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Abstract

With the currently available technology, there has been an increased interest in the

development of virtual reality (VR) applications, some of those already becoming

commercial products. This fact also rose many issues related to their usability. One

of the main challenges is the design of interfaces to interact with these immersive

virtual environments (IVE), in particular for those setups relying on hand tracking

as a mean of input and in general with devices that stray away from the standard

choices such as keyboards and mice. Finding appropriate ways to deal with the

usability issues is key to the success of applications in VR, not only for entertain-

ment purposes but also for professional application in medical and engineering field.

The research on this topic in the last years has been quite active and several prob-

lems were identified as relevant to achieve satisfying usability results. This research

project aims to tackle some of those critical aspects strictly related to interaction

in IVEs. It is firstly focused on object manipulation. An initial evaluation allowed

us to highlight the nature of some critical issues from which we derived some design

guidelines for manipulation techniques. We proposed a different number of solutions

and performed user tests to validate them. Secondly, we tried to verify the feasibility

of gestural interfaces in applications by developing and testing a gesture recognition

algorithm based on 3D hand trajectories. This work showed promising results in

terms of accuracy hinting at the possibility of a reliable gestural interface for VR

applications.

i



ii



Acknowledgements

These years for me have been the toughest but I was able to carry out the work

presented in this thesis thanks to all the people that have been with me along the

way. I’d like to express my deepest gratitude to my tutor Prof. Andrea Giachetti

for showing and teaching me how to take my first steps in the world of research. His

experience and dedication were key, in order to complete my work. I would also like

to thank all the professors, researchers and all the people of our department that

supported me with precious suggestions, feedback and help, all extremely useful for

my work and professional growth. My sincere thanks will also go to Daniel Mendes,

Prof. Alfredo Ferreira and Prof. Joaquim Jorge at INESC-ID of Lisbon for the

opportunity of working together and sharing ideas on the research topics of our

interest.

To my family and my friends: thank you for staying with me during the roughest

times and now more than ever. I owe you everything. In particular to my parents

and sister who never gave up on me. To my dear friend Paolo for always pushing

me onward no matter what. To my beloved friend Arthur for being so close to me

all the time despite the distance separating us: I can’t wait to see you. Thank you

so much!

iii



iv



To my little bunny.

v



vi



Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interaction Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Statement and Hypothesis . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Object Manipulation in IVEs 12

2.1 Background Theory and Related Work . . . . . . . . . . . . . . . . . 12

2.2 First Approach and Evaluation . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 List of Tested Techniques . . . . . . . . . . . . . . . . . . . . 18

vii



viii CONTENTS

2.2.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Evaluation Discussion . . . . . . . . . . . . . . . . . . . . . . 26

3 The Knob Metaphor 28

3.1 Translation: Release Anchor and Visual Feedback . . . . . . . . . . . 30

3.2 Rotation: the Knob . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Rotation Feedback . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Scaling: Iconic Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Software Application and Task . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Knob Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 The Smart Pin 41

4.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Pin Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Technique limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Implementation notes and experimental setup . . . . . . . . . . . . . 46



CONTENTS ix

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Search task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Accurate docking task . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Smart Pin Results: Execution Times . . . . . . . . . . . . . . . . . . 50

4.11 Smart Pin Results: Questionnaires Outcomes . . . . . . . . . . . . . 53

4.12 Smart Pin Results: Effects of gaming experience . . . . . . . . . . . . 55

4.13 Smart Pin Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 Other studies: Device vs. Deviceless interaction . . . . . . . . . . . . 58

4.14.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 58

4.14.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 59

4.14.3 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Gesture Recognition 63

5.1 Background Theory and Related Work . . . . . . . . . . . . . . . . . 65

5.2 Command gesture datasets . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 3D trajectory processing and comparison . . . . . . . . . . . . . . . . 70

5.3.1 Resampling and smoothing . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Spatial registration of gestures: centering, rotation and scaling 71

5.3.3 Point chains distance metrics . . . . . . . . . . . . . . . . . . 72

5.4 Adding fingers’ information . . . . . . . . . . . . . . . . . . . . . . . 73



5.4.1 Orientation evolution distance . . . . . . . . . . . . . . . . . . 73

5.4.2 Finger vectors’ distance . . . . . . . . . . . . . . . . . . . . . 74

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Novel 26-gesture dataset . . . . . . . . . . . . . . . . . . . . . 75

5.5.2 SHREC’ 2017 dataset . . . . . . . . . . . . . . . . . . . . . . 78

5.5.3 Multi-finger gestures recognition . . . . . . . . . . . . . . . . . 79

5.5.4 Subsampling and Recognition of Incomplete Gestures . . . . . 81

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 89

6.1 Overall Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Manipulation Results . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.2 Gesture Recognition Results . . . . . . . . . . . . . . . . . . . 90

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 92

x



List of Tables

5.1 Retrieval scores using the different methods to perform geometrical

registration of gestures (26 gestures dataset) . . . . . . . . . . . . . . 75

5.2 Retrieval scores using the different options for distance function, smooth-

ing and resampling of the trajectory (26 gestures dataset) . . . . . . . 76

5.3 Classification results using the “3 cent” options and the other tested

options for centering, scaling and rotation (26 gestures dataset) . . . 80

5.4 Classification results using “3 cent” spatial transform options and

different choices for distance metric, smoothing and trajectory re-

sampling (26 gestures dataset) . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Classification results on the 9 “coarse” using “3 cent” options and the

other tested options for centering, scaling and rotation (14 gestures

dataset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Classification results on the 9 “coarse” gestures using “3 cent” nor-

malization and different options for distance metric, smoothing and

trajectory resampling (14 gestures dataset) . . . . . . . . . . . . . . . 83

5.7 Classification accuracy with 3 cent and 3 cent plus orientation and

fingers descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



xii



List of Figures

1.1 HDMs examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hand trackers examples . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 One-handed translation and second hand rotation technique . . . . . 19

2.2 Fingerpoint Rotation technique . . . . . . . . . . . . . . . . . . . . . 20

2.3 Handlebar technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 MITP Snapshot of the Finger-Point technique . . . . . . . . . . . . . 23

2.6 Evaluation results: times and number of grabs . . . . . . . . . . . . . 25

2.7 Evaluation results: questionnaires summary . . . . . . . . . . . . . . 26

3.1 Knob Metaphor: Flow Chart . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Knob Metaphor: Translation . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Knob Metaphor: Rotation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Knob Metaphor: Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Information retrieval task sequence . . . . . . . . . . . . . . . . . . . 36

xiii



xiv LIST OF FIGURES

3.6 Task completion times (Knob vs Handlebar) . . . . . . . . . . . . . . 38

3.7 Times averages deviations excluding idle time. . . . . . . . . . . . . . 39

3.8 Questionnaires answers regarding the evaluation of techniques. . . . . 39

4.1 Smart Pin algorithm flow chart . . . . . . . . . . . . . . . . . . . . . 42

4.2 The Smart Pin widget . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Smart Pin manipulation actions . . . . . . . . . . . . . . . . . . . . . 44

4.4 Information search task sequence . . . . . . . . . . . . . . . . . . . . 49

4.5 Docking task sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Average task completion times for the two trials of the search task . . 50

4.7 Average task completion times for the two trials for the docking task 51

4.8 Box and whisker plots for the accurate docking task: Smart Pin vs.

Handlebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Learnability grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Eease of use grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Gestural comfort grades . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 First trial vs. second trial grades . . . . . . . . . . . . . . . . . . . . 56

4.13 Gaming vs. no game experience grades . . . . . . . . . . . . . . . . . 56

4.14 Examples of affordance-enhanced pin caps. . . . . . . . . . . . . . . . 57

4.15 Completion time box plot with different conditions (SVH) . . . . . . 60

4.16 SVH: controller/feedback options average ranking scores . . . . . . . 60



4.17 Completion time box plot with different conditions (Smart Pin) . . . 61

4.18 Smart Pin: controller/feedback options average ranking scores . . . . 61

4.19 Information retrieval techniques (first task) results . . . . . . . . . . . 62

4.20 Environment navigation techniques (second task) results . . . . . . . 62

5.1 Example trajectories from the 26 gesture dataset. . . . . . . . . . . . 69

5.2 Example palm trajectories for the “coarse” gestures (14 gestures dataset) 70

5.3 Precison-Recall plot for the gesture retrieval task . . . . . . . . . . . 78

5.4 Confusion matrix for the 14 gesture dataset (3cent) . . . . . . . . . . 84

5.5 Confusion matrix for the 14 gesture dataset (3cent+OED+FAD) . . . 85

5.6 Accuracy on 26 gestures with downsampled trajectories . . . . . . . . 86

5.7 Accuracy on 14 gestures with downsampled trajectories . . . . . . . . 87

5.8 Accuracy on 26 gesture with truncated trajectories . . . . . . . . . . 87

5.9 Accuracy on 14 gesture with truncated trajectories . . . . . . . . . . 88

xv



xvi



Chapter 1

Introduction

1.1 Virtual Reality

Virtual Reality (VR), is a term used for those applications that can simulate phys-

ical presence in places of the real world or imagined worlds. These VR applications

recreate sensory experiences, which could in theory also include virtual taste, sight,

smell, sound, touch, etc. Most current VR environments are mainly composed of

visual experiences, through the use of a video monitor or with special stereoscopic

displays for a more immersive experience. Some additional sensory information like

sound, through headphones or speakers orientated towards users, or special gloves

that can provide haptic feedback, etc. can greatly enhance the experience. VR is

an object of interest for a variety of applications. Besides amusement and enter-

tainment, with VR movies and games there is a strong interest in its application

for other purposes such as Virtual Training, integration with rehab programmes,

immersive 3D design and modeling, 3D data visualization and so on.

VR however, in its general meaning, is quite a broad term including several kinds of

1



2 Chapter 1. Introduction

experiences ranging from interactive to non-interactive, visual to non-visual, immer-

sive to non-immersive ones, etc., with each condition having its own specific issues.

In this thesis, we went through some of those related to the interactive immersive VR

applications that feature what are called Immersive Virtual Environments (IVEs).

IVEs are subject to a different number of problems that can either technical or

interaction ones. Technical issues are those that have to do with hardware limits

and derived software ones. In fact, only recently, the technological advancements

brought back VR as a topic of interest not only in research but also on the market

of technological entertainment. Examples of technical related issues are: low fram-

erates, low resolution, non-stereo aliasing, and examples of software limits derived

from these limits are all those rendering techniques such as texture mapping and

bump mapping that don’t work really well in VR compared to standard graphics

applications. Interaction issues, on the other hand, are all those that fall in the HCI

area and also the focus of our work.

Figure 1.1: Two of the most popular Head Mounted Displays (HDMS) and their
controllers: Oculus Rift (left) and HTC Vive (right).

While it is important to keep in mind that both these kind of problems ultimately

affect the usability of a VR application, at this time, the technical ones are consid-

ered solved at least when it comes to a certain type of setups, namely those involving
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Head Mounted Displays (HDMs) for stereo visualization and particular controllers

as input devices. To this day there are several solutions such as Oculus Rift, HTC

Vive, PlayStation VR (Figure 1.1) and many others manufactured by other popu-

lar brands. From the hardware point of view, all these devices offer a decent user

experience (UX) that is still, however, far from ideal. For example, these devices

are still quite invasive with most of the HMDs being still too heavy for comfortable

long sessions in IVEs. The controller devices provided, despite having very accu-

rate tracking, may not be very practical to use for every task. An alternative to

controller devices are all the available hand trackers that allow performing mid-air

deviceless interaction with the user’s hands. There are currently different low-cost

hand trackers available such as Leap Motion Controller and Intel Real Sense (Fig-

ure 1.2). Most of them work similarly to Microsoft Kinect, by projecting infrared

structured light and using infrared cameras to obtain 3D data in the form of point

clouds. Usually, the Application Programming Interface (API) provided by the Soft-

ware Development Kits (SDKs) of such devices are sufficient to track human hands

but, while these devices introduce non-invasive and practicality features, they also

come with a trade-off in terms of tracking accuracy. This lack of accuracy is often

derived from specific conditions in which the power of the tracker and/or its API is

simply not enough. The study of these kinds of conditions and the specific causes

of tracking issues are also part of this research.

Figure 1.2: Examples of low-cost hand trackers: Leap Motion Controller (left) and
Intel Real Sense (right).
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1.2 Interaction Issues

Since the early days of virtual environments, interaction with virtual objects in a

scene has been one of the main object of studies. Considering three-dimensional

virtual environments, interaction isnt trivial, mainly due to the required mapping

between traditional input devices (2D) and the virtual environment (3D). Most com-

mon solutions resort to techniques that somehow relate the actions performed in the

two-dimensional space of the input device (e.g. mouse cursor or touch) to three-

dimensional transformations. Since it is usual for people to interact with this kind

of environments with traditional displays, 3D content is displayed in a 2D rendered

image, which hinders contents perception. To overcome both the limitations of the

input and the output devices, mainstream solutions for creating and editing 3D

virtual content, namely computer-aided design (CAD) tools, resort to different or-

thogonal views of the environment. This allows a more direct two-dimensional inter-

action with limited degrees of freedom. Solutions that offer a single perspective view

usually either apply the transformation in a plane parallel to the view plane or resort

to widgets that constraint interactions and ease the 2D-3D mapping [33]. Research

has shown that the first approach can sometimes result in unexpected transforma-

tions when users are allowed to freely navigate through the virtual environment,

and that constrained interactions allow for more accurate manipulations [34]. Al-

though mid-air interactions show promising results, the accuracy of human spatial

interactions is limited. Moreover, the limited dexterity of mid-air hand gestures,

aggravated by lack of precision from tracking systems and low-definition of current

HMDs, constrain precise manipulations. This precision is of extreme importance

when creating or assembling engineering models or architectural mock-ups, for in-

stance, and these limits end up limiting the potential application of VR setups.

Even if a large number of methods have been proposed in the literature, most demo

systems do not provide easy to use interfaces and the possibility of reaching a high
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level of precision. This is also due to more intrinsic issues of the tracking task such

as the inaccuracy in tracking, occlusions, difficulty in the segmentation of different

gestural primitives, and other non-trivial problems. There is surely a lot of room

for improvements, not necessarily related to a better tracking of body landmarks

but also to a smart global processing of 3D data acquired through trackers. Several

methods have been recently presented for characterizing salient points and for global

shape description, with invariance properties and robustness against various kinds

of perturbation. Methods with similar characteristics but adapted to the different

kind of shape data provided by tracking devices could in principle be applied for

the solution of open issues in gestural interaction. An example of smart applica-

tion of simple geometric processing to realize effective interaction comes from 2D

touchscreen interaction, where many gesture recognition applications are not based

on complex time series analysis, but on the reduction of the problem to a simple

template matching of 2D shapes. The popular 1-dollar recognizer [67] and similar

derived methods (also proposed for 3D interaction [37]) are a clear demonstration

of the usefulness of this simplification. This may seem to indicate that in this case

the dynamic information may be neglected without losing the meaningful part of

the signal. The research project will cover some of many aspects related to these

topics with the possible development of design guidelines and the implementation of

innovative interfaces for the interaction with objects in a virtual environment. The

following list summarizes the main goals of the project:

• Derive useful and necessary guidelines to design novel interfaces aimed to

achieve a natural interaction with different VR systems.

• Design and implement interactions paradigms and interface modules to be

tested with users by creating a set of prototypes to use with appropriate hard-

ware setup for the task.

• Test the validated paradigms and modules in real-world applications (e.g. 3D
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scene design, virtual museum) with specific user categories.

• Investigate issues related to gesture-based interfaces and propose practical

solutions such as novel gesture recognizer algorithms.

1.3 Thesis Statement and Hypothesis

The use of VR technologies is currently limited by the lack of interaction techniques

that can feel appealing and practical for the users. The thesis statement we propose

is the following:

It is possible to develop techniques that will enhance the usability of

VR applications. This can be achieved by deriving guidelines to design

better interaction techniques with items in VR scenes (i.e. manipulation

techniques) and by exploiting known AI topics such as machine learning

techniques to develop additional tools for interaction such as gestural

commands.

The challenge is anything but trivial considering the amount of research work al-

ready present in literature and the fact that there hasn’t been any critical break-

through leading to a comprehensive solution for the mid-air manipulation issues.

This, among other things, also suggest that instead of trying to tackle all the issues

all at once, a more efficient approach is to identify specific interaction scenarios and

design appropriate solutions for their issues. Using this approach we decided to start

this research work with the formulation of a series of hypothesis presented in the

following:

Hypothesis H1: The most critical transformation to perform in object manipu-

lation is the rotation. The overall usability of a manipulation technique is highly
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dependent on the efficiency of its rotation technique in terms of learnability and

practicality.

We think the rotation is the hardest part to design properly because of the limita-

tions of the available hand tracking solutions. In fact, while trackers seem to work

rather well in tracking the 3 DOF related to the hand position in space, the same

cannot be said for hand orientation tracking accuracy. The anatomical complexity

of the hand plus the self-occlusion issues that often occur (e.g. one hand hiding the

other from the tracker) make this job quite hard. These considerations lead us to

the next hypothesis.

Hypothesis H2: Mapping the 3 DOF related to the orientation of an object to one

or more positional DOF of the user’s hand can substantially improve a manipulation

technique usability.

If the hypothesis H1 holds true, verifying this hypothesis becomes critical in order

to derive a solid guideline for the design manipulation techniques for hand tracker

setups. This can be achieved mainly in two ways in order to avoid interference with

other manipulation actions such as the translation: the first would be to design a

two-handed technique and assign the 3 object orientation DOF to one or more of

the positional DOF of the hand not involved in the translation action, the second

would be to separate DOF by allowing only one action to be performed at the time

(e.g. only translation, only rotation, etc.).

Hypothesis H3: Single-handed manipulation are preferred by users when they

achieve a certain usability degree.

The idea behind this hypothesis is rather straightforward: we think that users are

likely to prefer to use just one hand to perform simple manipulation actions. What

we want to verify whether this is the case and what, eventually, is the trade-off with

the overall usability. In fact, if both this hypothesis and hypothesis H2 hold true, the

correct idea would be to design single-handed techniques featuring DOF separation

as described before.
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Hypothesis H4: Gesture recognition can be performed with relatively cheap com-

putational cost and good accuracy results.

A gesture recognition system could potentially be very useful in VR application

interfaces when standard input devices such as controllers are not available or if,

for some reason, a deviceless manipulation technique is the design choice. Gestural

commands could be used for the activation of additional functionalities.

Hypothesis H5: A VR application implementing based on a manipulation tech-

nique can benefit from a set of gesture-based commands to enhance the overall us-

ability and UX.

The implementation of a successful manipulation technique alone is probably insuf-

ficient as the only mean of interaction in a more complex environment of a complete

VR application. A gesture-based set of commands enabled by a gesture recognition

algorithm together with a single-handed manipulation technique could provide a

successful and complete interaction paradigm for VR applications.

1.4 Contributions

The research of this thesis resulted in different scientific contributions in the field of

Human-Computer Interaction, in particular in interaction with IVEs. The summary

of these contributions is listed in the following:

• The development of two novel manipulation techniques based on the insights

provided by our tests and the results from the literature: the Knob and the

Smart Pin. Both techniques aimed to overcome some of the common issues

of previous methods and were designed to be used with just one hand (or a

controller device) and featuring DOFs separation. While the Knob exploited

the namesake metaphor to test a more direct approach the Smart Pin technique
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relies on a 3D widget that resulted in a good trade-off between naturalness

and performance.

• The classification of a large number of research works on object manipulation

including techniques using standard input devices, such as keyboards and mice

and touchscreens, and more state of the art technologies such as hand trackers

for mid-air techniques. This resulted in a survey that features a new taxonomy

to classify all these methods and some design guidelines derived from the

analysis of them.

• The development of an algorithm for gesture recognition from 3D trajectories

(3cent) based on the dollar algorithm for the 2D case. The 3cent proved that

gesture recognition from data acquired with hand trackers can be very accurate

while being relatively cheap in terms of implementation and computational

load. These results open the way to the design of gestural interfaces that

could be integrated with manipulation techniques.
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1.6 Dissertation Outline

The rest of this dissertation is organized as follows: In Chapter 2 we present the

state of the art and our first approach on manipulation techniques with a work

of comparison and evaluation of simple manipulation methods in IVEs. Chapter

3 follows, with a work on the design of our first novel manipulation technique. In

Chapter 4 we present our work on a second novel technique with an additional study

on input devices, at the end of the chapter. In particular, we present the results of

a study analyzing the influence of combinations between input device choices and

manipulation techniques including the one presented at the beginning of the chapter.

In Chapter 5 we present our most recent development of the gesture recognition

algorithm 3cent and the test results. Due to the two-folded nature of this research

work (i.e. object manipulation and gesture recognition) the background theory and

works are discussed in the relative chapters. In Chapter 6 we go over the summary

of the research and discuss the results with respect to the initial hypothesis stated

in relative section 1.3.



Chapter 2

Object Manipulation in IVEs

2.1 Background Theory and Related Work

Interaction in IVEs has a large number of forms that can range from exploring the

environment, retrieve informations, access to several application functionalities by

interacting with widgets, etc.

One of the most challenging kind of interactions is the manipulation of virtual

objects. Many useful and entertaining VR applications, heavily rely on the ability

to grab, move, rotate and scale objects in the field of view. However, as shown in

[38] “... development of interaction mechanisms for manipulation remains one of

the greatest challenges for VR”. In fact, while successful metaphors to control 3D

manipulation using 2D desktop interfaces are well established and employed in many

3D editing environments, efficient and flexible solutions well suited for immersive

VR are still missing, limiting the potential use of this emerging technology.

Many recent VR setups and applications rely on handheld devices to interact with

the scene, e.g. Oculus Touch or HTC Vive. This choice is suitable for personal use

and gaming, but is limiting the naturalism of the experience and not appropriate

12
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for many use cases (e.g. public displays, work environments, etc). Furthermore,

mapping grabbing actions to device buttons and object orientation to the device’s

one does not solve, for example, issues related to continuous rotation control due to

intrinsic limits of hand articulation.

When handheld devices are not an option, it is possible to rely on hand tracking

systems and related APIs (Leap Motion, Kinect, RealSense) providing real-time

hand and finger position mapping and some gesture recognition capabilities. These

trackers, even if not always stable and accurate due to occlusions and noise, can be

directly used to build gesture-based interfaces allowing direct object manipulation,

similarly to the finger-based manipulation on touchscreens.

A significant hurdle to usability of natural techniques, such as the Simple Virtual

Hand [39], is the reliability of hand orientation tracking required to map the rotation

of the hand to that of the desired transformation. In order to avoid this problem,

a possible solution is to design a manipulation technique that relies only on easy

to track positional data, like the 3D coordinates of the hands’ centroids. A very

well known method of this kind is the so-called “Handlebar”, adopted in several

practical applications. In the Handlebar metaphor [59], the relative position of the

two hands is exploited to derive the object transform mapping, allowing a reasonable

accuracy even in case of rough tracking without accurate finger detection. However,

this method requires the use of both hands, denying the availability of a free hand

for any possible action to be performed in parallel. Furthermore, it can require

significant hand displacements that may result in the so-called gorilla arm issue if

performed for a long duration[38].

The possibility of manipulating objects with a single hand, as usual on 2D desk-

top interfaces, would certainly extend the potential applications of immersive VR

based interfaces and visualization tools. In [44] a technique based on this concept,

MAiOR, is presented. In this technique translations, rotations and scaling actions
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are controlled using only the information on user hand position tracked using an

handheld controller (i.e. handles from the HTC Vive HMD).

Mid-air manipulation has been recently investigated in several papers proposing

different kinds of solutions and trying to evaluate their usability in specific tasks for

both standard or stereoscopic displays and HMD based immersive environments.

This kind of interaction can be based on different sorts of devices, resulting in dif-

ferences in tracking accuracy, access to buttons, force feedback, etc., and presenting

diverse specific problems. For this reason some interesting papers compare manipu-

lation solutions based on different hardware setups, trying to derive useful hints for

application design.

Mendes et al. [43] compared different manipulation methods using a 2D touch

based approach and mid-air bi-manual methods with two variants: 6DOF Hand,

which uses the dominant hand to grab, move and rotate objects, and the distance

between both hands for scale and 3DOF Hand, where the dominant hand only moves

the object, while scale and rotation are given by the non-dominant hand.

Vuibert et al. [65] also made a comparison of different methods including phys-

ically constrained devices, a wand-like device, tangible object replica and finger-

based interaction. Another wide range study on direct mid-air manipulation is

presented in [20]. Here manipulation with 6 degrees of freedom flystick, and finger-

tracking systems are analyzed and many aspects of the problems are addressed, like

grasp/release heuristics, a finite state machine for object manipulation, handling of

complex hand/finger interactions with objects.

Results of these multi-modal comparisons show that users often like mid-air inter-

actions more than other methods, finding the accuracy in manipulation sufficiently

good for many proposed tasks.

This fact, together with application-driven constraints, suggested that we should
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focus our interest on mid-air deviceless interaction, using low-cost trackers to track

hands and fingers with no need of wearing markers or using handheld devices and

on co-located hands and objects. This kind of interaction is extremely important

for emerging, partially or fully, immersive applications like those based on Head

Mounted Displays (HMD), autostereoscopic monitors, or even light field monitors

[1] where physical input systems or other input channels are not available.

One of the main problems tackled by mid-air interaction research is the search for

more “natural” interfaces that can greatly enhance the performance of the system

as well as the user experience [9]. This is a very challenging task, as it requires

the study of optimal metaphors and implementations that should consider: the

lack of buttons, object selection, the detection of the start and end of gestures as

well as their decomposition, the difficulties and fatigue of mid-air gesturing, and

the accurate mapping of hand motion to object motion with optimal constraints

reducing the effect of sensor errors.

The simple attempt to directly map 5 or 6 DOF motion on virtual objects may, in

fact, be “natural”, but it is not able to create an effective interaction [3]. Further-

more, using low-cost trackers like the Leap Motion[4], but also due to the intrinsic

difficulty in controlling hands in mid-air movements, it is necessary to cope with the

relevant limits in selection accuracy in a setup with a single tracking sensor and the

impossibility of directly tracking large rotations [47].

Another relevant problem for the usability of effective mid-air virtual object manip-

ulation is the lack of haptic feedback, that should ideally be replaced by different

feedback mechanisms [45]. The solutions proposed in the literature for mid-air

manipulation can be classified into two categories, bi-manual and uni-manual tech-

niques.

In the bi-manual category, the Handlebar metaphor [59], is probably the most in-

tuitive and popular solution for manipulation in VR. The typical implementation
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of this method uses hand gestures for grabbing and estimates the object transform

based on the hands’ position, exploiting resemblance with real-world actions like

rotating and stretching a bar. This particular mechanic allows the user to handle

simultaneously 7 DOF. Several research works [5, 31] and also some commercial ap-

plications exploited it with slight variations. Another way to exploit the bi-manual

interaction is to split the DOF control between the two hands. Caputo et al. [16] pro-

pose the 2HR technique, mapping the object rotation onto the user’s non-dominant

hand rotation. User tests demonstrated, however, the poor usability of the method.

In the same work, the Finger-Point technique features a rotation action, also per-

formed with the non-dominant hand, by mapping the index movement on a 2D plane

into 3D rotations applied on the object. This indirect rotation showed promising

results suggesting that indirect approaches for the rotation action are viable and

even preferred by users. Following this kind of indirect approach, there are also

bi-manual techniques relying on gestures to indirectly manipulate a selected object

through the use of widgets or tools. Examples can be found in [61, 7]. Manipulation

modes, transitions and accurate control are not, however, addressed. In the uni-

manual category, it is possible to find a variety of solutions in the literature. The

Simple Virtual Hand [39] is the most direct one. This technique enables object selec-

tion through a grasping gesture. After that, position and orientation changes of the

object are directly mapped onto the hand’s ones. This technique is quite intuitive,

but it is not suitable whenever a robust hand tracking is not available, as in the

case of a single low-cost device, where hand orientation tracking can be unreliable

[16]. An alternative kind of approach is to design indirect techniques by either the

use of metaphors or widgets. Kim and Park [35] proposed a Virtual Handle with

a grabbing metaphor, based on a bounding sphere around the selected object and

the creation of a local reference frame for the following transformations. The Crank

Handle metaphor for rotation action, presented in [6], demonstrates the feasibility of

single-hand manipulation, by exploiting DOF separation. The user must, however,
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activate the rotation mode, after selecting the translation mode, and has to split the

transform into multiple rotations around primary axes.

Bossavit et al. [6] analyzed several critical choices for mid-air manipulation design.

From the proposed analysis and the related experimental tests, they also derived

some useful guidelines that were particularly inspiring for our work, like the potential

use of single-hand methods and the benefits of separating translation and rotation.

Despite the increasing research efforts and the interesting solutions proposed, how-

ever, no widely accepted metaphors for deviceless and mid-air interaction emerged,

and many open issues remain unsolved, e.g. accurate releasing of position control

in uni-manual translation, the necessity of learning semaphoric gestures, potential

unwanted activation of manipulation modes. Furthermore, selected hand gestures

should, in theory, try to be consistent with ergonomic principles and biomechanical

constraints, trying to minimize stress and fatigue. Analyses related to these factors

in gestural interaction and manipulation have been presented in [48, 10].

2.2 First Approach and Evaluation

There are different ways to interact with virtual objects present in a VR scene. The

type of interaction is determined by the kind of task the user is allowed to perform

and ultimately by the purpose of the application featuring such interactions. One

specific kind of interaction is the object manipulation. In this case, the user is al-

lowed more or less directly, depending on the metaphor proposed by the implemented

technique, to select an object in the scene and perform one or more different trans-

formations (i.e. translation rather than rotations or scaling operations). However,

this kind of interaction has many limitations. First, the user’s arm has a limited

range of interaction due to real-world constraints (e.g. it’s safe to assume arms are

always anchored to user’s bodies) and sensors detection volume in case of deviceless
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setups. This limit can be worked around with the use of a navigation technique.

Such a technique is required as it also allows different visual perspectives, but it

should not be required depending on the application. Manipulation of large objects

is also an issue as they tend to obscure the users view during positioning tasks unless

additional workarounds are implemented to give the user a way to change the point

of a view for a more convenient perspective. [8]

With our first work we tried to verify hypothesis H1. In order to do so we designed

an experiment featuring four manipulation techniques to be tested with users per-

forming a simple docking task. The idea was to test different strategies for the

rotation action like assigning it to the non-dominant user’s hand or separating it

from the translation action by assigning different activation commands.

2.2.1 List of Tested Techniques

1. One-handed direct manipulation (1HR) This can be considered a straight-

forward implementation of the Simple Virtual Hand method [39]. The interaction is

directly mapped from the real world hand to virtual one. This fact, however, does

not necessarily guarantee optimal execution performances. Critical limits and con-

straints are inevitably given by the type, setup, number and quality of the tracking

devices (limited interaction range, low sensor resolution, occlusions, wrong signal

interpretation). These problems clearly affect also other paradigms, but possibly

with different impact on usability. In our implementation grab is obtained when

a certain grab strength (a value proportional to fingers’ curl measured by the de-

vice APIs) threshold is reached and the hand’s palm position is within range of the

object. Translation is then achieved by computing the translation vector from the

previous tracking frame to the present one. The same mechanism is applied to the

rotation using Euler angles giving hand orientation instead.
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2. One-handed translation and second hand rotation (2HR) In this ap-

proach grab and translation are performed as before, but a bimanual rotation mech-

anism is introduced for the rotation around an arbitrary axis. The idea is to use the

free hand, i.e. the one which is not holding the target object, as reference for rota-

tion, meaning that the object will rotate by the amount of variation in orientation

of the free hand as shown in Figure 2.1. The holding hand can focus on keeping a

convenient position in order to ease holding-gesture recognition from the device. To

quickly implement this method we changed the hand’s reference for rotation while

the object is selected.

Figure 2.1: One-handed translation and second hand rotation technique: in this
technique the dominant hand can control the translation of the object by a simple
grab and drag action while the non-dominant hand has control over the object
rotation.

3. One-handed translation and Finger-Point rotation (FR) This metaphor

differs from the previous ones for the rotation mechanism only and is, to our knowl-

edge, original. The idea is to implement in the 3D gestural interaction a 2D con-

strained mapped rotation similar to the one used in the Virtual Trackball metaphor

for mouse interaction. The user is able to rotate the object by pointing one finger.

We exploited the automatic recognition of the “the pointed-finger” gesture provided

by the Leap Motion SDK: when the second hand is detected in this position, finger
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tip position is tracked and projected on a virtual vertical plane in front of the user.

The wideness and direction of the fingertip movement on the plane determine the

rotation angle. By moving along the two axes of the plane, two of the rotation axes

are actually affected as in Figure 2.2. Although a DOF for rotation is indeed lost

in this paradigm, the user can in this case benefit from the constraints and from

the familiarity of the gesture used in 2D interfaces to deal with the most critical

interaction with a virtual object, i.e. the rotation.

Figure 2.2: Fingerpoint Rotation technique: the user can rotate the object by sliding
the index finger across a virtual plane and defining a direction and an angle.

4. Two-Handed translation and handlebar rotation (HB) The handlebar

paradigm has been proposed and tested for virtual object manipulation in 3D in

different works [35, 5]. With this paradigm, the user controls the selected object

by holding two ends of a virtual rigid bar (i.e. the handlebar). Three DOF for the

translation in the 3D space are achieved by mapping the translation of the handle-

bar directly to the selected object. As for the rotation, it is achieved for 2 of the 3

rotational DOF by leaning the handlebar on a horizontal or vertical plane. In our

approach to the handlebar metaphor, we only have a small variation from the one

proposed in [60] which is the way we handle the third DOF bound to the rotation

about the x-axis. The approach proposed by Song will feature a “crank” metaphor
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to enable such rotation with either one of the user’s hands (Figure 2.3 a). In our

approach 2HR we use direct rotation about the x-axis, enabled directly by the use

of both or single hands exploiting the use of a motorcycle throttle metaphor (Figure

2.3b). To make the global interaction (grabbing, translation and rotation) coherent,

in this case, we used a bi-manual grabbing and translation. Selection is still based

on a grab strength threshold, measured for both hands at the same time. Instead of

requiring the hands to be in range of the object, a constraint related to the distance

between the hands, enforcing the ”handlebar” simulation has to be satisfied in order

to achieve selection.

Figure 2.3: Handlebar technique: the user can manipulate the object by grabbing a
imaginary handlebar passing through the selected object.

2.2.2 Experiment Setup

To test these interaction modes, we implemented from scratch a simple modular

VR platform that we called Manipulation Interaction Test Platform (MITP). In

this platform, the hand tracking and rendering processes are developed from the

interaction management so that it was possible to create an independent interface

for paradigm behaviour definition. The greatest advantage of such architecture is the

possibility to modify, add or remove the interaction modes without really touching
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the data process for both tracking and rendering. The platform supports the loading

of multiple modes, allowing the construction of a paradigms’ library.

In our test setup (Figure 2.4) hands tracking is realized with a Leap Motion controller

placed on the desk in front of the monitor, creating a fixed interaction space that

can be reached by the user hands and where the scene (object, virtual hands, target)

was placed in the fixed desktop reference system. Immersive 3D rendering of the

interaction region from the user eyes viewpoints is performed on an Oculus DK2

headset.

Figure 2.4: Experiment setup for the designed user task.

In the practical virtual task, the object to be grabbed and moved was a sphere with

a black dot on the surface and the target position was identified by a yellow semi-

transparent sphere (Figure 2.5). Upon reaching the target position the target object

was locked in place and a visual feedback regarding the accomplished objective was

returned by changing the color of the target position sphere from yellow to green.

The user had then to adjust the object pose to align the black dot on it with a

red dot on the target sphere using the active interaction technique. Upon reach-
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ing the correct pose a visual feedback informing about the completed objective and

task was returned by changing the color of the target position sphere from green to

blue. This choice was done to separately evaluate grabbing/translation and rotation

modes. Future works will evaluate the effect of gesture interactions and modality

changes.

Figure 2.5: Snapshot of the stereo pair sent to the headset display during a Finger-
Point rotation gesture.

The interaction modes implemented have been finally tested on a group of 24 people

(aged from 22 to 39 years) with no previous experience with VR environments. We

used both right-hand and left-hand users to test our “symmetrical” implementation

of techniques. Results confirmed that no correlation emerged between the preferred

hand and performances. Each user, after training sessions where no specific goal

was set and the user was allowed to explore the mechanism each different interac-

tion mode, had to complete the previously described task with all the 4 different

interaction techniques. To avoid biases, the execution order of the techniques was

randomized so that each subject had to use them in a different order. The platform

automatically recorded all the relevant variables of the interaction sessions: time

necessary to complete grabbing and translation (T1), the time required by the rota-
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tion (T2), total execution time (Tot), number of grasping events (NGrab). After the

end of the test, each subject had to compile a questionnaire to provide additional

data about her/his personal profile and user experience. Questions covered also

information about the preferred method, regardless of performance, with respect to

perceived stress and a subjective evaluation of the visual feedback provided.

2.2.3 Evaluation Results

Figure 2.6 shows the average values of the automatically estimated task completion

performances with the four interaction modes. A general improvement in perfor-

mance is visible from direct-manipulation-type of interaction towards more abstract-

metaphors ones. The average time for the translation step T1 is approximately the

same not only for the modes using the same single hand grab and translation mode

(1HR, 2HR, FR) the average (T1), but also for the two-handed grab and trans-

lation mode used in HB. Differences are not statistically significant, meaning that

bimanual grab and translate does not make the subtask more complex.

Relevant differences are instead reported for the rotation time T2. In particular, the

only non-significant difference according to a repeated-measures ANOVA is the one

between 1HR and 2HR techniques with the same situation between the difference

in the tot time.

The problem of direct one-handed rotation seems strongly correlated with the high

number of grabbing actions recorded with that mode (Ngrabs) at least in the case of

1HR which average has a significant difference with all the other techniques. This is

clearly due not only to limitations of the tracking device, with non-trivial problems

related also to the accuracy of the grabbing and release procedure, but also to the

limits of arm mobility creating the necessity of mapping a relevant rotation over mul-

tiple gestures. This fact is confirmed by the poor performance of 2HR, that should

limit the interference between grabbing, release and rotation procedure, but has the
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same problems related to the limited hand mobility. This is probably the reason

why more indirect interaction metaphors seem to provide the best performance for

rotation. FR, that maps rotation on a 2D translation not directly corresponding

to the 3D object, provided the best results in every data category. HB gave better

results than the techniques applying directly the rotation on the locally “touched”

object, however, the coordination of the two hands may limit the accuracy of this

method. The indirect rotation is easier to be controlled as the applied rotation an-

gle is given by a translation vector of the finger point once the user activates the

rotation mode by pointing the finger. Once the rotation is activated it is controlled

by a translation with no need for bimanual coordination and the potential mapping

of a large rotation in a unique gesture.

Figure 2.6: Average values of automatically collected performance measurements
for the test group

Answers given to the questionnaire (the main results are summarized in Figure 2.7)

mostly confirm the outcomes of automatic measurements, but also give additional

insights. For example, it is possible to see that the perceived learnability is not too

different for the various methods, but actually is a bit lower for HB, and this may

account for the lower performances with respect to FR. Actually, even if users have



26 Chapter 2. Object Manipulation in IVEs

a strong preference for FR method for rotation completion, the overall usability of

HB and FR were scored similarly. This may be interpreted by considering that,

despite the better performances obtained, the FR interaction may be felt as less

satisfactory as less coherent, mixing different paradigms for translation (direct, 3D)

and rotation (indirect, 2D).

Figure 2.7: Preferred interaction modes indicated in the questionnaire with respect
to to a) learnability, b) ease of rotation task completion, c) overall usability

.

2.2.4 Evaluation Discussion

Our study was focused on the individual execution of simple manipulation tasks

with a low cost VR setup (OculusVR+Leap Motion).

The first is that, with this setup, direct manipulation methods are not the most ef-

fective considering that, according to our results, more indirect methods (i.e. Han-

dlebar, Finger-Point) provided better results in terms of both performances and

UX. Experimental results show that this is due to the hard realization of an ef-

fective single-hand object rotation. In fact, the Handlebar technique gives better

results, but even better results can be obtained with our method mapping con-

strained rotation on translation similarly to what is done in the virtual trackball

metaphor[21, 57]. These results seem to be consistent with our H1 considering the
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fact that significant differences in performance showed in the rotation task and the

questionnaire further confirm this showing a relevant correlation between the two

most preferred techniques in both the questions about the rotation task and the

overall usability preference.
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The Knob Metaphor

Considering the results of our first evaluation we designed a tentative technique that

would address some of the problems highlighted by our previous study. Our goal was

to create as simple as possible solutions to allow an intuitive and easy manipulation

of objects, especially when it comes to critical actions such as the rotation. Following

both our findings and those provided by the literature, we aimed at:

• performing the manipulation control with a single hand

• separating translation from rotation and constrain rotation axes

• being robust against the limits of tracking and gesture segmentation accuracy

provided by the chosen device/API, making difficult to control object release

in the desired position

• finding intuitive metaphors for rotation and scaling

• avoiding as much as possible the necessity of non-intuitive gestures or use of

different modalities to switch interaction modes

The scheme of the designed interaction solution is represented in Figure 3.1. The

system starts in idle state when hands are tracked and their position is displayed in

28



29

the scene but no interaction with the objects is activated. However, if the hand falls

in the region of interaction with an object, specific gestures can trigger the switch

to different modes. Furthermore, if the hand is in the right position to start a

rotation gesture on the object, a slightly different state is enabled, giving also visual

feedback about the enabled rotation axis. In this state a knob rotation gesture starts

the rotation as described in the following subsections, locking a rotation direction.

Translation and scaling can be activated as well, when the hand is in the interaction

region, with unambiguous gestures.

In this way, basic manipulation modes are completely decoupled,but can be acti-

vated easily with a single hand gesture. In the following we described the proposed

solutions to manage the specific manipulation modes.

Figure 3.1: Block diagram of the proposed interaction method. Blue rounded corner
rectangles represent system states, while green rectangles indicate hand gestures
triggering transitions.
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3.1 Translation: Release Anchor and Visual Feed-

back

If we separate translation from rotation and scaling, the natural solution to grab

objects and translate them is to check for hand closure and then put the system in

translation mode, anchoring the displacement of the virtual object to the displace-

ment of the hand (palm). This method is intuitive and also clearly outperformed

other methods in many experiments, e.g. in docking tasks [6, 16]. The only problem

with this method, not fully addressed in the literature, is how to deal with object

release in uni-manual, deviceless interaction.

The grab detection is currently realized with a simple thresholding t = 0.5 on the

“grab strength” value, accessible through the Leapmotion API, when the hand is

superimposed to the object. This choice provides reasonable accuracy, but it is not

free from missed and false detections, so that further investigations will surely be

performed to improve the usability of the system.

The biggest issue with this grab/release mechanism is that, if we recognize a sim-

ple finger gesture to exit from translation mode (e.g. opposite thresholding of the

strength value), we could have a large displacement from the palm position before

the release gesture and the tracked. A drop position detector based on trajectory

speed analysis can reduce this problem by giving a batter localization, however,

it could create other problems: the visual feedback is not synchronized with the

internal object position status and this is particularly bad when the user changes

idea and, after stopping the translation, he does not release the grabbing and starts

again translating the object.

For this reason, we not only designed a translation stop/restart detector based on

hand speed but also a specific feedback to show, in this case, the detected release

position (visual anchor) and the current object with standard rendering.
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Figure 3.2: The translation action can be started with a simple grab gesture (left
side). The release anchor location is showed through a visual feedback (right side).

The release anchor detection and update is realized as follows: once the translation

mode has been initiated by the user, the system will constantly try to detect and

guess the intended drop point. If the velocity is above a small threshold vt, the

release anchor is constantly moved constrained to the detected palm position at

time t − dt where dt is a speed dependent value avoiding unwanted displacements

due to the release gesture. When the speed is under the threshold vt the detected

drop point is fixed in the position of the palm at the threshold crossing time. In

this case, a semi-transparent and monochromatic replica of the object is displayed

(visual anchor) as showed in Figure 3.2, so that the user can see where the real one

would snap to in space. This way the user can decide if they want to confirm the

drop position by releasing there the object, by simply interrupting the grab gesture,

or keep moving the object. If the object is not released, the anchor is kept for a

fixed time, then the tracking is restored. If the velocity remains slow, the visual

feedback of the release anchor position is maintained for some time also to allow a

more accurate positioning in a feedback loop.
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3.2 Rotation: the Knob

To perform rotation we introduced a novel metaphor that we called ”knob” metaphor.

The most typical uni-manual rotation gesture, in fact, is the action we do when

turning a volume control. A similar single-handed gesture emerged also as the most

intuitive rotation gesture in the elicitation study by Aigner et al. [2], with a clear

preference over bi-manual gestures or non-iconic ones.

The idea is to map this gesture on the rotation of the object (selected by proximity

when the gesture is started), automatically selecting a constrained rotation axis on

the basis of the palm orientation. To make the system simpler to understand we

force rotation to be around the z-axis or x-axis. As in the real world interaction,

users can then perform multiple rotations of the knob in sequence to obtain large

rotations. To avoid unwanted forward and back rotations, the system is locked in a

specific rotation direction after the gesture starts and exits from the lock only after

a fixed time step passes without further rotation.

This method allows the realization of arbitrary rotations with sequences of x and

z rotations. Despite the fact that in specific cases in which the user would like to

rotate exactly about the y-axis, it can take a fairly long sequence of x/z rotations we

believe the fluency provided by this rotation mechanism is enough to compensate

for the extra number of steps needed to obtain the desired pose.

3.2.1 Rotation Feedback

A further help for the understanding of the interaction mechanism without training

is given by the visual feedback of potential rotation (Figure 4.3(b)). This is designed

as follows: when the system is in the idle state and the user’s hand enters the object’s

selection range with the gesture associated with the knob rotation method, a double
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Figure 3.3: The visual feedback for rotation shows the possible directions before
the knob gesture is applied (left side). A visual feedback is provided showing the
current locked direction of rotation (right side).

set of arrows rotating around the selected axis is displayed. This notifies the user

that both directions for rotation are available. Upon rotating the hand, one of the

two directions is confirmed and the system will only keep the corresponding set of

arrows and discard the other one to make clear which direction the user has locked

onto.

Figure 3.4: Equivalent hand poses starting scaling mode when hand is over the
object. Temporal coherence avoids unwanted manipulation due to sensor errors.

3.3 Scaling: Iconic Gesture

The solution found to perform object scaling without using the second hand consists

of using a reasonably intuitive and non-ambiguous hand pose that the system will
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recognize in order to switch to the scaling mode and then the actual scaling is

mapped on horizontal hand translations while the recognized hand pose is kept. As

we want to drive the selection of rotation/translation/scaling with just one hand

over the object, the gesture should not be similar to object grabbing. We opted

for a gesture consisting of putting two fingers straight and extended. This choice

is due to the sufficiently low stress deriving from the pose [7], the possibility of

realizing it in different ways (see Figure 3.4, allowing an easy user adaptation. To

avoid ambiguities and problems due to finger tracking errors, to switch to the scaling

mode, we require that the fingers’ position is maintained for at least 1 second before

switching mode. After this time, horizontal motion is mapped into scale: moving the

hand to the right the object is enlarged, moving to the left it is downscaled. Visual

feedback of the scaling activation is provided by slightly increasing the brightness

of the selected object color. To exit this mode it is sufficient to change hand pose.

3.4 Implementation and Results

We implemented versions of the interaction solutions proposed in Virtual Reality

environments realized with Unity 5.3 (www.unity3d.com), using the Leapmotion

(www.leapmotion.com) controller and Orion beta API along with the OVR plug-

in (developer.oculus.com) in order to enable the use of a HMD for stereoscopic

display through an Oculus Rift DK2. Since the task presented to our test users is

designed to be performed on a workbench-like virtual scene, we opted for a fixed

position of the Leapmotion controller on the desk, so that its detection volume could

include all the relevant space required by the user’s hands for the task completion.

www.unity3d.com
www.leapmotion.com
developer.oculus.com


3.5. Software Application and Task 35

3.5 Software Application and Task

The whole application used for the test was built with Unity 5.3 (www.unity3d.com)

framework. Our application features the full implementation of our Knob metaphor

along with a Handlebar implementation, following the description in the original

paper s [5, 59] regarding the single-object manipulation. Besides the techniques, the

application also features a task used to evaluate and compare users’ performances.

We designed an information searching task, with the idea of stressing on both accu-

racy and interaction fluency. The idea was to have users performing the same task

multiple times in series and the task can be summarized in two main parts:

• Information retrieval: A colored cube is presented at the center of the scene

between 4 numbered tiles that are used later for the ”information check” sub-

task (Figure 3.5a). A different texture is loaded on the cube from a pool of

4 with each run. All the 4 textures in the pool look exactly the same besides

a small detail and are designed to color each of the cube faces with the same

tint. They only variant between them is a small digit, ranging from 1 to 4,

and appearing on a different face for each texture. Once the test begins, the

user is asked to use all the necessary transformations actions available for the

current mode (i.e. knob metaphor or handlebar) to manipulate the cube in

order search for the small number. The initial position of the cube is set so that

at least a rotation and a scaling action (to magnify the number) are required

to identify the digit value.

• Information Check: Once the value is discovered the user has to position the

cube on one of the 4 tiles, also numbered from 1 to 4. If the number on the tile

matches the number on the cube texture, the task is successfully completed

(Figure 3.5b). The correct tile will also change its color from white to green

once the cube is placed, but only after it has been released, in order to prevent

www.unity3d.com
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Figure 3.5: Task sequence: a) Information retrieval, a small number ”1” is present
on the red face. b) Information check, the cube is correctly placed on the tile labeled
with the corresponding number.

the user from getting unwanted hints on the solution by simply hovering the

cube across the tiles. Furthermore, to avoid accidental activation of the tiles

during the execution of the first part of the task due to an excessive scaling

of the cube, the collision detection is done relatively to the center of the cube

rather than its bounding volume.

3.6 Experiment Overview

To perform the experiment, we selected a group of 24 subjects, with no experience

of 3D interfaces and VR in general. Each user performed the described task in 2

series of 4 runs each. Half the subjects started with the Knob metaphor as their first

technique while the second half started with the Handlebar. For both techniques,

regardless of the order, all users were given a 5 minutes time to familiarize with the

manipulation of a neutral object (i.e. a white cube) with no specific task to perform

and a small break in between the two series. To further remove biases, each user, for

each technique, performed the 4 runs going through all the 4 different textures. The

order in which they were assigned to the runs was based on a latin square design.

During the experiments, the application developed for the task automatically col-

lected data about execution performance such as the execution, the time spent in
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idle, and for the Knob metaphor, the whole sequence of transitions between actions

with associated timestamps. This recording was not possible with enough reliability

for the Handlebar technique due to the overall uncertainty of the action in progress

derived by not having separated DOFs.

At the end of the two series, each user provided further data with questionnaires

surveying their test experience. We collected data for both techniques, in particular

about: learnability, as in how easy/hard was to understand the interaction mech-

anism, usability in terms of how practical they were in order to complete the task

and gestural comfort to estimate the perceived fatigue. The questions were asked

so that, by using a Likert scale ranging from 1 to 5 the lower value was always

considered the negative one for the judged parameters.

3.7 Results

We examined the data collected by the task application. For each run of each

series/technique, we averaged the times of all users, thus having 4 averages for each

technique. These results are shown in Figure 3.6. Users took on average 17.6 s to

complete the task with the Handlebar method and 44.6 with the single-handed one.

It is a large difference, but the trend suggested by the curve indicates that, while

in successive trials the handlebar performances are approximately constant, there is

a steep decrease in the task completion time with the single-handed method. This

suggests that, while the handlebar is more intuitive and immediately learned, the

single-handed manipulation proposed requires a small training phase, but then could

be probably similarly efficient. This argument is further supported by the decrease of

deviation in subsequent runs. In fact, by considering completion times excluding the

”idle” time segments of each run, the averages of times decrease uniformly across the

runs of both technique of a factor of 0.6, but more interestingly the variability of data
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Figure 3.6: Task completion times (Knob vs Handlebar)

lowers with subsequent runs (Figure 3.7), suggesting that not only the performances

of the Knob method improve with more runs but it improves overall across all the

subjects. This effect might be due to the difference in learning speed between users

but, nonetheless, data suggest a certain convergence towards improved performances

regardless of that.

An interesting observation can be made on the task completion recordings is that

user did not follow a fixed sequence of actions on the different manipulation DOF,

as it could be expected. The action sequence could in principle have been split in a

single rotation and a single scaling for the information retrieval part, followed by a

final translation for the information check part.

Users performing the task with the Knob technique did not act in this way and

performed on average sequences of 15.9 different actions (excluding idle) and in

different orders to complete the task, with an average deviation of 5.6.

This means that they did not take full advantage of the DOF separation and that

the improvements of the performances with repeated trials could have been obtained

with an optimization of the sequences.
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Figure 3.7: Times averages deviations excluding idle time.

Regarding questionnaires data, we report the averages of answers to questions pre-

viously described, in Figure 3.8. Despite the outcome not being very encouraging

for the Knob metaphor we can still notice, based on the Likert scale ranging from 1

to 5 that our method hasn’t received overall negative scores. This leads us to believe

that the method is still viable and could probably be better evaluated when applied

to tasks taking advantage of the free hand to perform other actions simultaneously,

compared against bi-manual techniques like Handlebar, requiring such actions to be

performed in sequence.

Figure 3.8: Questionnaires answers regarding the evaluation of techniques.
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3.8 Knob Discussion

We this technique We tried to provide a viable uni-manual technique to perform

mid-air manipulation in immersive VE (i.e. the Knob metaphor). To ensure the

method provides enough accuracy for generic tasks we designed the interaction with

minimal interferences between the different actions through DOF separation. We

evaluated the performance of our technique by comparing against the Handlebar

metaphor its performance in an information searching task and its viability through

evaluation questionnaires. Our findings led to believe that the proposed technique

is sufficiently usable but not outstanding, in fact, without training, it is not as

effective as the bi-manual manipulation with the Handlebar metaphor in classic

manipulation tasks. However, experimental results also show that the difference in

performance clearly scales down as the users become more accustomed to the Knob

technique. Considering these results it’s reasonable to believe that not only the

Knob technique is at least a viable technique in general, but also that it can be a

method of choice for all the applications combining manipulation with other actions

potentially performed with the non-dominant hand.
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The Smart Pin

While our previous approach enabled the rotation action through a metaphor meant

to be intuitive by recalling a real-world typical action with knobs, in this next work

we tested the effects of choosing a more indirect approach through the use of a 3D

widget to enable all the manipulation actions. In fact, by looking at the results

of our work on the Knob technique, our hypothesis was that users might prefer a

more streamilined interaction. This idea was supported mainly by the questionnaire

data showing excellent scores for the Handlebar technique. The main goal of our new

method is to provide a single-hand interface to perform translation/rotation/scaling,

separating degrees of freedom and allowing both robust and effortless mode change

and intuitive and easy to learn gesture mapping for the separated DOF. The solution

proposed is based on a simple widget that allows mode selection with simple grabbing

actions in different positions and on the implementation of separate and effective

mappings for translation (direct mapping), rotation (Arcball inspired) as in the

Finger-Point described in 2.2.1 and scaling (uniform rescaling proportional to the

distance from the pin center). The algorithm controlling the manipulation is, again,

a state machine, starting in the idle mode (see Figure 4.1). Upon approaching

with the hand the target object, the system status is changed from idle to “object

41
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selected”, and the user is prompted with a pin with two caps pinning the object in its

center of mass and orienting itself towards the user’s hand (see Figure 4.2). The pin

keeps following the hand and remains active as long as the hand is in a close distance

range from the object. In case of multiple objects within the distance activating the

“object selected” mode activation, the closest one generates the shown pin.

Figure 4.1: Smart Pin algorithm flow chart. Thanks to the visual feedback, once the
potential object manipulation is activated by proximity, the user can activate easily
and unambiguously one of the three manipulation modes with a simple grab gesture
in different positions. Grab release gesture deactivates the current transform mode
restoring the idle state.

Figure 4.2: The Smart Pin widget. In our tests visual feedback shows the tracked
hand.

On this widget, the user can easily activate one of the three available manipulation

modes by grabbing the object center (translation) or one of the two caps (rotation

and scaling). Position and color of the pins allow an unambiguous selection as
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the regions where the grab gesture activate the modes (shown in Figure 4.2) are

non-overlapping spheres around each cap plus one around the target object center,

with size depending on the object scale. By releasing the grab gesture any action

is interrupted and the state of the pin will return to idle. The relative position of

rotation and translation pin caps has been chosen according to user preferences in

preliminary tests. As the pin orientation follows the hand-center direction, the user

can move from the activation zone of one mode to that of another one just putting

the hand closer or farther from the object center. To help the user to understand the

system status, the pin cap corresponding to the mode that would be activated by

grabbing in the current position is highlighted by temporarily increasing its size. The

length of the pin is scaled with the object so as to keep the same visible part outside

the object. In particular, the red cap (innermost) and the blue cap (outermost)

positions are described by the following formulas:

BCP = OBSR + OPL

RCP = OBSR + (OPL− ∆) with ∆ < OPL

where BCP and RCP are respectively the blue cap position and the red cap posi-

tion, OBSR is the selected object bounding sphere radius, and OPL is the outer pin

length which is the fixed minimum length of the pin that should never fall inside

the object. Other visual feedback mechanisms typical of manipulation widgets are

then associated with the different modes when active.
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(a) Translation

(b) Rotation

(c) Scaling

Figure 4.3: Couple of snapshots from (a) translation, (b) rotation, (c) scaling ma-
nipulation actions performed with the Smart Pin.

4.1 Translation

Grabbing inside the object, the user activates the translation mode, linking the

subsequent hand palm translation to the object’s displacement. When the grab is

released, the object is no longer moved and the system returns to “object selected”

status. During the translation, Cartesian axes visualization provides a spatial refer-

ence to the free direct manipulation (axes don’t constrain the motion), as shown in

Figure 4.3(a).
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4.2 Rotation

The rotation mapping provides an intuitive control exploiting that exploits the ideas

used in 2D Virtual Trackball/Arcball interfaces [21, 57]. As soon as the rotation

mode is activated, the object is locked to the pin and rotates around its center. Its

orientation is smoothly interpolated according to the movements of the pin projec-

tion on the unit sphere. This choice is motivated by the fact that direct mapping

of hand orientation did not demonstrate effectiveness in previous works, due to

physical constraints and the lack of robustness when using hand tracking devices.

Mapping the orientation on the sphere relying on positional tracking of the user’s

hand, however, allows an intuitive and robust control, as the success of Arcball in

2D demonstrates. With the mapping to unit sphere projection, the user can control

the orientation in a comfortable way with smaller or larger motions according to

the distance from the center, and the visual feedback helps in understanding the

rotation center position and the effects of hand motion. In the rotation mode, a

gridded sphere is overlaid to highlight orientation changes (Figure 4.3(b)).

4.3 Pin Scaling

Finally, by grabbing the outer pin cap, it is possible to activate the scaling mode.

In the current implementation, when this mode is active, the object is interactively

uniformly scaled along its dimensions according to the ratio between the distance of

the grabbing point from the object center and the one measured when the scaling

action started. This choice intuitive and familiar to many users, as scaling according

to the distance from the center is common in many visualization interfaces.

We designed a 7-DOF manipulation with uniform scaling, but, if necessary, a mecha-

nism to scale only along the pin axis could be easily implemented and made selectable
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by interpreting two different grabbing styles/gestures or by adding a third handle.

In the scaling mode, the Cartesian axes are displayed to provide spatial feedback,

as in the translation mode, but using a different color (Figure 4.3(c)).

4.4 Technique limitations

The implementation of the technique comes with few limitations. First of all, both

selection and manipulation actions can only be performed within the user’s arm

reach range. This design choice was made to preserve the natural style of interaction

when possible. This limit becomes particularly relevant to any task that would

require the user to perform these actions across a space wider than the arm’s reach.

It is possible to overcome this limit if the user is able to navigate in the virtual

environment or with ad hoc selection and indirect manipulation metaphors (e.g.

world in miniature [62]). Another limit of our current implementation is related to

the selection method. In fact, the proximity condition to satisfy in order to select

an object is not suitable when the density of the objects in a certain volume of space

becomes too high. In this case, the selection may be not stable and sensitive to small

position changes, making it presumably hard to work with. Different solutions can

be implemented for selection in those cases, as done, for example, in [59]. In any

case, the specific manipulation tasks used in our tests do not present these critical

scenarios.

4.5 Implementation notes and experimental setup

We implemented the Smart Pin and Handlebar manipulation methods in VR envi-

ronments realized with Unity 5.3 (www.unity3d.com) and using the Leap Motion

Controller and Orion beta API. Finger tracking provided by the device is not always

www.unity3d.com
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accurate [4] but, as our manipulation methods do not rely on finger tracking except

for grabbing gesture detection, the interaction results quite smooth (even if errors

may be annoying for visual feedback). Of course, the use of a single sensor may

be problematic, in particular cases, for two-handed manipulation systems due to

occlusions. This occurs rarely in handlebar interaction with the sensor under the

user’s arms as it would imply to assume uncomfortable positions.

The experiments took place in a laboratory with a desk and chair setup (Figure 2.4)

to make users comfortable. The choice was not critical since the tasks required to

interact in a limited amount of space. The Leap Motion was placed on the desk,

at a distance of 25-30cm from the user in order to match the sensor detection cone

with the virtual scene operation space and to prevent users from having to stretch

or crunch their arms while performing the task. Chair height was also adjusted ac-

cordingly to users’ body size and preferences to guarantee the best possible comfort,

prior to the beginning of the test.

4.6 Evaluation

To compare the novel manipulation method with the Handlebar technique, we de-

signed two different tasks. The first is a classical docking task, aimed at evaluating

the accuracy in reproducing position, scale, and orientation of a reference object.

The second is an information search task, testing the efficiency of the method when

provided with the necessity of a quick and greedy sequence of geometrical trans-

forms. We proposed both tasks to a group of 24 subjects (16 males, 8 females), all

of them without previous experience of immersive VR applications.

Each subject completed the two tasks both with the Handlebar control, implemented

as described in [59] and the Smart Pin control. The order of execution of the tests has

been inverted on half the subjects to avoid cross-training effects. Before starting the
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tasks’ execution with each method, a short standardized description was provided

to the subjects, who had then a fixed training time of 2 minutes to familiarize with

the techniques, manipulating a cubic shape without any task to perform. Each

task execution has been repeated by each user several times during each session.

After task completion, the subjects were asked to fill a questionnaire to record their

preferences and subjective opinions about the methods. Furthermore, each subject

went back to the lab after one week to repeat the whole test. For each run of

both tasks, we recorded the execution time as a direct performance measurement.

Following the completion of all the runs, the users had to fill a questionnaire with

personal data and scores to evaluate different aspects of the experience.

4.7 Search task

The search task was designed with the same characteristics of the one described

in subsection 3.5. In Figure 4.8 the steps to the task completion are shown in the

case of the Smart Pin. Each user repeated the task four times per session, each

time with a different position/value of the searched number, and changing the order

of presentation of the configurations for the different subjects with a Latin square

design.

4.8 Accurate docking task

The docking task requires precise matching of the manipulated shape over the refer-

ence one, with small tolerances for positioning, orientation, and scaling. The subject

perceives through the HMD a scene with a white cat model on the left and an identi-

cal red and semi-transparent shape, with different size and orientation, on the right

(Figure 4.5(a)). The initial position, orientation, and scale for both the models was
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predetermined and based on the run number, to avoid random bias in the run com-

plexity. Subjects have to manipulate the white cat in order to superimpose it over

the red one. When the correct centroid position, orientation, and scale are reached,

corresponding bright green signs are turned on as a feedback for the user (Figure

4.5(b)). When all the three variables are in the correct range (i.e. ±2.5mm centroid

distance for translation, ±10 degrees for rotation and ±0.1 scale ratio from the tar-

get scale), the task is completed Figure 4.5(c)). The docking execution requires the

use of all the three transformation modes, but, differently to the search case, it also

requires accuracy in placement. This task has been repeated three times by each

user in each session.

(a) (b) (c)

Figure 4.4: Sequence showing the search task phases. (a) Initial position. The
subject must find a small number in the range 1-4 displayed on a cube side by
rotating, translating or scaling the shape (b). When the number is recognized, he
should move the cube on the target with the corresponding value (c).

(a) (b) (c)

Figure 4.5: The docking task proposed to the test subjects. A white cat model
must be picked up from the original position (a), translated to match the reference
position of the target model (a similar red and transparent cat) (b) and orientated
and scaled in order to be well superimposed to the target model (c).



50 Chapter 4. The Smart Pin

4.9 Questionnaire

A questionnaire was given to the participants to assess their preferences about learn-

ability, easiness of use and fatigue. It also aimed at capturing potential nuisance

variables that may influence results (e.g. previous experience of gaming). Partici-

pants (after the first and the second session) were asked to give a score (from 1 to

5, higher is better) to the learnability (perceived easiness of the learning process),

the ease of use and the physical comfort (lack of perceived physical fatiguing and

stress during) of the two manipulation methods, as well as a global indication of

preference between them.

Figure 4.6: Average task completion times for the two trials of the search task.
Vertical bars show the standard deviations. Average values are quite similar for
the two methods and are similarly decreased in the second trial (one week after the
first).

4.10 Smart Pin Results: Execution Times

For both tasks, we aimed at testing the null hypothesis that there is no signifi-

cant difference in task completion times with the novel method and the Handlebar

metaphor. We also wanted to test if the novel technique could prove to be more

intuitive, less fatiguing and better learnable.

Figure 4.19 shows average execution times with standard deviations for the search
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Figure 4.7: Average task completion times for the two trials for the docking task.
Vertical bars show the standard deviations. Average values are quite similar for the
two methods, and are similarly decreased in the second trial.

task in the first and second session. It is possible to see that the results of the

compared techniques are quite close and there is no statistical difference in the effi-

ciency of the two methods both in the first and in the second trial. Furthermore, the

methods show a similar learning trend as in both cases we have a similar reduction

of the average task completion times.

Similar behavior is seen also for the docking task (Figure 4.20): in both tasks and

both trial sessions, at a significance level of 5% we cannot reject the null hypothesis,

which is, in some senses, unexpected considering the differences in the two methods.

In our tests, we modified three independent variables, namely the manipulation

technique (Smart Pin or Handlebar), the task (search and docking) and the different

week in which users performed the test (first and second). To evaluate the potential

interference between these factors, we performed a Three-Way (within subjects)

ANOVA test, resulting in a non-significant score (F=1.506, p=0.2321). We also

performed an equivalence test on the time averages with a two-one-sided t-tests

(TOST) procedure [55]. We set the lower and upper bounds at −5 and 5 seconds.

We compared the two techniques within the same week, and type of task for a total

of 4 tests and we rejected the null hypothesis (the difference between the means

falling outside the equivalence interval) in all of them.
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If we analyze more in-depth the outcomes of the experiments we can see that, even

if means and variances are quite close in the two conditions, there is a considerably

larger variance for Handlebar in the docking task (52.3sec. vs 33.2 sec. in the first

trial, 54.0 sec vs 17.9 sec in the second one).

The reason may be due to the fact that the efficiency of this method heavily depends

on the spatial abilities of the subjects, that are not uniform in the population. A

box and whisker plot (Figure 4.8) shows that even if also the median values are

similar and similarly improved in the second trial, the distribution of the quartiles

is quite different for the two methods, with the Smart Pin providing, especially in

the second trial, most of the values concentrated around the median time (central

line), while the Handlebar has first and third quartile values (top and bottom lines

of the boxes) still quite spread.

Figure 4.8: Box and whisker plots for the accurate docking task in the two trials
with the two compared methods. Median values are similar and similarly improved
in the second trial, but, in this case, the Handlebar method reveals a quite larger
distance between first and third quartile values (boxes extrema), especially after the
second trial.

Note that, especially for the accurate docking task, the completion times of some

trials are quite higher than the average/median values. We considered, for this rea-

son, the idea of removing from the statistical analysis the involved subjects, treating

them as outliers. However, we verified that removing outliers with a standard crite-

rion the statistical outcomes would not have changed, and the removal would have

also broken the Latin square design of the test, so we finally decided to show the
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analysis performed on the full set.

4.11 Smart Pin Results: Questionnaires Outcomes

If we look at the ratings obtained with the questionnaires, we are finally able to

see statistically significant differences between the tested methods. While the scores

given to the learnability of the systems are quite similar (coherently with the similar

improvements in the execution times), those given to the ease of use and to the

physical comfort of the methods were significantly different (Figures 4.9,4.10,4.11).

Figure 4.9: Bar charts showing the differences in the subjective scores given by
subjects about learnability. Scores range from 1 (worst) to 5 (best). Both methods
are appreciated, and the average scores for the Smart Pin method are higher after
the second trial. There are no statistically significant differences between the two
methods.

At a significance level of 5%, a Wilcoxon signed-rank test indicates that we should

reject the null hypothesis on equal ease of use after the second trial (dof=22, z-

valu=-2.29, p-value=0.021).

The hypothesis of equivalent physical comfort is also rejected for both trials (dof=22,

z-value=-2.15 and p-value=0.031 for the first; dof=22, z-value=-2.58 and p-value=0.010

for the second). This was expected, as the widget based solution reduces the need for

large motions and hands’ coordination. Note that average scores of both methods

are quite good and similarly increasing in the second test.
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Another question presented to the subjects was to give an overall preference between

the two methods. After the first trial, 16 subjects (66.7%) indicated the Smart Pin as

the favorite method and 8 (33.3%) the Handlebar. After the second one,19 subjects

(79.1%) declared a preference for the Smart Pin method and 5 (20.9%) for Handlebar

(Figure 4.12).

Figure 4.10: Bar charts showing the differences in the subjective evaluation of ease
of use. Scores range from 1 (worst) to 5 (best). There are statistically significant
differences between for the second trial (p=0.02 in a Wilcoxon Signed-Rank Test).

Figure 4.11: Bar charts showing the differences in the subjective scores given by
subjects about gestural comfort. Scores range from 1 (worst) to 5 (best). There
are statistically significant differences between the two methods both after the first
(p=0.03 in a Wilcoxon Signed-Rank Test) and after the second trial (p=0.01 in a
Wilcoxon Signed-Rank Test).
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4.12 Smart Pin Results: Effects of gaming expe-

rience

Even if the subject sample is limited, and results should be considered with care,

we investigated the potential influence of other variables collected from subjects.

It is well known that gaming experience can enhance spatial abilities like mental

rotation [23]. The subject set included 15 elements with a regular gaming activity

(identified by a minimum of two hours of playing per week), and 9 not using video

games on a regular basis. Looking at the execution times, it is possible to see

that there is a significant difference (dof=22, T=3.07547, p-value=0.002 in a t-test)

between the two groups in the search task completion times with the Smart Pin

method. Experienced subjects took 21.1 sec. (std. dev. 9.0) on average while

non-game-experienced subjects took 30.7 sec. (std. dev. 12.4).

The average execution time in the docking task is also lower in the experienced

group, but there isn’t a statistically significant difference, due to the large standard

deviation of the Handlebar average times. No statistically significant differences

were recorded between the groups on the docking task.

Looking at the questionnaire outcomes, there is a visible and coherent reduction of all

the scores in the non-experienced group for the Handlebar method (see Figure4.13),

while the ratings given to the Smart Pin are similar. In the case of the Handlebar, the

difference in the learnability score is statistically significant (dof=22, Z-Score=2.21,

p-value=0.027 in a Mann-Whitney-Wilcoxon U-Test). This may support the claim

that this method requires an enhanced spatial ability and it is perceived as more

difficult/less comfortable by people with lower spatial skills’ training. Instead, the

Smart Pin is perceived similarly easy to learn by trained and untrained people,

independently on task performances.
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Figure 4.12: After the second trial, the number of subjects declaring an overall
preference for the Smart Pin method raised from 68% to 82%.

Figure 4.13: Subjective grades seems coherently lower for non-game experienced
people only for the Handlebar method, suggesting that the Smart Pin may be more
acceptable for people with reduced spatial ability.

4.13 Smart Pin Discussion

The solution we proposed has, in our opinion, several interesting aspects that could

make it a successful choice for many VR applications, and could be easily adapted to

a variety of environments. First, it requires a single hand and decouples degrees of

freedom, but does not require gesture recognition or sequences of actions to switch

modes as other single-handed methods [6]. Using this method, then, rotations are

performed in a very intuitive way, familiar to most users due to the close similarity

to the Arcball/Spaceball widgets used in 2D interfaces.

The DOF selection based on grabbing the pin caps or the object volume is not
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ambiguous and offers clear visual feedback. The shape of the pin caps is spherical in

the current implementation but could be changed to increase the affordance. We are

currently testing different appearances for the two pin caps. The idea is to replace

the spheres with shapes suggesting the associated actions, or showing billboards

with classical manipulation icons near the caps. We show examples of affordance-

enhanced pin caps in Figure 4.14. These solutions will be tested with users to find

the preferred option.

Figure 4.14: Examples of affordance-enhanced pin caps.

We evaluated the usability of the Smart Pin on a simple setup to focus on specific

interaction aspects, but the method can be applied as well on more generic setups.

Using a hand tracker attached to the HMD, it could be, for example, exploited in

applications allowing the user to stand and walk in the 3D space. The widget, using

the cursor feedback mode, could be employed as well in non-immersive applications

based on stereoscopic or standard displays.

With the current implementation, the method only allows the manipulation of ob-

jects of the same size of those that could be manipulated in the real world. However,

the technique could be easily modified to handle objects of different size, possibly

combining the Smart Pin with other metaphors like the worlds in miniature [62].
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4.14 Other studies: Device vs. Deviceless inter-

action

In order to maximize the usability of VR applications, different kind of manipulation

techniques can be chosen. Researchers have proposed a variety of metaphors and

developers are adopting different choices in the new applications that are emerging

thanks to the diffusion of low-cost VR setups.

The success of a manipulation method, however, does not depend on the metaphor

only, but also on constraints that are coming from the specific hardware solutions

and may depend also on visualization/feedback issues. The effect of these factors,

however, is much less investigated in the literature.

By analyzing the outcome of the user test, using a typical docking task controlled

with the different methods, we can derive useful hints and guidelines that can help

developers with design choices to achieve good performance results for the manipu-

lation tasks involved in a specific VR application.

In this work we designed experimental tests using two different manipulation tech-

niques (Simple Virtual Hand [39] and Smart Pin widget [?]), two different control

systems (Leap Motion and Oculus Touch) and providing two different kinds of visual

feedback (simple cursor and tracked hand visualization when possible).

4.14.1 Experimental design

We tested device and deviceless input by using respectively an Oculus Touch Con-

troller and a Leap Motion Controller. In the deviceless condition, we also tested

two different types of visual feedback: the first showing a 3D hand model of a hand

rigged on the joints tracked by the sensor and the second displaying a 3D cursor
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represented by a sphere with a diameter approximatively corresponding to the finger

width. These different combinations generated three different experimental condi-

tions: Leap Motion with 3D hand model visualized (L-H), Leap Motion with a

3D cursor feedback (L-C) and Oculus Touch with 3D cursor (T-C). All these three

conditions were examined in a user test consisting of a simple docking task to be

performed with two different manipulation techniques: the Simple Virtual Hand

[39] (SVH) to test a more direct method and the Smart Pin [11] (SPin) to test a

widget-based method. Our intention with this choice was to verify if any possible

emerging trend would show across both techniques based on a direct approach (i.e.

SVH) and indirect ones (i.e. SPin). To obtain an IVE we used the Oculus Rift

head-mounted display as a stereoscopic output device.

Our test group consisted of 18 people (12 males and 6 females), with no previous

experience in VR contexts and with age ranging from 20 to 29 years (average 23.1).

The group was divided into two sets: the first performed the docking task using

the Smart Pin technique first while the second one started with Simple Virtual

Hand version. For each technique, each user was asked to complete the task 3 times

for each modality (L-H, L-C, T-C) with a different order, following a latin square

design. Each modality consisted of a learning session of fixed time (1 minute) with

no docking involved and three runs of the actual task for a total of 18 runs per user.

W collected the execution times for all the tasks and the number of actions taken to

complete the docking. When all the required tasks were completed, each user had to

fill a questionnaire to evaluate different aspects of their experience during the test.

4.14.2 Experimental results

Figure 4.15 shows box plots representing the distribution of the average task com-

pletion times of the 18 users with the three different implementations of the SVH

technique. It is evident using the Touch performances are significantly better, while



60 Chapter 4. The Smart Pin

Figure 4.15: Box plot showing task’s completion time, in seconds, using the SVH
technique in the different conditions. The chart presents the median, 1st and 3rd

interquartile ranges (boxes) and 95% confidence interval (whiskers).

Figure 4.16: Average ranking scores (higher is better) given by users sorting by
preference the different combinations of Controller/Feedback options in the Simple
Virtual Hand task.

different feedback solutions for the Leap Motion mode does not create statistically

significant differences. Touch-based interaction was ranked as the preferred method

by 15 subjects (Figure 4.16), while there is no clear preference between the two

visual feedback choices with Leap Motion.

In the Smart Pin case the task required also a scaling of the object before docking,

however, this did not create a large increase of the completion time with Leap

Motion interaction. Device based interaction is still significantly faster (see Figure

4.17), but the difference with the hand tracking-based methods is decreased. No

significant differences between the visual feedback choices are measured. Touch-
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Figure 4.17: Box plot showing task’s completion time, in seconds, using the Smart
Pin technique in the different conditions. Times are not comparable with those in
Figure 4.15 as the task included scaling.

Figure 4.18: Average ranking scores (higher is better) given by users sorting the
different combinations of Controller/Feedback options in the Smart Pin.

based interaction was ranked as the preferred method by 15 subjects (Figure 4.18),

while there is no clear preference between the two visual feedback choices with Leap

Motion.

4.14.3 Design Choices

In this work, we presented an initial effort aimed at evaluating different choices

related to tracking devices, techniques, metaphors and feedback in manipulation

tasks. Despite the limited number of comparisons and user, the collected data and

analysis hint to at least two design guidelines and confirm the tight interaction
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between all the different design aspects investigated:

• Handheld devices, that guarantee shorter manipulation tasks’ completion times,

should be preferred if available in the planned setup and if the efficiency is a

critical factor for the target application.

• Direct manipulation (VH) guarantees shorter execution times with the devices,

but are not necessarily preferred to a widget based method by users.

Figure 4.19: First task completion times

Figure 4.20: Second task completion times
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Gesture Recognition

Gestural interaction is particulary successful on 2D touchscreens where it is easy to

determine the beginning and the end of the gesture by using the contact between

fingers and display surface. In 3D deviceless interaction, the beginning of a gesture

must be automatically detected from the gesture itself. The use of pattern recog-

nition tools may allow a robust recognition of a gesture learned after the gesture

realization, that may be good for a sign language interpreter, for example, but not

for a manipulation tool that should give visual feedback within a reasonable time.

A possible trick to solve this issue typically applied to interfaces is to use a second

hand or a vocal interface, or the recognition of a coded gesture to tell the system

that the gesture is starting or it is finished. Furthermore, in a manipulation interac-

tion gesture start involves also the ”grabbing” of the object of interest and gesture

end involves also its release. This means that the algorithm should localize with

a sufficient accuracy the position of the grab and, more difficult, the desired loca-

tion of the object release. Especially the last task requires, in our opinion, both a

smart geometrical representation of the hand/finger trajectories, possibly invariant

to users gestures realization and a smart learning procedure in order to character-

ize the key actions and the corresponding desired object position. It is a really

63
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challenging task, but the ideas that could be applied to find a reasonable solution

may be the same applied in classical robust point matching and landmark location.

Keypoint trajectories could be simplified and normalized, mappings between tra-

jectories could be encoded as functions, the evolution of connected point could be

treated as a surface. And, in the same way learning approaches are used to find

discriminative keypoints for specialized recognition tasks on 3D meshes [25], it is

possible to think that on a geometric encoding of hand trajectories, keypoints that

have a user-independent recognition of gesture limits could be learned through the

collection of example data. The use of data collection to learn gestural feature is

already applied in HCI, for example in gesture elicitation experiments [49, 2], and,

in some sense, with the same approach, we could learn how users behave when doing

”naturally” simple gestures like grabbing, translating and rotating a virtual object.

Registering example gestures and de-coupling 3D trajectories and velocity patterns

it would be possible to find specific and invariant keypoints to identify the beginning

and end of gestures.

Another big problem is related to the accuracy of gestures, that in manipulation

tasks is particularly important. The accuracy of object positioning in manipulation

is limited by the lack in accuracy of tracking and the possible occlusions of key-

points. However, this problem could be mitigated by the redundancy of the data,

and all the research on robust descriptors or partial retrieval can surely help in find-

ing ad hoc solutions for the task. Approaches for partial shape retrieval, like Bag of

Words [40, 66] could be, for example, applied to select only the partial information

correctly describing the gesture and captured by the device/tracking library used.

Furthermore, learning from example, using regression techniques, the relationships

between keypoint positions and desired manipulation position could help in improv-

ing the accuracy of the gesture localization. Another problem in this particular case

is the delay in visual feedback, as the detection of the release gesture requires a back-

wards analysis and if the grabbed object is moved together with the hand, there is
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a discrepancy between the expected manipulated object position and the visualized

position in the virtual representation. In this work, we developed a simple algorithm

based on the dollar algorithm family for 2D cases and explore several metrics that

can be used for mid-air gesture comparison. By adopting smart choices in gesture

traces processing and comparing, it was possible to obtain very good results in the

retrieval and recognition of simple command gestures, from complete or even partial

hand trajectories. The approach was also extended in order to recognize gestures

characterized by both hand and finger motions and tested on a recent benchmark,

reaching state of the art performances.

5.1 Background Theory and Related Work

There is a large amount of work in the literature on gesture recognition, with applica-

tions based on different kinds of input data and designed for a variety of applicative

domains.

Many gesture recognition methods are based on image sequences processing, exploit-

ing well-known tools such as Hidden Markov models [68], Dynamic Time Warping

(DTW), Time-Delay Neural Networks (TDNN) and Finite-State Machines (FTM) [46].

Generic surveys on gesture recognition can be found, for example in [52, 53, 22].

Focusing on dynamic gesture recognition, it should be noted that only a few methods

are based on processing hand position trajectories or hand skeleton data.

The use of trajectory analysis for gesture recognition has been proposed in sign

language decoding for example, where relatively long sequences with several features

determine the gestures’ semantic.

In [41] heterogeneous features and HMM are used for sign characterization. In [56]

a descriptor for multiple motion trajectories based on the kinematic relation among
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different moving parts is proposed. In [69] a method to parse trajectories to derive

a gesture descriptor based on sequences of segmented primitives is presented and

tested also on a dataset of Australian sign language gestures.

Some of the cited gesture recognition methods based on the encoding of multiple

trajectories of body keypoints, provided by trackers and depth sensors APIs, are

similarly used for action recognition. Several datasets providing labeled trajectories

of human skeleton joints have been proposed and a really huge number of encoding

methods for these sequences of skeletal nodes’ paths has been proposed. Interested

readers can look at specific surveys, e.g. [32].

However, the rapid diffusion of applications like virtual and mixed reality simula-

tors, virtual museums, immersive visualization systems, public displays, and the

availability of 3D tracked devices and low-cost body skeleton and hand trackers sug-

gest that the use of 3D paths analysis will be quite common in the near future not

only for the labeling of multiple complex trajectories but also for the development

of interfaces based on the recognition of short command gestures performed with

hands and fingers.

In this case, the use of gesture decomposition, local to global features encoding or

the use of advanced pattern recognition for path classification may be not necessary,

and a simple approach similar to the one used in the popular “dollar” algorithm

family in the 2D case may be feasible.

This class of algorithms, based on a simple approximate spatial registration and the

subsequent pairwise comparison of gestures shapes, is quite popular for 2D touch-

based gestural interface design as it allows a quick prototyping of specific recognizers

given a small set of example gestures without the use of complex classifiers libraries

or large training sets.

This kind of approach has been already extended to 3D trajectories in the “3 dollar
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recognizer” [36] and in the following Protractor 3D [37] algorithm. These methods,

however, rely on unusual normalization options for gestures probably derived by the

adaptation of the original 2D methods and haven’t been tested on large datasets

related to specific applications.

In order to have a better evaluation of the feasibility of a “dollar”-like approach in

the design of 3D mid-air interface, we created a novel dataset with 3D tracked hand

trajectories related to command gestures and tested a relevant number of solutions

for path processing in order to find the most suitable solution for the practical task

of recognizing short mid-air gestures.

Furthermore, we considered also another recent dataset, coming from the SHREC’17

contest on Hand Gesture Recognition Using a Depth and Skeletal Dataset [58]. This

dataset features short gestures similar to those we are interested in, but where the

gestures are not all characterized by the hand trajectory only, as it includes also

“fine” gestures where differences can be seen looking at multiple finger motions.

The dataset includes a complete tracking of hands’ joints.

The outcomes of our work are the demonstration that using very simple trajectory

processing options it is possible to obtain a method (“3 cent recognizer”) with very

good gesture recognition/retrieval performances on gesture dictionaries including

interface-like commands defined by a single hand trajectory. These performances

remain quite good even if only a small part of the gesture is considered and if the

sampling of the trajectory is quite coarse.

Furthermore, exploiting the SHREC’17 dataset and adding to the hand trajectory

comparison the comparison of the corresponding sequences of finger orientations and

joint finger angles, we developed an extension of the method able to process and

recognize gestures characterized by both hand trajectory and finger motion. The

method, still simple and easy to implement, outperforms the state-of-the-art on the

contest data without using depth images information.
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5.2 Command gesture datasets

We are interested in recognizing short gestures that can be interpreted as commands

for a user interface in an immersive virtual reality environment to select different

interaction options, or in a mixed-reality environment to control smart devices.

We created, with this goal, a novel dataset including 3D hand trajectories corre-

sponding to 26 different “interface command” gestures. These trajectories were

acquired using a Leap Motion device while 13 different subjects were performing

the gestures.

During the acquisition process, each user was instructed with an animation showing

the ideal trajectory, which s/he had to replicate immediately afterwards. The ges-

ture set includes semi-circular arcs (arc3Dleft, arc3Dright), symbols drawn in a 3D

space (caret, check, curly-bracket-left, curly-bracket-right, delete, pigtail, square-

bracket-left, square-bracket-right, star, v, x), simple geometric figures (left-swipe,

right-swipe, circle, rectangle, zig-zag), 3D polygonal chains (poly3Dxyz, poly3Dxzy,

poly3Dyxz, poly3Dyzx, poly3Dzxy, poly3Dzyx) and a 3D spiral. Each gesture is

encoded as a sequence of 3D points, representing the position of the dominant-hand

forefinger, together with the sample timestamp. Example gesture trajectories are

shown in Figure 5.1 .

The dataset is publicly available on the web at the address https://github.com/

davidespano/3cent-dataset.

Gestures of our dataset are given already segmented, as the data are used to evalu-

ate only methods for retrieval and classification of gesture patterns, not the detec-

tion/localization. It is clear that for a practical application, these patterns should

be detected/segmented in longer tracked sequences. However if an effective and ef-

ficient method for matching gesture words is available, an online gesture recognizer

could be easily implemented exploiting a sliding window approach, optimized search

https://github.com/davidespano/3cent-dataset
https://github.com/davidespano/3cent-dataset
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Figure 5.1: Example trajectories from the 26 gesture dataset.

as proposed in [64] or a fast stroke segmentation method similar to the one proposed

in [70].

A public dataset with similar features, but including multi-finger gestures has been

proposed for the SHREC’17 contest on 3D Hand Gesture recognition. This dataset

is also based on 3D hand trajectories, even if it includes gestures characterized

by both single hand trajectories and fine movements of the fingers. Authors, in

fact, provided hand skeleton movements for 14 gesture classes, 9 “coarse”, e.g. not

characterized by finger movements: Tap (label 2), Swipe Right (7), Swipe Left (8),

Swipe Up (9), Swipe Down (10), Swipe X (11), Swipe + (12), Swipe V (13), Shake

(14), and 5 ”fine”, e.g. characterized by finger movements: Grab (1), Expand (3),

Pinch (4), Rotation Clockwise (5), Rotation Counter Clockwise (6), where gesture

should be characterized by relative finger movements.

Example coarse gesture trajectories are shown in Figure 5.2.

While coarse gestures can be used similarly to our novel dataset to assess the perfor-

mance of simple trajectory based gesture recognizers, we exploited the fine gesture
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Figure 5.2: Example palm trajectories from the SHREC’17 “coarse” gesture classes.

to demonstrate the possibility of separating and then combining the main hand

trajectory and fingers’ information comparisons in order to derive a simple, inte-

grated gesture distance measure that gives very good performances in the 14 labels

classification task.

5.3 3D trajectory processing and comparison

Let us consider pre-segmented 3D command gesture trajectories. Our goal is to

find the “optimal” way to compare two of these paths with a dissimilarity measure

based on point distances. “1-dollar”-like algorithms are based on a processing chain

consisting of resampling the gesture usually with a fixed number of points, centering

and rotating it to match a template, scaling it to a reference size, and define a

metric to estimate pre-processed gesture distances. These steps can be performed

in different ways, and there is not a “right” way to perform them, as the choice is

specific to the problem of interest. However, different choices result in quite different

performances, and it is necessary to find the correct method for our application.
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5.3.1 Resampling and smoothing

In order to allow an easy comparison, paths are usually resampled using a fixed

number of points equally spaced in arc length or in time. While the arc length

resampling seems natural to compare gesture geometry, time-based sampling would

provide more information about the gesture evolution. We decided therefore to

compare the approaches for our application. Furthermore, it is also interesting to

evaluate the effect of changing the sampling density. Another issue to be considered

is the acquisition or gestural noise. Different strategies for data simplification and

smoothing have been applied, but clearly, the solution for this depends on the quality

of the acquisition data and on the kind of motion involved in the gesture. It is

therefore interesting to know if for our tasks a trajectory smoothing may be useful

to improve the quality of the gesture difference estimation.

5.3.2 Spatial registration of gestures: centering, rotation

and scaling

All the “dollar”-like methods proposed in the literature perform geometrical trans-

forms of the gestures paths to align them before comparison. The 3 dollar method

[36] relies on a first gesture reorientation, bounding-box based rescaling and a further

tricky realignment before comparison, while Protractor 3D [37] on a more efficient

Procrustes-like gesture alignment finding rotation minimizing sum of squared dis-

tances between points, that is the output distance. These choices are inherited by

the corresponding 2D methods, but, as we will see in the experimental section, are

not effective for our gestures, as the independent scaling on each axis distorts paths

and the rotation remove the directional information of the gestures. We considered,

therefore, several alternative choices to find out the best options for our retrieval

task and compared them in our experiments.
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To align the trajectory positions, we tested both translation to match gesture cen-

troids and translation matching gesture origin. To scale the trajectories, we tested

the bounding box method used in Protractor 3D as well as a scaling making the

maximal distance of the gesture from its origin uniform and another one making ges-

tures of uniform length. Finally, a rotation transform is usually applied to measure

orientation-invariant gesture differences. We implemented and tested the option

in our analysis using a Procrustean alignment method as done in [37]. But, as

command gesture classes are usually characterized by the different orientation, we

considered interesting to understand if the point-to-point gesture comparison could

work well without matching orientation, but only translating and scaling.

5.3.3 Point chains distance metrics

Finally, gesture distances are estimated by comparing corresponding points. This

can be done using the Euclidean distances or other metrics. As a gesture can be

composed of parts that may appear shifted in the sequence, a typical approach that

is applied to overcome this issue is the estimation of a warping matching better the

sequence. Dynamic Time Warping (DTW) [54] is a well known algorithm often ap-

plied for this purpose. The warping estimated with DTW is expected to improve the

quality of the matching, but clearly increases the computational cost. The advan-

tages, then, may not be relevant in the case of simple trajectories not characterized

by relevant features that may appear temporally shifted. For this reason, we decided

to see on our dataset if the use of the warping can give advantages, estimating its

effect combined with the other different path processing options.
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5.4 Adding fingers’ information

To recognize both coarse gestures characterized by hand motion only and finger

gestures, where specific fingers’ motion is relevant for the correct labeling using a

single method, we extended our simple path comparison approach adding two more

“trajectories” representing the evolution of hand orientation and hand articulation

to the main hand path.

Using only directional vectors, thus being invariant to fingers’ size, we defined a way

to create a trajectory encoding the time evolution of hand parts’ orientation and

another one encoding the time evolution of finger articulation. To compare gestures,

we estimate distances between the palm trajectories as well as differences in the two

additional vectors, obtaining three distance measurements. The final dissimilarity

value is simply obtained by multiplying the three distances.

5.4.1 Orientation evolution distance

Command gestures can be characterized by changes in hand orientation, as in the

case of the “rotation” gestures in the SHREC’17 dataset. The evolution of the

orientation of hand parts can be expressed by the trajectories of a few unit vectors

characterizing it. We choose a few hand keypoints that are assumed to characterize

the gestures of interest and we estimated all the unit vectors of the directions joining

them. These points are index and thumb bases and tips, wrist and palm.

For each unit vector, we stored the three components, creating a time sequence of

vectors. These sequences are compared using a Dynamic Time Warping approach to

take into account the fact that the gesture parts are not necessarily performed with

a pre-defined timing. We call the distance obtained “orientation evolution distance

(OED)”.
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5.4.2 Finger vectors’ distance

To characterize the finger movements related to gestures such as pinch and grab,

independently on hand orientation, we considered angles between selected directions

joining skeletal nodes. In particular, we considered the angles between a selection

of vector directions relate to finger movements, namely: thumb base to thumb tip

direction, index base to index tip direction, wrist to thumb tip direction, wrist to

index tip direction, palm to thumb tip direction, palm to index tip direction, palm

to wrist and normal to palm (indirectly estimated from joints). With 8 directions we

have a time vector of 36 elements that can still be compared with different metrics.

In this case, to cope with possible differences in gesture parts timing, we compare

the vectors using Dynamic Time Warping. We call the distance obtained Finger

Angles Distance (FAD).

The comparison using DTW of vectors with a large number of elements adds, in

this case, a relevant computational complexity. However, as the trajectories can

be encoded with a limited number of samples, as we will see in Section 5.5, this

complexity is still limited. Furthermore, it could be heavily reduced using other

strategies, e.g. dimensionality reduction using PCA or LDA projection.

5.5 Experimental Results

On the two 3D mid-air command gesture datasets described, we performed retrieval

and classification tests comparing the effects of the different options on retrieval

scores and classification accuracy. On the SHREC’17 dataset we could also test the

novel multi-finger gesture recognition approach.

Tests have been implemented with simple Matlab code, available at the web address

https://github.com/giach68/gesturesCodes.

https://github.com/giach68/gesturesCodes
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Center. Scaling Rot. NN FT ST E DCG MAP
Centroid Length No 0,967 0,827 0,919 0,516 0,950 0,846
Centroid Length Yes 0,639 0,494 0,669 0,389 0,732 0,509
Centroid B. Box No 0,905 0,686 0,816 0,467 0,874 0,709
Centroid B. Box Yes 0,583 0,400 0,563 0,340 0,677 0,415
Centroid Max D. No 0,962 0,779 0,882 0,494 0,929 0,805
Centroid Max D. Yes 0,663 0,462 0,630 0,371 0,718 0,476
Origin Length No 0,950 0,794 0,905 0,510 0,939 0,822
Origin Length Yes 0,639 0,494 0,669 0,389 0,732 0,509
Origin B. Box No 0,905 0,686 0,816 0,467 0,874 0,709
Origin B. Box Yes 0,583 0,400 0,563 0,340 0,677 0,415
Origin Max D. No 0,938 0,771 0,889 0,503 0,931 0,804
Origin Max D. Yes 0,663 0,462 0,630 0,371 0,718 0,476

Table 5.1: Retrieval scores obtained on the new 26-gesture dataset using the different
methods to perform geometrical registration of gestures before estimating distances.
Bold fonts indicate best results.

5.5.1 Novel 26-gesture dataset

To evaluate the different gesture distance estimation options on the novel 26-gestures

dataset we first designed a classical retrieval task. For each for each example item

taken from the dataset, we “retrieve” the list of the other items sorted by the cho-

sen distance and check if they are relevant for the query (e.g. have the same label).

Results are good if the relevant items are retrieved first. Different metrics have been

developed for measuring retrieval performances; in our case, as each class has a fixed

number of instances (13), we could use the set of retrieval scores typically used in

3D shape retrieval works (and often used in the evaluation of Eurographics SHape

REtrieval Contests). These scores are Nearest Neighbor (NN), e.g the percentage

of the queries with the first retrieved item of the same class of the query, First Tier

(FT), e.g. the average over the queries of the percentage of the first K− 1 retrieved

items where K is the number of instances of each class in the database, and other

indicators of the ability of the method of presenting correct retrievals with high rank

for all the possible queries in the database, e.g. Second Tier (ST), e-measure (E),

Discounted Cumulated Gain (DCG), Mean Average Precision (MAP). Their defini-
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Dist. Sm. Res. NN FT ST E DCG MAP
Eucl. No Length 0,967 0,827 0,919 0,516 0,950 0,846
Eucl. No Time 0,964 0,809 0,903 0,507 0,942 0,828
Eucl. Yes Length 0,970 0,825 0,917 0,512 0,950 0,844
Eucl. Yes Time 0,941 0,620 0,745 0,432 0,866 0,661
Cityb. No Length 0,932 0,627 0,761 0,440 0,869 0,669
Cityb. No Time 0,932 0,615 0,747 0,434 0,863 0,658
Cityb. Yes Length 0,970 0,835 0,925 0,519 0,953 0,853
Cityb. Yes Time 0,964 0,816 0,908 0,510 0,946 0,837
DTW No Length 0,970 0,830 0,921 0,516 0,953 0,851
DTW No Time 0,941 0,623 0,748 0,434 0,868 0,664
DTW Yes Length 0,932 0,628 0,764 0,441 0,871 0,672
DTW Yes Time 0,932 0,618 0,749 0,434 0,864 0,660

Table 5.2: Retrieval scores obtained on the new 26-gesture dataset using the different
options for distance function, smoothing and resampling of the trajectory. Bold fonts
indicate best results.

tions can be found in [30]. Another visual indicator of the retrieval performances

is the precision-recall plot representing the fraction of retrieved documents that are

relevant to the query (precision), versus the number of correct results divided by

the number of results that should have been returned (recall).

In our first retrieval test, we fixed the gesture resampling to 40 points equally spaced

in the arc length parametrization and compared the trajectories using the different

options related to the spatial alignment and scaling of the gestures.

Values reported in Table 5.1 and the Precision-Recall plots in 5.5.1 show that the

best option for the task is to avoid trajectory rotation and scaling to a reference

trajectory length. We called the method based on this option “3 cent” gesture

recognizer, as it is actually simpler than the “3 dollar” method but much more

suitable for this retrieval/recognition task. “3 cent” results are quite close to the

perfect retrieval of all relevant gestures among the first 12 retrieved. Note that other

spatial transforms of the gestures reported in the table are similar to those used in

the “3 dollar” method and Protractor 3D (bounding box scaling and rotation) and

provide relevantly lower scores. The bounding box-based scaling may work well
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for 2D touchscreens but introduces distortions that here make results bad. The

use of orientation matching removes a relevant source of information, that may be

recovered only adding different orientation-related features to the descriptor.

Fixed the “3 cent” spatial registration options, it is interesting to see if different pre-

processing and different point sequence comparison metrics can improve the retrieval

and classification accuracies. Table 5.2 shows the retrieval scores corresponding to

the different choices proposed in Section 5.3.

A local regression based smoothing [24] applied to the time sequences seems not

necessary for this dataset, as the acquisition noise is not too high.

The fact that gesture resampling at a constant arc length step instead of at constant

time step provides better results indicates that the geometry of the shape is here

the most discriminative feature, as expected.

Differences between Euclidean and city-block distances are actually negligible. The

fact that Dynamic Time Warping (with Euclidean distance) does not give any ad-

vantage is probably the most important result, as it demonstrates that this kind of

gestures is more characterized by its global behavior rather than on occurrence of

local features and, more important, means that we can perform gesture comparison

with negligible computational effort.

On the same data, we also tested a simple classification task, similar to that reported

in [37], simulating the typical example-based recognizer training.

We selected randomly 5 users as training set and applied a simple Nearest Neighbor

classifier to assign labels to the remaining test set including all the gestures of the

other 8 subjects. Results are shown in Tables and 5.3 and 5.4. In this case as well,

the “3 cent” options provide the best results, making the potential recognizer quite

accurate, and sampling at constant arc length steps gives the better accuracy. In

this experiment we presented also the average time required by the NN labeling, that
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is actually negligible for the “3 cent” options, even if performed with non-optimized

Matlab code. This makes the method suitable also to be applied with a sliding

window or multiscale approaches for online gesture detection and recognition.

Figure 5.3: Precision vs. Recall plot for the gesture retrieval task on the 26-gestures
dataset using selected combinations of spatial registration options of the gestures to
be compared. (*) indicates the combination used in our “3 cent” method [18], while
the combination labeled with (**) corresponds to the options used in the Protractor
3D method [37].

5.5.2 SHREC’ 2017 dataset

The dataset is designed for a classification task with training and test sets already

separated and a number of examples per label that is not uniform. We, therefore,

performed on it classification tests only, first extracting from the data only the subset

of 9 “coarse” gestures, not characterized by finger movements, and then working on

the full dataset.

In the first experiment, we selected test gestures from the “coarse” classes only and

performed the classification tests labeling them with a Nearest Neighbor rule given

the instances of the same classes in the provided training set.
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As in the case presented in Section 5.5.1, we first evaluated the effect of different

options for spatial transform options for gesture alignment, keeping fixed the tra-

jectory resampling (40 equally spaced points) and trajectory distance estimation

metric (Euclidean, without warping).

The results obtained (see Table 5.5) reveals, in this case as well, that the “3 cent”

options are clearly those providing the best performances. Note that classification

times are here higher than in the 26-gesture case due to the larger number of exam-

ples in the training set used in the nearest neighbor algorithm, but it is still quite

small.

Looking at the resampling, smoothing and trajectory comparison metrics options,

we found a different outcome with respect to the 26-classes dataset: in this case, in

fact, resampling with fixed time step provided better results. The reason for this

difference is probably the fact that, while in the first dataset users were instructed

to draw a well-defined trajectory that was the only relevant information included

in the gesture, in this case, some gestures (e.g. grab, pinch) are characterized by a

sequence of stationary and moving parts that are better captured by a time-based

resampling. The choice of the resampling method should be therefore adapted to

the features of the gesture dictionary to be created.

5.5.3 Multi-finger gestures recognition

The fact that the “3 cent” comparison is actually effective in gesture difference char-

acterization appears manifest by looking at its performances on the full SHREC’17

dataset (14 labels). The average classification accuracy is 73.6% using the palm tra-

jectory only, not too far from those obtained with a complex encoding of multiple

finger joints (see Table 5.7).

Of course, looking at the confusion matrix (Figure 5.4), it is possible to see that,
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Center. Scaling Rot. NN Time (s.)
Centroid Length No 0,969 0,0007
Centroid Length Yes 0,638 0,0212
Centroid B. Box No 0,869 0,0006
Centroid B. Box Yes 0,515 0,0215
Centroid Max D. No 0,931 0,0006
Centroid Max D. Yes 0,600 0,0216
Origin Length No 0,962 0,0006
Origin Length Yes 0,638 0,0214
Origin B. Box No 0,869 0,0006
Origin B. Box Yes 0,515 0,0215
Origin Max D. No 0,962 0,0006
Origin Max D. Yes 0,600 0,0214

Table 5.3: Classification results on the 26 gestures dataset using the “3 cent” options
and the other tested options for centering, scaling and rotation. Bold fonts indicate
best results.

obviously, the palm trajectory is not effective for some “fine” gestures (classes 3-

6), but the method actually outperforms the contest’s winner for 5 gesture classes

(swipe right, swipe left, swipe x, swipe +, shake), and works well also for a gesture

considered “fine” as grab.

Adding the two-finger gestures characterization methods introduced in Section 5.4,

e.g. orientation evolution distance (OED) and finger angles distance (FAD), we can

obtain an average classification accuracy higher than those obtained by contest or-

ganizers and other participants, without using complex feature encoding, but still

relying on simple trajectory distances (Table 5.7). The confusion matrix shows a

good recognition accuracy for all the classes (Figure 5.5). The other methods com-

pared in the contest were based on full hand skeleton encoding with Fisher Vectors

plus directional information and linear Support Vector Machine based supervised

labelling (SDG [26]), Joint Angles and HOG2 features using also depth map infor-

mation (JA+HOG2[50]), CNN applied to depth sequences (Keyframes CNN, [58]),

Histograms of oriented 4D normals (HON 4D, [51]) and another skeleton based

method analyzing trajectories on the Riemannian Manifold (TRM, [27]). The fact

that a straightforward method as the one we propose outperforms all these tech-
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Distance Smooth. Res. NN Time (s.)
Euclidean No Length 0,969 0,0007
Euclidean No Time 0,938 0,0006
Euclidean Yes Length 0,969 0,0006
Euclidean Yes Time 0,938 0,0006
City Block No Length 0,962 0,0006
City Block No Time 0,915 0,0006
City Block Yes Length 0,969 0,0006
City Block Yes Time 0,915 0,0006

DTW No Length 0,969 0,0077
DTW No Time 0,931 0,0064
DTW Yes Length 0,969 0,0063
DTW Yes Time 0,931 0,0063

Table 5.4: Classification results on the 26 gestures dataset using “3 cent” spatial
transform options and different choices for distance metric, smoothing and trajectory
resampling. Bold fonts indicate best results.

niques, probably indicates that for short gestures of this kind it is not necessary to

rely on advanced feature encoding methods that are successful on the long and com-

plex skeletal paths processed in action recognition applications, and that the small

amount of training data makes the use of neural networks not necessarily beneficial.

This outcome can be exploited to create effective ways to design custom interfaces

for different tasks without the need for training advanced classifiers, but just giving

a few examples of the desired gestures.

The only weakness of the method appears the use of the DTW approach adding

computational complexity, but, as we will show in Section 5.5.4, this issue is strongly

reduced by trajectory subsampling making the method suitable for online recognition

even without algorithms’ optimization.

5.5.4 Subsampling and Recognition of Incomplete Gestures

As shown in the 2D case [63], the dollar recognizer family is rather robust against

point subsampling. Figures 5.6 and 5.7 show that the classification accuracies on the

26-gestures and on the 9-gestures reduced SHREC’17 tests are practically unchanged
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Center. Scaling Rot. NN Time (s.)
Centroid Length No 0,904 0,0075
Centroid Length Yes 0,522 0,2073
Centroid B. Box No 0,764 0,0077
Centroid B. Box Yes 0,419 0,2089
Centroid Max D. No 0,863 0,0079
Centroid Max D. Yes 0,467 0,2096
Origin Length No 0,876 0,0076
Origin Length Yes 0,522 0,2088
Origin B. Box No 0,764 0,0076
Origin B. Box Yes 0,419 0,2087
Origin Max D. No 0,840 0,0076
Origin Max D. Yes 0,467 0,2086

Table 5.5: Classification results on the 9 “coarse” gestures of the SHREC’17 dataset
using “3 cent” normalization and different options for distance metric, smoothing
and trajectory resampling. Bold fonts indicate best results.

reducing the sampling up to 10 equally spaced points and are still reasonable even

using only three points.

This behavior is maintained also for finger-based gestures, where the accuracy is

practically unchanged and this fact is rather important as the subsampling does

heavily reduce the recognition time, that would be, in this case, higher due to the

use of the DTW distance. With 10 points the average Nearest Neighbor classification

time is, in fact, 178 ms. This speed-up, that can also be combined with many other

optimizations (use of an efficient compiled code, NN algorithm simplification, etc.)

makes the method suitable for online applications.

An even more interesting fact is that, if we try to only match the first part of the

performed gesture, the recognition performances are still quite close to the ones

obtained with the full trajectories. This is demonstrated in Figure 5.8: the classi-

fication accuracy on the 26-gesture dataset is practically unchanged if the match is

done on the first 60% of the gesture length (see Figure 5.6). The fact we can predict

the gesture completion from a very partial execution can be exploited to improve

the efficiency and decrease the latency of systems’ feedback and may enable the
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Distance Smooth. Res. NN Time (s.)
Euclidean No Length 0,904 0,0075
Euclidean No Time 0,925 0,0076
Euclidean Yes Length 0,915 0,0076
Euclidean Yes Time 0,909 0,0077
City Block No Length 0,902 0,0077
City Block No Time 0,922 0,0077
City Block Yes Length 0,911 0,0077
City Block Yes Time 0,899 0,0076

DTW No Length 0,901 0,0616
DTW No Time 0,925 0,0613
DTW Yes Length 0,904 0,0615
DTW Yes Time 0,904 0,0614

Table 5.6: Classification results on the 9 “coarse” gestures of the SHREC’17 dataset
using “3 cent” normalization and different options for distance metric, smoothing
and trajectory resampling. Bold fonts indicate best results.

Accuracy
3 cent 73.6
3 cent + OED 86.1
3 cent + FAD 81.2
3 cent + OED+FAD 89.52
SDG [26] 88.24
JA+HOG2 [50] 83.85
Keyframes CNN [58] 82.90
TRM [27] 79.61
HON 4D [51] 78.53

Table 5.7: Classification accuracy with 3 cent and 3 cent plus orientation and fin-
gers descriptors compared with the state of the art on the SHREC’17 14-classes
classification task. Bold fonts indicate best results.

design of visual feedback mechanisms suggesting gesture completion from already

performed trajectories, as suggested in [29].

The robustness to partiality is lower in the case of finger gestures (Figure 5.9), even

if, also in this case, we can reasonably predict the correct gesture with only 60−80%

of the trajectory.

This is reasonable as many gestures are characterized by different finger movements

executed near the end and cannot be determined too early.
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Figure 5.4: Confusion matrix for the 14-classes SHREC’17 dataset using “3 cent”
Nearest Neighbor classification.

5.6 Discussion

Our experiments demonstrate that simple trajectory distances can be effectively

applied for command gesture recognition tasks.

Avoiding orientation matching and using length based rescaling and Euclidean or

city-block distances of sampled points, it is possible to obtain a reliable gesture

distance measure that is effective for Nearest Neighbor based gesture trajectory

classification. Using a similar approach to compare finger movement it is possible

to obtain good performances in the classification of command gestures where both

hand trajectory and finger movements determine the semantic labeling.

This simple approach can be extremely powerful for interface design, as it allows

the creation of design tools where novel interface gestures can be added immediately

giving a limited number of examples without the need of further training procedures.

Our experimental results provide also some guidelines for the design of these tools,

e.g.:
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Figure 5.5: Confusion matrix for the 14-classes SHREC’17 dataset using 3 cent +
OED + FAD Nearest Neighbor classification.

• If we want to recognize a set of gestures characterized by hand motion only, we

can rely on arc length-based resampling and Euclidean or city-block distance.

• If we want to recognize gestures with coordination of hand motion and finger

gestures, it is probably better to resample trajectories based on time and use

the finger related features compared using DTW. In order to speed up DTW

estimation, we can subsample the trajectories to a quite low number of samples

still having good results.

The major issue left unsolved in order to obtain an efficient and reliable online ges-

ture recognizer is related to gesture segmentation or detection in tracked sequences.

In some potential real-world applications, it may be not necessary, as it is also pos-

sible that the user could signal the gesture start clicking on tracked devices or with

a different procedure. In any case, the efficiency of the algorithm suggests that

approaches similar to those already proposed for the task [64, 70] could allow the

creation of a reliable online gesture recognizer.
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Figure 5.6: The accuracy of Nearest Neighbor classification on the 26 gestures
dataset with the “3 cent” options is practically unchanged when trajectories are
downsampled to 10 points only.

The main limitation of the method is related to the fact that the simple point-to-

point trajectory comparison works well with short gestures with a small number of

features, but would not probably scale well to long single or multiple trajectories,

as required by different application domains (e.g. action recognition, sign language

decoding).
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Figure 5.7: The accuracy of Nearest Neighbor classification of the 14 gestures from
the SHREC’17 database with the “3 cent + OED + FAD” options is practically
unchanged when trajectories are downsampled to 10 points only. The time required
for the labeling is strongly decreased with the subsampling due to the use of the
DTW approach for finger-derived trajectories’ comparison (red line).

Figure 5.8: Accuracy in 3 cent/NN classification on the 26 gestures database is
practically unchanged if gestures are truncated at 60% of the trajectory length and
it’s only 10 % lower, compared to the full gesture, after just 20%.



88 Chapter 5. Gesture Recognition

Figure 5.9: Accuracy in 3 cent/NN classification on the 14 gestures SHREC’17
database decreases slowly and it still high after 60%, but drops rapidly with less
than half gesture.
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Conclusion

6.1 Overall Results Discussion

6.1.1 Manipulation Results

We started our research on manipulation techniques with the idea of identifying

and tackling critical issues emerging from both our evaluation experiments and the

literature. Our first evaluation results (Section 2.2) complied with our first two

Hypothesis H1 and H2, in fact, the Handlebar and the Finger-Point techniques

implemented in the test had the highest scores, both being the only ones in the

experiment to exploit positional tracking to enable the rotation action and both

differentiating from the others in the rotation sub-task performance. Surely the

nature of the test wasn’t completely unbiased considering the task. Users were in fact

encouraged to split the docking operation in two separate actions (i.e. translation

first and then rotation) due to the visual feedback confirming sub-task completion

being provided in a specific order. By comparing the performances of the two sub-

tasks, however, the difference between rotation and translation, for the techniques

mapping 1:1 the hand orientation to the object orientation, was unquestionable.

89
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Despite not being an exhaustive proof, the overall outcome of the experiment was,

nonetheless, a strong enough hint to believe the Hypothesis H1 and H2 were valid.

With the next works we tried to design techniques starting from H1 and H2 to confirm

our previous results and aimed to explore the possibility of a viable single-handed

manipulation technique and formulated our Hypothesis H3. While the Finger-Point

behaved really well in our tests it occurred to us that the technique could be limited

in scenarios with multiple objects since the gesture-recognition based activation of

the rotation (i.e. the pointing finger) doesn’t have a reliable mechanism of selection.

The Knob was designed to have a more direct manipulation feeling but the results

were not exceptional in our experiment, overall performing worse than the reference

technique (i.e. the Handlebar). Nonetheless, the work provided enough insights, on

the one-handed manipulation issue and the goals we set when designing the Knob,

to point us in the direction of a new technique: the Smart Pin. With this novel

technique we introduced a widget with the idea of streamlining all the manipulation

action with the same grab-release mechanism at different spots on the pin (i.e.

the colored caps) while being consistent with all our previous findings that gave

promising results. In this case, the H3 was verified, in fact, while in terms of sheer

performance the Smart Pin and the Handlebar were even, the UX was significantly

positively leaning in favor of the Smart Pin. We do believe that the same results or

even better ones can be achieved by using the design choices that we used to develop

this technique as a basis for new ones.

6.1.2 Gesture Recognition Results

The idea behind this branch of our research was to eventually provide a viable

addition to manipulation techniques to possibly enhance the interaction potential in

IVEs and prove our Hypothesis H5. Therefore we first formulated Hypothesis H4 as

a non-strict but certainly convenient requirement. The results of our experiments
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reported in our work described in 5 strongly proved that good accuracy results in

gesture recognition can be achieved, computationally speaking, relatively easily. The

3cent method gave complying results on two datasets featuring different gestures

and exceeded our expectation by performing at the same level even with partial

information. While to this point we couldn’t verify H5, this last result definitely

looks very promising. In fact, the concern about integrating such a system in a

real-time application is the potential excessive time needed to recognize a gesture

(e.g. the full length of the gesture motion) that could compromise the UX. By being

able to feed the algorithm only partial information and still achieve a high score of

accuracy we are confident that this issue can be overcome.

6.2 Future Work

About object manipulation, there is a number of things that we are looking forward

to include in our future research. Given the results of the Smart Pin we are positive

that a new manipulation technique could take the single-handed kind even further

by surpassing successful bimanual techniques, such as the Handlebar, also in per-

formance. Another thing that we are currently working on is the improvement of

the “release accuracy” partially described in subsection 3.1. Besides possible visual

feedbacks to help the user compensate for the displacement error we are looking

into implementing correction algorithms with different strategies, ranging from sim-

ple heuristics to regression methods, in order to automate the position adjustment

as seamlessly as possible.

As stated in 6.1.2 our hypothesis H5 was not yet verified. We are looking for-

ward to do so in our next works. One of the long-term goals of this research is to

validate all our theoretical findings on an application featuring both single-handed

mid-air manipulation techniques and gesture recognition methods to enable gestural

commands. About this, we are currently developing a virtual environment editor
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featuring manipulation and editing options on 3D models, menus and soon to be

implemented navigation techniques. The application is being built to easily provide

tools for performance comparisons between interaction techniques but also hardware

setups.

About the gesture recognition, we are in the early stages of development of a new

algorithm based on neural networks. Our goal is to build an efficient and robust

recognition system to implement a reliable gestural interface, able to detect gestures

in real time from 3D hands trajectories. This interface will be later implemented

and tested in some real Augmented Reality applications.
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