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Abstract: The generation of surface plasmon resonances (SPRs) in gold-

coated weakly tilted fiber Bragg gratings (TFBGs) strongly depends on the 

state of polarization of the core guided light. Recently, it was demonstrated 

that rotating the linear state of polarization of the guided light by 90° with 

respect to the grating tilt allows to turn the SPR on and off. In this work, we 

measure the Jones matrix associated to the TFBG transmission properties in 

order to be able to analyze different polarization-related parameters (i.e. 

dependency on wavelength of polarization dependent loss and first Stokes 

parameter). As they contain the information about the SPR, they can be used 

as a robust and accurate demodulation technique for refractometry purposes. 

Unlike other methods reported so far, a tight control of the input state of 

polarization is not required. The maximum error on refractive index 

measurement has been determined to be ~1 10
5

 refractive index unit (RIU), 

5 times better than intensity-based measurements on the same sensors. 

©2011 Optical Society of America 
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1. Introduction 

Refractometry is used in various areas such as quality control in the food industry, process 

monitoring or biomedicine. As many applications require minimally invasive refractometers 

that can be interrogated remotely, fiber grating refractometers have been widely developed 

during the last years. To measure surrounding refractive index (SRI) changes by monitoring 

the resonant wavelength of fiber gratings, the guided light has to be brought in contact with 

the outer boundary of the fiber cladding. In this way, the evanescent field of the optical modes 

penetrates into the external medium to sense the SRI. Among possible configurations to obtain 

such a mode distribution, tilted fiber Bragg gratings (TFBGs) seem the most promising 

solution. Contrary to long period fiber gratings refractometers [1], they provide temperature-

insensitive SRI measurements [2–4] and are much less sensitive to bending effects [5]. To 

further improve their sensing performances, nano-scale coatings have been used to tailor the 

TFBGs amplitude spectral characteristics or to develop (bio-)chemical sensors based on 

surface plasmon resonances (SPRs) when functionalized gold overlays are used [6,7]. 

While reducing the coupling to the backward core mode, the tilt angle enhances the light 

coupling from the core mode to backward-going cladding modes. Consequently, both a core 

mode resonance and several tens of cladding mode resonances appear simultaneously in 

TFBGs transmission spectra [2]. In addition, the tilt angle breaks the cylindrical symmetry of 

the coupling process relative to the state of polarization (SOP) of the guided core light. As a 

result, a resonant coupling to a plasmon wave can be achieved: when a TFBG is covered by a 

nano-scale layer of gold, the cladding modes whose effective refractive index and polarization 

state are equal or close to those of a plasmon wave transfer energy to it across the metallic 

surface. A pronounced decrease of these cladding mode resonances appears in the TFBG 

amplitude spectrum, as reported in [8]. This yields an implementation of SPR-based (bio-) 

sensors easy to fabricate and to use, which does not require mechanical deformation of the 

fiber (e.g. etching or polishing) and allows remote sensing in very small volumes. 

TFBG amplitude spectra contain a large quantity of data not only in the positions but also 

in the amplitudes of the fine comb of cladding mode resonances [9]. This information is 

further enriched by the polarization dependence of (gold-coated) TFBGs [10]. As a result, 

several ways can be pursued to demodulate the spectrum and retrieve the SPR shift induced 

by a change of the SRI. Up to now, the focus has been on the measurement of the amplitudes 

of individual cladding mode resonances relative to the core mode resonance after optimization 

of the input SOP. Using this technique, accuracy of the order of 5 10
5

 refractive index unit 

(RIU) has been reported [8]. 

In this work, we use a totally different approach based on the measurement and the 

analysis of the Jones matrix in transmission (i.e. TFBG transfer function). From this 

measurement, any linear parameter can be extracted. In our study, we focus on both the 

polarization dependent loss (PDL) and the first normalized Stokes parameter evolution with 

wavelength. We demonstrate that these two properties yield an unambiguous signature of the 

SPR that can be straightforwardly tracked over time. The resulting demodulation technique 

presents two main advantages in comparison to previous techniques. First, it is robust over 

polarization instabilities and does not require a tight control of the input state of polarization. 

Second, it gives an improved accuracy since the maximum error on the determination of the 

SRI has been measured equal to ~1 10
5

 RIU with our technique. 

2. Experiments 

For the work reported here, 1 cm-long TFBGs were manufactured in hydrogen-loaded single-

mode optical fiber using a 248 nm excimer pulsed laser and the phase mask technique. The 

internal tilt angle was set to 10° to ensure strong coupling to cladding modes with effective 
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refractive index close to 1.30, which is suited to excite plasmons in aqueous media. A 50 nm 

gold coating was deposited using a sputtering process in two steps. A first deposition is 

performed with the fiber placed horizontally above the target and the second one after a 

rotation of 180° along its axis between the two depositions. As the gold deposition is not 

perfectly uniform all around the fiber cross-section, the fiber orientation was optimized into 

the sputtering chamber. In practice the tilt plane was placed parallel to the region of higher 

gold thickness facing the sputtering source. 

As any optical fiber device, TFBGs can be represented by a two-by-two Jones matrix that 

mathematically describes the propagation of light through them. To obtain such a transfer 

function, the accuracy and rapidity of the optical vector analyzer CTe from Luna Technologies 

were exploited in our experiments. The latter uses coherent, swept-wavelength interferometry 

to simultaneously measure the four complex entries of the Jones matrix to characterize the 

device under test, which yields in an arbitrary Cartesian coordinates system: 
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where a, b, c and d are complex coefficients and λ is the wavelength. These coefficients 

contain all the information about the TFBG transmission properties and in particular those 

induced by the SPR. In the case of fiber gratings, the polarization eigenmodes correspond to 

the two polarization states that also provide the minimum and maximum transmitted power 

(also used to define the PDL). As a consequence, in a Cartesian coordinates system that 

matches the TFBG eigenmodes (subscripts x and y hereafter), Eq. (1) turns into [11]: 
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where tx(y) represents the complex transmission coefficient along the x(y) orthogonal 

polarization mode. Equation (1) or (2) allows to derive any linear parameter that characterizes 

the TFBG. In the following, we will focus on the amplitude spectra obtained for two specific 

orthogonal SOPs, the first normalized Stokes parameter s1 and the PDL evolutions with 

wavelength. If we consider a linear SOP characterized by the Jones vector (cosθ sinθ)
T
, the 

TFBG power spectrum is given by: 

 
2 2( ) ( )cos ( )sinTFBG x yT T T        (3) 

where Tx(y)(λ) = |tx(y)(λ)|
2
. Hence, Eq. (3) yields the TFBG transmitted spectrum for any desired 

linear SOP. The corresponding s1 and PDL evolutions with wavelength are then given by the 

following relationships [11]: 
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Figure 1 depicts the typical evolutions obtained by Eq. (3) to (5) from the measured Jones 

matrix of a 10° TFBG immerged in oil. Figure 1a shows the two orthogonal transmitted 

spectra already reported in [8]: for the black curve, the SOP is optimized to exhibit the 

classical SPR signature (here at a wavelength around 1550 nm) while the orthogonal state (red 

curve) maximizes the cladding mode resonances across the whole spectrum. Any other SOP 

results in an intermediate behavior between these two limits. Figure 1b focuses on the PDL. It 

#139453 - $15.00 USD Received 9 Dec 2010; revised 10 Jan 2011; accepted 10 Jan 2011; published 13 Jan 2011
(C) 2011 OSA 17 January 2011 / Vol. 19,  No. 2 / OPTICS EXPRESS  1658



can be seen that the core mode back reflection resonance near 1602 nm does not show 

significant PDL, confirming that the photo-induced birefringence is very small, probably of 

the order of 10
6

. Hence, the large PDL maxima observed at other wavelengths are not due to 

a birefringence effect but result from the TFBG coupling core mode light to different families 

of (vector) cladding modes when its polarization is parallel or perpendicular to the tilt plane. 

Contrary to the evolution obtained for uncoated TFBGs [12], the local PDL maxima do no 

longer align on a Gaussian-shape envelope over the whole spectrum: a singular point with a 

strong decrease of the amplitude (here at a wavelength around 1545 nm) materializes a 

pronounced difference of behavior between smaller and higher wavelengths. This comes from 

the differential behavior between the orthogonal spectra displayed in Fig. 1a. The cladding 

mode resonance wavelengths are quasi similar between both spectra at the left side of the 

spectrum while there is a significant mismatch between even and odd modes at the right side 

(the mismatch is decreasing from ~0.55 nm around 1550 nm to ~0.25 nm around 1580 nm). 

As a result, the PDL presents pairs of closely spaced peaks for wavelengths up to ~1543 nm 

while they are more resolved at higher wavelengths. Around 1545 nm, since the 

corresponding cladding mode resonances of both spectra appear at the same wavelength and 

present a similar amplitude, the PDL is characterized by a single peak that presents a smaller 

amplitude than its neighbors. Hence, a clear SPR signature appears in the PDL curve at a 

smaller wavelength (~5 nm of difference in our case) than in the amplitude spectrum. In the 

following, this unique spectral signature will be tracked as a function of the SRI. 

Let us note that the same analysis applies to the s1 curve depicted in Fig. 1c (here for a 

linear SOP with θ equal to 45°) that is characterized by alternations between positive and 

negative peaks except at the SPR. 
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Fig. 1. Orthogonal amplitude spectra (a), PDL (b) and first normalized Stokes evolution (c) for 
a 10° TFBG immersed in oil. 

3. Results and discussion 

The proposed demodulation technique based on the analysis of the Jones matrix in 

transmission was first tested by immersing the gold-coated TFBGs in calibrated refractive 

index liquids with an accuracy of 2 10
4

 that cover a wide range of SRI. Figure 2 and 3 present 

the evolution of the PDL and s1 for some SRI values between 1.31 and 1.38. One can see that 

the SPR signature (marked by an arrow in the graphs) shifts towards longer wavelengths when 

the SRI increases. As the PDL and s1 curves are computed from the same raw data, the SPR 

wavelength is exactly the same for both evolutions. In addition to the wavelength shift, the 
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amplitude of the single peak corresponding to the SPR signature grows when the SRI 

increases. This can be attributed to the fact that the SPR resonance becomes wider and less 

pronounced in the amplitude spectrum for higher SRI values. 
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Fig. 2. PDL evolution with wavelength as a function of the SRI. 
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Fig. 3. s1 evolution with wavelength as a function of the SRI. 

To obtain real time measurements, the optical vector analyzer was driven by a program 

that computes the upper envelope of the PDL (s1) curve and retrieves its local minimum so as 

to determine the SPR. Figure 4 displays the result of the upper envelope computation for the 

PDL curve. Figure 5 presents the SPR wavelength shifts recorded on a wide SRI range. The 

obtained evolution is linear with a mean sensitivity of 673 nm/RIU, which is standard for the 

gratings used here. The full width at half-maximum of the envelope is less than 5 nm, much 

narrower than insertion loss based measurements (including prism-based SPR instruments). 
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Fig. 4. Computation of the PDL upper envelope. 
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Fig. 5. Shift of the SPR wavelength as a function of the SRI. The straight line is a best fit to the 
data points. 

While Fig. 5 shows that the envelope detection method provides excellent linearity and 

sensitivity over relatively large SRI ranges, the main application of SPR sensors is to track 

very small SRI changes, especially in biosensing applications. For such small changes, the 

accuracy with which the local minimum of the envelope function can be located, while 

superior to the case of the transmission spectrum, is still insufficient for SPR shifts of the 

order of a pm. We propose here and demonstrate that the PDL spectrum has narrowband 

spectral features that possess the necessary sensitivity to small SRI variation. In these 

experiments, we used a mixture of water and salt (LiCl) to generate controlled refractive index 

variations. The added volumes were measured with an accuracy of 0.1 ml and the temperature 

was controlled to 0.1 °C, yielding a nominal refractive index uncertainty of no more than 1.12 

10
5

 RIU. As an example, Fig. 6 presents the evolution of the PDL curve for an SRI range of a 

few 10
5

 around 1.34 RIU. Upon close examination, we find that around the SPR signature, 

some individual peaks of the PDL spectrum shift by amounts that are large in relation to their 

spectral width (the width of the downward peak of the double-lobed resonance adjacent to the 
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local SPR in particular, as seen in Fig. 6a). On the other hand, PDL resonances located away 

from the SPR region towards longer wavelengths, such as the one highlighted in Fig. 6b, do 

not shift with changing SRI (as expected from low order cladding modes with little field 

amplitude at the cladding boundary). 

We now proceed to show that wavelength shift of a single PDL resonance located near the 

envelope minimum has a sensitivity to SRI changes that is sufficient to track very small SRI 

changes. By monitoring the resonance shown in Fig. 6a, we obtain the results of Fig. 7, where 

the linear regression yields a sensitivity equal to 351 nm/RIU with resonances that have a 

FWHM of 40 pm (giving a finesse larger than 10
5
). The measured sensitivity is close to the 

theoretical one reported in [9]. The error bars are representative of both the uncertainty on the 

refractive index value and the accuracy in the wavelength measurement, which is equal to 1.5 

pm with the apparatus used in this work. 

 

Fig. 6. PDL curves for some SRI values around 1.34. Left: zoom on a downward peak close to 
the SPR signature. Right: zoom on a peak around 1580 nm. 
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Fig. 7. SPR wavelength shift as a function of the SRI. 

Repeatability tests have also been conducted on series of 50 measurements taken in the 

same operating conditions for some specific refractive index values between 1.31 and 1.38. As 

an example, Fig. 8 shows a histogram that represents the results obtained in terms of the 

detection of the resonance wavelength for an SRI kept constant around 1.34. A Gaussian-

shaped distribution with standard deviation of 3 pm is obtained, yielding a sensor resolution 

slightly better than 1 10
5

 [13]. In practice, the main source of error remains the temperature 

fluctuations (a variation of 0.1 °C induces a change of the SRI of about 1 10
5

). 
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Fig. 8. Histogram resulting from the repeatability test. 

Finally, the robustness over polarization instabilities has also been evaluated. Basically, 

the connecting fibers were moved during the measurements. As the optical vector analyzer 
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presents its own internal reference, the Jones matrix computation was not modified by a 

normal fiber handling, which in turn does not affect the proposed demodulation technique and 

yields results similar to those reported in Fig. 8. Hence, contrary to other techniques reported 

so far, working with the Jones matrix is compatible with real time operation (a complete 

measurement in a 80 nm window takes a few seconds) and does not require a tight control of 

the input SOP. 

4. Conclusion 

In this work, we have demonstrated the operating principle of a new demodulation technique 

applied to plasmonic fiber grating sensors using gold-coated TFBGs. The proposed technique 

exploits the information contained in the Jones matrix associated to the TFBG transmitted 

signal. In particular, the PDL and s1 evolutions with wavelength obtained from the Jones 

matrix contain an ambiguous signature of the SPR that can be readily tracked as a function of 

the SRI. Unlike previously reported methods, our technique is robust over polarization 

instabilities and can work with real time operating systems. Using spectral features with 10
5
 

finesse in the PDL spectrum near the SPR resonance, we further demonstrated an improved 

sensing accuracy as the maximum error on the computation of the SRI has been measured to 

be equal to ~1 10
5

 RIU, which is suited for practical application in biosensing. 
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