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Abstract. We prove an extension of the Superposition Principle by
Ambrosio-Gigli-Savaré in the context of a control problem. In partic-
ular, we link the solutions of a finite-dimensional control system, with
dynamics given by a differential inclusion, to a solution of a continuity
equation in the space of probability measures with admissible vector field.
We prove also a compactness and an approximation result for admissible
trajectories in the space of probability measures.
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1 Introduction

This paper aims to provide a relation between the macroscopic and the micro-
scopic approaches describing the evolution of a mass of particles/agents in a
controlled context. The microscopic dynamics of the particles/agents is governed
by a control system given in the form of a differential inclusion #(t) € F(x(t)),
where F'(-) is a given set-valued function stating the set of admissible velocities
for each point in R?. This makes not trivial the construction of the correspond-
ing macroscopic evolution and of its driving vector field in the space of proba-
bility measures. Indeed, from a macroscopic point of view, the evolving mass is
described by a time-dependent family of probability measures u = {1 }+ejo,17s
solving in the distributional sense a (controlled) homogeneous continuity equa-
tion (thus a PDE), and driven by an admissible vector field that has to be chosen
among the L/ﬂt—selections of F.

In a non-controlled framework, if the finite-dimensional dynamics is given
by an ODE driven by a Lipschitz vector field v; (locally Lipschitz continuous in
the space variable uniformly w.r.t. ¢), then we have existence and uniqueness of
the solution of the PDE. The solution p; at time ¢ of the continuity equation is
characterized by the push forward of the initial state pg w.r.t. a map T; called
transport map, i.e. puy = Tifug for a.e. t, where Tt(x) = v(Ty(z)), To(z) = x is the
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characteristic system. However, a relation between p; and the (integral) solutions
of the characteristic system is possible even for nonsmooth vector fields, where
uniqueness of solutions is no longer granted. This powerful result, called the
Superposition Principle, appeared for the first time in the appendix of [17] and
has been studied by different authors in [1,2,4], and in [15] in a non-homogeneous
context. The idea is to take into account the possible non-uniqueness of the solu-
tion of the characteristic system by introducing a measure n € Z(R¢ x '),
where I'r = C°([0,T]; R%), concentrated on the set of (v(0),7) where « is any
integral solution of the characteristic system. Indeed, under general assumptions,
for any solution p := {1 }1ef0,77 € Z(R?) of an homogeneous continuity equa-
tion, there exists such a (possibly not-unique) representation n € Z(R x I'r)
satisfying p; = esfin where e; : R? x I'p — R?, (z,v) — v(t), is the evaluation
operator. Conversely, any n € Z2(R? x I'r) concentrated on the characteristics
yields a solution of the correspondent continuity equation by setting p; = esfn.

We stress the fact that, given u, its probabilistic representation  may be
not unique, in particular different weights to the characteristics could lead to
the same macroscopic evolution p (some examples are sketched in the forthcom-
ing [8]). In the present paper we exploit the non-uniqueness of a probabilistic
representative by extending the reverse implication of the Superposition Princi-
ple (see Theorem 8.2.1 in [2]) in a controlled setting. In particular, we replace
the underlying characteristics’ ODE with a differential inclusion. In Theorem 1
we prove that, under some natural assumptions of the set valued map F, a
measure 7} concentrated on the Carathéodory solutions of the differential inclu-
sion 4(t) € F(y(t)), v(0) = z, induces a macroscopic admissible trajectory
1= {pt}eefor) € P (RY), where iy is a solution of a continuity equation driven
by a mean vector field v,. More precisely, v;(y) turns out to be the integral aver-
age w.r.t. n of the underlying admissible vector fields crossing position y € R?
at time ¢. In other words, the macroscopic evolution p; of our mass looses the
information about the velocity field chosen by each single particle, providing
only their average behaviour.

The results of this paper could be used to investigate further properties of
control problems in Z?(R%), possibly requiring extremality conditions (e.g. time
minimality to reach a target). For instance, one may improve the analysis made
in [5-12] where the authors studied time-optimal control problems in the space of
measures making large use of the Superposition Principle of [2]. Another poten-
tial application could be in the field of crowd dynamics, where the importance
of a multiscale approach has been underlined for instance in [13,14]. Indeed, we
can now collect together the microscopic behaviour of the single agents, even
when they are subject to different vector fields, into a unique macroscopic mean
description.

The paper is structured as follows: in Sect.2 we state the notation and
define the objects used, Sect. 3 contains the statement and proof of the extended
Superposition Principle together with a compactness and approximation result.
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2 Preliminaries

Let X be a separable metric space. We denote with &?(X) the space of Borel
probability measures on X endowed with the narrow topology induced by
(CP(X))'. When p > 1, #,(X) denotes the space of Borel probability mea-
sures with finite p-moment, i.e., the measures p € 2(R?) satisfying m,, (i) :=
f]Rd |z|P dp < 400, endowed with the topology induced by the p- Wasserstein
distance W+, ). We call .# (R%; R?) the space of vector-valued Radon measures
on R? endowed with the w*-topology. When v € . (R%;RY), |v| denotes its total
variation, and we write o < p to say that o is absolutely continuous w.r.t. pu,
for a pair of measures o,  on R?. Preliminaries on measure theory can be found
in Chap.5 in [2].

We recall now the definition of admissible trajectory in 2 (R9) that, together
with its probabilistic representation, is the central object of the present paper and
it was introduced in [5,6,8-11] for the study of time-optimal control problems
in the space of measures.

Definition 1. Let F: R? = R? be a set-valued map, i € P(R?).

1. Let T > 0. We say that p = {pe}repr) € P(RY) is an admissible trajec-
tory defined on [0,7] and starting from fi if there exists v = {v}e0,m €

M (RERY) such that |vy| < pg for ace. t € [0,T), po = fi, Oppe + divy = 0
in the sense of distributions and vi(x) := &(:c) € F(z) for a.e. t € [0,T] and
Ht

pi-a.e. © € RE. In this case, we will say also that p is driven by v.

2. Let T > 0, p be an admissible trajectory defined on [0,T] starting from [
and driven by v = {vi}iejo,1)- We will say that p is represented by n €
P (R x I'r) if we have e = py for all t € [0,T), where e; : R x I'p —
R?, (x,7) +— ~(t), and 1 is concentrated on the pairs (z,) € R? x I'r where
v is an absolutely continuous solution of the underlying characteristic system

{"y(t) € F(y(t)), forae. 0<t<T 1)

~v(0) = z.

Note that to have the existence of a probabilistic representation n € #(R? x
I't) it is sufficient that the driving vector field associated with p satisfies the
integrability hypothesis of the Superposition Principle (see Theorem 8.2.1 in [2]).

Finally, let X be a set, A C X. The indicator function of Ais I4 : X —
{0,400} defined as I4(z) = 0 for all x € A and I4(z) = +oo for all z ¢ A.
The characteristic function of A is the function x4 : X — {0,1} defined as
xa(z) =1for all z € A and xa(x) =0 for all z ¢ A.

3 Results

Throughout the paper we will require the following assumptions on the set-valued
function F': R? = R governing the finite-dimensional differential inclusion:
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(Fy) F(x) # 0 is compact and convex for every z € R?, moreover F(-) is contin-
uous with respect to the Hausdorff metric.

(F1) F(-) has linear growth, i.e. there exists a constant C' > 0 such that F'(z) C
B(0,C(]z] + 1)) for every z € R9.

The following simple Lemma states the possibility to approximate in the W)-
distance every measure p € &,(X), where X is a complete separable Banach
space, by a sequence {u*}ren of empirical measures (i.e. convex combinations
of Dirac deltas) concentrated on its support. A proof can be found for instance
in [16] (see Lemma 6.1) for the case X = R?, but it can be easily extended to
the general setting of complete separable Banach spaces.

Lemma 1 (Empirical approximation in Wasserstein). Let X be a sepa-
rable Banach space. For all p > 1 we have Z,(X) = clw, (co{d, : © € X}).

We now consider the following problem: taking any probability measure 1 on
the set of the admissible trajectories for (1), it is possible to construct a global
vector field v;(+), time-depending selection of F'(-), such that e;fin yields a family
of time-depending probability measures on R¢ solving the continuity equation
driven by v¢. This can be viewed as a partial extension to the Superposition
Principle (see Theorem 8.2.1 in [2]) to the case of differential inclusions.

Theorem 1 (SP for differential inclusions). Assume (Fy), (F1), p > 1. Let
n € P(R? x I'r) be concentrated on the set of pairs (v(0),v) € RY x I'r such
that v € AC([0,T);R?) is a Carathéodory solution of the differential inclusion
y(t) € F(y(t)). Forallt € [0,T), set py == e fin, and let {ney}yers € PRIx D7)
be the disintegration of m w.r.t. the evaluation operator e; : R x I'p — R?, i.e.
for all p € CY(RY x I'r)

//]RerT o(z,v)dn(x,v) = /Rd /etl(y) (@, ) dne,y(z,7) dpe(y).

Then if po € Pp(R?), the curve p := {wtiejor) € Pp(R?), is an admissible
tragectory driven by v = {vt}ep0,1), where vy = vypy and the vector field

wt) = [ a0 () @)

is well-defined for a.e. t € [0,T] and js-a.e. y € R,
Proof. We define
N ={(t,z,7) € [0,T] x R* x I'r: either 4(t) does not exists or ¥(t) ¢ F(y(t))}.

Since .Zjj, 71 ®n(A") = 0, we have §(t) € F(y(t)) for n-a.e. (z,7) € R? x I’y and
a.e. t € [0,T], and so v(y) is well-defined for a.e. t € [0,T] and u-a.e. y € R?.



Superposition Principle for Differential Inclusions 205

We prove first that the map ¢ — p; is Lipschitz continuous from [0,7] to
(ct (Rd))/. For all 7 € [0,T] and n-a.e. (z,v) € R? x I’y it holds

r) =200 < [ iGs)lds <€ [ (i)l + 1 s
< Ct(1+ |v(0) +C’/ |v(s) 0)| ds,
thus, by Gronwall’s inequality,

Y(7) = 7(0)] < CT(1+ [4(0)))e”™ < CTe“ (1 + [7(0))),
Since for any ¢ € C1(R?) we have

/Rﬂ(x)d“s( : ‘/ ) din( / / /R o, VPO, A (e, ) dn
<cnwuoo/ // DN+ 1) dna, ) dr

OO +1)|[Veplloe / [ 1+ vdn(e) ar
s RadxI'p
< C(CTe ™ +1) (mf/(10) + 1) [ Vol = 51,

we have [|ps — pell(c1rayy < C(CTe“T +1) ( /p(,uo) + 1) [t — s].

According to Theorem 3.5 in [3], we have that for a.e. ¢ € [0,7] the map
t + pu; is differentiable, and for all ¢ € C}(R9)

% 2) dpus (x //Rdm A(t) dn(z,~) = /W v (y) dpe(y),

which implies Oyt + div vy = 0 with v, = vy p,. Finally, thanks to the convexity
of F(y), we can use Jensen’s inequality to get that v;(y) € F(y) for us-a.e. y € R?
and a.e. ¢t € [0,T]. To conclude the proof, it is enough to show the estimates on
the p-moments of ;. Indeed, by Gronwall’s inequality we have

my/? (1) < (CTeT + 1)(1 4 my/? (o))

Moreover, by (F1) we have that every Borel selection of F'(-) is in Lf for any
1€ P,(R%), hence v, € L%, for ae. t €[0,T]. O

A possible interpretation of v(y) is provided by the following remark.

Remark 1. By definition, we have e; *(y) = {(z,7) € R? x I'r : ~(t) = y}, so,
by (2), for a.e. t € [0,T] and ps-a.e. y € RY, we have that v;(y) corresponds to
a weighted average of the velocity of the trajectories v € AC([0,T];R%) of the
differential inclusions +(t) € F(v(t)) satistying v(t) = y.
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The next example provides a situation where the velocities of a nonnegligible set
of curves differs from the mean field for a nonnegligible amount of time.

Ezample 1. The ambient space is R%. Define

o of = {%,y(')}(;,y)en@ C AC([0,2]) where 74, (t) = (x+t,y —tsgny) for any
(z,y) € R% t € [0,2], and we set sgn(0) = 0;
o F:R?2=R? by F(a,y) =[-1,1] x [-1,1] for all (z,y) € R?;

1
® fo= 550 ®‘Zﬁ—1,1] € Z[R?), n=po®9,,, € PR xI3), = {plepg

with py = efin;
e @ be the open square of vertice {(0,0),(1,0),(1/2,£1/2)}.

We notice that

e F satisfies (Fp) and (Fy) and (t) € F(y(t)) for all v € & and ¢ €]0,2].

o The product measure 7 is well-defined since (z,y) — 7z, (-) is a Borel map,
thus p is an admissible trajectory and we denote with v = {v4},c[0,2] its
driving family of Borel vector-valued measures.

e For any P = (py,py) € Q with p, # 0 there are exactly two elements
v € o satisfying v(0) € {0}x] — 1,1[ and crossing at P. These elements are
Y0,p,+p, () and we notice that P = 7o, 1p, (t) = Y0,p,—p, (t) if and only if
t = pg.

Denoted by v; = 2 the mean vector field, this implies v¢(x,y) = (1,0) for all

Mt
(z,y) € Q\ (Rx {0}) and ¢ = z. For every v € & satisfying 7(0) = {0} x] —1,1]
and v(0) # (0,0), there exists an interval I, C [0,1] of Lebesgue measure 1/2
such that v(¢) € Q if and only if t € I, thus

. 1

Lo @0 ({(t2,7) € 0,2 x B x I+ 4(1) # ve(v(D)}) = 5

With techniques similar to Theorem 1, it is possible to prove a result of
relative compactness of the admissible trajectories even in the critical case p = 1.

Proposition 1 (Relative compactness of admissible trajectories).
Assume (Fp), (F1), p > 1. Let {nVInen € PZ(RY x I't) be a sequence
of measures concentrated on the set of pairs (v(0),7) € R? x I'r where
v € AC([0,T);RY) is a Carathéodory solution of the differential inclusion
Y(t) € F(y(t)) and such that {my(eotn™)}nen is uniformly bounded. Denote
with {uN} yen the sequence of admissible trajectories represented by {n™ }nen,
and with {vN} yen C 4 (RY; RY) the sequence of their driving families of Borel
vector-valued measures.

Then, up to a non relabeled subsequence, we have that there exists n € &
(R? x I'p) such that nN —* n, and p = {0y S Pp(RY) defined by
pe = etfin is an admissible curve driven by v = {vi}ie(0,1), with vN =%y, for
a.e. t €10,T7].
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Proof. We prove that {n’V} yey is relatively compact in Z(R? x I'r). Indeed,
by exploiting the estimates of Theorem 1, and the uniformly boundedness of
my,(eotn™), we have

L. el + @D dn™ w2) < ©TET +2)0 + mlfP(eotn™) < K < o

by Remark 5.1.5 in [2] we have that {n’}yey is tight, and so, up to a non
relabeled subsequence, we have that there exists n € & (Rd x I'r), concentrated
on the set of pairs (7(0),7) € R?x I’y where v € AC(]0, T); R?) is a Carathéodory
solution of the differential inclusion () € F(v(t)), such that n™v —* x.

In particular, for all ¢ € [0,7] we have ul¥ = eifin™ —* efin = . By
Theorem 1 we have that p = {y:}.c[0,r) is an admissible trajectory and it is
driven by v = {vt}ep0,r], With vy = vepy and v; is a suitable L% -selection of
F(-) for a.e. t € [0,T].

Let us now conclude by proving that v/¥ —* v, for all N € N and for a.e.
t € [0,T]. By Theorem 1, by w*-convergence of uY to u; and by admissibility of
u®, we have that for every p € CL([0,T] x R?)

- // V(t,z) - dy dt = // Opp(t, x) dpy dt
[0,T]xR¢ [0,T]xR¢

= lim // Orp(t,x)dul dt = lim // o(t,x)dvl dt,
N—+o0 [0,T] x R4 ¢ ¢ N—+o0 [0, T]XRd ‘

hence the statement follows. O

Finally, combining Lemma 1, Theorem 1, and Proposition 1, we have conver-
gence of a suitable discrete approximation.

Corollary 1. Assume (Fy), (F1), p > 1. Let n € 2(R? x I'r) be concen-
trated on the set of pairs (7(0),7) € R? x I'p such that v € AC(]0,T];R?)
is a Carathéodory solution of the differential inclusion 4(t) € F(y(t)) with
m,(eofn) < +oo. Then there exists a sequence {n™}yen C co{d, ® 6.} C
PR x I'p) with v, € AC([0,T);R?), v(0) = x and ¥(t) € F(y(t)) for a.e.
t € [0,T), such that ¥ converges to m in W,, and for all t € [0, T]
Nl_ifjrloo W (ertn™, estn) = 0.

Proof. We take X = R? x I'r, endowed with norm ||(x,7)||x = |z| + [|V]/cc- We
prove that m,(n) < +oc. Indeed, for all ¢ € [0,7] and n-a.e. (z,7) € R x I’y
we have [y(t)] < (CTeCT + 1)(1+ h(O)]), 50 [1lloe < (CTT + 1)(1 + [1(0)]),
hence

x Pdn(z P T Pdn(z
JLL e il dnte ) < 22ere e [ b)) dnge )

]RdXFT

— 2 (CTeCT 4 1)P /Rdu 12])? dleotn) (z) < +oo.
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By Lemma 1, we can construct asequence {n”™ } yen C co{8,®6,,} C P(R¢x I’r)
Wy-converging to 1. Moreover, we have supp n C suppn, which, by Theorem 1,
implies that puv = {ul¥ = e fin™v }eejo,7) is an admissible trajectory. O
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