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ABSTRACT

Buildings play a significant role in climate change mitigation. In North America,

energy used to construct and operate buildings accounts for some 40% of total

energy use, largely originating from fossil fuels [1]. The strategic reduction of

these energy demands requires knowledge of potential upgrades prior to a build-

ing’s construction. Furthermore, renewable energy generation integrated into

buildings façades and district systems can improve the resiliency of community

infrastructure. However, loads that are non-coincidental with on-site genera-

tion can cause load balancing issues. This imbalance is due to solar resources

peaking at noon, whereas building loads typically peak in the morning and late

afternoon or evenings. Ideally, the combination of on-site generation and local-

ized storage could remedy such load balancing issues while reducing the need

for fossil fuels. In response to these issues, this paper contributes a methodol-

ogy that co-optimizes building designs and district technologies as an integrated

community energy system. A distributed evolutionary algorithm is proposed

that can navigate over 10154 potential community permutations. This is the first

time in literature that a methodology demonstrates the co-optimization build-

ings and district energy systems to reduce energy use in buildings and balance

loads at this scale. The proposed solution is reproducible and scalable for future
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community masterplanning studies.

Keywords: evolutionary algorithm, energy planning, district energy, net-zero

energy

1. Introduction

The energy vision of a community begins at the earliest design stage with a mas-

terplan. Masterplans outline information such as building end-uses, footprint

areas and floor plate shapes and it is increasingly common to include energy

infrastructure. In order for engineers and architects to assist developers in tran-

sitioning to renewable energy targets, the search for integrated solutions must

occur at the earliest opportunity where the greatest energy and economic sav-

ing opportunities exist. To support decision makers, this paper proposes an op-

timization methodology using an evolutionary algorithm that aids in identifying

integrated design strategies. This problem is difficult as the reduction of energy

use in communities requires a systems level approach where all design oppor-

tunities are considered as an interacting whole. Such decisions are made within

a narrow time frame before the solidification of the final design. Consideration

later in the decision process represents a missed opportunity to optimize energy

performance. Communities that function using only renewable energy satisfy a

strategic need to transition to clean energy supplies, better balance loads and

mitigate the environmental impacts of the new and existing building stock.

An increasingly adopted building performance target is net-zero energy (NZE),

or the reduction of building energy use sufficiently such that renewable energy

generation can meet the remaining on-site energy demands during a typical me-

teorological year [2, 3]. The importance of NZE is that it is a measurable goal
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and a guiding principle in transitioning the building sector to renewable energy

supplies. However, community energy systems offer several distinct advantages

over building solutions in achieving NZE: (i) NZE is easier to achieve since en-

ergy deficiencies in larger buildings can be offset by on-site energy generation

and storage, (ii) renewable energy resources can be better collected and stored,

leading to higher solar utilization fractions [4], (iii) existing or emerging tech-

nologies can be integrated at building or district systems aiding the NZE goal

without disrupting building operations, and (iv) the prioritization of load bal-

ancing between buildings rather than treating the grid as an infinite source and

sink of electricity. There is public demand for community energy solutions due

to the increased need for a robust electrical grid that better adapts to grid out-

ages and extreme weather events. However, integrated design approaches are

needed which both reduce energy use in buildings and balance loads using gen-

eration and storage technologies. This is because the reduction of energy use

in buildings does not imply a decrease of peak loads and the presence of peaks

may require centralized, fossil-fuel driven, peaking power plants. As a poten-

tial solution, community integrated modelling approaches must identify optimal

outcomes which include energy use reductions and load balancing from a vast

number of design possibilities.

Evolutionary Algorithms (EA) are a proven optimization method to solve large

building simulation problems due to their ease of implementation and ability

to navigate multiple objectives. EAs use pseudo-evolutionary algorithmic op-

erations, such as mutations and crossovers, on representations of buildings to

emulate the ‘survival of the fittest’ found in biological evolution [5]. Conceiv-

ably, a distributed model where the performance of buildings are intertwined
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with district energy systems could co-optimize both problems simultaneously.

In literature, distributed EAs have been shown to solve high dimensional prob-

lems using divide-and-conquer mechanisms [6]. As such, a distributed EA model

may be invaluable to facilitate decision-making to achieve net-zero energy at a

community-scale.

Community energy systems could have a transformative effect for the pub-

lic. In the near future, there may be an opportunity for a community of net-

generating buildings to act like a smart grid node, which can be throttled de-

pending on future demand. Net-generating communities could be a key technol-

ogy in cities where policy makers must decide whether to refurbish aging gen-

eration infrastructure such as a nuclear fleet, or face public resistance to addi-

tional centralized generation near urban centers. To overcome these challenges

and facilitate the extraction and use of optimal community design principles,

this paper proposes an optimization methodology capable of navigating energy

saving trade-offs between buildings and district energy systems for energy mas-

terplanning.

2. Literature Review

This section reviews key previous work in support of the proposed optimiza-

tion methodology. These topic include: optimization algorithms, district en-

ergy technologies and previous community integrated energy modelling case-

studies. The focus is placed on cold-climate technologies, given that the case-

study is located in southeastern Canada, as described in Section 3.1.

Distributed EAs (dEA) are an evolutionary approach where EA nodes share

population information to achieve a larger optimization goal. In a detailed lit-
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erature review, Gong et al. (2015) categorized dEA models as master-slave, is-

land, cellular, pool, hierarchical and multi-agent [6]. The salient feature of an

island GA is that the population of one generation is divided into several sub-

populations, or ‘islands’, where genetic operations are performed on each sub-

population separately and individual information is exchanged periodically be-

tween sub-populations, called ‘migrations’. This approach is useful to decom-

pose intractable optimization problems into smaller, easier to solve problems.

For example, Ooka and Komamura (2009) utilized a dEA using the island model

to solve a heating, ventilation and air-conditioning (HVAC) sizing, scheduling

and control optimization problem [7]. Building optimizations problems are par-

ticularly challenging as they involve a computationally expensive fitness func-

tion. This is further complicated in community optimization problems as they

involve many buildings requiring hours of simulation time. Several innovations

have been made to mitigate fitness function time requirements in building mod-

els. Brownlee and Wright (2015) used radial basis function networks to reduce

the number of calls to the building energy simulation [8]. Khanmirza et al. (2016)

used a simplified thermal network with mechanical system controls optimized

using a multi-objective genetic algorithm [9].

There is a growing body of research which evaluates the energy and economic

performance of communities. Lu et al. (2014) proposed a multi-objective (exergy,

life-cycle cost) optimization approach for a net-zero exergy district [10]. The

proposed methodology required load profiles as inputs, meaning that energy

saving trade-offs between buildings and district systems were not considered

as part of the optimization study. Llanos et al. (2017) proposed a load estima-

tion method for microgrid applications using self-organizing maps as opposed
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to first-principle models [11]. Bucking and Cotton (2015) proposed a prelimi-

nary modelling methodology focused on buildings in a community setting using

net-energy consumption and life-cycle cost objective functions [12].

Community energy systems are emerging as a practical solution to better

harvest renewable energy and potentially balance loads. Previous research has

proven that EAs are a versatile tool to solve integrated building design problems.

Based on the reviewed literature, this paper will propose an integrated modelling

methodology to co-optimize buildings and district energy systems. This new op-

timization algorithm will show it is possible to solve this problem using a dEA

approach with building sub-population migrations that are linked together us-

ing district infrastructure. A key contribution is a methodology that navigates

simultaneous trade-offs between reducing energy demands of buildings and bal-

ancing community loads using centralized district equipment to assist commu-

nity energy masterplanners.

3. Methodology

The methodology is described starting with energy models, district models

and the proposed optimization algorithm. The case-study is presented first, as

aspects of the methodology require it for background knowledge.

3.1. Case Study

Figure 1 shows the masterplan considered in this paper. Three building types

are included: a multi-residential building, commercial office and townhouse archetypes.

The case-study supports of a 70 acre NZE development located in Southwestern

Ontario [13].
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         LEGEND

1.Multi-Res
Gross Area: 8090 m2

Floors:         6
2. Commercial
Gross Area: 5030 m2

Floors         3
3. Townhouse (6 
units):
Gross Area: 160 m2 (ea)
Floors:         2

Figure 1: Masterplan and building renderings of phase one.

3.2. Energy Models

Energy models identify the mismatch in building energy use to on-site en-

ergy generation over an annual period. This section describes how building en-

ergy models and their resulting sub-hourly load profiles were developed for elec-

tricity and natural gas meters. Load profiles for each building were later com-

bined and used for district systems analysis.

A combination of tools were used to create load profiles for various buildings

types: (i) OpenStudio for drawing geometry and window positions [14]; (ii) Win-

dows for specifying glazing spectral properties [15]; (iii) Therm for specifying

envelope properties [16]; (iv) EnergyPlus for energy performance simulation [17];

and (v) a custom scripting process for technology implementation and modelling

best-practices. This is a first-principles approach which quantifies all heat and

energy transfers in a building.

A programmatic approach assigned EnergyPlus objects and technologies re-

quired to achieve NZE in a cold-climate to each zone or envelope/glazing sur-
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face. The time savings were significant and less error-prone than user-driven

text file manipulations. Renewable energy generation was considered on ver-

tical and roof surfaces using BIPV. Additional PV generation infrastructure was

also considered on ground mounted racks and parking structures.

The objective function for building EA nodes is given by equation 1 This equa-

tion is important as it quantifies a building achieves a renewable energy balance.

f (x) = (Eheat + Ecool + EDHW + Eelec − EPV)/Abldg (1)

where: x = (x1, x2, · · · , xN)T is a design variable vector as described in Tables 1–

2, f (x) is the equivalent annual net-energy use intensity (EUI) of the building

(kWheq/m2), Eheat,cool is the equivalent annual heating and cooling load of the

building, EDHW the equivalent domestic hot-water (DHW) energy use, Eelec is the

gross annual electricity use in lighting, appliances and plug-loads (kWh), EPV is

the electricity generated by BIPV (kWh), and Abldg is the gross building area (m2).

Note the unit ‘kWheq’ is short form for equivalent kilowatt hour and implies that

several fuel types may be used (eg. electricity and natural gas). NZE is achieved

when f (x) = 0 implying an annual renewable energy balance and a building is

net-positive energy if f (x) < 0.

Table 1 shows the decision variables considered for the townhouse units shown

in Figure 1. The solution space size for a single townhouse was 1021 permuta-

tions. This was calculated by multiplying the number of steps for each variable

present in Table 1. Each of the six townhouses was allowed a unique set of deci-

sion variables.

Discrete variables describe key building design parameters. This is an appro-

priate choice as building materials and technologies are largely not available in
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Table 1: Sample of Influential Model Variables for Townhouses

Variable Description Units Start Stop Steps

aspect Aspect ratio (south facing width to depth ratio) – 0.7 2.2 16
azi Building orientation/azimuth degrees -45 45 32
wall ins Effective resistance of wall insulation m2K/W 3.5 13.0 8
ceil ins Effective resistance of ceiling insulation m2K/W 5.6 15.0 8
base ins Effective resistance of basement wall insulation m2K/W 0.0 7.0 8
slab ins Effective resistance of slab insulation m2K/W 0.0 2.3 4
infil Natural infiltration rate ACH 0.025 0.179 8

occ loads
Occupant loads (percent of Canadian average consump-
tion) [18]

% CADavg 50 80 8

ovr south Width of Southern Window Overhangs m 0.00 0.45 4
pv area Percent of PV area on roof % 0 90 8
pv eff PV efficiency % 12 15 4
roof slope South facing roof/PV slope degrees 30 47 8
wwr s Percent of window to wall ratio, south (also N,E,W) % 5 80 8
GT s Glazing type, south (also N,E,W) – 1 4 4
FT Window Framing Types (1:Wood, 2:Vinyl) – 1 2 2
slab th Concrete slab thickness m 0.1 0.2 8
vwall th Concrete wall thickness (basement) m 0.00 0.35 8
zone mix Air circulation rate between thermal zones L/s 0 400 4

continuous ranges. For example, insulation thickness is often only available in

13mm (0.5in) increments. Both lower and upper ranges are determined from a

mix of building codes, best practices and user expertise. If an optimization search

converged to a lower or upper bound, this suggests that the range of the parame-

ter should be expanded. Alternatively continuous variables could be used in the

methodology if appropriate crossover and mutation operators were selected.

Table 2 shows the decision variables considered for the multi-residential and

office building. District heating systems, if needed, provided pre-heated water

for heating and hot-water systems. As a mechanical system option, heat pumps

could lift or drop water temperatures using circulated water within a common

loop in the office and multi-residential system. Water-source and variable re-

frigerant flow heat pumps were considered as potential mechanical solutions. It

was assumed that the district system could supply heat at 15 ◦C during the win-
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ter and 30 ◦C during the summer months. This delivered heat was treated as a

load that a district system must meet.

EnergyPlus results were reported using metered comma separated files and

SQLite databases. Metered outputs for electrical and gas consumption were stored

in a database entry for each model instantiation so that after a building’s perfor-

mance was evaluated, the annual performance and sub-hourly meter files could

be accessed with a query. This eliminated the need for future resimulation. The

combined meter files for several buildings is described in Section 3.3.
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Table 2: Sample of Influential Model Variables for Office and Multi-Residential Build-
ing

Variable Description Units Start Stop Steps

infil
Infiltration through walls: percentage compared to ref-
erence

% 75 100 8

lpd
Lighting power density: percentage compared to refer-
ence

% 50 100 8

eleceq
Electrical equipment power density: percentage com-
pared to reference

% 50 100 8

azi Building orientation relative to south degrees -39.4 45 16
base ins Basement insulation m2K/W 0.18 7.04 8
ceil ins Ceiling insulation m2K/W 3.52 11.40 16
wall ins Wall insulation m2K/W 3.52 10.57 8

wintyp n
Window type north [1: Double Glz low-e. 2: Triple Glz
Low-e]. Also variables for east, west, south.

– 1 2 2

wwr s Window to wall percentage south % 10 80 8

wwr n
Window to wall percentage north. Also variables for east,
west

% 10 50 4

use doas
Use a Dedicated Outdoor Air System for ventilation con-
trol

bool 0 1 2

hvac sys
HVAC system (Commercial) [1: VAVelec. 2. FCU, 3: Base-
Board 4: VRF]

– 1 4 4

hvac sys
HVAC system (MultiRes) [1: PTAC 2: BaseBoard 3: FCU 4:
VRF 5: VRFdist 6. PTHP 7. WSHP 8. WSHP dist]

– 1 8 8

dhw sys DHW system [1: DHW NG Plant. 2: DHW HP Plant] – 1 2 2
pvbal sc Ballasted PV space scaling factor – 0.1 2.5 8
pvbal ang Ballasted PV angle degrees 0 35 8

pvfrac s
PV percentage on south. Also variables for east, west,
roof

% 0 80 16

pvfrac a PV parking lot array area m2 0 400 8

blind type
Blind shading type [1: ExteriorShading; 2: InteriorShad-
ing]

% 1 2 2

blind maxt
Max tolerable temperature in zones before blind deploy-
ment

degC 21 28 8

blind maxsr
Max tolerable solar radiation in zones before blind de-
ployment; 0=OFF

W/m2 0 1400 8

dhw ld Percent of DHW loads relative to reference % 60 100 8
use nv Use natural ventilation for night cooling bool 0 1 2
a abbrev: Variable Air Volume (VAV), Fan-coil Unit (FCU), Variable Refrigeration Flow (VRF), Packaged Terminal

AC (PTAC), Packaged Terminal Heat-Pump (PTHP), Water Source HP (WSHP)
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3.3. District Energy Systems

The performance of district systems were evaluated using the sum of sub-

hourly building energy meters as an input load profile. Specifically, district mod-

els used four meters as inputs: building district heating, gross electric demand,

PV generation and natural gas consumption. Each load profile was previously

stored in a database entry when a given building’s performance was simulated

as explained in Section 3.2. Figure 2 describes the district technologies consid-

ered.

Figure 2: District energy model schematic. Lines connecting PV panels/battery and CHP
to buildings indicate electricity transmission. Lines connecting CHP unit to air handling
units (AHU) and storage indicate thermal energy transferred.

District energy systems allowed for the export and import of electricity to

and from a smart grid. Electricity was generated using PV panels or a CHP sys-

tem. Furthermore, electricity could be exported to the smart grid from buildings

using BIPV, discharged from batteries or generated from district infrastructure.
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The heat from CHP systems could be used immediately or stored for later usage

via thermal storage. CHP units had a 30% electrical efficiency and a 60% thermal

efficiency for a combined peak unit efficiency of 90%, as specified by the manu-

facturer [19]. As a mechanical system option, heat pumps could draw heat from

a common district water loop to supplement heating demands.

Thermal storage and electrical batteries were modelled using an ideal en-

ergy bin approach. This allowed for the auto-sizing of storage components us-

ing an energy balance without requiring particular charge/discharge specifica-

tions. The thermal storage model assumed water was stored above freezing and

below boiling points. The theoretical battery and thermal storage volume was

determined based on peak annual utilization. A two-pipe loop was assumed to

transport only pre-heated water. As presently implemented, the model does not

consider the distance between buildings and district resources. Thus the results

assume a masterplan with buildings in close proximity. Although the district

system could be expanded to include chilled water using an absorption chiller

and four-pipes, this was not considered due to the reliance on heat pumps in the

energy models.

Electric batteries had a 95% draw and charge efficiency and were sized using

the annual peak demand. Although these are purely theoretical constructs, the

storage models provide an estimate of how well thermal and electrical storage

can aid in regulating loads using energy balances. The modelling approach en-

sured that storage started and finished with a full charge to equalize technology

comparisons.

District systems were configured and controlled using one of five strategies:

1. District heating demands (if existent) are met using a 80% efficient district
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boiler

2. CHP was sized to meet instantaneous heating demands. CHP electricity

was used instantly. No thermal/electrical storage.

3. CHP was controlled to meet seasonal thermal demands by using thermal

storage. CHP was operated to shed peak electrical loads using the method

shown in Figure 3. No electric batteries.

4. CHP was sized to meet instantaneous heating demands. CHP and PV elec-

tricity was stored in batteries. Stored electricity was used if there was de-

mand in the future timestep.

5. CHP was sized to meet instantaneous heating demands. CHP and PV elec-

tricity was stored in batteries. Batteries are used to shed peak loads using

the method shown in Figure 3.

Figure 3 shows a load duration curve for balancing electrical loads as used for

district control options 3 and 5. Typically, load duration curves determine how

often peak loads occur during a specified period. In this paper, load duration

curves determined how much on-site generation could be stored and strategi-

cally used to shed peaks at an optimal power level over a given year, see Figure 3.

Note, the load duration curve was unique for each community permutation. An

iterative solution was required to choose an exact balance point as load dura-

tion curves ignore time series information needed to size batteries and thermal

storage.

The objective function used to determine community performance was the

average power of net-electricity and natural gas use in equivalent units plus the
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Figure 3: Peak Load Management Controller for District Modes 3 and 5. Negative power
implies net-generation.

square root of mean square error, see equation 2.

g(x) = Pavg +

√∑
(Pi − Pavg)2

N
(2)

where: g(x) is the community objective function (kWeq), Pavg is the community

average equivalent power (kWeq), Pi is the instantaneous community equivalent

power (kWeq), and N is the number of load profile timesteps.

Adding the average equivalent power ensures that communities with the low-

est average power are preferred. A sum of squares penalizes peaks with the

square of their distance from the average and instantaneous signal equally dis-

cerning positive and negative distances from the average signal. This added term

is equivalent to adding a standard deviation of signal to the community average

power.

The community objective function, shown in equation 2, is an important de-
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viation from the annual EUI objective function used for buildings shown in equa-

tion 1. If an annual energy usage objective function was used to rank district

system performance, the optimization results at the building and community

scales would be identical, ignoring the load balancing challenges of the problem.

Therefore, the goal of the community algorithm was to effectively balance peak

loads, whereas the building algorithm’s goal was to reduce annual energy con-

sumption. The combination of these two objective functions was key to iden-

tifying optimal community solutions. However, objective function scaling was

required to ensure that high performing buildings at the community scale also

appeared to perform well at the building level, see Section 3.4.2.

3.4. Optimization Algorithm

This section describes the representation and workings details of the dEA

proposed in this paper. A distributed evolutionary algorithm was developed to

solve a building and district co-optimization problem. First, the structure of

the EA nodes and optimization algorithm parameters are described. Later, the

synchronization of EA islands into a centralized community EA algorithm is de-

scribed. Figure 4 shows how the problem is solved using several distributed com-

puting platforms and how data synchronization is achieved. Based on the cate-

gorizations of Gong et al. (2015), the proposed algorithm is a hybrid master-slave

model with population migrations via islands as individuals migrate to and from

a centralized repository [6].

Figure 4 describes how information transfer was handled between building

and community EA nodes. For simplicity, assume that each building EA node

operates on an independent computer or server. Alternatively, a large central

cluster could solve the problem on a single computing platform. At each algo-
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⑤ After 35 community EA generations,
sync modified building database to CDBR.
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Central repository allows
for methodology to scale
to many buildings using
distributed computing

Slaves Master

Figure 4: Database Synchronization between Building and Community EAs

rithm iteration, the EA node synchronizes with a central repository where build-

ing load profile databases are shared. Once all building nodes have completed

and uploaded their results, the community EA is initialized. After the commu-

nity EA has completed, modified databases are resynchronized with the central

repository and a completion flag is set. Building EA nodes identified that a new

database is available, synchronize with the updated information and repeat the

process until the problem has converged. The solution is a hybrid method as

the algorithm conducts fitness evaluations both in the master (community) and

slave (building) nodes deviating from a pure master-slave model where fitness

evaluations are conducted by slave nodes [6]. Additionally, populations of indi-

viduals are migrated from building EA nodes to the master community node for

EA operations as per the island model. A description of how building and com-

munity EA nodes are configured is described in the following sections.
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3.4.1. Building EA Nodes

Building design parameters were represented using a binary string, see be-

low. Parameters in this representation refer to those described in Tables 1–2.

Binary Representation︷                             ︸︸                             ︷
“ 010︸︷︷︸

aspect
110︸︷︷︸

wall ins

000︸︷︷︸
ceil ins

. . . ”→

Vector Representation︷                    ︸︸                    ︷
(1.3, 8.93, 5.60, . . . ) (3)

Table 3 highlights key configuration parameters of the building EA nodes

used in the case-study. Innovations such as a differential mutation operator are

described in a previous contribution [20].

Table 3: Summary of Islanded EA Configuration for Building Nodes

Algorithm Parameter Setting

Representation 70 bit (townhouse), 79 bit (office), 83 bit (multi-res)
grey-coded binary string

Solution Space Size 1.2 × 1021 (townhouse), 6.0 × 1023 (office), 9.7 × 1024

(multi-res) unique designs
Objective 1 Net Energy Use Intensity (kWheq/m2), see equation 1
Population Size 10
Recombination 50% bit-by-bit uniform, 50% variable uniform
Recombination Prob 100%
Mutation 40% bit-by-bit mutation, 60% differential mutation
Mutation Prob 2.0%
Parent Selection Tournament Selection
Elitism? Yes
No. of Children 10
Survivor Selection Best parents and children, (µ + λ)
Diversity Control Yes, increased probability of mutation occurring, see

[20]

Figure 5 describes how the building EA functions for a single generation. A

set of binary genomes, or simplified representations of building designs are ini-
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tialized by randomly creating the specified population size forming the initial

population. The fitness of each individual is evaluated using an energy simula-

tion program. This population becomes the parent population as it enters the

evolutionary cycle. Parent selection chooses genomes for variation operators

such as recombination and mutations. The fitness of new individuals, called chil-

dren, is evaluated. The EA node then waits to synchronize with other buildings

in the community. Based on how well the building performs as part of the com-

munity district system, the fitness of each individual is scaled using the method

described in the next section. Scaled building performance indicators are used

in survivor selection to determine which genomes from the old and new pop-

ulation will survive in the next generation. The process is repeated, synchro-

nizing with the community node every iteration until a termination criterion is

reached, typically a set number of evolutionary cycles or generations.

initialize

evaluate

parents stop?

selection

variations

children

evolutionary cycle

scale bldg
fitness &
replace

sync with
community

evaluate

end EA

no

yes

Figure 5: Distributed Building Evolutionary Algorithm Node with Data Synchronization
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3.4.2. Community EA

Community details were represented using vectors with indices to a par-

ticular building database entry. This simplified community representations al-

lowed for the querying of building load profile data from a database without en-

ergy model resimulation. Thus, a combinatorial approach represented buildings

within the community EA using the following representation:

Vector Representation︷                                              ︸︸                                              ︷
“ #20︸︷︷︸

bldg1

#100︸︷︷︸
bldg2

. . . #50︸︷︷︸
bldgN

1︸︷︷︸
district mode

” (4)

The identifiers shown in the representation are linked to the building param-

eters using the primary key from the simulation database. Since there are seven

buildings, there are seven unique databases where energy simulation results are

stored. The district mode variable represents which combination of technologies

were utilized as described in Section 3.3. Results from community simulations

are stored in a separate database.

Figure 6 shows the community EA with data synchronization from the is-

landed building EAs. First, data is synchronized from building EA islands. The

population is initialized by randomly generating building representations from

the synchronized database. Individual building designs are randomly selected

from the database using building indices. Only the buildings with performance

evaluated within building EAs are considered in the community EA. These in-

dividuals become the parent population entering the evolutionary cycle. Par-

ent are selected from community representations for variation operators such

as recombination and mutations. The fitness of new individuals are evaluated

using the average community power load performance indicator as described in
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equation 2. This loop is repeated for 50 iterations to ensure convergence before

synchronizing back with building EA populations.

sync from
islands

initialize

evaluate

parents stop?
sync to
islands

selection

variations

children

evolutionary cyclereplace

evaluate

end EA

no

yes

Figure 6: Community Evolutionary Algorithm with Data Synchronization

After completion, the scaling factors were updated and then populations of

buildings are migrated back to islanded EA nodes. Scaling factors ensured that

poor performing buildings at the community node are less likely to be reselected

within the following generations at the building EA nodes. Since community

permutations with low average power were desirable, the EUIs of correspond-

ing representations were scaled with a factor of one. Poorly performing build-

ings in community permutations have EUIs scaled up by a factor of 5. In other

words, building permutations in high performing communities continue to use

unscaled EUIs whereas poorly performing buildings have performance indica-

tors that are penalized. The selection of the upper-limit for scaling factors is

arbitrary and depends on how one wishes to penalize poor community perfor-
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mance. All other intermediary building EUIs have scaling factors which are a lin-

ear interpolation between the upper and lower limits. Building EUIs are scaled

starting from the poorest performance community permutations and finishing

on the best performance permutation so that the best performing solutions are

preferred. Also note, buildings that have not been evaluated in the community

EA are assigned an arbitrarily high fitness level so they are not selected to survive

in later generations unless they are proven to perform well within a community

permutation.

Table 4 highlights key configuration parameters of the community EA con-

figuration used in the case-study.

Table 4: Summary EA Configuration for Community Node

Algorithm Parameter Setting

Representation Vector with database indices
Solution Space Size 6.76 × 10154 unique designs
Objective 1 Community average power with standard deviation

(kWeq), see equation 2
Population Size 10
Recombination 50% bit-by-bit uniform, 50% variable uniform
Recombination Prob 100%
Mutation 40% bit-by-bit mutation, 60% differential mutation
Mutation Prob 2.0%
Parent Selection Tournament Selection
Elitism? Yes
No. of Children 10
Survivor Selection Best parents and children, (µ + λ)
Diversity Control Yes, increased probability of mutation occurring, see

[20]
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4. Results and Discussion

4.1. Algorithm Convergence Characteristics

Figure 7 shows the convergence characteristics of repeated community op-

timization runs. This figure shows that the community fitness function did re-

peatedly converge for each of the optimization trials. Each community optimiza-

tion study required 80 hours, or 1.6 hours per community iteration, for conver-

gence to occur. This required simultaneously solving seven building optimiza-

tion problems and one community optimization problem, by combining results

from distributed islands. To achieve convergence, roughly 50 iterations between

building EA nodes and the community EA were required. The main time limita-

tion originates from the energy simulation requirements of the largest buildings

in the community. Figure 7 also shows the impact of co-optimizing building and

district energy systems on average community power. A box-whisker plot shows

the limits, quantiles and average fitness function for five repeated optimization

runs. Superimposed on the box-whisker is a convergence or bean plot which

shows the relative frequencies of a particular community energy system’s per-

formance. Displayed in the convergence plot are the pre-convergence artifacts

originating from running repeated community iterations before synchronizing

with islands. This occurred because globally optimal solutions were not identifi-

able until building EUI was sufficiently reduced to lower the community average

power.

Conducting repeated optimization runs is necessary to claim that consistent

convergence to global optimums was achieved. Figure 7 shows that globally opti-

mal solutions were identified for each of the five optimization runs conducted. A

statistical power test suggests, with a high degree of confidence, that an optimal
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Figure 7: Comparison of five optimization runs and combined convergence character-
istics

solution can be reached on repeat searches. Using effective storage and controls,

the average community power was reduced to nearly zero for every community

optimization run.

The community optimization algorithm identifies different solutions from a

building optimization study conducted in isolation. Figure 8 compares results

of two different optimization studies: the office building using EUI as a perfor-

mance indicator and the other being the office building as part of the community

energy system. Figure 8 shows that the results of optimizing a building in isola-

tion (black dotted line) differs from how the building interacts as a load in the

community (blue solid line) during integrated optimization studies. As shown,

the community integrated optimization run for the office building converges to

a sub-optimal ‘building only’ solution compared to the community-integrated

optimization run. This result implies that building performance could differ by
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as much as 25 kWh/m2 between sub-optimized and globally optimized commu-

nity solutions for a particular building.
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Figure 8: Comparison of Optimization Results for Commercial Office: Isolated Optimiza-
tion versus Community Integrated Optimization

The search algorithm discovered several interesting community design strate-

gies. First, building orientations were diversified, deviating from an exact south

facing orientation as suggested by single building optimization solution sets.

This aided in diversifying both heating/cooling loads and when BIPV peak gen-

eration occurred. For district infrastructure and control, both modes 4 and 5

were dominant in optimized community-integrated solutions, implying that bat-

tery storage is an essential piece in balancing loads between buildings. Clearly,

electrical storage, whether in the form of stand-alone batteries or electric vehi-

cles, plays a pivotal role in balancing community load profiles. Thermal storage

mode 3 offered several scenarios that reduced the community fitness function to
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a minimum of 15 kWeq representing a low-cost solution to balancing loads with-

out using more costly battery storage.

5. Conclusion and Future Work

This paper proposed a distributed evolutionary algorithm which helps com-

munities achieve NZE while mitigating peaks using a district energy system. A

key outcome of the paper is recommending technological solutions which aid in

flattening and reducing district loads to a near net-zero point for a cold-climate

case-study. This is a departure from previous research where design changes in

a building were not of consequence to district system design.

The contribution of this paper is a methodology that demonstrates how build-

ing and district energy systems can be coevolved using an islanded and master-

slave model dEA. Several important decisions that made this problem solvable

were: (i) using energy use intensity as an objective function for buildings, (ii) pro-

posal of a community fitness function based on sub-hourly profiles using average

power plus one standard deviation of signal, and (iii) evaluating shared mechan-

ical, generation and storage technologies between buildings. The results suggest

that building energy saving measures and district systems can significantly re-

duce consumption while better managing peak loads.

This complex building optimization problem was solved using sub-population

sizes of 10 (for each of the seven buildings) and island population sizes of 10. A

small population size is necessary as each fitness evaluation requires 20 minutes

per individual. This raises the question as to how this large and complex prob-

lem is solvable in the first place? We suggest that this is most likely due to build-

ing optimization problems strongly relying on sparse matrices to solve energy

27



balances between surfaces over sub-hourly timesteps [21]. Although the prob-

lem is non-linear at its root, having quasi-linear properties likely aids in yielding

solutions using small population sizes. Future work will determine how the al-

gorithm scales with additional buildings being added to the community energy

balance.

Additional future work can be summarized as follows: (i) add life-cycle cost

as an additional objective function, (ii) conduct an uncertainty and sensitivity

analyses on the energy model to identify significant model parameters, (iii) add

additional district system configurations such as geothermal borehole storage

and ice-storage, (iv) consider the proximity of buildings to district resources,

(v) incorporate measured weather data to evaluate the robustness of proposed

community solutions, (vi) utilize the proposed optimization methodology to de-

velop community design archetypes and (vii) additional implementation of pre-

dictive control strategies.
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