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Tremendous effort has been expended over the past two and a half decades to under-
stand many aspects of camelid heavy chain antibodies, from their biology, evolution, 
and immunogenetics to their potential applications in various fields of research and 
medicine. In this article, I present a historical perspective on the development of camelid 
single-domain antibodies (sdAbs or VHHs, also widely known as nanobodies) since their 
discovery and discuss the advantages and disadvantages of these unique molecules 
in various areas of research, industry, and medicine. Commercialization of camelid 
sdAbs exploded in 2001 with a flurry of patents issued to the Vrije Universiteit Brussel 
(VUB) and later taken on by the Vlaams Interuniversitair Instituut voor Biotechnologie 
(VIB) and, after 2002, the VIB-founded spin-off company, Ablynx. While entrepreneurial 
spirit has certainly catalyzed the exploration of nanobodies as marketable products, 
IP restrictions may be partially responsible for the relatively long time span between 
the discovery of these biomolecules and their entry into the pharmaceutical market. It 
is now anticipated that the first VHH-based antibody drug, Caplacizumab, a bivalent 
anti-vWF antibody for treating rare blood clotting disorders, may be approved and 
commercialized in 2018 or shortly thereafter. This elusive first approval, along with the 
expiry of key patents, may substantially alter the scientific and biomedical landscape 
surrounding camelid sdAbs and pave the way for their emergence as mainstream 
biotherapeutics.

Keywords: camelid single-domain antibody, heavy chain antibody, vHH, nanobody, antibody engineering, 
therapeutic antibody

iNtrODUctiON

The canonical view of antibodies as molecules composed of two heavy chains and two light chains 
was forever changed one day in 1989 following analysis of total and fractionated immunoglobulin 
G (IgG) molecules in the serum of a dromedary camel in the laboratory of Professor Raymond 
Hamers at the Vrije Universiteit Brussel (VUB). The serendipitous discovery of antibodies lacking a 
light chain [heavy chain-only antibodies (HCAbs)] occurred as part of a student-run project aimed 
at developing a serodiagnostic test for trypanosome infection in camels and water buffalos. The pre-
liminary data showed that besides conventional IgG1 (MW ~150 kDa), two other immunoglobulin 
fractions (thereafter called IgG2 and IgG3; MW ~90 kDa) were present which contributed up to 
75% of all serum IgGs (1–3). Comparative studies on the sera of new world camelids (Lama glama 
and Lama pacos) subsequently confirmed the presence of HCAbs, albeit at concentrations between 
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30 and 50% (1, 4–8). Following these exciting findings, it became 
essential to analyze the antigen-binding properties of these IgG 
fractions since the presence of truncated forms of heavy chain 
antibodies with no light chains, classically described as “heavy 
chain disease,” had been reported in human patients (9, 10). No 
functional activity was reported for the pathogenic heavy chain 
antibodies in these patients, as these proteins were shown to 
bear extensive internal deletions in the variable (VH) and the 
first constant region (CH1) domains. By contrast, antibodies 
from camelids exposed to Trypanosoma evansi demonstrated 
strong binding activity in the IgG2 and IgG3 heavy chain-only 
fractions as shown by radio-immunoprecipitation and blotting 
experiments (1).

In two subsequent reports, phage-display technology and 
high-resolution crystallography were utilized to (a) build a 
phage-display library from the lymphocytes of immunized 
camels and isolate monomeric antigen-specific VHH domains 
in the absence of the constant regions (11) and (b) solve crystal 
structures of an unliganded VHH (12) and a VHH:lysozyme 
complex, reported simultaneously by the VUB team and a 
Dutch–French research group (13). The term VHH was originally 
introduced by the VUB team in 1994 to indicate a VH domain 
derived from camelid heavy chain antibodies. The feasibility of 
isolating stable and soluble VHH domains with nanomolar affini-
ties against lysozyme and tetanus toxoid showed very early on 
the promise of these molecules as high-affinity binding moieties. 
Crystallography studies revealed additional salient features of an 
anti-lysozyme VHH, including deep penetration of its long third 
complementarity-determining region (CDR3) into the active site 
of the enzyme; this feature had rarely been seen with conventional 
antibodies and required a fundamental deviation from known 
human canonical CDR1 structure (13). Further evidence of the 
unique antigen recognition behavior of VHH domains (including 
enzyme inhibition) was published over the next several years 
(11, 14, 15), suggesting that VHHs might probe different sets of 
epitopes on proteins compared with conventional antibodies. 
Key proof of concept for producing bivalent/bispecific VHH 
modalities via genetic fusion (using camelid short and long hinge 
sequences) of anti-lyzozyme and/or anti-tetanus toxin VHHs was 
also established very early on (14).

MOLecULAr ONtOGeNY OF cAMeLiD 
HcAbs

Molecular biology techniques were subsequently applied to 
decipher the DNA sequences of HCAbs. The sequencing results 
showed that nature had designed HCAbs as an additional arm 
of the immune systems of camelid ungulates over the course 
of their evolutionary history. The consensus of these studies 
suggested camelid HCAbs possessed: (a) no CH1 domain, and 
therefore, a direct connection of the rearranged VHH exon to the 
hinge region; (b) one of two types of long (IgG2) and short (IgG3) 
hinge isotypes; (c) specific conserved amino acid substitutions 
in framework region 2 (FR2), mainly at VH positions that make 
contact with the VL in classical antibodies, including Kabat 
positions 37, 44, 45, and 47; and (d) potentially different CDR3 

amino acid composition and a broader length distribution for 
CDR3 compared to the heavy chains of conventional antibodies 
(1, 16, 17).

Later genomic studies shed light on the origin of HCAbs in 
dromedary camels and alpacas. It is now established that HCAbs 
are produced from the same igh locus as conventional antibodies 
but with distinct sets of genes for the generation of HCAbs. It 
is estimated that alpaca and dromedary genomes contain ~17 
and ~40 VHH genes, respectively, with an identical organization 
of the genes that produce conventional antibodies (18, 19). 
The CH1 exon is present in the genomic DNA of HCAbs but a 
point mutation (G to A) at the 5′ end of the CH1-hinge intron 
disrupts the consensus splicing site (GT) and causes omission of 
this region during splicing (3, 18, 20–22). A complete picture of 
camelid germline V gene repertoires of heavy and light chains 
and the classification of VH and VHH genes is still missing. 
Published genomic and cDNA data have so far shown that 
camelid VHH genes are highly homologous to the human VH3 
family of clan III with the exception of several key amino acid 
substitutions in FR2, namely, Val37 → Phe/Tyr, Gly44 → Glu, 
Leu45  →  Arg, and Trp47  →  Gly (Kabat numbering), and are 
encoded by a distinct subset of germline V genes. Preliminary 
investigations of published llama VHH sequences classified them 
into four subfamilies by sequence similarity, and many of the 
earliest-described VHH features such as long CDR3s, additional 
disulfide bridges, and particular canonical structures of CDR1–3 
were shown to be subfamily specific (17, 23). Subsequent studies 
in alpaca identified at least three V gene subgroups of the alpaca 
igh locus: IGHV1, IGHV2, and IGHV3 which are equivalent to 
the human IGHV families within clan I (VH families 2, 4, 6), II 
(VH families 1, 5, 7), and III (VH family 3), respectively, based 
on sequence homology. The alpaca VHH genes clustered into six 
subsets by sequence similarity, but all are homologous to human 
IGHV3 genes (18). Furthermore, recent investigations have 
demonstrated the presence of genes belonging to IGHV families 
1, 3, and 4 (human clan I and III) in llama and alpaca, and in 
addition, uncovered new camelid V genes highly homologous to 
the human IGHV5 and IGHV7 families (human clan II); how-
ever, no genes similar to human families 2 or 6 (within human 
clan I) were found (24). Interestingly, a novel promiscuous class 
of V genes in camelids was identified that is closely related to the 
human VH4 family (clan I). These VH4 homologs contribute 
largely to the classical antibody repertoire and lack the hallmark 
solubilizing VHH residues in FR2. Nevertheless, antigen-specific 
VH4-family fragments with VHH-like stability and solubility 
were isolated from an immune llama library (25). In the absence 
of a complete set of camelid germline VH and VHH genes, most 
immunogenetic studies have relied on comparisons with human 
germline genes.

The consensus of immunogenetic studies of camelid HCAbs 
is that repertoire diversification of these molecules may involve 
(a) a large number of unique VHH gene segments recombining 
with DH and JH minigenes, possibly with additional non-
templated nucleotide insertions leading to longer CDR3 loops; 
(b) somatic hypermutation, potentially of extended CDR1 
regions compared with conventional antibodies; (c) acquisition  
of non-canonical cysteine residues in the CDRs and FR2; and 
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FiGUre 1 | Chronological timeline of major scientific developments in the field of antibody engineering since the discovery of monoclonal antibodies (mAbs) in 1975 
leading to the regulatory approval of mAbs, antigen-binding fragments (Fabs) and scFvs as therapeutics. Developments for mAbs are shown in orange and 
developments of VHHs/heavy chain-only antibodies (HCAbs) in green. Regulatory approval of the first VHH-based antibody drug is expected in 2018.
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(d) involvement of FR2 residues in antigen binding and in 
structuring the CDR3 loop (3, 22, 26, 27). In agreement with 
immunogenetic analyses, several structural studies have sug-
gested that due to the loss of VL domains, VHH paratopes have 
acquired a higher structural complexity by involving more 
residues in antigen binding compared to classical VHs (27). As 
for the evolutionary origin of HCAbs, it is difficult to draw solid 
conclusions but several hypotheses have been proposed. A com-
mon theme among most of these has been the need for generat-
ing or expanding a new antigen-binding repertoire in Camelidae 
to address certain antigenic challenges, e.g., cryptic epitopes of 
commonly encountered pathogens. Phylogenetic analyses have 
confirmed that HCAbs diverged from conventional antibodies 
as a result of recent adaptive changes (22, 27–29).

HistOrY OF tHe DeveLOPMeNt OF 
cAMeLiD siNGLe-DOMAiN ANtiBODies 
(sdAbs) As tHerAPeUtics

Prior to the discovery of HCAbs, a single report describing the 
concept of sdAbs was published by Sally Ward and colleagues 
in 1989 (30), when they showed that VH domains from an 
immunized mouse, in the absence of a VL domain, could 
bind specifically to lysozyme and keyhole limpet hemocyanin. 
However, poor VH domain stability and solubility, as well as weak 
antigen-binding affinity compared to its fragment variable region 
counterpart (Fv) or to the parent antibody, were major impedi-
ments to any commercial applications (Figure 1).

From a historical perspective, development of camelid 
VHHs as drugs has gone through three major phases. The first 
10 years (1993–2003) can be classified as the exploratory phase, 

which coincided with the founding of Ablynx in December 
2001 as a spin-off company from the Vlaams Interuniversitair 
Instituut voor Biotechnologie. The main developments in the 
first decade included: (i) the first description of VHHs (1); (ii) 
sequence analyses of VHHs with identification of VHH germline 
gene segments and classification of VHH gene subfamilies (16, 
20, 23); (iii) adaptation of phage-display technology to VHHs 
(11) and isolation of antigen-specific VHHs, including several 
enzyme inhibitors (12, 15); (iv) solving the crystal structure of 
several VHH:antigen complexes (13, 31–34); (v) development of 
methods for expression of VHHs in bacteria and yeast systems 
and for biophysical characterization of VHHs (35, 36); and (vi) 
the use of VHHs as reagents in immunoaffinity purification and 
immuno-perfusion (37).

During the second phase of development (2003–2013), VHHs 
began to receive more attention and publications in this area grew 
dramatically, surpassing 1,000 by 2013 [Ref. (38) and personal 
investigation on Web of Science]. Interestingly, a large and diverse 
group of countries and institutions (close to 50) were responsible 
for research on camelid VHHs during this time, mainly for the 
purpose of exploring their potential applications in research, 
biotechnology, and medicine (38). The major hallmark of this 
decade was the start of preclinical and clinical studies of several 
nanobodies by Ablynx and others as therapeutics and imaging 
reagents (39, 40), including VHHs against (i) blood glycoprotein 
vWF to control platelet aggregation and clot formation; (ii) viral 
infection (RSV); (iii) venom toxins; (iv) IL6-R for treatment of 
rheumatoid arthritis; and (v) the use of radiolabeled nanobod-
ies for Her2+ tumor imaging. There were major technological 
advancements made in the expression of VHHs in heterologous 
systems and in creating an array of bi- and multivalent VHHs with 
superior efficacy during this decade.
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Now in the third phase of development (2014–present), 
publications continue to grow and more VHHs have entered into 
clinical trials or advanced closer to the market. The main patent 
claims on camelid antibody fragments expired in the summer of 
2014 in Europe and in the summer of 2017 in America. Ablynx 
has expanded its collaborations with large biophama players, 
such as Merck, Boehringer Ingelheim, Sanofi, and so on, with 
more than 20 preclinical and clinical programs. It is expected 
that the first VHH-based drug (Caplacizumab; bivalent anti-vWF 
nanobody for treating rare blood clotting disorders) will reach 
the market sometime in 2018 (www.ablynx.com). Meanwhile, IP 
limitations on the composition of matter of VHHs are diminishing 
and more biotechnology companies (39) are showing interest in 
commercialization of these domain antibodies as therapeutics, 
diagnostics, and research reagents (Figure 1).

cAMeLiD sdAbs: PrOs, cONs, AND 
APPLicAtiONs

Immunization of Camelidae against targets of interest leads to 
the in  vivo maturation of HCAb and conventional antibody 
repertoires. Construction of phage-display libraries is performed 
by cloning of amplified VHH repertoires with minimal modifica-
tion, thus presenting an authentic picture of in  vivo-matured 
heavy chain repertoire diversity. By contrast, in both scFv librar-
ies (requiring the artificial joining of VH and VL domains by a 
synthetic linker) and antigen-binding fragment (Fab) libraries 
derived from conventional antibody repertoires, natural VH–VL 
pairings are usually lost. The potential for direct cloning of VHH 
repertoires from immunized camelids, the smaller library sizes 
required to capture the immune VHH repertoire, the stability 
of the libraries, the feasibility of displaying VHHs on a phage 
or alternative display formats, and the ease of sub-cloning and 
expression of antigen-specific VHHs are among the major techni-
cal advantages of the camelid VHH platform over conventional 
antibody platforms.

Key characteristics of VHHs include their high affinity and 
specificity (equivalent to conventional antibodies), high thermo-
stability, good solubility and strictly monomeric behavior, small 
size (2.5 nm in diameter and about 4 nm in length; ~15 kDa), 
relatively low production cost, ease of genetic engineering, for-
mat flexibility or modularity, low immunogenicity, and a higher 
penetration rate into tissues (3, 41–44). The short half-life of 
VHHs in blood circulation is well suited to certain applications 
such as tumor imaging or delivery of toxin or radioisotopes to 
diseased tissues where rapid clearance is required. However, 
the pharmacokinetic behavior of VHHs can also be improved 
by extending their half-lives using different formatting options, 
including PEGylation or fusion to serum albumin or an anti-
serum albumin moiety (43, 45, 46). The immunogenicity of 
VHHs domains can also be minimized by humanization (47–49). 
As with all antibodies of non-human species origin (and even 
fully human antibodies), immunogenicity and toxicity must be 
investigated empirically for humanized VHHs. A complete pic-
ture of the immunogenicity of non-humanized and humanized 
camelid VHHs is lacking due to insufficient data, but anti-drug 

immune responses may have been a major reason for the clinical 
failure of a humanized tetravalent Nanobody®targeting the DR5 
receptor (50). As of 2016, VHHs have been isolated against more 
than 120 therapeutically important targets relevant to oncology, 
in  vivo imaging, hematology, infectious diseases, neurological, 
and inflammatory disorders, with some in advanced stages of 
clinical trials (39).

One of the unique characteristics of VHHs is their ability 
to target antigenic epitopes at locations which are difficult to 
access by large molecules such as conventional monoclonal 
antibodies (mAbs). Examples include intracellular targets (51, 
52) or epitopes concealed from mAbs in protein structures 
(53), G protein-coupled receptors (54, 55), and ion channels 
(3). VHHs are ideally suited for such applications due to their 
small size, target specificity, and long CDR3 loops, bypassing 
many drawbacks related to small-molecule synthetic drugs such 
as fine specificity and off-target toxicity (56). As “intrabodies,” 
VHHs are also ideally suited for cytosolic expression due to their 
ability to fold in the reducing intracellular environment. This 
feature likely reflects the single disulfide linkage present in the 
VHH domain, as compared to the multi-domain structure and 
multiple disulfide linkages of conventional antibodies, and may 
not be completely general to all VHHs but appears to be quite 
common; intracellular expression of VHHs has been widely and 
productively exploited for in  vivo cellular imaging (5, 57) as 
well as to inhibit the function of viral proteins (58, 59). There 
have been several excellent reviews covering VHH applications 
in different areas of basic and applied research and a detailed 
description of each application is beyond the scope of this article 
(3, 39, 41, 43, 57, 60–65).

VHHs are also well suited in the generation of bi- and multi-
specific antibodies. In the field of antibody therapeutics, it is now 
widely accepted that monotherapy of cancer and other diseases 
may not result in effective outcomes, in particular due to the 
problem of acquired resistance (66, 67). Bispecific antibodies 
provide a possible solution in which they could bind simulta-
neously to a tumor-associated antigen and another activating 
molecule, e.g., CD3 on T  cells, leading to tumor killing/lysis 
through lymphocyte recruitment, or alternatively, could target 
two or more tumor epitopes (bi-paratopic) or antigens simulta-
neously. Bispecific VHHs may be uniquely positioned for these 
applications given their simple design and small size relative 
to other antibody fragments, which may result in better solid 
tumor penetration rates, homogeneous production at high yield 
in microbial systems, and ease of fusion to a heterodimeriza-
tion motif, therefore bypassing issues related to some linker 
peptides such as aggregation and immunogenicity (45, 66, 68, 
69). Interestingly, all of the VHH-based therapeutic candidates 
in clinical trials are composed of bivalent, trivalent, or higher 
valency formats (39). It has been shown that some VHHs, when 
properly selected, are able to transmigrate through human brain 
endothelial cell layers spontaneously and, possibly through 
a receptor-mediated process (70–72); bispecific molecules 
incorporating these VHHs can, thus, deliver attached cargo (e.g., 
therapeutics) into the brain in rodents (73).

Despite the many advantages of VHHs, there are several draw-
backs to be considered as well. The fact that the antigen-binding 
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paratope of camelid HCAbs has been restricted to a single 
domain of about 110 amino acids will automatically put more 
weight on each and every residue in the VHH domain. The 
extended CDR1, longer CDR3, involvement of FR2 in antigen 
binding and shaping the CDR3 loop, the role of the “CDR4” 
(residues 76–80) loop in antigen binding, and extensive somatic 
hypermutation are some of the evolutionary mechanisms 
adapted to compensate repertoire diversity due to the lack of 
a VL domain (3). Therefore, there may be limitations on the 
extent of manipulation and engineering that can be tolerated 
by antigen-specific VHHs. For example, complete humanization 
of camelid VHHs involving the mutation of residues outside the 
antigen-binding loops often drastically compromises antigen-
binding affinity, VHH stability, and the expression yield (unpub-
lished data). A survey of the literature clearly demonstrates that 
almost all VHHs isolated to date have originated from direct 
camelid immunization, or from large naïve camelid libraries, 
although recently, successful isolation of VHHs from synthetic 
or semi-synthetic libraries against a number of protein antigens 
has also been reported (74–77). All available pieces of evidence 
support the notion that the VHH domain is a highly complex 
molecule and that each amino acid (depending on its position) 
may have direct and indirect effects on the molecule’s stability 
and structural integrity, as well as on antigen-binding affinity 
and specificity.

Another limitation of VHHs is their low propensity to bind 
small molecules, likely due to their dominant convex surface 
topology as compared to the flat or concave topologies found on 
conventional antibody fragments (e.g., scFv, Fab). In a number 
of llama immunization trials, we and others have been able to 
generate strong conventional immune responses, but rather 
weak HCAb responses, against several haptens and carbohydrate 
antigens (unpublished data). However, repeated immunization of 
camelids with small molecules conjugated or fused to larger pro-
teins has led to the successful isolation of VHHs against caffeine 
(78), red dye (79), and linear peptides (80, 81) with affinities rang-
ing from micromolar to low nanomolar. The biophysicochemical 
properties of VHHs suggest that they would be well suited to many 
immunodiagnostic platforms for detecting small molecules and 
environmental chemicals; however, isolation of high-affinity 
VHHs suitable for such applications seems to be a difficult task, 
although not impossible (3, 64, 65, 78, 82, 83). Immunization of 
large animals and heterogeneity in immune responses among 
individual outbred animals is another consideration which is 
important when alternative immunization techniques such as 
DNA immunization are applied. DNA immunization has had 
limited success in camelid and other large animals and reproduc-
ibility is often a major issue to be tackled (84–87). To overcome 
this limitation, transgenic mice bearing either a rearranged 
dromedary γ2a chain or hybrid llama/human antibody loci have 
been generated that produce a form of dromedary or human 
heavy chain antibodies (88–90).

cAMeLiD sdAbs versUs mAbs

The first therapeutic mAb, Orthoclone OKT3, a murine IgG2a 
for the prevention of kidney transplant rejection, hit the market 

little more than a decade after the discovery of hydridoma 
technology in 1975 (91–94). Currently, mAbs constitute about 
half of marketed biological products and, as of January 2017, 68 
mAbs have been approved by the Food and Drug Administration 
(FDA) in the USA and/or by the European Medicine Agency 
(EMA) in Europe. The projected global sales of mAbs will be 
close to $100 billion in 2017 (44, 95). The lack of restrictive IP 
on the original technology is considered by many as a driving 
force that allowed researchers to develop effective research 
tools and diagnostic mAb-based reagents without limitation. 
The introduction of antibody fragments, such as Fab and scFv 
(the “second generation” of antibodies), combined with the 
power of phage-display technology in the late 1990s, opened 
new horizons in the world of antibodies and empowered 
researchers with the ability to clone the entire immunoglobulin 
repertoire of mammalian immune B cells and to isolate specific 
antibody fragments virtually against any target (96–98). This 
technology led to the development of the first FDA-approved 
fully human mAb, Humira, which was obtained from a phage-
displayed human antibody library 12  years after the initial 
paper by McCafferty and co-workers on the construction of 
phage-displayed human antibody libraries (99–101). Further 
developments in antibody engineering have so far resulted in 
three FDA-approved therapeutic Fabs (95).

Overwhelming evidence in the literature suggests that 
camelid VHHs, as the so-called “third generation” of antibodies, 
have many added features that supersede those of conventional 
mAbs and antibody fragments (Fab and scFv). Although VHHs 
have already been commercialized for non-medical applica-
tions (63, 102), the research and medical communities eagerly 
await the first VHH-based therapeutic to gain approval. If we 
consider the 9- to 13-year time span between the discovery of 
the key technology enabling conventional mAbs (hybridoma 
technology) and the FDA-approval of a mAb or an antibody 
fragment, a longer time has been required for the development 
of the first VHH-based therapeutic. It is unclear if technical 
challenges, regulatory hurdles, or the need to define a unique 
niche/indication for VHHs, have been involved in the prolonged 
delay of the first VHH-based therapeutic. It is obvious that issues 
related to downstream processing, stability, immunogenic-
ity, toxicity, safety, and potency of a VHH-based therapeutic 
product will be doubly scrutinized by FDA and EMA since it 
would represent the first product of its kind to enter the market. 
The fact that the first potential Ablynx product is an engineered 
bivalent anti-vWF nanobody and is produced in a microbial 
system may have raised additional red flags for the approving 
regulatory bodies.

cONcLUDiNG reMArKs

Over a quarter century has passed since the first observation 
by Hamers and colleagues of camelid HCAbs. This finding was 
a significant milestone in the field of antibody engineering and 
opened many new opportunities and applications. It was also 
instrumental in reviving the concept of sdAbs, which had been 
originally suggested by Ward et al. a few years earlier. The unique 
and extraordinary features of HCAbs and their antigen-binding 
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domains (VHHs) have with no doubt attracted many researchers 
and commercial entities to the field of antibody engineering. VHHs 
are now closer than ever to approval as pharmaceutical drugs to 
fight a wide range of diseases, including cancer, inflammation, 
hematology, and respiratory diseases, with five VHH-based drugs 
in various stages of clinical development. VHHs have also been 
shown to be effective as therapeutics against infectious disease, 
particularly in viral therapy, as well as robust reagents in the field 
of diagnostic and imaging applications. While the commercial 
applications of VHHs have been slowed by IP limitations, it is 
probable that demand, as well as extensive research on these 
antibody domains, will ultimately supersede these limitations and 
bring many more of these molecules into use as biopharmaceuti-
cal reagents within the next decade.

AUtHOr cONtriBUtiONs

MA-G conceived and wrote the manuscript.

AcKNOWLeDGMeNts

The author gratefully acknowledges Greg Hussack, Roger 
MacKenzie, Kevin Henry, and Kristin Kemmerich for reading 
and providing comments on the text.

FUNDiNG

This work was supported by funding from the National Research 
Council Canada.

reFereNces

1. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G,  
Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light 
chains. Nature (1993) 363:446–8. doi:10.1038/363446a0 

2. Wernery U. Camelid immunoglobulins and their importance for the new-
born – a review. J Vet Med B Infect Dis Vet Public Health (2001) 48:561–8. 
doi:10.1111/j.1439-0450.2001.00478.x 

3. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu 
Rev Biochem (2013) 82:775–97. doi:10.1146/annurev-biochem-063011- 
092449 

4. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, 
et al. Induction of immune responses and molecular cloning of the heavy 
chain antibody repertoire of Lama glama. J Immunol Methods (2000) 
240:185–95. doi:10.1016/S0022-1759(00)00188-5 

5. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, et al. 
Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat 
Methods (2006) 3:887–9. doi:10.1038/nmeth953 

6. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (Lama pacos) 
as a convenient source of recombinant camelid heavy chain antibodies 
(VHHs). J Immunol Methods (2007) 324:13–25. doi:10.1016/j.jim.2007. 
04.008 

7. De Simone EA, Saccodossi N, Ferrari A, Leoni J. Development of ELISAs 
for the measurement of IgM and IgG subclasses in sera from llamas (Lama 
glama) and assessment of the humoral immune response against different 
antigens. Vet Immunol Immunopathol (2008) 126:64–73. doi:10.1016/j.
vetimm.2008.06.015 

8. Blanc MR, Anouassi A, Ahmed Abed M, Tsikis G, Canepa S, Labas V, et al. 
A one-step exclusion-binding procedure for the purification of functional 
heavy-chain and mammalian-type gamma-globulins from camelid sera. 
Biotechnol Appl Biochem (2009) 54:207–12. doi:10.1042/BA20090208 

9. Franklin EC, Lowenstein J, Bigelow B, Meltzer M. Heavy chain disease – a 
new disorder of serum gamma-globulins: report of the first case. Am J Med 
(1964) 37:332–50. doi:10.1016/0002-9343(64)90191-3 

10. Alexander A, Steinmetz M, Barritault D, Frangione B, Franklin EC, Hood L, 
et al. gamma heavy chain disease in man: cDNA sequence supports partial 
gene deletion model. Proc Natl Acad Sci U S A (1982) 79:3260–4. doi:10.1073/
pnas.79.10.3260 

11. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. 
Selection and identification of single domain antibody fragments from 
camel heavy-chain antibodies. FEBS Lett (1997) 414:521–6. doi:10.1016/
S0014-5793(97)01062-4 

12. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, et al. The 
crystal structure of a llama heavy chain variable domain. Nat Struct Biol 
(1996) 3:752–7. doi:10.1038/nsb0996-752 

13. Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F,  
Hamers R, et al. Crystal structure of a camel single-domain VH antibody 
fragment in complex with lysozyme. Nat Struct Biol (1996) 3:803–11. 
doi:10.1038/nsb0996-803 

14. Arbabi Ghahroudi M. Generation and Characterization of Phage-Displayed 
Camel Single-Domain Antibodies [Ph.D. Dissertation]. Brussels (Belgium): 
Vrije Universiteit Brussel (VUB) (1996).

15. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De 
Genst E, et  al. Potent enzyme inhibitors derived from dromedary heavy-
chain antibodies. EMBO J (1998) 17:3512–20. doi:10.1093/emboj/17.13.3512 

16. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. Sequence 
and structure of VH domain from naturally occurring camel heavy chain 
immunoglobulins lacking light chains. Protein Eng (1994) 7:1129–35. 
doi:10.1093/protein/7.9.1129 

17. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama VH 
sequences from conventional and heavy chain antibodies. Mol Immunol 
(1997) 34:1121–31. doi:10.1016/S0161-5890(97)00146-6 

18. Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F. Tetrameric 
and homodimeric camelid IgGs originate from the same IgH locus. J Immunol 
(2008) 181:2001–9. doi:10.4049/jimmunol.181.3.2001 

19. Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain 
antibodies: diverse germline VHH and specific mechanisms enlarge the 
antigen-binding repertoire. EMBO J (2000) 19:921–30. doi:10.1093/
emboj/19.5.921 

20. Nguyen VK, Muyldermans S, Hamers R. The specific variable domain of 
camel heavy-chain antibodies is encoded in the germline. J Mol Biol (1998) 
275:413–8. doi:10.1006/jmbi.1997.1477 

21. De Genst E, Saerens D, Muyldermans S, Conrath K. Antibody reper-
toire development in camelids. Dev Comp Immunol (2006) 30:187–98. 
doi:10.1016/j.dci.2005.06.010 

22. Conrath KE, Wernery U, Muyldermans S, Nguyen VK. Emergence and 
evolution of functional heavy-chain antibodies in Camelidae. Dev Comp 
Immunol (2003) 27:87–103. doi:10.1016/S0145-305X(02)00071-X 

23. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B.  
Llama heavy-chain V regions consist of at least four distinct subfamilies 
revealing novel sequence features. Mol Immunol (2000) 37:579–90. 
doi:10.1016/S0161-5890(00)00081-X 

24. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de 
Jonge N, et  al. Camelid Ig V genes reveal significant human homology 
not seen in therapeutic target genes, providing for a powerful therapeutic 
antibody platform. MAbs (2015) 7:693–706. doi:10.1080/19420862.2015.10
46648 

25. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S.  
A novel promiscuous class of camelid single-domain antibody contributes to 
the antigen-binding repertoire. J Immunol (2010) 184:5696–704. doi:10.4049/
jimmunol.0903722 

26. Muyldermans S. Single domain camel antibodies: current status. J Biotechnol 
(2001) 74:277–302. 

27. Nguyen VK, Su C, Muyldermans S, van der Loo W. Heavy-chain antibodies 
in Camelidae; a case of evolutionary innovation. Immunogenetics (2002) 
54:39–47. doi:10.1007/s00251-002-0433-0 

28. Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA. Application 
of monoclonal antibodies in functional and comparative investigations 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/363446a0
https://doi.org/10.1111/j.1439-0450.2001.00478.x
https://doi.org/10.1146/annurev-biochem-063011-
092449
https://doi.org/10.1146/annurev-biochem-063011-
092449
https://doi.org/10.1016/S0022-1759(00)00188-5
https://doi.org/10.1038/nmeth953
https://doi.org/10.1016/j.jim.2007.
04.008
https://doi.org/10.1016/j.jim.2007.
04.008
https://doi.org/10.1016/j.vetimm.2008.06.015
https://doi.org/10.1016/j.vetimm.2008.06.015
https://doi.org/10.1042/BA20090208
https://doi.org/10.1016/0002-9343(64)90191-3
https://doi.org/10.1073/pnas.79.10.3260
https://doi.org/10.1073/pnas.79.10.3260
https://doi.org/10.1016/S0014-5793(97)01062-4
https://doi.org/10.1016/S0014-5793(97)01062-4
https://doi.org/10.1038/nsb0996-752
https://doi.org/10.1038/nsb0996-803
https://doi.org/10.1093/emboj/17.13.3512
https://doi.org/10.1093/protein/7.9.1129
https://doi.org/10.1016/S0161-5890(97)00146-6
https://doi.org/10.4049/jimmunol.181.3.2001
https://doi.org/10.1093/emboj/19.5.921
https://doi.org/10.1093/emboj/19.5.921
https://doi.org/10.1006/jmbi.1997.1477
https://doi.org/10.1016/j.dci.2005.06.010
https://doi.org/10.1016/S0145-305X(02)00071-X
https://doi.org/10.1016/S0161-5890(00)00081-X
https://doi.org/10.1080/19420862.2015.1046648
https://doi.org/10.1080/19420862.2015.1046648
https://doi.org/10.4049/jimmunol.0903722
https://doi.org/10.4049/jimmunol.0903722
https://doi.org/10.1007/s00251-002-0433-0


7

Arbabi-Ghahroudi Historical Perspective on Camelid sdAbs

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1589

of heavy-chain immunoglobulins in new world camelids. Clin Diagn Lab 
Immunol (2005) 12:380–6. 

29. Flajnik MF, Deschacht N, Muyldermans S. A case of convergence: why did a 
simple alternative to canonical antibodies arise in sharks and camels? PLoS 
Biol (2011) 9:e1001120. doi:10.1371/journal.pbio.1001120 

30. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G. Binding activities 
of a repertoire of single immunoglobulin variable domains secreted from 
Escherichia coli. Nature (1989) 341:544–6. doi:10.1038/341544a0 

31. Spinelli S, Desmyter A, Frenken L, Verrips T, Tegoni M, Cambillau C. 
Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet 
structure. FEBS Lett (2004) 564:35–40. doi:10.1016/S0014-5793(04)00304-7 

32. Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S,  
Wyns L. A single-domain antibody fragment in complex with RNase A: 
non-canonical loop structures and nanomolar affinity using two CDR loops. 
Structure (1999) 7:361–70. doi:10.1016/S0969-2126(99)80049-5 

33. Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, 
et  al. Three camelid VHH domains in complex with porcine pancreatic 
α-amylase: inhibition and versatility of binding topology. J Biol Chem (2002) 
277:23645–50. doi:10.1074/jbc.M202327200 

34. Desmyter A, Decanniere K, Muyldermans S, Wyns L. Antigen specificity and 
high affinity binding provided by one single loop of a camel single-domain 
antibody. J Biol Chem (2001) 276:26285–90. doi:10.1074/jbc.M102107200 

35. Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, 
et al. Thermal unfolding of a llama antibody fragment: a two-state reversible 
process. Biochemistry (2001) 40:74–83. doi:10.1021/bi0009082 

36. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, 
Frenken LG, et al. Single-domain antibody fragments with high conforma-
tional stability. Protein Sci (2002) 11:500–15. doi:10.1110/ps.34602 

37. Verheesen P, ten Haaft MR, Lindner N, Verrips CT, de Haard JJ. Beneficial 
properties of single-domain antibody fragments for application in immu-
noaffinity purification and immuno-perfusion chromatography. Biochim 
Biophys Acta (2003) 1624:21–8. doi:10.1016/j.bbagen.2003.09.006 

38. Eyer L, Hruska K. Single-domain antibody fragments derived from heavy-
chain antibodies: a review. Vet Med (2012) 9:439–513. 

39. Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big 
opportunities for small antibodies. Drug Discov Today (2016) 21:1076–113. 
doi:10.1016/j.drudis.2016.04.003 

40. D’Huyvetter M, Aerts A, Xavier C, Vaneycken I, Devoogdt N, Gijs M, et al. 
Development of 177Lu-nanobodies for radioimmunotherapy of HER2-
positive breast cancer: evaluation of different bifunctional chelators. Contrast 
Media Mol Imaging (2012) 7:254–64. doi:10.1002/cmmi.491 

41. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, et  al. 
Single domain antibodies: promising experimental and therapeutic tools 
in infection and immunity. Med Microbiol Immunol (2009) 198:157–74. 
doi:10.1007/s00430-009-0116-7 

42. Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as 
building blocks for novel therapeutics. Curr Opin Pharmacol (2008) 8:600–8. 
doi:10.1016/j.coph.2008.07.006 

43. Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular 
imaging? Theranostics (2014) 4:386–98. doi:10.7150/thno.8006 

44. Fernandes CFC, Pereira SDS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. 
Camelid single-domain antibodies as an alternative to overcome challenges 
related to the prevention, detection, and control of neglected tropical dis-
eases. Front Immunol (2017) 8:653. doi:10.3389/fimmu.2017.00653 

45. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM. Domain antibod-
ies: proteins for therapy. Trends Biotechnol (2003) 21:484–90. doi:10.1016/j.
tibtech.2003.08.007 

46. Harmsen MM, van Solt CB, Fijten HP, van Keulen L, Rosalia RA, 
Weerdmeester K, et  al. Passive immunization of guinea pigs with llama 
single-domain antibody fragments against foot-and-mouth disease. Vet 
Microbiol (2007) 120:193–206. doi:10.1016/j.vetmic.2006.10.029 

47. Vaneycken I, D’Huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, et al. 
Immuno-imaging using nanobodies. Curr Opin Biotechnol (2011) 22:877–81. 
doi:10.1016/j.copbio.2011.06.009 

48. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C,  
Muyldermans S. Nanobodies and their potential applications. Nanomedicine 
(Lond) (2013) 8:1013–26. doi:10.2217/nnm.13.86 

49. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, 
Conrath K. General strategy to humanize a camelid single-domain antibody 

and identification of a universal humanized nanobody scaffold. J Biol Chem 
(2009) 284:3273–84. doi:10.1074/jbc.M806889200 

50. Papadopoulos KP, Isaacs R, Bilic S, Kentsch K, Huet HA, Hofmann M, et al. 
Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetrava-
lent agonistic Nanobody(R) targeting the DR5 receptor. Cancer Chemother 
Pharmacol (2015) 75:887–95. doi:10.1007/s00280-015-2712-0 

51. McGonigal K, Tanha J, Palazov E, Li S, Gueorguieva-Owens D, Pandey S. 
Isolation and functional characterization of single domain antibody modula-
tors of caspase-3 and apoptosis. Appl Biochem Biotechnol (2009) 157:226–36. 
doi:10.1007/s12010-008-8266-4 

52. Staus DP, Wingler LM, Strachan RT, Rasmussen SG, Pardon E, Ahn S, et al. 
Regulation of β2-adrenergic receptor function by conformationally selective 
single-domain intrabodies. Mol Pharmacol (2014) 85:472–81. doi:10.1124/
mol.113.089516 

53. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L,  
Senter P, et al. Efficient targeting of conserved cryptic epitopes of infectious 
agents by single domain antibodies: African trypanosomes as paradigm. 
J Biol Chem (2004) 279:1256–61. doi:10.1074/jbc.M307341200 

54. Bradley ME, Dombrecht B, Manini J, Willis J, Vlerick D, De Taeye S, 
et  al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic 
nanobodies combining two distinct modes of action. Mol Pharmacol (2015) 
87:251–62. doi:10.1124/mol.114.094821 

55. Manglik A, Kobilka BK, Steyaert J. Nanobodies to study G protein-coupled 
receptor structure and function. Annu Rev Pharmacol Toxicol (2017) 
57:19–37. doi:10.1146/annurev-pharmtox-010716-104710 

56. Baker M. Upping the ante on antibodies. Nat Biotechnol (2005) 23:1065–72. 
doi:10.1038/nbt0905-1065 

57. Beghein E, Gettemans J. Nanobody technology: a versatile toolkit for 
microscopic imaging, protein-protein interaction analysis, and protein 
function exploration. Front Immunol (2017) 8:771. doi:10.3389/fimmu.2017. 
00771 

58. Rossey I, Gilman MS, Kabeche SC, Sedeyn K, Wrapp D, Kanekiyo M, et al. 
Potent single-domain antibodies that arrest respiratory syncytial virus fusion 
protein in its prefusion state. Nat Commun (2017) 8:14158. doi:10.1038/
ncomms14158 

59. Darling TL, Sherwood LJ, Hayhurst A. Intracellular crosslinking of filoviral 
nucleoproteins with Xintrabodies restricts viral packaging. Front Immunol 
(2017) 8:1197. doi:10.3389/fimmu.2017.01197 

60. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single 
domains. Nat Biotechnol (2005) 23:1126–36. doi:10.1038/nbt1142 

61. Vanlandschoot P, Stortelers C, Beirnaert E, Ibanez LI, Schepens B, Depla E, 
et al. Nanobodies(R): new ammunition to battle viruses. Antiviral Res (2011) 
92:389–407. doi:10.1016/j.antiviral.2011.09.002 

62. Unciti-Broceta JD, Del Castillo T, Soriano M, Magez S, Garcia-Salcedo JA. 
Novel therapy based on camelid nanobodies. Ther Deliv (2013) 4:1321–36. 
doi:10.4155/tde.13.87 

63. De Meyer T, Muyldermans S, Depicker A. Nanobody-based products 
as research and diagnostic tools. Trends Biotechnol (2014) 32:263–70. 
doi:10.1016/j.tibtech.2014.03.001 

64. Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies 
and recombinant binders in cell biology. J Cell Biol (2015) 209:633–44. 
doi:10.1083/jcb.201409074 

65. Bever CS, Dong JX, Vasylieva N, Barnych B, Cui Y, Xu ZL, et al. VHH anti-
bodies: emerging reagents for the analysis of environmental chemicals. Anal 
Bioanal Chem (2016) 408:5985–6002. doi:10.1007/s00216-016-9585-x 

66. Li J, Zhu Z. Research and development of next generation of antibody-based 
therapeutics. Acta Pharmacol Sin (2010) 31:1198–207. doi:10.1038/
aps.2010.120 

67. Mazor Y, Sachsenmeier KF, Yang C, Hansen A, Filderman J, Mulgrew K, 
et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody 
binding affinity and format valence. Sci Rep (2017) 7:40098. doi:10.1038/
srep40098 

68. Holliger P, Winter G. Engineering bispecific antibodies. Curr Opin Biotechnol 
(1993) 4:446–9. doi:10.1016/0958-1669(93)90010-T 

69. Rozan C, Cornillon A, Petiard C, Chartier M, Behar G, Boix C, et al. Single-
domain antibody-based and linker-free bispecific antibodies targeting 
FcγRIII induce potent antitumor activity without recruiting regulatory 
T cells. Mol Cancer Ther (2013) 12:1481–91. doi:10.1158/1535-7163.MCT- 
12-1012 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1371/journal.pbio.1001120
https://doi.org/10.1038/341544a0
https://doi.org/10.1016/S0014-5793(04)00304-7
https://doi.org/10.1016/S0969-2126(99)80049-5
https://doi.org/10.1074/jbc.M202327200
https://doi.org/10.1074/jbc.M102107200
https://doi.org/10.1021/bi0009082
https://doi.org/10.1110/ps.34602
https://doi.org/10.1016/j.bbagen.2003.09.006
https://doi.org/10.1016/j.drudis.2016.04.003
https://doi.org/10.1002/cmmi.491
https://doi.org/10.1007/s00430-009-0116-7
https://doi.org/10.1016/j.coph.2008.07.006
https://doi.org/10.7150/thno.8006
https://doi.org/10.3389/fimmu.2017.00653
https://doi.org/10.1016/j.tibtech.2003.08.007
https://doi.org/10.1016/j.tibtech.2003.08.007
https://doi.org/10.1016/j.vetmic.2006.10.029
https://doi.org/10.1016/j.copbio.2011.06.009
https://doi.org/10.2217/nnm.13.86
https://doi.org/10.1074/jbc.M806889200
https://doi.org/10.1007/s00280-015-2712-0
https://doi.org/10.1007/s12010-008-8266-4
https://doi.org/10.1124/mol.113.089516
https://doi.org/10.1124/mol.113.089516
https://doi.org/10.1074/jbc.M307341200
https://doi.org/10.1124/mol.114.094821
https://doi.org/10.1146/annurev-pharmtox-010716-104710
https://doi.org/10.1038/nbt0905-1065
https://doi.org/10.3389/fimmu.2017.
00771
https://doi.org/10.3389/fimmu.2017.
00771
https://doi.org/10.1038/ncomms14158
https://doi.org/10.1038/ncomms14158
https://doi.org/10.3389/fimmu.2017.01197
https://doi.org/10.1038/nbt1142
https://doi.org/10.1016/j.antiviral.2011.09.002
https://doi.org/10.4155/tde.13.87
https://doi.org/10.1016/j.tibtech.2014.03.001
https://doi.org/10.1083/jcb.201409074
https://doi.org/10.1007/s00216-016-9585-x
https://doi.org/10.1038/aps.2010.120
https://doi.org/10.1038/aps.2010.120
https://doi.org/10.1038/srep40098
https://doi.org/10.1038/srep40098
https://doi.org/10.1016/0958-1669(93)90010-T
https://doi.org/10.1158/1535-7163.MCT-
12-1012
https://doi.org/10.1158/1535-7163.MCT-
12-1012


8

Arbabi-Ghahroudi Historical Perspective on Camelid sdAbs

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1589

70. Muruganandam A, Tanha J, Narang S, Stanimirovic D. Selection of 
phage-displayed llama single-domain antibodies that transmigrate across 
human blood-brain barrier endothelium. FASEB J (2002) 16:240–2. 

71. Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D. The 
blood-brain barrier transmigrating single domain antibody: mechanisms 
of transport and antigenic epitopes in human brain endothelial cells. 
J Neurochem (2005) 95:1201–14. doi:10.1111/j.1471-4159.2005.03463.x 

72. Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM, Mecheri S, et al. Cell-
penetrating anti-GFAP VHH and corresponding fluorescent fusion protein 
VHH-GFP spontaneously cross the blood-brain barrier and specifically rec-
ognize astrocytes: application to brain imaging. FASEB J (2012) 26:3969–79. 
doi:10.1096/fj.11-201384 

73. Webster CI, Caram-Salas N, Haqqani AS, Thom G, Brown L, Rennie K, et al. 
Brain penetration, target engagement, and disposition of the blood-brain 
barrier-crossing bispecific antibody antagonist of metabotropic glutamate 
receptor type 1. FASEB J (2016) 30:1927–40. doi:10.1096/fj.201500078 

74. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, et al. NaLi-H1: 
a universal synthetic library of humanized nanobodies providing highly 
functional antibodies and intrabodies. Elife (2016) 5:e16228. doi:10.7554/
eLife.16228 

75. Monegal A, Ami D, Martinelli C, Huang H, Aliprandi M, Capasso P, et al. 
Immunological applications of single-domain llama recombinant anti-
bodies isolated from a naive library. Protein Eng Des Sel (2009) 22:273–80. 
doi:10.1093/protein/gzp002 

76. Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, 
et al. Facile generation of heat-stable antiviral and antitoxin single domain 
antibodies from a semisynthetic llama library. Anal Chem (2006) 78:8245–55. 
doi:10.1021/ac0610053 

77. Yan J, Li G, Hu Y, Ou W, Wan Y. Construction of a synthetic phage-dis-
played nanobody library with CDR3 regions randomized by trinucleotide 
cassettes for diagnostic applications. J Transl Med (2014) 12:343. doi:10.1186/
s12967-014-0343-6 

78. Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and character-
ization of a thermally stable recombinant anti-caffeine heavy-chain antibody 
fragment. Anal Chem (2006) 78:4501–8. doi:10.1021/ac058044j 

79. Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, et  al. 
Camelid heavy-chain variable domains provide efficient combining sites to 
haptens. Biochemistry (2000) 39:1217–22. doi:10.1021/bi991830w 

80. Smolarek D, Hattab C, Hassanzadeh-Ghassabeh G, Cochet S, Gutierrez C, 
de Brevern AG, et al. A recombinant dromedary antibody fragment (VHH or 
nanobody) directed against human Duffy antigen receptor for chemokines. 
Cell Mol Life Sci (2010) 67:3371–87. doi:10.1007/s00018-010-0387-6 

81. Traenkle B, Emele F, Anton R, Poetz O, Haeussler RS, Maier J, et  al. 
Monitoring interactions and dynamics of endogenous β-catenin with intra-
cellular nanobodies in living cells. Mol Cell Proteomics (2015) 14:707–23. 
doi:10.1074/mcp.M114.044016 

82. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC,  
Stok W, et  al. Comparison of physical chemical properties of llama VHH 
antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 
(1999) 1431:37–46. doi:10.1016/S0167-4838(99)00030-8 

83. Doyle PJ, Arbabi-Ghahroudi M, Gaudette N, Furzer G, Savard ME, Gleddie S, 
et al. Cloning, expression, and characterization of a single-domain antibody 
fragment with affinity for 15-acetyl-deoxynivalenol. Mol Immunol (2008) 
45:3703–13. doi:10.1016/j.molimm.2008.06.005 

84. Maussang D, Mujic-Delic A, Descamps FJ, Stortelers C, Vanlandschoot P, 
Stigter-van Walsum M, et al. Llama-derived single variable domains (nano-
bodies) directed against chemokine receptor CXCR7 reduce head and neck 
cancer cell growth in vivo. J Biol Chem (2013) 288:29562–72. doi:10.1074/
jbc.M113.498436 

85. McCoy LE, Rutten L, Frampton D, Anderson I, Granger L, Bashford- 
Rogers R, et al. Molecular evolution of broadly neutralizing llama antibod-
ies to the CD4-binding site of HIV-1. PLoS Pathog (2014) 10:e1004552. 
doi:10.1371/journal.ppat.1004552 

86. Peyrassol X, Laeremans T, Gouwy M, Lahura V, Debulpaep M,  
Van Damme J, et al. Development by genetic immunization of monovalent 
antibodies (nanobodies) behaving as antagonists of the human ChemR23 
receptor. J Immunol (2016) 196:2893–901. doi:10.4049/jimmunol.1500888 

87. Liu S, Wang S, Lu S. DNA immunization as a technology platform for mono-
clonal antibody induction. Emerg Microbes Infect (2016) 5:e33. doi:10.1038/
emi.2016.27 

88. Nguyen VK, Zou X, Lauwereys M, Brys L, Bruggemann M, Muyldermans S.  
Heavy-chain only antibodies derived from dromedary are secreted and 
displayed by mouse B cells. Immunology (2003) 109:93–101. doi:10.1046/j. 
1365-2567.2003.01633.x 

89. Zou X, Smith JA, Nguyen VK, Ren L, Luyten K, Muyldermans S, et  al. 
Expression of a dromedary heavy chain-only antibody and B cell develop-
ment in the mouse. J Immunol (2005) 175:3769–79. doi:10.4049/jimmunol. 
175.6.3769 

90. Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A, San JK, 
et al. Generation of heavy-chain-only antibodies in mice. Proc Natl Acad Sci 
U S A (2006) 103:15130–5. doi:10.1073/pnas.0601108103 

91. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of 
predefined specificity. Nature (1975) 256:495–7. doi:10.1038/256495a0 

92. Prentice HG, Blacklock HA, Janossy G, Bradstock KF, Skeggs D, Goldstein G, 
et al. Use of anti-T-cell monoclonal antibody OKT3 to prevent acute graft-
versus-host disease in allogeneic bone-marrow transplantation for acute 
leukaemia. Lancet (1982) 1:700–3. doi:10.1016/S0140-6736(82)92619-8 

93. Cosimi AB, Colvin RB, Burton RC, Rubin RH, Goldstein G, Kung PC, et al. 
Use of monoclonal antibodies to T-cell subsets for immunologic moni-
toring and treatment in recipients of renal allografts. N Engl J Med (1981) 
305:308–14. doi:10.1056/NEJM198108063050603 

94. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next 
generation of therapeutic antibodies. Nat Rev Immunol (2010) 10:345–52. 
doi:10.1038/nri2747 

95. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody 
market. MAbs (2015) 7:9–14. doi:10.4161/19420862.2015.989042 

96. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibod-
ies by phage display technology. Annu Rev Immunol (1994) 12:433–55. 
doi:10.1146/annurev.iy.12.040194.002245 

97. Hoogenboom HR. Selecting and screening recombinant antibody libraries. 
Nat Biotechnol (2005) 23:1105–16. doi:10.1038/nbt1126 

98. Nelson AL, Reichert JM. Development trends for therapeutic antibody 
fragments. Nat Biotechnol (2009) 27:331–7. doi:10.1038/nbt0409-331 

99. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: 
filamentous phage displaying antibody variable domains. Nature (1990) 
348:552–4. doi:10.1038/348552a0 

100. Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding 
the selection of human antibodies from phage display repertoires to a single 
epitope of an antigen. Biotechnology (N Y) (1994) 12:899–903. 

101. Kempeni J. Preliminary results of early clinical trials with the fully human 
anti-TNF-α monoclonal antibody D2E7. Ann Rheum Dis (1999) 58 
(Suppl 1):I70–2. doi:10.1136/ard.58.2008.i70 

102. Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, et al. Nanobody-derived 
nanobiotechnology tool kits for diverse biomedical and biotechnology appli-
cations. Int J Nanomedicine (2016) 11:3287–303. doi:10.2147/IJN.S107194 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Arbabi-Ghahroudi. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) 
or licensor are credited and that the original publication in this journal is cited, in 
accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/j.1471-4159.2005.03463.x
https://doi.org/10.1096/fj.11-201384
https://doi.org/10.1096/fj.201500078
https://doi.org/10.7554/eLife.16228
https://doi.org/10.7554/eLife.16228
https://doi.org/10.1093/protein/gzp002
https://doi.org/10.1021/ac0610053
https://doi.org/10.1186/s12967-014-0343-6
https://doi.org/10.1186/s12967-014-0343-6
https://doi.org/10.1021/ac058044j
https://doi.org/10.1021/bi991830w
https://doi.org/10.1007/s00018-010-0387-6
https://doi.org/10.1074/mcp.M114.044016
https://doi.org/10.1016/S0167-4838(99)00030-8
https://doi.org/10.1016/j.molimm.2008.06.005
https://doi.org/10.1074/jbc.M113.498436
https://doi.org/10.1074/jbc.M113.498436
https://doi.org/10.1371/journal.ppat.1004552
https://doi.org/10.4049/jimmunol.1500888
https://doi.org/10.1038/emi.2016.27
https://doi.org/10.1038/emi.2016.27
https://doi.org/10.1046/j.
1365-2567.2003.01633.x
https://doi.org/10.1046/j.
1365-2567.2003.01633.x
https://doi.org/10.4049/jimmunol.
175.6.3769
https://doi.org/10.4049/jimmunol.
175.6.3769
https://doi.org/10.1073/pnas.0601108103
https://doi.org/10.1038/256495a0
https://doi.org/10.1016/S0140-6736(82)92619-8
https://doi.org/10.1056/NEJM198108063050603
https://doi.org/10.1038/nri2747
https://doi.org/10.4161/19420862.2015.989042
https://doi.org/10.1146/annurev.iy.12.040194.002245
https://doi.org/10.1038/nbt1126
https://doi.org/10.1038/nbt0409-331
https://doi.org/10.1038/348552a0
https://doi.org/10.1136/ard.58.2008.i70
https://doi.org/10.2147/IJN.S107194
http://creativecommons.org/licenses/by/4.0/

	Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook
	Introduction
	Molecular Ontogeny of Camelid HCAbs
	History of the Development of Camelid Single-Domain Antibodies (sdAbs) as Therapeutics
	Camelid sdAbs: Pros, Cons, and Applications
	Camelid sdAbs Versus mAbs
	Concluding Remarks
	Author Contributions
	Acknowledgments
	Funding
	References


