AXP3009 was solubilized in methanol and stored 

at -80 ºC.  Bruno et al. previously reported the chemical structure and the synthesis 

of AXP3009 compound [165]. The AKT inhibitor (SH-5) and the AMPK activator 

(AICAr) were obtained from Sigma, solubilized in DMSO and bi-distillated sterile 

water, respectively, and stored at -20 °C until use. N-acetyl-L-cysteine (NAC) and 

CP-31398 dihydrochloride hydrate were obtained from Sigma-Aldrich (Milan, Italy) 

and solubilized in bi-distilled sterile water. RITA [5,5’-(2,5-furandiyl)bis-2-

thiophenemethanol; reactivation of p53 and induction of tumor cell apoptosis] was 

obtained from Sigma-Aldrich and solubilized in DMSO. 
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5.3 Liposome-mediated transient cell transfection  

Exponentially growing cells were seeded in 96-well plates or in 60 mm cell culture 

plates. The ectopic expression of mutant p53 isoforms in AsPC1 p53-null cells was 

carried out transfecting pcDNA3-mutp53R273H or pcDNA3-mutp53R175H expres-

sion vectors, or their relative mock vector (pcDNA3). Wild-type and mutant p53 pro-

tein expression was transiently knocked-down by transfection with pRSUPER-p53 

vector or its negative control (pRSUPER), kindly provided by Dr. Agami (The Neth-

erlands Cancer Institute, Amsterdam). The silencing transfections were carried out 

for 48 h using Lipofectamine 3000 (Thermo Fisher), according to the manufacturer's 

instructions. Knock-down of GAPDH expression was obtained by transfecting cells 

with specific GAPDH small interfering siRNA or with a siRNA-CTRL (negative 

control) purchased from Life Technologies. Cells were transfected by siRNA at a fi-

nal concentration of 50 nM using Lipofectamine 3000. The ectopic expression of 

wild-type or dominant negative (DN)-AMPK subunit γ2 was previously described 

[166]. 

 

5.4 Lentiviral cell transduction 

To silence R273H mutp53 expression in Panc1 cells, we used plasmid pLKO.1 puro-

vector encoding TP53-shRNA (TRCN0000003756 Sigma-Aldrich) indicated as p53-

SH1. As negative control we used a non-target shRNA control (SHC016; Sigma-

Aldrich) indicated as p53-NT. To generate viral particles, 293FT cells (Thermo Fish-

er) were transfected using pLKO.1 shRNA DNA vector together with ViraPower 

Lentiviral Packaging Mix (pLP1, pLP2 and pLP/VSV-G) (Thermo Fisher). Seventy-

two hours later, viral supernatant was collected and transducing units per ml of su-

pernatant were determined by limiting dilution titration in cells. A MOI (multiplicity 

of infection) of 5 to 1 (5 transducing viral particles to 1 cell) was used for transduc-

ing cells using Polybrene (Sigma-Aldrich) at a final concentration of 8 μg/ml to in-

crease transduction efficiency. Twenty-four hours after transduction, puromycin se-

lection (2 µg/ml) was performed for 48 h and mutant TP53-silenced cells were used 

for experiments. 
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5.5 Cell proliferation assay 

Cells were seeded in 96-well plates (5 × 103 cells/well) and the day after transfected 

with the indicated constructs (see figure legends) and incubated with various com-

pounds at the indicated conditions. At the end of the treatments, cell growth was 

measured by Crystal Violet assay (Sigma) according to the manufacturer's protocol, 

and absorbance was measured by spectrophotometric analysis (A595nm). 

 

5.6 Soft agar colony formation assay 

Anchorage-independent growth was performed in soft agar. Briefly, 5 x 104 H1299 

cells, mock and R273H clones, were resuspended in complete DMEM medium con-

taining 0.6% agarose low-gelling temperature (A9045 - Sigma Aldrich, Milan, Italy) 

and seeded into 6-well plates containing 1.5 ml layer of solidified 1% agarose low-

gelling temperature. After seeding the cells were untreated or treated with 50 µM 

AXP3009. Culture medium (100 μl each well) was added twice weekly. After 21 

days, cells were fixed using a solution of 4% of Crystal Violet containing 1% etha-

nol. At the end of the growth period, colonies were photographed with 10X objective 

under an automated microscope (EVOS FL Auto, Thermo Fisher Scientific, Wal-

tham, MA, USA Italy). 

 

5.7 Apoptosis assay 

Cells were seeded in 96-well plates (5 × 103 cells/well) and, the day after, were trans-

fected with the indicated constructs (see figure legends) and incubated with various 

compounds at the indicated conditions. At the end of the treatments, cells were fixed 

with 2% paraformaldehyde in PBS at RT for 30 min, then washed twice with PBS 

and stained with annexinV/FITC (Bender MedSystem, Milan, Italy) in binding buffer 

(10 mM HEPES/NaOH pH 7.4, 140 mM NaCl and 2.5 mM CaCl2) for 10 min at RT 

in the dark. Finally, cells were washed with binding buffer solution and fluorescence 

was measured by using a multimode plate reader (Ex485nm and Em535nm) (GENios 

Pro, Tecan, Milan, Italy). The values were normalized on cell proliferation by Crys-

tal Violet assay.  
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5.8 Monodansylcadaverine staining and autophagosome formation assay 

To quantify the induction of autophagy, cells were incubated with the fluorescent 

probe monodansylcadaverine (MDC) (Sigma), accordingly with the guidelines for 

studying autophagy [167]. MDC is a selective marker for acidic vesicular organelles, 

such as autophagic vacuoles. Briefly, cells were seeded in 96‐well plates (5 × 103 

cells/well) and treated with various compounds as indicated in the figure legend. At 

the end of the treatments, cells were incubated in culture medium containing 50 μM 

MDC at 37 °C for 15 min. Cells were then washed with Hanks buffer (20 mM Hepes 

pH 7.2, 10 mM glucose, 118 mM NaCl, 4.6 mM KCl, and 1 mM CaCl2) and fluores-

cence was measured using a multimode plate reader (Ex340nm and Em535nm) (GENios 

Pro, Tecan). The values were normalized on cell proliferation by Crystal Violet as-

say. 

 

5.9 Analysis of intracellular ROS 

The non-fluorescent diacetylated 2′,7′-dichlorofluorescein (DCF-DA) probe (Sigma-

Aldrich), which becomes highly fluorescent upon oxidation, was used to evaluate in-

tracellular ROS production. Briefly, cells were plated in 96-well plates (5 × 103 

cells/well) and, the day after, were treated with the various compounds. At the end of 

the various treatments, the cells were incubated in culture medium with 10 μM DCF-

DA for 15 min at 37 °C. The cells were washed with Hanks’ buffer (20 mM Hepes, 

pH 7.2, 10 mM glucose, 118 mM NaCl, 4.6 mM KCl, and 1 mM CaCl2) and the DCF 

fluorescence was measured by using a multimode plate reader (Ex485 nm and 

Em535 nm) (GENios Pro, Tecan). The values were normalized on cell proliferation 

by crystal violet assay.  

To evaluate mitochondrial superoxide ion (O2ˉ·) production we used the nonfluores-

cent MitoSOX red probe (Molecular Probes). The probe is live-cell permeative and is 

rapidly and selectively targeted to the mitochondria where it becomes fluorescent af-

ter oxidation by O2•−, but not by other ROS or reactive nitrogen species. Briefly, 

cells were plated in 96-well plates (5 × 103 cells/well) and incubated in culture me-

dium with 0.5 μM MitoSOX at 37 °C for 15 min. The cells were then washed with 

Hanks’ buffer and fluorescence was measured by using a multimode plate reader 

(Ex535 nm and Em590 nm) (GENios Pro, Tecan). The values were normalized on 
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cell proliferation by crystal violet assay. Three independent experiments were per-

formed for each assay condition. 

 

5.10 RNA isolation and quantitative real-time PCR analysis  

Total RNA was extracted from 106 cells using TRIzol Reagent (Thermo Fisher) and 

1 µg of RNA was reverse transcribed using first-strand cDNA synthesis. Real-time 

quantification was performed in triplicate samples by SYBR Green detection chemis-

try with Power SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, CA, 

USA) on a 7900 HT Fast Real-Time PCR System (Thermo Fisher). Normalization 

was performed analyzing the ribosomal protein large P0 (RPLP0) mRNA expression 

level. The primers used were: GAPDH For, 5′-ATCAGCAATGCCTCCTGCAC-

3′;Rev, 5′-TGGTCATGAGTCCTTCCACG-3′; RPLP0 For, 

5′‑ACATGTTGCTGGCCAATAAGGT‑3′ and Rev, 5′-

CCTAAAGCCTGGAAAAAGGAGG‑3′. PGC1α for: 5' tgactggcgtcattcaggag 3’ 

;rev: 5' ccagagcagcacactcgat 3’; UCP2 for: 5' ctcctgaaagccaacctcat 3’;rev: 5' 

cccaaaggcagaagtgaagt 3’; TP53 for: 5' ggcccacttcaccgtactaa 3’;rev: 5' 

gtggtttcaaggccagatgt 3’; SESN1 for: 5' ggacgaggaacttggcatta; 3’rev: 5' 

atgcatctgtgcgtcttcac 3’; SESN2 for: 5' gcctgctacccagagaagac 3’;rev: 5' cctccaggag-

cagcaagtt 3’.  The thermal cycle reaction was performed as follows: 95 °C for 10 min 

followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The average of cycle 

threshold of each triplicate was analyzed according to the 2(-ΔΔCt) method. Three in-

dependent experiments were performed for each assay condition. 

 

5.11 Subcellular fractionation  

Cells were washed with PBS and scraped into hypotonic buffer (10 mM HEPES pH 

8.0, 10 mM KCl, 0.1% Igepal CA-630, 1.5 mM MgCl2, 1 mM NaF, 0.5 mM Na3VO4, 

0.5 mM DTT, 1 mM PMSF and 1 × protease inhibitor cocktail). The suspension was 

incubated on ice for 10 minutes and after centrifugation at 300 x g for 10 min at 4 °C, 

the supernatant was used as the cytoplasmic fraction. The pellet was washed twice 

with PBS and reconstituted in RIPA buffer (100 mM Tris HCl pH 8.0, 1% Triton X-

100,100 mM NaCl, 0.5 mM EDTA and 1 × protease inhibitor cocktail). The suspen-

sion was incubated on ice for 15 minutes. After centrifugation at 15,000 x g for 10 
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min, the resultant supernatant was used as the nuclear fraction. To obtain whole cell 

lysates, cells were harvested, washed in PBS, and re-suspended in lysis buffer in the 

presence of phosphatase and protease inhibitors (50 mM Tris–HCl pH 8.0, 150 mM 

NaCl, 1% Igepal CA-630, 0.5% Na-Doc, 0.1% SDS, 1 mM Na3VO4, 1 mM NaF, 2.5 

mM EDTA, 1 mM PMSF, and 1 × protease inhibitor cocktail). After incubation on 

ice for 30 minutes, the lysates were centrifuged at 5000 x g for 10 min at 4 °C and 

the supernatant fractions were used for Western blot analysis. 

 

5.12 Immunoblot analysis  

Cells were lysed in the presence of phosphatase and protease inhibitors (50 mM Tris 

HCl pH 8, 150 mM NaCl, 1% Igepal CA-630, 0.5% Na-Doc, 0.1% sodium dodecyl 

sulphate (SDS), 1 mM Na3VO4, 1 mM NaF, 2.5 mM ethylenediaminetetraacetic acid 

(EDTA), 1 mM phenylmethylsulfonyl fluorid, and 1 × protease inhibitor cocktail). 

Whole protein extracts (50 μg/lane for whole cell lysate immunoblots and 5 μg/lane 

for cytoplasmic and nuclear cell lysate immunoblots) were resolved on a 12% SDS-

polyacrylamide gel and electro-blotted onto PVDF membranes (Millipore, Milan, 

Italy). Membranes were blocked in 5% low-fat milk in TBST (50 mM Tris pH 7.5, 

0.9% NaCl, 0.1% Tween 20) for 1 h at room temperature (RT) and probed overnight 

at 4 °C with anti-phospho(Ser473)-AKT (1:2000; Cell Signaling Technology, Dan-

vers, MA, USA, #4060), anti-AKT (1:1000; Cell Signaling #9272), anti-α-tubulin 

(1:2500; Oncogene, La Jolla, CA, USA, #CP06-100UG), anti-

phospho(Thr172)AMPK (1:1000) (Cell Signaling, #2535), anti-AMPK (1:1000) 

(Cell Signaling, #2603), anti-glyceraldehyde 3-phosphate dehydrogenase GAPDH 

(G-9) (1:1000; Santa Cruz #sc-365062), anti-LaminB1 (A-11) (1:1000; Santa Cruz 

#sc-377000), anti-p53 (BP 53.12) (1:2000; Santa Cruz #sc-81168), anti-Sirt1(D739) 

(1:1000, Cell Signaling  #2493), anti-SESN1 (1:1000 GeneTex, Irvine, CA, USA; 

#GTX118141), anti-SESN2 (1:1000 Santa Cruz Biotech, #sc-393195), PGC-1α 

(1:1000 Calbiochem, #ST1202), anti-UCP2 (1:1000 Abnova, Taipei City, Taiwan; 

#PAB7242),  The immunocomplexes were visualized by chemiluminescent sub-

strates (Amersham Pharmacia Biotech, Milan, Italy) using ChemidocMP imaging 

system (Bio-Rad Laboratories, Milan, Italy) and the intensity of the chemilumines-
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cence signal was quantified using NIH Image J software (http://rsb.info.nih.gov/nih-

image/). 

 

5.13 Immunoprecipitation assay  

Cell extracts were solubilized in lysis buffer with 150 mM Hepes pH 7.5, 300 mM 

NaCl, 1% Triton-X100, phosphatase and protease inhibitors. Cells were harvested 

and lysed in lysis buffer and cleared by centrifugation. For each immunoprecipita-

tion, 1 μg of antibody and 1 μg of rabbit or sheep IgG (Santa Cruz Biotech) as con-

trol were used. To immunoprecipitate we used an anti-GAPDH antibody from Santa 

Cruz (sc-365062). 1 mg of pre-cleared protein extracts were diluted in lysis buffer 

containing 0.05% BSA and incubated with Dynabeads® Protein G (Thermo Fisher) 

and antibodies, according to the manufacturer's instructions. Bead-bound immuno-

complexes were rinsed with lysis buffer and eluted in 50 µl of SDS sample buffer for 

Western blotting. Immunoblotting was performed using the following primary anti-

bodies: anti-Sirt1 (D739) (1:1000, Cell Signaling #2493), anti-GAPDH (G-9) 

(1:1000; Santa Cruz #sc-365062), anti-α-tubulin (1:2500; Oncogene #CP06-100UG). 

To identify AMPK-SESN1 complex, we used 2 μg of anti-mouse AMPKα antibody 

(Santa Cruz Biotech, #sc-74461), anti-mouse SESN1 (PA26) antibody (Santa Cruz 

Biotech, #sc-376170), or mouse IgG (Santa Cruz Biotech) as control were used. The 

immune complexes were collected by addition of protein A sepharose (Millipore), 

rinsed extensively with RIPA buffer and eluted in a non-reducing sample buffer for 

Western Blotting. 

 

5.14 Immunofluorescence imaging of GAPDH subcellular localization 

After lentiviral transduction, Panc1 cells were fixed in 4% paraformaldehyde for 15 

min and, after 4 changes (10 min each) of PBS, were permeabilized with 0.1% Triton 

X–100 for 5 min in PBS. To saturate unspecific binding sites, the cells were incubat-

ed for 45 min at RT with a blocking solution containing 5% BSA and 0.05% Triton 

X-100 in PBS. Samples were then incubated overnight at 4 °C with anti-GAPDH 

(1:250; Santa Cruz #sc-365062) primary antibody diluted in blocking solution. After 

3 washes with PBS (10 min each), cells were incubated for 1 hour at RT in the dark 

with specific secondary antibodies (1 μg/ml) conjugated with Alexa Fluor-488 (Mo-

http://rsb.info.nih.gov/nih-image/
http://rsb.info.nih.gov/nih-image/
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lecular Probes, Eugene, OR, USA). The incubation with secondary antibody was fol-

lowed by 10 min incubation at RT with 1 µg/ml of 4’,6-diamidino-2-phenylindole 

dihydrochloride (DAPI, Sigma-Aldrich). Samples were mounted in anti-bleaching 

medium (Dako Fluorescent Mounting Medium). The negative control procedure 

omitted the primary antibody. Pictures were acquired under a Leica TCS SP5 AOBS 

laser confocal microscope (Leica-Microsystems, Wezlar, Germany). A 40X/1.25 NA 

oil-immersion objective (HCX PL APO 40x 1.25 OIL UV, Leica-Microsystem) was 

used. 

 

5.15 MitoTracker and MitoSox colocalization analysis 

For live cell imaging measurements, AsPC-1 cells/chamber were seeded on a four-

chamber µslide, with 13 mm glass bottom (ibidi GmbH, Germany). After 24 h cells 

were transfected with pcDNA3-mutp53R175H, pcDNA3-mutp53R273H or the 

pcDNA3 empty vector (mock) by using LipofectamineTM 2000 according to the 

manufacturer’s instructions. Forty-eight hours after transfection cells were incubated 

for 30 minutes with a staining solution made of MitoSox Red 1:1000 (Life Technol-

ogies) and Mitotracker Green 1:5000 (Life Technologies) in medium without FBS. 

Before the acquisition, the medium was replaced with a special medium without red 

phenol (DMEM/F12 NoPhenolRED, Life Technologies) to avoid any interference 

with the fluorescence signal. Cell images were captured using a confocal laser-

scanning fluorescence microscope Leica SP5 (Leica Microsystem, Manheim, Ger-

many) at × 63 magnification and processed using Adobe Photoshop and ImageJ 

softwares (Rasband, W.S., ImageJ, U. S. National Institute of Health, Bethesda, 

Maryland, USA (http://rsb.info.nih.gov/ij/, 1997–2008). 

 

 

5.16 L-lactic acid quantification assay 

AsPC1 cells were seeded in 96-well plates (5 × 103 cells/well) and transfected for 48 

h. At the end of the treatments, culture medium has been harvested, centrifuged at 

1500 x g for 10 min and diluted six-fold in H2O. For each sample, 25 µL has been 

analyzed in a final reaction volume of 500 µL (Megazyme, #K-LATE 07/14). Ab-

sorbance at 340 nm has been read after 10 min. The activation of the reaction and L-
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lactic acid concentration (g/L) has been calculated according to the manufacturer's 

instructions. The amount of L-lactic acid secreted by the cells in each sample was 

calculated by subtracting the amount of L-lactic acid in the medium (without cells) 

from the amount of L-lactic acid in the medium from each sample. The values ob-

tained were normalized to the number of cells in each well. 

 

5.17 GAPDH activity assay 

Cells were resuspended in 0.2 ml of an ice-cold buffered solution containing 200 

mM NaCl, 1 mM EDTA, 20 mM CHAPS and 10% sucrose at pH=7 and disrupted 

with three freeze-thaw cycles. The total soluble protein content of the cell lysates 

was assessed by measuring the absorbance at 280 nm using a Cary4000 spectropho-

tometer (Agilent Technologies). Aliquots of 10 µl were assayed for GAPDH activity 

using a modified version of the Ferdinand assay [168] in a buffered solution contain-

ing 10 mM triethanolamine, 10 mM sodium arseniate, 5 mM EDTA, 1.5 mM NAD+ 

and 2.2 mM DL-glyceraldehyde 3-phosphate. NADH formation at 25°C was moni-

tored at 340 nm. Each assay was carried out at least in duplicate. The initial velocity 

was determined by linear fitting of the initial phase of the kinetics. The ratio between 

GAPDH activity and total soluble protein content was calculated for each cell lysate. 

 

5.18 Wound-closure cell migration assay 

AsPC1 were seeded in 6-well plate and, the day after, were transfected with the indi-

cated constructs. After 48h, AsPC-1 cells were washed six times in PBS (phosphate-

buffered saline) and then incubated in serum-free RPMI for 22 h. Then, the medium 

of AsPC1 transfected cells was collected and transferred in untransfected AsPC1 p53 

null cells, that were seeded in 6-well plate. The confluent AsPC1 p53-null monolayer 

was denuded of cells by scraping it with a sterile 200 µl pipette tip to create a wound 

through the center of the confluent cell layer. Cells were incubated for 48h and moni-

tored with a microscope equipped with a camera. Images of cells movement were 

captured every 30 min for 48 h. A time-lapse video was created with the acquired 

images and then, the images were further analyzed quantitatively by using ImageJ 

computing software. 
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5.19 FACS Analysis 

Cells were trypsinized and washed with PBS. Then, cells were incubated with anti-

human CD325 (N-Cadherin) antibody conjugated with PE (Biolegend, Cat. No. 

CD325) or anti-human CD324 (E-Cadherin) antibody conjugated with PE (Bio-

Legend Cat. No. 324106). Cells were immediately analyzed by flow cytometry. All 

fluorescences were analyzed with a FACScalibur flow cytometer (Becton Dickinson) 

using Blue Laser (488 nm). Unstained cells were used to set fluorescent negative and 

positive threshold. 

 

5.20 Protein extraction from conditioned medium 

The day after transient transfection, AsPC-1 cells were washed six times in PBS 

(phosphate-buffered saline) and then incubated in serum-free RPMI for 22 h. This se-

rum-free time period of incubation has been chosen on the basis of our previous in-

vestigations in order to avoid cell injury. Cell viability, determined with 0.4% trypan 

blue solution (Thermo Fischer Scientific), was higher than 95%. The media contain-

ing secreted proteins were collected by centrifugation at 1,000 x g for 10 min to pel-

let floating cells and were defined as conditioned media (CM). After the addition of 

1X protease inhibitor cocktail (Roche), CM were centrifuged again at 17,000 x g for 

20 min at 4°C to pellet the remaining cell debris. Proteins in the CM were precipitat-

ed overnight at -20°C with 4 volumes of ice-cold acetone. The pellets were then col-

lected by centrifugation at 17,000 x g for 20 min at 4°C and resuspended in 100 mM 

ammonium bicarbonate (NH4HCO3). Protein concentrations were determined using 

BCA protein assay (Sigma). 

 

5.21 In-solution digestion 

Before SWATH-MS analysis, CM proteins were digested following the protocol 

provided by the manufacture (Applied Biosystem). Briefly, samples were prepared to 

have 100 µg of protein in a final volume of 25 µl of 100 mM NH4HCO3. The pro-

teins were reduced using 2.5 µl of dithiothreitol (200 mM DTT stock solution) (Sig-

ma) at 90° for 20 min, and alkylated with 10 µl of Cysteine Blocking Reagent (Iodo-

acetamide, IAM, 200 mM Sigma) for 1 hour at room temperature in the dark. DTT 

stock solution was then added in order to destroy the excess of IAM. After dilution 
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with 300 µl of water and 100 µl of NH4HCO3 to raise pH, 5 µg of tryspin (Promega, 

Sequence Grade) was added and digestion was performed overnight at 37 °C. Tryp-

sin activity was stopped by adding 2 µl of neat formic acid and digests were dried by 

Speed Vacuum. 

 

5.22 Data acquisition  

The digested samples were analyzed on a micro-LC Eksigent Technologies (Dublin, 

USA) interfaced to a 5600+ TripleTOF mass spectrometer system (AB Sciex, Con-

cord, Canada) equipped with a DuoSpray Ion Source and a CDS (Calibrant Delivery 

System). The LC column was a Halo Fused C18 (AB Sciex, Concord, Canada). The 

mobile phase was a mixture of 0.1% (v/v) formic acid in water (A) and 0.1% (v/v) 

formic acid in acetonitrile (B), eluting at a flow-rate of 15.0 µL min−1 at an increas-

ing concentration of solvent B from 2% to 40% in 30 min. The injection volume was 

4.0 μL and the oven temperature was set at 40 °C. For identification purposes the 

samples were subjected to data dependent analysis (DDA): the mass spectrometer 

operated using a mass range of 100–1500 Da (TOF scan with an accumulation time 

of 0.25 s), followed by a MS/MS product ion scan from 200 to 1250 Da (accumula-

tion time of 5.0 ms) with the abundance threshold set at 30 cps (35 candidate ions 

can be monitored during every cycle). The ion source parameters in electrospray pos-

itive mode were set as follows: curtain gas (N2) at 25 psig, nebulizer gas GAS1 at 25 

psig, and GAS2 at 20 psig, ionspray floating voltage (ISFV) at 5000 V, source tem-

perature at 450 °C and declustering potential at 25 V. For the quantification the sam-

ples were subjected to cyclic data independent analysis (DIA) of the mass spectra, 

using a 25-Da window: the mass spectrometer was operated such that a 50-ms survey 

scan (TOF-MS) was performed and subsequent MS/MS experiments were performed 

on all precursors. These MS/MS experiments were performed in a cyclic manner us-

ing an accumulation time of 40 ms per 25-Da swath (36 swaths in total) for a total 

cycle time of 1.5408 s. The ions were fragmented for each MS/MS experiment in the 

collision cell using the rolling collision energy. The MS data were acquired with An-

alyst TF 1.7 (AB SCIEX, Concord, Canada). Two DDA and four DIA acquisitions 

were performed. 
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5.23 Protein database search 

The DDA files were searched using Protein Pilot software v. 4.2 (AB SCIEX, Con-

cord, Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, USA). The DIA files 

were converted to pseudo-MS/MS spectra with DIA-Umpire software and were 

searched as DDA files [169][170]. Chymotrypsin as digestion enzyme was specified 

for both the software. For Mascot we used 2 missed cleavages, the instrument was 

set to ESI-QUAD-TOF and the following modifications were specified for the 

search: carbamidomethyl cysteins as fixed modification and oxidized methionine as 

variable modification. A search tolerance of 0.08 Da was specified for the peptide 

mass tolerance, and 10 ppm for the MS/MS tolerance. The charges of the peptides to 

search for were set to 2 +, 3 + and 4 +, and the search was set on monoisotopic mass. 

The UniProt Swiss-Prot reviewed database containing human proteins (version 

2015.07.07, containing 42131 sequence entries) was used and a target-decoy data-

base search was performed. False Discovery Rate was fixed at 1%.  

 

5.24 Bioinformatics and Statistics Software  

The potential secretion pathways of regulated proteins were predicted with the Secre-

tomeP 2.0 server [171] (http://www.cbs.dtu.dk/services/SecretomeP/) for classical 

and non-classical secretion, while the localization of signal peptide cleavage sites 

were predicted with SignalP version 3.0 

(http://www.cbs.dtu.dk/services/SignalP/)[172]. 

The regulated proteins were analyzed by using STRING software (http://string-

db.org), which is a database of known and predicted protein-protein interac-

tions[173]. Differentially abundant proteins were subjected to GO classification via 

the Panther Classification System database [174][175] to investigate biological pro-

cesses, molecular function, cellular compartment  and protein class. 

 

5.25 Protein quantification 

The quantification was performed by integrating the extracted ion chromatogram of 

all the unique ions for a given peptide. The quantification was carried out with 

PeakView 2.0 and MarkerView 1.2. (ABSCIEX). The result file from the DDA ac-

quisitions were used for the library generation using a protein FDR threshold of 1% 

http://string-db.org/
http://string-db.org/
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[176]. Six peptides per protein and six transitions per peptide were extracted from the 

SWATH files. Shared peptides were excluded as well as peptides with modifications. 

Peptides with FDR lower than 1.0% were exported in MarkerView for the t-test. 

 

5.26 Statistical analysis 

ANOVA analysis with GraphPad Prism 5 software or two-tailed t-test were used to 

calculate P values. Statistically significant results were referred with a P-value < 

0.05. Values are the means of three independent experiments (± SD). 
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6. RESULTS    

    

6.1 Mutant p53 and ROS metabolism 

6.1.1 Mutant p53 proteins stimulate the production of ROS 

 

To study the functional role of GOF mutant p53 proteins in the regulation of ROS 

production, we first analyzed the endogenous level of ROS by staining pancreatic 

cancer cell lines with the DCF probe. When PaCa3, expressing wild-type p53 pro-

tein, was knocked down for p53 expression the ROS level increased, accordingly 

with the antioxidant role of wild-type p53 (figure 13). On the contrary, the ROS level 

was decreased after knockdown of GOF mutant p53 in Panc1 cells. Consistent with 

this, exogenous overexpression of R175H or R273H mutant p53 proteins in AsPC1 

cells (null for p53 expression) produced a drastic increase of ROS level, confirming 

the pro-oxidant role of mutant p53 isoforms in pancreatic cancer cells. 

 

 

 

 

 

 

 

 

 

Figure 13: Mutant p53 proteins enhance ROS production in cancer cells. The indicated cell lines 

were transfected with the pRSuper-p53 vector and with plasmids for overexpression of mutant p53 

(o.e. R175H; o.e. R273H), or their relative negative mock control (CTRL). DCF fluorescence intensi-

ty was analyzed by a multimode plate reader. Western blot of p53 was performed to test the effective 

knockdown of WT or mutant p53 and the overexpression of mutant p53 in the various cell lines indi-

cated. 
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Then, we used small molecules, such as CP-31398 and RITA, which restore the 

wild-type transcriptionally competent conformation of mutant p53 proteins, as de-

scribed in the introduction of this thesis. To activate the wild-type-like p53 function, 

we treated the cells with the p53-reactivators CP-31398 or RITA and we observed a 

decresead ROS level in both cancer cells having wild-type p53 (PaCa3) and mutant 

p53 (Panc1). As negative control, we also used p53-null AsPC1 cells to confirm that 

the effect of these compounds is mediated by p53 (figure 14). 

 

 

 

 

 

 

Figure 14: Reactivators of wtp53 decrease ROS production in both wtp53 (PaCa3) and mutp53 

(Panc1) PDAC cells. The indicated cell lines were seeded in 96-well plates, incubated overnight, and 

treated with 20 µM CP-31398 or 40 µM RITA for 48 h. DCF fluorescence intensity was measured by 

a multimode plate reader. 

 

To support these data and to investigate the subcellular source of ROS production by 

mutant p53 we analyzed mitochondrial superoxide ions (O2ˉ·) through MitoSox Red 

probe. We observed fluorescence emitted by MitoSox Red probe after exogenous 

overexpression of R175H or R273H mutant p53 isoforms in p53-null AsPC1 cells 

(figure 15 a) and also a colocalization of the fluorescence signals by MitoSox Red 

probe (revealing mitochondrial superoxide ions) and by MitoTracker Green (staining 

mitochondria) (figure 15b) indicating that mitochondria are a crucial source of ROS 

production induced by mutant p53 isoforms. 
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Figure 15: Mutant p53 proteins enhance mitochondrial superoxide ions production in cancer 

cells. a) Live cell imaging: 48 h after transfection with plasmid coding for R175H or R273H mutant 

p53, or with the mock vector (CTRL), cells were incubated for 30 min with MitoSox probe (red) and 

Mitotracker Green (green). The RGB profile plotted along the dashed line drawn in the merge image 

is also shown. Merge and single channel images come from a single z-plane. Scale bar 10 μm. b) Mi-

tochondrial superoxide evaluation by MitoSox Red probe was analyzed with a multimode plate reader. 

Cells were seeded in 96-well plates, incubated overnight, and transfected with plasmid coding for 

R175H or R273H mutant p53, or the mock vector. All the experiments presented in this figure are rep-

resentative of three biological replicates. P values were calculated with two-tailed t test. Statistical 

analysis: *p < 0.05 R175H or R273H vs Mock. 

 

 

 

6.1.2 The oncogenic effects of mutant p53 are mediated by ROS induction 

 

To explore the role of ROS stimulation on the oncogenic effects of mutant p53 pro-

teins in PDAC cells we analyzed cell proliferation, apoptosis, and response to the 

drug gemcitabine (GEM) after addition of the radical scavenger NAC. First, we 

demonstrated that this antioxidant molecule was able to counteract ROS production 

by overexpression of R175H or R273H mutant p53 isoforms in AsPC1 p53-null cells 

(Fig. 16a). The hyper-proliferative effect and the anti-apoptotic effect induced by 

mutant p53 was counteracted by NAC treatment (Fig. 16b,c), demonstrating the 

functional involvement of ROS on these oncogenic events. Since my research team 

previously published that mutant p53 conferred chemoresistence to GEM treatment 

in pancreatic cancer cells [35], we investigated whether this function may be mediat-
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ed by ROS. Figure 16d shows that mutant p53 expression reduced the sensitivity to 

GEM and that it was restored by the addition of the antioxidant compound NAC. 

Figure 16e shows an interesting result that may have therapeutic applications. Since 

is known that increasing ROS beyond a threshold level can inhibit cell proliferation 

inducing cell death, we investigated whether cancer cells expressing mutant p53 may 

acquire sensitivity to pro-oxidant agents. Thus, we discovered that R273H mutant 

p53 enhances cancer cell sensitivity to hydrogen peroxide, reversing the hyper-

proliferative effect induced by mutant p53 and suggesting oxidant therapeutics in the 

treatment of cancer cells bearing mutant TP53 gene. 

 

Figure 16: ROS induced by mutant p53 proteins are critical to mediate their oncogenic proprie-

ties. a, b, c) AsPC1-p53 null cells were transfected with R175H or R273H vector, or mock control, 

and concomitantly treated with 7 mM NAC for 24 h. a) Intracellular ROS level was evaluated analyz-

ing DCF fluorescence intensity using a multimode plate reader. b) Cell proliferation was measured by 

Crystal Violet assay and c) apoptosis was determined by the annexin V/FITC binding assay. Statistical 

analysis: *p < 0.05; R175H vs R175H + NAC and R273H vs R273H + NAC. d) AsPC1-p53 null cells 

were transfected and treated with 7 mM NAC and 1 µM GEM for 24 h. Cell proliferation was meas-

ured by Crystal Violet assay. Statistical analysis: *p < 0.05; R175H + GEM vs R175H + NAC + GEM 

and R273H + GEM vs R273H + NAC + GEM. e) AsPC1-p53 null cells were transfected with mock 

vector or with vector to express R175H mutant p53. After 24 h cells were treated with 100 µM H2O2 

for further 24 h. Cell proliferation was measured by Crystal Violet assay. Statistical analysis: *p < 0.05 

or ** p < 0.01 P R175H vs mock. 
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6.1.3 Mutant p53 downregulates UCP2 expression through the inhibition of PGC-1α 

 

The mitochondrial uncoupling prototein UCP2 and its transcriptional activator PGC-

1α are key factors in the maintenance of the mitochondrial redox balance [125][177]. 

Indeed, UCP2 is able to prevent the electron leakage from the respiratory chain, de-

creasing the superoxide ions production in mitochondria. Thus, we investigated 

wether mutant p53 induces ROS through the inhibition of the PGC-1α/UCP2 axis. 

The knock-down of endogenous mutant p53 in Panc1 cells determined the induction 

of both PGC-1α and UCP2 mRNAs, whereas the exogenous expression of the 

R273H mutp53 isoform inhibited their expression in p53-null AsPC1 (figure 17a). 

After treatment with the p53-reactivators CP-31398 or RITA we observed the in-

crease of the expression level of UCP2 mRNA in mutant p53 Panc1 cells, whereas 

these compunds failed to modulate UCP2 expression in p53-null AsPC1 cells, further 

suggesting the involvement of p53 in their mechanism of action (figure 17b).  

 

Figure 17: Mutant p53 downregulates UCP2 and PGC-1-α mRNAs levels. a) Panc1 mutR273H-

p53 and AsPC1-p53 null cells were transfected with pRSuper-p53 vector and with plasmids for the 

ectopic expression of mutant p53-R273H or its relative negative control (CTRL). Gene expression 

analysis of the p53, UCP2, and PGC-1α was performed by RT-qPCR and was normalized to GAPDH 

mRNA. *p < 0.05. b) Panc1 mutR273H-p53 and AsPC1-p53 null cells were treated with 40 µM RITA 

and 20 µM CP-31398 for 48 h and gene expression analysis of UCP2 was performed by RT-qPCR and 

normalized to GAPDH mRNA. *p < 0.05. 

 

We also demonstrated the inhibitory role of mutant p53 on the expression of PGC-1α 

and UCP2 proteins by Western blotting in Panc1 and AsPC1 cells (fig 18a). Fur-
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thermore we analyzed the stimulation of UCP2 mRNA after mutp53-knockdown that 

was strongly inhibited by co-transfecting Panc1 cells with siRNA-PGC-1α (figure 

18b), demonstrating the functional involvement of PGC-1α inhibition in the repres-

sion of UCP2 mRNA by mutant p53. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Mutant p53 downregulates UCP2 and PGC-1-α proteins levels. a) Western blotting 

analysis of Panc1 mutR273H-p53 and AsPC1-p53 null cells transfected with the indicate plasmids. 

Western blotting was performed using 50 μg of whole-cell extracts, probed with the indicated antibod-

ies and quantified with ImageJ software. b) Panc1 mutR273H-p53 cells were transfected with pRSu-

per-p53 vector and siRNA-PGC-1α and relative controls and gene expression analysis of UCP2 was 

performed by RT-qPCR and normalized to GAPDH mRNA. *p < 0.05 shCTRL vs shp53; #p < 0.05 

shp53 vs shp53 + siPGC-1α. The experiments are representative of three biological replicates 

 

 

To confirm that PGC-1α/UCP2 axis inhibition is specifically due to a mutant p53-

related GOF mechanism, we examined whether wild-type p53 is able to modulate 

this axis. The knock-down of wild-type p53 in PaCa3 cells failed to modulate mRNA 

levels of PGC-1α and also UCP2 (figure 19), in accordance with the lack of PGC-1α 

regulation and the absence of p53 binding sequences in the regulatory regions of the 

UCP2 gene.  
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Figure 19: PGC-1α/UCP2 axis is not regulated by the endogenous basal level of wild-type 

p53. PaCa3 cells (WTp53) were transfected for 48 h with the pRSuper-p53 vector or its relative nega-

tive control (shCTRL). Gene expression analysis of p53, UCP2, and PGC-1α was performed by RT-

qPCR and normalized to GAPDH mRNA. *p < 0.05 shp53 vs shCTRL 

  

 

6.1.4 Mutant p53-dependent downregulation of the PGC-1α/UCP2 axis is mediated 

by the blockage of SESN1/AMPK signaling 

 

Since AMPK signaling pathway has a crucial role in many biological functions and 

requires PGC-1α activity to modulate the expression of several key players in mito-

chondrial and glucose metabolism [178], we examined whether mutant p53 might 

inhibit PGC-1α/UCP2 axis through the upstream blockage of AMPK. We demon-

strate that R273H mutant p53 inhibited the level of SESN1 and SESN2 mRNAs (fig-

ure 20a) and the protein expression of SESN1 and SESN2, as well as the P-AMPK 

level without affecting the total amount of AMPK (figure 20b). Importantly, we 

demonstrated by immunoprecipitation assay that mutant p53 decreased SESN1 bind-

ing to AMPK, likely as a consequence of SESN1 inhibition (figure 20b). In order to 

investigate the functional role of AMPK signaling in the inhibition of PGC-1α/UCP2 

axis by mutant p53, we treated cells with AICA-R, a chemical activator of AMPK.  
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Figure 20: Mutant p53 inhibits UCP2 and PGC-1α through the inhibition of SESN1/AMPK sig-

naling. a) Panc1 and AsPC1 were transfected for 48 h. Gene expression analysis of SESN1 and 

SESN2 was performed by RT-qPCR and normalized to GAPDH mRNA. *p < 0.05shp53 vs CTRL, 

R273Hvs Mock. b) H1299 p53-null cells stably expressing R273H mutant p53 (clone H1) and its re-

spective mock control (clone C9) were used to identify the regulation of SESN1:AMPK complex by 

mutant p53. Left panel: western blotting was performed using 50 μg of whole-protein extracts and 

probed with the indicated antibodies. Right panel: SESN1 was immunoprecipitated from protein ex-

tracts using anti-SESN1 antibody (IP: SESN1) and western blot analysis was performed using indicat-

ed antibodies. Protein extracts were also immunoprecipitated with IgG as control. 

 

Figure 21a shows that the repression of both PGC-1α and UCP2 mRNAs by overex-

pression of mutant p53 was reverted by AICA-R. In addition, we further demonstrat-

ed that transfection with a dominant negative isoform of AMPK γ (DN-AMPK), as 

compared with transfection with wild-type AMPK isoform γ (WT-AMPK), was able 

to inhibit the induction of both PGC-1α and UCP2 mRNAs after knock-down of en-

dogenous mutant p53 (Fig. 21b). Altogether these data indicate that mutp53-

dependent downregulation of the PGC-1α/UCP2 axis is mediated by the blockage of 

AMPK signaling. Finally, in order to investigate whether AMPK also plays a role in 

the final pro-oxidant effect of mutant p53, we analyzed ROS level after silencing en-

dogenous mutant p53 with the concomitant transfection of DN-AMPK or WT-

AMPK and we discovered that ROS level decreased in mutp53-knockdown condi-

tions and it was recovered by DN-AMPK (figure 21c). Thus, all toghether these data 

show that the pro-oxidant inhibition of the PGC-1α/UCP2 axis by mutant p53 is due 

to AMPK signaling inhibition, which might be influenced by inhibition of SESN1 

expression. 
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Figure 21: The mutp53-dependent downregulation of the PGC-1α/UCP2 axis is mediated by the 

blockage of AMPK signaling. a) AsPC1-p53 null cells were transfected with the vectors for the ec-

topic expression of p53-R273H and its mock control and treated with 1 mM AICA-R for 48 h. Gene 

expression analysis of the UCP2 and PGC-1α was performed by RT-qPCR and normalized to 

GAPDH mRNA. #p < 0.05 mock vs mock + AICA-R; *p < 0.05 mock vs R273H and R273H vs 

R273H + AICA-R. b) Panc1 mutR273H-p53 cells were transfected for 48 h with the indicated vectors 

and their relative negative controls. Gene expression analysis of UCP2 and PGC-1α was performed by 

RT-qPCR and normalized to GAPDH mRNA. *p < 0.05 shp53 vs CTRL; #p < 0.05 shp53 + DN-

AMPK vs shp53 or shp53 + WT-AMPK. c) The indicated cell lines were transfected with pRSuper-

p53, DN-AMPK, WT-AMPK vectors, or negative controls. ROS levels were analyzed using DCF 

probe by a multimode plate reader. *p < 0.05 shp53 vs CTRL; #p < 0.05 shp53 + DN-AMPK vs shp53 

or shp53 + WT-AMPK.  

 

 

6.1.5 The pro-oxidant and oncogenic effect of mutant p53 by UCP2 inhibition 

 

To functionally demonstrate that the UCP2 blockage has a role on the pro-oxidant ef-

fect of mutant p53, we discovered that ROS level decreased after mutant p53 knock-

down and it was recovered by siRNA-UCP2 or by the UCP2 innhibitor genipin in 

Panc1 cells (fig 22a). Furthermore, ROS level increase by R273H or R175H mutant 

p53 overexpression in p53-null AsPC1 cells was reduced by UCP2 overexpression 

(fig 22a). Figure 22b shows that UCP2 inhibition reduced the oncogenic hyper-
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proliferative effect of mutant p53 in PDAC cells. Finally, we can conclude that 

UCP2 inhibition is a mechanism by which mutant p53 plays its oncogenic and pro-

oxidant functions. 

 

 

 

 

 

 

 

 

 

 

Figure 22: Mitochondrial superoxide production is due to mutp53-dependent UCP2 inhibition. 

a) Panc1 mutR273H-p53 and AsPC1-p53 null cells were transfected with pRSuper-p53 and vector for 

mutant p53 ectopic expression, respectively, and their relative controls. In addition, Panc1 cells were 

co-transfected with siRNA-UCP2, or treated with 150 μM genipin for 24 h; while AsPC1 cells were 

co-transfected with the UCP2 vector. ROS production, corresponding to DCF fluorescence intensity, 

was analyzed by a multimode plate reader. *p < 0.05 shCTRL vs shp53 or mock vs R175H or R273H; 

#p < 0.05 shp53 vs shp53 + siUCP2 or shp53 + genipin (Panc1 cells); R175H or R273H vs 

R175H + UCP2 or R273H + UCP2 (AsPC1 cells). b) Panc1 cells were transfected for 48 h with shp53 

and/or siUCP2 and their relative negative controls. Cell proliferation was measured by Crystal Violet 

assay. *p < 0.05 shCTRL vs shp53; shp53 vs shp53 + siUCP2.  

 

 

 

 

 

 



59 

 

6.2 Mutant p53 and energy metabolism: the prevention of GAPDH nuclear 

translocation in PDAC cells 

6.2.1 Mutant p53 prevents the nuclear translocation of GAPDH 

To study another oncogenic role of mutp53 proteins in the metabolic regulation of 

cancer cells, we focused our attention on the regulation of the intracellular 

distribution of GAPDH. We modulated p53 expression in PDAC Panc1 and PaCa3 

cell lines having mutant or wild-type TP53 gene, respectively, by using liposome-

mediated transient transfection assay and we analyzed the abundance of GAPDH in 

the cytosolic and nuclear fractions of the cells. When Panc1 cells were knocked-

down for mutant p53 expression (left panel), the GAPDH expression level in the 

nuclear fraction increased revealing a role for mutant p53 in the prevention of the 

nuclear translocation of the enzyme (Figure 23A). Consistent with this, the 

exogenous expression of R273H mutant p53 in AsPC1 cells (null for p53 expression) 

(left panel) produced a drastic decrease of the GAPDH expression in nuclei (Figure 

23B). To investigate whether this is a phenomenon specifically acquired by mutant 

proteins we knocked-down WTp53 (left panel) and analyzed cytosolic and nuclear 

GAPDH distribution, revealing that the WTp53 counterpart was not able to regulate 

the enzymatic nuclear translocation (Figure 23C). To check the purity of cytosolic 

and nuclear subcellular fractions we tested the abundance of α-tubulin and of Lamin 

B1, which are specifically expressed in cytosol and nucleus of the cells, respectively 

(Figure 23A-23C). We further strengthened these data through lentivirus-mediated 

transduction and immunofluorescence analysis by confocal microscopy using a 

different sequence to knock-down mutant p53 expression (p53-SH1) or its negative 

non-targeted control (p53-NT) in PDAC Panc1 cells. Figure 23D shows that mutp53 

silencing unchanged the expression level of GAPDH (right panel), but it prompted 

GAPDH nuclear positivity as revealed also by XY, XZ and YZ orthogonal 

projections of confocal images. 
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Figure 23. Mutant p53 prevents GAPDH nuclear translocation. A-C) Cytosolic and nuclear ex-

tracts were used for Western blotting of GAPDH, -tubulin and Lamin B1 in Panc1 and PaCa3 cell 

lines transfected with pRSuper-p53 or mock vector, or in AsPC1 cells transfected with plasmids for 

R273H mutant p53 expression or its negative control. α-tubulin and Lamin B1 have been used as con-

trols of the quality of the cytoplasmic and nuclear protein fractions, respectively. The amount of nu-

clear GAPDH in each extract was quantified using NIH Image J software and normalized to the 

amount of Lamin B1. Statistical analysis *p<0.05 Shp53 vs ShCtrl in Panc1 cells and *p<0.05 R273H 

vs mock in AsPC1 cells. D) Transduced Panc1 cells with vector encoding TP53-shRNA indicated as 

SH1 or its non-target shRNA control indicated as non-target (NT). In NT image, the GAPDH (green 

signal) is mainly localized into the cytoplasm and on the cell membrane. 48 hours after transduction, 

the enzyme is visible also into the nuclei (blue signal). Inset A: the cell is shown with a higher magni-

fication. The enzyme is clearly visible inside the nucleus (as shown by the orthogonal projection, XZ 
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and YZ). Inset B: GAPDH (green spots) begins to localize in the nucleus as it can be appreciated from 

the orthogonal projection XZ and YZ (yellow squares). Scale bar: 10 µm. 

 

6.2.2 Mutant p53 enhances the glycolytic activity of GAPDH and stimulates the L-

lactate secretion 

 

We further explored whether the stabilization of cytosolic GAPDH by mutp53 re-

sulted in an enhanced glycolytic activity of the enzyme. Consistent with results re-

ported in figure 23, figure 24A shows that mutp53 knock-down in Panc1 cells de-

creased GAPDH activity, which remained unchanged after WTp53 silencing in Pa-

Ca3 cells. Overall, in our experimental model we observed that WTp53 and mutp53 

have dual opposite effects on the secretion of L-lactate, the metabolic compound 

generated by the glycolytic pathway. Figure 24B shows that L-lactate secretion was 

enhanced by mutp53, consistent with the cyto-

solic stabilization of GAPDH, while the 

WTp53 counterpart produced an inhibitory ef-

fect on L-lactate secretion, consistent with its 

overall negative effects on glycolysis [179]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Mutant p53 enhances GAPDH glycolytic 

activity and L-lactate secretion. A) GAPDH activity 

was quantified in Panc1 and PaCa3 cells transfected 

with pRSuper-p53 vector or its negative control for 48 

h. Statistical analysis *p<0.05 Shp53 vs ShCtrl. B) 

Panc1 and PaCa3 cells were transfected with pRSu-

per-p53 vector or its negative control for 48 h. L-lactic 

acid level in the culture medium has been analyzed by 

measuring the absorbance at 340 nm and the L-lactic 

acid concentration has been calculated as detailed in 

Material and Methods. Statistical analysis *p<0.05 

Shp53 vs ShCtrl. 
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6.2.3 Prevention of nuclear localization of GAPDH by mutant p53 is mediated by 

regulation of SIRT1:GAPDH complex and of AMPK and AKT pathways. 

Since it has been described that the binding of SIRT1 to GAPDH retains the latter 

protein in the cytosol as a mechanism to protect cytosolic GAPDH from nuclear 

translocation [180], we investigated whether mutp53 might stimulate SIRT1:GAPDH 

interaction. The large amount of protein extract used for the immunoprecipitation as-

say was obtained by a clone of H1299 cancer cells stably expressing R273H mutp53, 

which we previously used to study the oncogenic effects of mutp53s [52]. Figure 25 

shows that H1299 cancer cells stably expressing R273H mutp53 presented enhanced 

levels of SIRT1 as compared to a mock clone of the same cells (left panel). Further-

more, immunoprecipitation assay revealed that SIRT1:GAPDH interaction was in-

creased in R273H mutp53 expressing cells, as compared to mock (right panel), sug-

gesting an involvement for this complex in the prevention of nuclear localization of 

GAPDH driven by mutp53 in cancer cells.  

 

 

 

 

 

Figure 25. Prevention of nuclear localization of GAPDH by mutant p53 is mediated by regula-

tion of SIRT1:GAPDH complex. Cell lysates from p53-null H1299 cancer cells (C9 clone) and 

H1299 stably expressing R273H mutp53 (H1 clone) were used to perform Western blotting by loading 

30 μg of protein extracts and probed with the indicated antibodies. Left panel: GAPDH was used as 

control of equal protein loading. Right panel: GAPDH was immunoprecipitated from protein extracts 

of H1299 cell C9 clone (mock) or H1 clone stably expressing R273H mutp53 using anti-mouse 

GAPDH antibody (IP: GAPDH) and Western blotting was performed using anti-SIRT1 antibody. 

Negative control (Ctrl-) corresponds to lysis buffer without protein extracts immunoprecipitated with 

anti-GAPDH as described for mock or R273H samples. Protein extracts from H1299 cells (C9 mock 

clone) were also immunoprecipitated with an equal amount of mouse IgG as control. The blot exhibits 

equivalent GAPDH levels and the absence of α-tubulin expression in C9 and H1 clone samples as 

control of the quality of the immunoprecipitation. 
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Moreover, since GAPDH cellular distribution can also be regulated by post-

translational modifications of the enzyme, we tested whether mutp53 can modulate 

AMPK and AKT signaling pathways, which are described to be involved in GAPDH 

phosphorylation in different amino acidic residues of the enzyme resulting in the in-

hibition or in the stimulation of GAPDH nuclear translocation, respectively [181], 

[182]. Figure 26 shows that mutp53 overexpression in p53-null PDAC AsPC1 cells 

strongly stimulated AKT signaling (P-AKT/AKT ratio) and inhibited AMPK signal-

ing (P-AMPK/AMPK ratio).  

Figure 26. Mutant p53 regulates AMPK and AKT signaling pathways.Western blotting was per-

formed using 40 μg of whole cell protein extracts from AsPC1 transfected with plasmids for R273H 

mutant p53 expression or its negative control (mock) and probed with the indicated antibodies. For 

quantitative analysis, bands were quantified using NIH Image J software and normalized to the 

amount of GAPDH. Statistical analysis * p<0.05 R273H vs mock.  

 

To investigate the role of AMPK and AKT regulation on the prevention of nuclear 

localization of GAPDH by mutp53 we treated cells with the AMPK activator AICAr 

or with the AKT inhibitor SH-5. Figure 27A reports that the decrease of nuclear 

GAPDH by mutp53 was recovered by AICAr or SH-5 treatment. Accordingly, the 

increased level of secreted L-lactate by mutp53 was reversed after GAPDH silencing 

or cell treatment with AICAr or SH-5 (figure 27B). Altogether these results demon-

strated that mutp53 adopted different mechanisms to prevent GAPDH nuclear trans-

location sustaining cytosolic glycolysis. 
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Figure 27: Prevention of nuclear localization of GAPDH by mutant p53 is mediated by regula-

tion of AMPK and AKT pathways. A) AsPC1 cells were transfected with the vectors for the ectopic 

expression of p53-R273H or its mock control for 48 h and treated with 2 mM AICAr for 72 h or 15 

μM SH-5 for 48 h. Western Blot analysis was performed using whole cell extracts of AsPC1 and 

probed with the indicated antibodies. -tubulin and Lamin B1 have been used as controls of the quali-

ty of the nuclear protein fraction. Statistical analysis *p<0.05 R273H vs mock; #p<0.05 R273H + 

AICAr vs R273H; §p<0.05 R273H + SH-5 vs R273H. B) AsPC1 cells were transfected with the vec-

tors for the ectopic expression of p53-R273H or its mock control for 48 h and for the knock-down of 

GAPDH using 50 nM siRNA-GAPDH for 48 h. AsPC1 cells were treated 2 mM AICAr for 72 h or 15 

μM SH-5 for 48 h.  L-lactic acid level in the culture medium has been analyzed as detailed in Material 

and Methods. Statistical analysis *p<0.05 R273H vs mock; #p<0.05 R273H + siGAPDH vs R273H; 

§p<0.05 R273H + AICAr vs R273H; $p<0.05 R273H + SH-5 vs R273H. 

 

6.2.4 GAPDH cytosolic stabilization contributes to the oncogenic effects of mutant 

p53 

To investigate the functional role of GAPDH cytosolic stabilization on the oncogenic 

effects of mutp53 we tested PDAC cell proliferation and apoptosis after R273H 

mutp53 overexpression in AsPC1 cells with the concomitant inhibition of the cyto-

solic glycolytic activity of GAPDH by the AXP3009 compound or after GAPDH 

siRNA transfection for gene silencing. Figures 28A and 28B show that a non-toxic 
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concentration of AXP3009 or cell transfection with GAPDH siRNA reversed R273H 

mutp53-dependent PDAC cell hyperproliferation and apoptosis inhibition, respec-

tively.  

 

 

 

 

 

 

Figure 28. GAPDH cytosolic stabilization contributes to the oncogenic effects of mutant p53. A) 

Cell proliferation was measured by Cristal Violet assay and determined by the annexinV binding as-

say. B) apoptosis was AsPC1 cells were transfected with plasmids for R273H mutant p53 over-

expression or its mock vector and for the knock-down of GAPDH using 50 nM siRNA-GAPDH for 

48 h. The cells were also treated with 100 µM AXP3009 compound for 48 h. Statistical analysis 

*p<0.05 R273H vs mock; #p<0.05 R273H + AXP3009 vs R273H; §p<0.05 R273H + siGAPDH vs 

R273H. 

 

To confirm the role of GAPDH cytosolic stabilization on the oncogenic effects of 

mutp53 we performed anchorage-independent soft agar colony assay. Figure 29 

shows that R273H mutp53 favors the formations of the colonies (as compared to 

mock cells) and that AXP3009 treatment strongly reversed this phenomenon.  

 

 

 

 

 

Figure 29: The GAPDH cytosolic stabilization by mutant p53 induces anchorage-independent 

cell growth. Representative images of soft agar colony assay. Upon 21 days of H1299 cell culture, the 

number of colonies in mock cells and mutp53 R273H cells, untreated or treated with 50 µM 
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AXP3009, was quantified by ImageJ software after staining with Crystal Violet. Results were shown 

as mean ± SEM of three independent experiment (right panel). Scale bar: 200 µm. Statistical analysis 

*p<0.05 R273H vs mock; #p<0.05 R273H + AXP3009 vs R273H. 

 

Similar results have been observed also for R175H mutp53-dependent modulation of 

cell growth and apoptosis (figure 30A and 30B), extending the concept that GAPDH 

cytosolic stabilization may contribute to the oncogenic effects also of other GOF 

mutp53 isoforms.  

 

 

 

 

 

 

Figure 30: GAPDH cytosolic stabilization contributes to the oncogenic effects of mutant p53 

isoforms. A) Cell proliferation was measured by Cristal Violet assay and B) apoptosis was determined 

by the annexin V-FITC binding assay. AsPC1 cells were transfected with plasmids for R175H mutant 

p53 expression or its mock vector and for the knock-down of GAPDH using 50 nM siRNA-GAPDH 

for 48 h. The cells were treated with 100 µM AXP3009 for 48 h. Statistical analysis *p<0.05 R175H 

vs mock; #p<0.05 R175H + AXP3009 vs R175H; §p<0.05 R175H + siGAPDH vs R175H. 

 

Moreover, since we previously demonstrated that oncogenic effects of mutp53 in 

PDAC cells are mediated also by the counteraction of autophagy [52] and that 

mutp53s stimulate resistance to the drug gemcitabine in PDAC cells [52], we inves-

tigated whether GAPDH activity might contribute to regulate also these phenomena. 

In figure 31A we demonstrated that mutp53 decreased the amount of intracellular au-

tophagic vesicles and this event was completely reversed by the addition of the 

AMPK activator AICAr or the AKT inhibitor SH-5, which also restored GAPDH nu-

clear prevention by mutp53 (figure 27A) and reduced L-lactate secretion prompted 

by mutp53 (figure 27B). In accordance with these observations, the shp53-induced 

increase of autophagy was counteracted in GAPDH silencing conditions in Panc1 
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cells, confirming the involvement of GAPDH in the inhibition of autophagy by 

mutp53 (figure 31B). Altogether, these data indicate that GAPDH expression is re-

quired to mediate several oncogenic effects of mutp53. 

 

 

 

 

 

 

 

Figure 31: The GAPDH cytosolic stabilization by mutant p53 counteracts autophagosome for-

mation. A) Autophagosome formation assay by MDC probe in AsPC1 cells transfected and treated 

with 2 mM AICA-R for 72 h or 15 μM SH-5 for 48 h. Statistical analysis *p<0.05 R273H vs mock; 

#p<0.05 R273H + AICAr vs R273H; §p<0.05 R273H + SH-5 vs R273H. B) Autophagosome for-

mation assay in Panc1 cells transfected with pRSuper-p53 vector (Shp53) or its negative control 

(ShCtrl), in the absence or presence of siRNA-GAPDH for 48 h. Statistical analysis *p<0.05 shp53 vs 

shCtrl; #p<0.05 shp53 + siGAPDH vs shp53. 

 

6.2.5 GAPDH cytosolic stabilization confers chemoresistance to gemcitabine and 

sensitizes cells to 2-deoxyglucose 

 

Concerning drug chemoresistance, we demonstrated that GAPDH knock-down by 

siRNA restored PDAC cell sensitivity to gemcitabine even in mutp53-overexpressing 

conditions (figure 32A). Furthermore, we tested the role of GAPDH in PDAC cells 

endogenously expressing wild-type p53 or R273H mutp53. Figure 32B shows that 

GAPDH silencing had an undetectable effect on gemcitabine sensitivity of wt-p53 

cells PaCa3 cells, while it enhanced the response to gemcitabine of mutp53 Panc1 

cells. 
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Figure 32: GAPDH cytosolic stabilization confers chemoresistance to gemcitabine. A) Cell prolif-

eration was measured by Cristal Violet assay in AsPC1 transfected cells and treated with 1 μM gem-

citabine (GEM) for 48 h. Statistical analysis *p<0.05 mock + GEM vs mock; #p<0.05 R273H + GEM 

vs mock + GEM; §p<0.05 R273H + GEM + siGAPDH vs R273H + GEM. B) Cell proliferation was 

measured by Cristal Violet assay in wt-p53 PaCa3 cells and mutp53-Panc1 cells transfected with siR-

NA GAPDH and/or treated with 1 μM gemcitabine (GEM) for 48 h. #p<0.05 siGAPDH vs CTRL; 

*p<0.05 GEM vs CTRL; §p<0.05 siGAPDH + GEM vs GEM. 

 

 

 

Furthermore, we aimed to investigate whether PDAC cells bearing mutp53 might be 

more sensitive to the glycolytic standard inhibitor 2-DG, accordingly with the stimu-

latory role of mutp53 on glycolysis via GAPDH cytosolic stabilization. To function-

ally demonstrate the involvement of mutp53 on PDAC cell sensitivity to 2-DG, we 

evaluated the response of the cells after overexpression of R273H mutp53. Our data 

reported in figure 33 show that mutp53 overexpression conferred to p53-null AsPC1 

cells a strong sensitization to 2-DG incubation, as compared to its negative mock 

control. These results demonstrated that targeting the glycolytic pathway may repre-

sent a potential therapeutic opportunity for cancer patients bearing mutations in the 

TP53 gene. 
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Figure 33: GAPDH cytosolic stabilization sensitizes cells to 2-deoxyglucose. Cell proliferation was 

measured by Cristal Violet assay in AsPC1 cells transfected as indicated and treated with 5 mM 2-DG 

for 48 h. Statistical analysis *p<0.05 R273H + 2-DG vs R273H. 

 

 

6.3 Mutant p53 and tumor microenvironment 

 

6.3.1 The oncogenic effects of mutant p53 are also mediated by alterations of the 

cancer cell secretome  

To identify a specific signature of biomarkers secreted by PDAC cells carrying GOF 

mutant p53, primarily we want to find out whether mutant p53 may influence the se-

cretome of PDAC cells in order to elucidate the functional role of mutp53-driven se-

cretome. Thus, as summarized in figure 34, we induced the exogenous expression of 

R273H and R175H mutp53 in PDAC AsPC1 cell line (null for p53 expression) by 

using liposome-mediated transient transfection assay. After checking the transfection 

efficiency by Crystal Violet assay and Western Blotting, we collected and transferred 

the conditioned medium (CM) released by AsPC1 transfected cells to p53-null can-

cer cells. Cells cultivated in mutp53-driven secretome were collected to study the dif-

ferent functional effects of secretome driven by GOF mutp53. 
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Figure 34: Model that summarize the approach used in this study. AsPC1 cells were transfected 

with plasmids for R273H or R175H mutant p53 over-expression or its mock vector for 48h. The quali-

ty of the transfection was verified by Western Blot, loading 30 μg of whole cell protein extracts and 

probed with the indicated antibodies, and by Crystal Violet assay. *p < 0.05 R175H vs Mock, 

#p < 0.05 R273H. After 48h, AsPC1 transfected cells were washed and then incubated in serum-free 

RPMI for 22h. Then, the conditioned medium (CM) of AsPC1 transfected cells was collected and 

transferred to untransfected AsPC1 p53 null cells. After 48h, several function assay listed in the figure 

was performed. 

 

 

Figure 35A shows that both of the hot-spot mutations in the TP53 gene, R273H and 

R175H, are able to induce PDAC cell proliferation through its driven conditioned 

medium. Thus, mutp53-driven secretome induces cell growth and inhibits apoptosis, 

as compared to its negative mock control p53-null cells (figure 35B).  
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Figure 35: Mutant p53 influences cancer secretome, inducing cell growth and inhibiting apopto-

sis. A) Cell proliferation was measured by Cristal Violet assay and B) apoptosis was determined by the 

annexinV binding assay. Statistical analysis *p<0.05 R175H vs Mock, #p<0.05 R273H vs Mock. 

 

Furthermore, since we had already demonstrated the oncogenic effects of mutp53 in 

PDAC cells which are also mediated by the counteraction of autophagy [52] and that 

mutp53 stimulates resistance to the drug gemcitabine in PDAC cells [35], we inves-

tigated whether mutp53-driven secretome can influence these mechanisms. Thus, we 

observed that secretome released by mutp53 cells having R275H or R175H muta-

tions showed decreased amount of intracellular autophagic vesicles (figure 36A). 

Concerning drug chemoresistance, we demonstrated that R273H mutp53-driven se-

cretome suppresses gemcitabine sensitivity (figure 36B), as compared to its mock 

control representing an important aspect to be further considered for clinical studies. 

In summary, the results obtained show that mutant p53 proteins are able to influence 

the secretion of components which contribute to hyperproliferation, blockage of 

apoptosis and autophagy and chemoresistance in PDAC cells showing a novel gain-

of-function property that promote oncogenesis. 
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Figure 36: Mutp53-driven secretome  inhibits autophagosome formation and induces chemo-

resistance. A) Autophagosome formation assay through the incorporation of the MDC probe in 

AsPC1 cells. *p<0.05 R175H vs mock, #p<0.05 R273H vs Mock. B) Cell proliferation was measured 

by Cristal Violet assay in AsPC1 cells and treated with 1 μM gemcitabine (GEM) for 48 h. Statistical 

analysis *p<0.05 mock + GEM vs mock, #p<0.05 R273H+GEM vs Mock. 

 

6.3.2 Mutp53-driven secretome stimulates cancer cell migration and epithelial-to-

mesenchymal transition (EMT). 

Since mutp53 proteins alter cancer cell secretome and tumour microenvironment 

through several mechanisms that we previously discussed in Cordani et al. [156], we 

wanted to further investigate if mutp53-induced modulation of secretome has a role 

in the stimulation of cancer cell migration. Using the same approach described in 

figure 34, we discovered that the conditioned medium of cells bearing R273H or 

R175H mutp53 are able to stimulate cell migration as compared to conditioned me-

dium deriving from its mock control (figure 37A). For the betterment of this data, we 

used a clone of H1299 cancer cells stably expressing R273H mutp53, improving the 

exogenous expression of mutant p53 which has been used to study the oncogenic ef-

fects of mutp53s [52]. The quality and efficiency of transduction was verified in fig-

ure 38. Even the secretome released by H1299 cancer cells stably expressing R273H 

mutp53, induced cell migration in p53-null expressing cells (figure 37B). 

 

 



73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Mutp53-driven secretome induces cell migration. A) We performed wound closure cells 

assay on the confluent AsPC1 p53-null monolayer that received mutp53-driven secretome from 

AsPC1 transfected cells transduced cells. We have done a scratch in the cells monolayer at time zero, 

after that we have monitored cells for 48h and the images were analyzed quantitatively by using Im-

ageJ computing software. **p < 0.01 R175H vs Mock; #p < 0.05 R273H vs Mock. B) The conditioned 

medium of H1299 clones C9 (mock) and H1 (stably expressing mutant p53-R273H) was transfered to 

AsPC1 p53-null cells and we performed wound clousure cells assay. We have done a scratch in the 

cells monolayer at time zero and we have monitored the cells for 48h. The images were analyzed 

quantitatively by using ImageJ computing software. *p < 0.05 H1299 R273H vs H1299 CTRL. 

 

Figure 38: Quality and efficiency of transduc-

tion. H1299 p53 null were transducted with the 

clones C9 (mock) and H1 (stably expressing mu-

tant p53-R273H) and then cell proliferation was 

measured by Cristal Violet assay. Western blot-

ting was also performed using 40 μg of whole cell 

protein extracts from H1299 cells and probed 

with the indicated antibodies. 



74 

 

Furthermore, we found that R175H mutp53-driven secretome contributes to epitheli-

al-mesenchymal transition (EMT) (figure 39). Mock and R175H transfected cells of 

AsPC1 was used as a control for the conditioned medium collected for further exper-

iment. The existing data were confirmed also using conditioned medium, revealing 

an increase of N-cadherin and decrease of E- cadherin protein levels by using FACS 

analysis. These alterations are at the basis of the epithelial-to-mesenchymal transition 

[151] [152].  Indeed, the ratio of N-cadherin to E-cadherin in mutant p53 cells was 

higher when compared to the control (mock). Since N-cadherin promotes motility, 

invasion and produces a scattered phenotype with EMT in association with a reduc-

tion in the expression of E-cadherin [183], our results suggest that secretome released 

by mutant p53-expressing cells induces EMT transition. In conclusion, we discov-

ered that mutp53-driven secretome alters tumour microenvironment, stimulating cell 

migration and EMT. The data obtained can have a relevance in the clinical practice 

and encourage to identify secreted biomarkers associated with the mutant TP53 gene 

in tumour cells. 

 

 

 

 

 

 

 

 

 

Figure 39. Mutp53-driven secretome induces EMT. We quantified N-cadherin and E-cadherin lev-

els by FACS analysis in AsPC1 control cells transfected with plasmid for R175H over-expression and 

in the conditioned medium from transfected cells.  We also calculated the ratio N to E ratio of cadher-

in levels. *p < 0.05 R175H vs Mock. 
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6.3.3 Biomarkers secreted from mutp53-driven secretome. 

 

After verifying the oncogenic function of mutp53-driven secretome, we analyzed the 

composition of the conditioned medium released by AsPC1 expressing GOF mutp53 

cells compared to AsPC-1 p53-null cells. After the transfection period (48 h), cells 

were washed and cultured in FBS-free medium for further 22 h. This FBS-free cul-

ture period has been defined on the basis of the absence of stess signals of cells. The 

secretomes were collected and proteins were precipitated for proteomics studies. The 

proteins were subjected to reduction, alkylation, and trypsin digestion followed by 

the mass spectrometry analysis (SWATH MS). We compared the secreted proteins of 

p53 mutants with the mock control as well as between them. We found 23 differen-

tially secreted proteins by both R273H and R175H mutant p53 isoforms (figure 

40A). Specifically, we identified 17 secreted proteins upregulated and 6 secreted pro-

teins downregulated by mutp53 expression (fig 40 B). These proteins are involved in 

cancer progression and EMT and thus might constitute a secreted signature driven by 

the hot-spot p53 mutants in PDAC. We verified that the identified proteins are 

properly secreted proteins through bioinformatics analysis. These secreted proteins 

modulated by mutp53 isoforms may constitute a prerequisite for the identification of 

a secreted biomarker signature for the early identification of mutant p53 PDAC pa-

tient. 
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Figure 40: Biomarkers secreted from mut p53-                 

driven secretome. A and B) AsPC1 cells were transfected 

with plasmids for R273H or R175H mutant p53 over-

expression or its mock vector for 48 h. Then, AsPC1 

transfected cells were washed and incubated in FBS-free 

RPMI for further 22 h. Then, the conditioned medium 

(CM) of AsPC1 transfected cells was collected and trans-

ferred to AsPC1 p53-null cells, not transfected. After 48 h, 

the proteins were analyzed by SWATH analysis followed 

by bioinformatics analysis. 
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6. DISCUSSION AND CONCLUSIONS 

 

TP53 is one of the most frequently mutated genes in PDAC (~70%) [24] and in the 

other human cancers (~50%) [184]. Most of its mutations are missense mutations that 

result in the expression of mutant isoforms of p53 which acquire new biological 

properties referred as gain-of-function (GOF) [25]. These novel functions are in-

volved in a plethora of different cellular pathways focused on cancer progression and 

aggressiveness, promoting chemoresistance, invasion, metastasis and the counterac-

tion of apoptosis and cellular senescence [28] [29]. Mutant p53 GOF contributes to 

cancer progression through direct interaction with proteins altering their function or 

through the transcriptional activation/repression of mutp53-target genes and down-

stream molecules [29]. In many cancer types, p53 mutations are associated with high 

genomic instability, poor prognosis, poor response to chemotherapy. Indeed, our re-

search group discovered that mutp53 confers resistance to the treatment with the 

DNA damaging drug gemcitabine in PDAC cells. Furthermore we observed that 

chemotherapy itself aberrantly stimulates mutant p53 activity in PDAC cells identi-

fying a key process with potential for therapeutic targeting [35]. The influence of 

mutp53 in the clinical outcome of cancer patients, the high frequency of GOF muta-

tions in the TP53 gene and the involvment of mutp53 in a number of different cellu-

lar pathways have stressed the need to deeply investigate the events associated to 

cancer progression driven by mutp53 proteins in molecular oncology. Thus, I believe 

that a comprehensive discovery of the mechanisms by which mutp53 stimulates can-

cer aggressiveness is fundamental for its clinical implications and to counteract its 

oncogenic functions. Regarding the catabolic process of cellular self-digestion 

named autophagy, GOF mutant p53 proteins are able to orchestrate a plethora of 

events addressed to counteract autophagy in the various phases of the process, thus 

contributing to inhibit cell death and to sustain oncogenic activity. Autophagy defi-

ciency causes oxidative stress, activation of the DNA damage response, and genome 

instability, a known cause of cancer initiation and progression [109], [185]. My re-

search team discovered that mutant p53, in contrast to the autophagic function of 

wild-type p53, counteracts the formation of autophagic vesicles and their fusion with 

lysosomes through the repression of some key autophagy‐related proteins [52]. Fur-



78 

 

thermore, we previously reported the molecular interplay between the expression of 

mutant p53 proteins and autophagy regulation in cancer progression [112]. We fur-

ther discovered novel molecular mechanisms by which mutp53 promotes cancer pro-

gression, one of these occurs through the ROS prodution. ROS are persistently ele-

vated in cancer cells as a consequence of increased metabolic activity, mitochondrial 

dysfunction, and activation of oncogenes and are involved in the main features of 

aggressive cancer cell behavior, including genome instability, cellular hyper-

proliferation [116]. In the present study we discovered that mutant p53 proteins, con-

trarily to their wild-type p53 counterpart, can stimulate their oncogenic pro-oxidant 

conditions in PDAC cells. GOF mutant p53 isoforms contribute to enhance ROS lev-

els in these cancer cells through a coordinated regulation of redox-related enzymes 

and signaling pathways, including SESN1/AMPK/PGC-1α/UCP2 axis. The proteins 

involved in this axis have various roles, including the production of ROS and the 

regulation of autophagy and mitochondrial metabolism. In particular, AMPK is a 

master regulator of cellular metabolism and it has been shown to control the expres-

sion of several mitochondrial enzymes and proteins [186], including PGC-1α which 

stimulates the expression of mitochondrial uncoupling proteins, as UCP2 [187]. Fur-

thermore, AMPK triggers autophagy mainly through phosphorylation of several au-

tophagy-related genes. The AMPK activators sestrins are not only negative regulators 

of ROS but also they can stimulate AMPK signaling and inhibit mTORC [188], 

which in turn is a central regulator of cell growth and plays a key role at the interface 

of the pathways that coordinately regulate the balance between cell growth and au-

tophagy [189]. Thus, the inhibition of AMPK by repression of sestrins’ expression 

results in ROS prodution and also in autophagy blockage by several ways, including 

the stimulation of mTOR complex. Regarding UCP2, we previously discovered that 

UCP2 has a central role in regulating the energetic metabolism of the cells, in addi-

tion to its well described antioxidant role [190].  This concept is supported by the 

demonstration that the channel formed by uncoupling proteins (UCPs) can also pro-

mote the mitochondrial efflux toward the cytosol of pyruvate and of Krebs cycle in-

termediates, regulating glucose and glutamine oxidation [191]. Indeed, we found that 

UCP2 also induces the expression of GLUT1 and pyruvate kinase isoform M2 [192] 

and GAPDH cytosolic stabilization [84], overall sustaining the glycolytic phenotype 
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of PDAC cells. Regarding glycolitic metabolism, we discovered another mechanism 

by which mutp53 induces the Warburg effect, supporting cell growth and chemiore-

sistance. Indeed, apart from glycolysis, GAPDH participates in apoptosis, autophagy, 

iron metabolism, membrane trafficking, and other roles that depend on its subcellular 

localization [74]. In the present study, we demonstrate that mutant p53 stimulates 

glycolysis and lactate secretion through the cytosolic stabilization of GAPDH. In par-

ticular, we show that mutant p53 can induce the expression of SIRT1, a deacetylase 

enzyme which stimulates the proliferation and the expression of glycolytic genes in 

pancreatic neoplastic lesions [193]. In accordance with these observations, our data 

show that mutp53 stimulates lactate secretion with the concomitant upregulation of 

SIRT1 expression and the formation of SIRT1:GAPDH complex, which is reported 

to protect cytosolic GAPDH from nuclear translocation after various stimuli, retain-

ing the glycolytic enzyme in the cytosol and promoting cell survival. Furthermore, 

we reveal that another mechanism by which mutant p53 stabilizes GAPDH cytosolic 

localization is due to the stimulation of AKT and inhibition of AMPK signaling 

pathways, which are reported to directly phosphorylate GAPDH in different amino 

acidic residues with opposite effects on the nuclear translocation of the enzyme.    

Finally, in this study we investigated the extracellular oncogenic function of mutp53 

in tumour microenviroment in cells of PDAC, which has extremely high mortality 

rate mainly due to lack of biomarkers for early detection. An ever-increasing number 

of studies highlight the role of mutant p53 proteins in the alteration of cancer cell se-

cretome that we previously summarized [156]. Thus, in this study we showed the 

functional effects of mutp53-driven secretome on cancer cells showing its influence 

on proliferation, chemoresistance, apoptosis and autophagy, as well as cell migration. 

Our data identified 23 differentially secreted proteins by both R273H and R175H 

mutant p53 isoforms. These proteins are involved in cancer progression and epitheli-

al-to-mesenchymal transition and might constitute a secreted signature driven by the 

hot-spot p53 mutants in PDAC. This study is in progress and we are validating the 

identified secreted proteins in serum samples of a cohort of about 100 PDAC patients 

having WT or mutant TP53 gene. These data might suggest the identification of tar-

geted therapy specifically addressed to inhibit growth of PDACs carrying oncogenic 

mutant p53, which are strongly resistant to traditional chemotherapies.  
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In conclusion, this thesis shows several innovative mechanisms, summarized in fig-

ure 41, by which mutant p53 plays its oncogenic roles. The stimulation of glycolysis, 

the ROS production, and the alteration of tumour microenviroment might provide 

new therapeutic opportunities to be further considered for clinical studies in order to 

counteract chemoresistance in PDAC patients bearing mutant TP53 gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Representative summary of the data described in the thesis. 
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9. ANNEXES 

During the period of my PhD I studied the molecular mechanisms involved in 

chemoresistance of cancer cells, particularly in  PDAC, bearing mutant p53 gene. I 

focused my attention on the molecular mechanism where mutp53 is involved. Specif-

ically, I studied the regulation of nuclear translocation of the enzyme GAPDH by 

mutp53 with consequent regulation of the proliferation of tumour cells. A subsequent 

phase of my research also includes the study of biomarkers in PDAC cells and  pa-

tients serum  having the TP53 wild-type or mutated gene. A part of the project was 

carried out for three months in the Prof. Melo’s lab at the University of Porto and I 

had  won travel grants for the same.  During the course of PhD, I presented my pro-

jects in various international and national conferences and I collaborated in the fol-

lowing projects:   

1)“Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring 

glycolysis and 2-deoxyglucose sensitivity”. Giovanna Butera, Raffaella Pacchiana, Nidula 

Mullappilly, Marilena Margiotta, Stefano Bruno, Paola Conti, Chiara Riganti, Massimo Do-

nadelli. BBA- Molecular Cell Research 2018. 

2)“Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O2ˉ·            

production in cancer cells” Marco Cordani, Giovanna Butera et al. British Journal of Cancer, 

2018. 

3)“Oncometabolites in cancer aggressiveness and tumor repopulation”. Ilaria Dando,Elisa 

Dalla Pozza, Giulia Ambrosini,Margalida Torrens-Mas, Giovanna Butera, Nidula Mullappil-

ly,Raffaella Pacchiana, Marta Palmieri, Massimo Donadelli. Journal of the National Cancer 

Institute. Submitted 

4)“Autocrine mechanisms of cancer chemoresistance”. Giovanna Butera, Raffaella     Pac-

chiana, Massimo   Donadelli . Semin Cell Dev Biol. 2018 Jun; 78:3-12 .                                                                                                     

5)“UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH  nuclear translocation in 

genipin/everolimus . Dando I, Pacchiana R, Pozza ED, Cataldo I, Bruno S, Conti P, Cordani 

M, Grimaldi A, Butera G, Caraglia M, Scarpa A, Palmieri M, Donadelli M.   Scarpa A,  

Palmieri M, Donadelli M. Free Radical. Biol. Med. 2017 Dec; 113:176-189  .                                

6) “A comparison study on RNase A oligomerization induced by   cisplatin, carboplatin and 

oxaliplatin” Picone D, Donnarumma F, Ferraro G, Gotte G, Fagagnini A, Butera  G,   Dona-

delli M, Merlino A. J Inorg Biochem. 2017 Aug;173:105-112  .    
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7) “The antioxidant mitochondrial protein UCP2 promotes cancer development connecting 

the Warburg effect and autophagy” Marco Cordani, Giovanna Butera, Raffaella Pacchiana, 

Massimo  Donadelli Translational Medicine Reports  2017; volume 1:6451.          

8) “The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1  and PKM2  ex-

pression and sensitizes pancreas cancer cells  to glycolysis inhibition” Brandi J, Cecconi D, 

Cordani M, Torrens-Mas M, Pacchiana R , Dalla Pozza E, Butera G, Manfredi M, Marengo 

E, Oliver J, Roca P,  Dando I, Donadelli M .   Free  Radic   Biol Med. 2016  Dec;101:305-

316.            

9) “Molecular interplay between mutant p53 proteins and autophagy in  cancer cells”   

Cordani M, Butera G,   Pacchiana R, Donadelli M.   Biochim Biophys Acta  2017 

Jan;1867(1):19-28.                                                                

10) “Mutant p53 proteins alter cancer cell secretome and tumour   microenvironment: In-

volvement in   cancer invasion and   metastasis”   Cordani M, Pacchiana R, Butera G, D'Ora-

zi G, Scarpa A, Donadelli M. Cancer Lett.    2016 Jul 1;376(2):303-9.       

 

 

 

 

 

 

 

 

10. ACKNOWLEDGMENTS 

At the end of this journey I would like to thank all the people who have helped me in these 

years. In particular, I would like to thank the best tutor I could wish for, Prof. Massimo 

Donadelli, for  helping me both professionally and affectionately, constantly stimulating me 

in this path. A warm thank you to my colleagues Raffaella Pacchiana, Marco Cordani, Nidu-

la Mullappilly and Francesca Masetto with whom I spent pleasant years together, also estab-

lishing beautiful relationships of friendship. Thanks to all my colleagues in the Biochemistry 

section, present and past, and to all the people dear to me. 

 

 


