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LHC (light-harvesting complex) proteins of plants and algae are known to be involved
both in collecting light energy for driving the primary photochemical reactions of photo-
synthesis and in photoprotection when the absorbed light energy exceeds the capacity
of the photosynthetic apparatus. These proteins usually contain three transmembrane
(TM) helices which span the thylakoid membranes and bind several chlorophyll, caroten-
oid and lipid molecules. In addition, the LHC protein family includes LHC-like proteins
containing one, two, three or even four TM domains. One-helix proteins are not only
present in eukaryotic photosynthetic organisms but also in cyanobacteria where they
have been named high light-inducible proteins. These small proteins are probably the
ancestors of the members of the extant LHC protein family which arouse through gene
duplications, deletions and fusions. During evolution, some of these proteins have
diverged and acquired novel functions. In most cases, LHC-like proteins are induced in
response to various stress conditions including high light, high salinity, elevated tempera-
ture and nutrient limitation. Many of these proteins play key roles in photoprotection,
notably in non-photochemical quenching of absorbed light energy. Moreover, some of
these proteins appear to be involved in the regulation of chlorophyll synthesis and in the
assembly and repair of Photosystem II and also of Photosystem I possibly by mediating
the insertion of newly synthesized pigments into the photosynthetic reaction centers.

Introduction
Chlorophyll-binding proteins play a key role in the growth and development of eukaryotic photosyn-
thetic organisms. These proteins are localized in the thylakoid membranes of plants and algae and
form light-harvesting chlorophyll–protein complexes called light-harvesting complex (LHC) that
funnel the absorbed light excitation energy to the reaction centers of photosystem II (PSII) and photo-
system I (PSI) to create charge separations across the thylakoid membrane. These events lead to the
photo-oxidation of water by PSII and electron flow along the photosynthetic electron transport chain
from PSII to the plastoquinone pool, the cytochrome b6f complex, plastocyanin and PSI where a
second light-triggered charge separation occurs followed by a reduction of ferredoxin and of NADP+ to
NADPH with concomitant proton translocation into the thylakoid lumen. The resulting proton gra-
dient is used for ATP synthesis by the ATP synthase.
LHC proteins generally consist of three α-helices that bind chlorophyll a and other chlorophylls (b

or c), carotenoids and lipids [1,2]. While most of these proteins are mainly involved in harvesting
light energy and accumulate in large amounts, they have distant relatives, LHC-like proteins, in land
plants, algae and cyanobacteria which contain between one and four transmembrane (TM) domains
with putative chlorophyll-binding sites referred to as LHC motifs. They include the one-helix proteins
(OHPs) also called HLIPs (high light-induced proteins) in cyanobacteria, two-helix stress-enhanced
proteins (SEPs), three-helix proteins involved in various light responses and including LHCSRs and
ELIPs (early light-induced proteins) and the four-helix PSBS protein that is unable to bind pigments
(see Table 1). The HLIPs and SEPs are the likely ancestors of extant three-helix LHC proteins which
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could have been derived from the former through gene duplication, fusion and deletion events [3,4]. Many of
these proteins are induced under specific stress conditions such as high light, UV-B light, nutrient limitation
and elevated temperatures. However, their precise role and mode of action in most cases has not yet been eluci-
dated although they are clearly important for acclimation, optimal photosynthetic function and plant survival
under stress. In this review, some of these proteins are presented and discussed. Several excellent reviews on
this topic have been published in recent years [5,6].

LHC-like proteins, induced by stress, involved in
non-photochemical quenching
Because photosynthetic organisms are subjected to frequent and rapid changes in light irradiance, they have
evolved efficient protection mechanisms against photo-oxidation. One of these is energy-dependent non-
photochemical quenching (qE-NPQ) in which the excess absorbed light energy is dissipated as heat [7]. This
process is rapidly induced and relaxed within seconds to minutes. After transfer of the illuminated plants to
the dark, the quenching relaxation kinetics reveals different components: besides the fast qE component, slower
components appear, including qT/qZ due to state transitions and/or zeaxanthin binding to the LHC proteins
[8], qH related to abiotic stress [9] and qI caused by photoinhibition [10,11]. When the absorbed light energy
exceeds the capacity of the photosynthetic apparatus, acidification of the lumen occurs and leads to changes in
pigment composition through the xanthophyll cycle and the LHC proteins switch from an energy absorption
mode to an energy dissipation mode [12,13]. The process involves pH-sensing proteins such as PSBS [14] and/
or members of the LHC-like family including LHCSRs [15] and HLIPs (see below).
In the absence of PSBS, the quenching relaxation kinetics reveals another slower component of fluorescence

decay named qM, which is triggered by blue light through the Phot2 photoreceptor, and distinct from qE, qT/
qZ and qH, which depend on the formation of a TM proton gradient. In contrast with qE, qM is independent
of xanthophyll or LHC composition [16].
PSBS is an LHC-like protein containing four TM domains that originated most likely from a two-helix

progenitor [4]. qE-NPQ is triggered by the acidification of the thylakoid lumen that occurs following high light
treatment. Under these conditions, the pH of the lumen is between 5.5 and 5.8, two pH units below that of the
stroma [17]. This leads to the protonation of two Glu residues of PsbS exposed to the thylakoid lumen. It was
proposed that upon protonation of these residues, the conformational state of the protein changes thereby
promoting dissipation of the absorbed light energy as heat [18]. Determination of the structure of PSBS has

Table 1 LHC-like proteins involved in stress responses and assembly of photosynthetic complexes

Protein Organism
Number of
helices Function

PSBS Land plants, mosses, algae 4 qE-NPQ (land plants, mosses) acclimation
to UV-B

LHCSR1 Green and brown algae, non-vascular
plants, diatoms

3 qE-NPQ

LHCSR3 Green and brown algae, non-vascular
plants, diatoms

3 qE-NPQ

CrLHCBM1 C. reinhardtii 3 qE-NPQ

CrLHCBM9 C. reinhardtii 3 Acclimation to high light

ELIP Land plants, mosses, algae 3 Response to high light

MSF1 C. reinhardtii 3 Assembly of photosynthetic complexes

SEP/LIL Land plants, algae 2 Acclimation to stress, chlorophyll
biosynthesis

OHP1,
HLIP

Land plants, algae, cyanobacteria 1 Acclimation to stress, assembly of
photosynthetic complexes

OHP2 Land plants, algae, cyanobacteria 1 Acclimation to stress, assembly of
photosynthetic complexes
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revealed that two long intertwined TM helices, TM1 and TM3 form a central supercoil and are surrounded by
two short helices TM2 and TM4. These helices are linked by two short lumenal loops and an elongated
stromal loop [19]. Besides the additional helix TM4, there are significant structural differences with the
common LHC proteins. Notably, PSBS forms a compact structure which does not allow for the formation of
pigment-binding sites. Thus, PSBS is not a canonical pigment-binding protein [19]. However, its crystal struc-
ture has not provided clear insights into how it acts. PsbS forms homodimers in the thylakoid membrane and
it was suggested that activation of PSBS by low pH may be mediated through a conformational change involv-
ing altered lumenal intermolecular interactions of the PSBS dimer [19] in line with the idea that PSBS acts as a
pH-sensitive trigger for qE perhaps by promoting a reorganization of the photosynthetic membranes which in
turn induces the formation of quenching sites in the PSII antenna system [20–23]. Alternatively, the activated
PSBS dimer could interact directly with neighboring LHCs and induce quenching within these LHCs.
Pull-down assays [24] and in vitro reconstitution of the quenching process with proteoliposomes containing
PSBS, LHCII and zeaxanthin [25] support such a direct interaction between PSBS and LHCs during qE-NPQ.
The specificity of these interactions is also supported by a genetic analysis of LHC proteins showing that
quenching occurs within specific antenna proteins, namely the monomeric antenna CP29 [26] and the Lhcbm1
component of trimeric LHCII [27,28]. These interactions do lead to rearrangement of PSII supercomplexes in
the grana [22,29].
The need of PSBS for inducing NPQ when the pH of the lumen is sufficiently low was questioned based on

two observations. First, quenching of fluorescence was still observed in the PSBS-deficient npq4 mutant of
Arabidopsis after long-term illumination although at a reduced rate. Second, treatment of the npq4 mutant with
the quinone analog diaminodurene that mediates cyclic electron flow around PSI and thereby enhances the pH
gradient, induced a rapidly reversible qE-type NPQ in isolated intact chloroplasts of the mutant [30] suggesting
and that the role of PSBS is to rapidly turn on NPQ at physiological lumen pH values [30]. However, it was
later shown that the fluorescence quenching observed in the npq4 mutant upon illumination which accounts
for nearly 50% of the qM amplitude in wild type, is due to the chloroplast light avoidance response which can
be induced only with white or blue light but not with red light [16,31]. This process is mediated by the blue
light receptors phototropins. Thus, this fluorescence decrease is mostly caused by a decreased light absorption
because of the light-induced relocation of chloroplasts rather than by a change in quenching activity. Moreover,
the dark reversibility of the quenching process observed in the npq4 mutant treated with diaminodurene could
not be reproduced by one of us (R. Bassi and S. Dall’Osto, unpublished results) and thus remains a controver-
sial issue. The current evidence supports a direct and essential role of PSBS for triggering the quenching reac-
tions of qE.
PSBS genes have been detected in plants and green algae but not in other oxygenic photosynthetic organisms

which are not part of the green lineage [32]. Although two PSBS genes are present in the nuclear genome of
the green alga Chlamydomonas reinhardtii, initial attempts to detect the protein under several different growth
conditions were unsuccessful [23]. However, transcriptomic studies reveled that these genes are expressed
under specific conditions such as nitrogen deprivation [33] or during a dark to light shift [34]. Further studies
revealed that PSBS accumulates rapidly and transiently upon light stress [35]. Moreover, constitutive overex-
pression of PSBS in the chloroplast of Chlamydomonas increased qE-NPQ [36].
Interestingly, PSBS is strongly induced by UV-B light together with LHCSR1 (see below) both of which con-

tribute to qE under these conditions. Upon UV irradiation, the cytoplasmic dimeric UVR8 receptor mono-
merizes and interacts with the E3 ubiquitin ligase COP1 (Constitutively Photomorphogenic 1), moves to the
nucleus and induces changes in gene expression [37–40]. PSBS and LHCSR1 are prominent among the proteins
up-regulated in this response [41]. They provide a direct mechanistic link between UVR8 receptor signaling
and acclimation and photoprotection of the photosynthetic machinery of Chlamydomonas [42].
A genetic screen for NPQ-deficient mutants of Chlamydomonas identified npq4, deficient in LHCSR3, a new

component involved in qE [15]. There are three LHCSR genes in this alga called LHCSR1, LHCSR3.1 and
LHCSR3.2. The latter two encode identical proteins that are both missing in the npq4 mutant. LHCSR was first
identified as a light-induced mRNA called LI818 [43] with a different expression pattern from most other
LHCs involved in light harvesting [44]. The LHCSR transcripts accumulate in cells subjected to photooxidative
stress such as high light [45] and deprivation of carbon dioxide [46], iron [47] or sulfur [48]. The mRNAs of
LHCSR1 and LHCSR3 appear to be regulated by different signals because they respond differently to low
carbon dioxide [49]. In comparison with PSBS, LHCSR3 is much more abundant during high light stress and
plays a major role in photoprotection.
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With its three TM domains, LHCSR3 is structurally very similar to LHC proteins and it is also able to bind
chlorophylls and carotenoids [50]. Moreover, it responds to low pH. Possibly, LHCSR3 could be the energy
quencher because of its ability to bind pigments and of its capacity to undergo a transition to a very short
fluorescence lifetime state [50–52]. LHCSR proteins are present in many photosynthetic organisms including
green and brown algae, diatoms, non-vascular plants but they are absent from most vascular plants and in
Rhodophyte algae [32] which dissipate excess light excitation energy from phycobilisomes in a different way
than qE [53]. In the moss Physcomitrella patens, qE-NPQ operates both in an LHCSR- and PSBS-dependent
way [54]. In this organism, LHCSR is localized both in grana margins and stroma lamellae [55] whereas in
Chlamydomonas, LHCSR3 is associated with both PSI and PSII depending on the light conditions [56,57].
LHCSR1 from Physcomitrella has been overexpressed in tobacco and shown to be active in NPQ [55]. The puri-
fied recombinant protein bound Chl a plus lutein and violaxanthin when purified from dark-adapted leaves
while zeaxanthin replaced violaxanthin upon light adaptation.
Single molecule spectroscopy of LHCSR1 revealed that this protein undergoes rapid conformational changes

and that the protein conformational dynamics control switching between two dissipative states one of which is
activated by pH and the other by binding of zeaxanthin [58] through direct energy transfer from the chloro-
phyll a Qy state to the zeaxanthin S1 state and to lutein through the transient formation of a carotenoid
radical cation [59,60]. These two states allow the organism to adapt to either step or gradual changes in solar
irradiance. The quenched and unquenched conformations of LHCSR1 have life times of 80 ps and 3.7 ns,
respectively, implying that the unquenched protein does act as a common light-harvesting antenna, feeding
excitation energy into the reaction centers but competes with their exciton trapping when in its quenched
state [61].
Besides reducing qE, loss of LHCSR3 leads to an increase in the chlorophyll a/b ratio, suggesting some

minor remodeling of the antenna [15]. However, the other components of the antenna systems accumulate nor-
mally when LHCSR3 is absent, including LHCBM1, which is known to also play a role in qE [62].
Chlamydomonas cells need to be exposed to high light stress for several hours for inducing the accumulation

of LHCSR3 and qE-NPQ [15]. One might expect that photodamage occurs during this period. However, this is
prevented because state transitions occur within a few minutes of light stress and promote the transfer of a
large part of the PSII antenna from PSII to PSI which acts as an efficient quencher of the absorbed light energy
[56]. Comparison of fluorescence quenching, photosynthetic activity and ROS production in wild type, npq4,
stt7, a mutant deficient in state transitions [63] and in the double mutant npq4stt7 revealed that photodamage
is significantly more pronounced in the double mutant than in both single mutants indicating that qE and state
transitions contribute both to NPQ in this alga under high light [56]. Under steady state conditions, qE plays
a major role whereas state transitions appear to be important during the early phase of NPQ induction in
this alga.
Until recently, it was thought that photoperception by specific photoreceptors and photoprotection mediated

by qE-NPQ are distinct independent processes. However, new molecular links have been uncovered between
these two processes in Chlamydomonas. Recent work indicates that energy dissipation in green algae is con-
trolled by the blue light UV-B receptor UVR8 and the blue light receptor phototropin. Activation of UVR8 by
UV-B light mediates the induction of PSBS and LHCSR1 and to a lesser extent LHCSR3 [42], while activation
of phototropin by blue light together with a chloroplast signal controlled by photosynthetic activity induces
expression of LHCSR3 [64]. The nature of this signal is still unknown but it is not linked to the redox state of
the plastoquinone pool. It possibly relies on the accumulation of ROS species [65]. These two signaling path-
ways appear to be independent, but complementary because induction of qE-related proteins is not dependent
on electron flow.
Induction of the 10 ELIP genes in Chlamydomonas is also mediated by two independent pathways.

Expression of ELIP1,5,6 is preferentially induced by UV-B [41] whereas that of ELIP2,3,4,9,10 is induced by
white light [34].
Although the genome of Chlamydomonas does not contain phytochrome genes, this alga uses bilins, the

chromophores of phytochromes in land plants, to regulate photosynthesis-associated nuclear gene expression.
Bilins are derived from heme by heme oxygenase (HMOX1) and ferredoxin-dependent bilin reductase both of
which are localized in chloroplasts. High light-induced expression of genes such as LHCSR1 and PSBS is sup-
pressed by biliverdin supplementation in Chlamydomonas suggesting that these bilins act as negative signals
under these conditions to regulate a gene network for mitigating light-induced oxidative stress [66]. However,
the underlying molecular mechanisms of this retrograde signaling chain are still unknown.
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LHC-like proteins involved in assembly/repair of
photosynthetic complexes and induced under
stress conditions
LHC genes form a large family in plants and algae. In C. reinhardtii, there are at least 20 different LHC iso-
forms that are expressed [67,68]. In spite of their similar sequences, several observations indicate that specific
members are involved in specific processes. Thus, mutant strains deficient in LHCBM1 are affected in qE-NPQ
[62] whereas LHCBM2, LHCBM5 and LHCBM9 are involved in state transitions [69,70]. In the case of PSI,
LHCA3 has been proposed to be required for maintaining LHCI [71].
While most three-helix LHC proteins are abundant, some LHC-like proteins accumulate only in small

amounts or are undetectable under normal conditions but are strongly and transiently induced under specific
stress conditions. This is particularly true for ELIPs (early light-induced proteins) which form a large family in
pro-and eukaryotic organisms. These proteins are inserted in thylakoids through the SRP pathway responsible
for targeting the LHC proteins from the chloroplast envelope to the thylakoids [72] and accumulate transiently
mostly under light stress and have photo-protective functions [73]. They also accumulate during induction of
photomorphogenesis of greening etiolated seedlings [74,75]. ELIPS has three TM domains of which the first
and third helices display high sequence identity with the corresponding helices of LHC proteins and they
contain four putative chlorophyll-binding residues [76]. As compared with other LHC proteins, ELIPs have an
unusual pigment composition consisting mostly of chlorophyll a and large amounts of lutein and they have a
low excitonic coupling between chlorophyll a molecules [74]. Expression of these proteins is induced under
high light [77], high salinity [78], UV-B irradiance [79] and desiccation [80]. The genes of ELIP1 and ELIP2
are induced by blue light through the photoreceptor CRY1 [81].
ELIPs have been localized in the stroma-exposed thylakoids where PSII repair takes place. In this repair

process, damaged PSII moves from the grana to the stroma thylakoids where newly synthesized reaction center
protein D1 is synthesized and inserted together with chlorophyll into the PSII complex. Also, constitutive
expression of ELIPs was shown to rescue the photosensitivity of chaos, a mutant deficient in the SRP pathway
unable to rapidly accumulate ELIPs under high light and chilling and therefore highly photo-sensitive [82].
Taken together, these data strongly suggest that ELIPS have a photo-protective role.
Constitutive expression of ELIP2 in Arabidopsis led to a 50% decrease in leaf chlorophyll content and photo-

systems which were fully assembled and functional [83]. Analysis of the chlorophyll biosynthetic pathway in
this mutant revealed that two important regulatory steps are affected with a decrease in glutamyl tRNA reduc-
tase and Mg chelatase subunits CHLH and CHLI. These observations suggest that ELIPs may act as chlorophyll
sensors that modulate chlorophyll synthesis to prevent accumulation of free chlorophyll and hence prevent
photooxidative stress [83]. Surprisingly, however, loss of the two unique ELIPS in an Arabidopsis elip1/elip2
mutant did not change its sensitivity to photoinhibition and photodamage or its ability to recover from light
stress compared with wild type and led only to a modest decrease in chlorophyll [84]. Also, in this mutant,
there was no increase in uncoupled pigments which appear when chlorophyll–protein complexes are incom-
pletely assembled or damaged. Moreover, upon high light stress, there was no compensatory increased expres-
sion of other ELIP-like proteins such as OHP and SEP. These results raise questions about the proposed role of
ELIPs in photoprotection. The observation that the level of zeaxanthin was reduced in elip1/elip2 under high
light and cold raises the possibility that ELIPs may modulate the xanthophyll cycle [84].
Among ELIP-like proteins, the MSF1 protein was identified through a screen for mutants of

Chlamydomonas impaired in photosynthetic activity [85]. This protein is structurally related to ELIPS and
accumulates only under certain stress conditions such as elevated temperatures, dark-light transitions, nutrient
stress with deprivation of iron and copper, and also in aging cells (Table 2). Although the level of MSF1 rises
transiently upon high light stress, there is no change in its mRNA abundance, in striking contrast with ELIP
mRNAs [73]. MSF1 is required for stability and maintenance of protein–chlorophyll complexes, mainly PSI
because the loss of MSF1 leads to a 4-fold decrease in PSI with only minor effects on the levels of other photo-
synthetic complexes. Although clear evidence for chlorophyll binding could not be demonstrated, MSF1
appears to be linked to the chlorophyll biosynthetic pathway based on the observation that it interacts with
CTH1, a subunit of the aerobic chlorophyll cyclase and co-fractionates in a 150 kDa complex with CTH1 and
CGL178 [85]. CTH1 catalyzes the synthesis of protochlorophyllide, one of the last steps of chlorophyll synthesis
and CGL178 is involved in the regulation of the chlorophyll cyclase. Expression of both CTH1 and CGL178 is
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Table 2 Conserved LHC motif in LHC-like proteins
The LHC motif is indicated in some of the transmembrane domains of the listed
proteins. Conserved amino acids are highlighted. The position of the consensus
motif is indicated for each protein in brackets. In common LHC proteins, E1 and
R6 from this motif in helix 1 form two ion pairs with oppositely charged residues
from helix 3 and are involved both in locking these two transmembrane helices
together, and with (N/H)4 they act as ligands for the central Mg++ of chlorophyll
molecules (1, 2). Note that (N/H)4 is not conserved in PSBS consistent with the
fact that this protein does not bind chlorophyll (18, 19). Cr, Chlamydomonas
reinhardtii; At, Arabidopsis thaliana.

CrPSBS2 (Cre01.g016750) ELFVGRLAMVGFSAS (71-85)

ELFVGRAAQLGFAFS (159-173)

LHCSR1 (Cre08.g365900) EITHGRVAMLAALGF (81-95)

ELNNGRLAMIAIAAF (191-205)

LHCSR3 (Cre08.g367400) EITHGRVAMLAALGF (87-101)

ELNNGRLAMIAIAAF (197-211)

LHCBM1 (Cre23.g766250) ELIHARWAMLGALGC (90-105)

EIKNGRLAMFSMFGF (205-219)

LHCBM9 (Cre06.g284200) ELIHARWAMLGALGC (87-101)

ELKNGRLAMFSMFGF (202-216)

ELIP (Cre13.g576760) EINNGRIAMVSVVTA (67-81)

EKINGRAAMMGLTSL (346-360)

ELIP (Cre09.g394325) EIVNGRLAMLGFVSA (103-117)

ELLNGRAAMIGFAAM (171-185)

Msf1 (Cre14.g626750) ETINGRAAMLGFVAA (87-101)

EKVHGRLAMLGLTTL (166-170)

CrLIL3 EKLNGRAAMMGYVLA (162-176)

AtLIL3 ELLNGRAAMIGFFMA (174-188)

AtOHP1 EIWNSRACMIGLIGT (69-83)

AtOHP2 EISNGRWAMFGFAVG (130-144)

SynHliA EKLNGRLAMIGFVAL (36-40)

Consensus E**NGR*AM*G

HA A
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decreased in the absence of MSF1. These observations raise the possibility that MSF1 could represent a poten-
tial candidate for linking chlorophyll biosynthesis to the maintenance of photosynthetic chlorophyll–protein
complexes under specific stress conditions. Assuming that it is capable of transiently binding chlorophyll, it
could mediate the transfer of newly synthesized chlorophyll to the nascent photosynthetic complexes thereby
linking chlorophyll biosynthesis to the assembly and/or repair of PSI and to a lesser extent of other complexes
[85]. This would prevent the release of free chlorophyll which would cause photooxidative damage. It is note-
worthy that among photosynthetic complexes, PSI contains the largest number of chlorophylls. These mole-
cules need to be inserted in a co-ordinated way during the assembly of the reaction center. Specific factors such
as MSF1 may have evolved for this role which is especially important under stress conditions. While MSF1 is
clearly derived from ELIPs, its function appears to have been tailored for assembly and/or maintenance of PSI
and chlorophyll–protein complexes during evolution.
Functional links with chlorophyll synthesis have been observed for other LHC-like proteins, in particular,

for LIL3, a protein with two TM domains, one of which resembles the LHC chlorophyll-binding motif
(Table 2). In the absence of both isoforms of LIL3 of Arabidopsis, geranylgeranyl reductase (CHLP) and pro-
tochlorophyllide oxidoreductase (POR), are destabilized thus compromising the supply of the two metabolites,
chlorophyllide and phytyl pyrophosphate, needed for the final steps of chlorophyll synthesis [86,87]. In barley
seedlings, LIL3 specifically accumulates during the de-etiolation stage and assembles as chlorophyll-binding
protein complex [88]. LIL3 could thus play an important role in efficiently channeling tetrapyrrole intermedi-
ates and their products to their final destination within the photosynthetic complexes thereby preventing
photooxidative damage.
Another atypical LHC protein is LHCBM9 from C. reinhardtii. While most LHC genes are expressed to high

levels under normal growth conditions, LHCBM9 is only weakly expressed. However, its expression is strikingly
enhanced at the mRNA and protein level under various stresses including exposure of cells to high light, nitro-
gen deprivation, sulfur-deprived anaerobic conditions which induce hydrogen production in this alga [89–92].
The latter process is thought to act as safety system whereby excess protons and electrons produced by the
photosynthetic reactions are scavenged [93,94]. In addition, expression of LHCBM9 is also increased upon
inhibition of chloroplast transcription and translation indicating that LHCBM9 is a general stress protein [95].
Similar to other LHCII proteins, LHCBM9 binds chlorophyll a and b. The presence of an amino acid motif

essential for LHC trimer formation in LHCBM9 is consistent with the observation that it is enriched in tri-
meric complexes and in PSII supercomplexes [92]. Under nutrient-deficient conditions, LHCBM9 appears to
replace other LHCII proteins in the LHCII antenna and thereby enhances light energy dissipation and prevents
the formation of ROS. This is particularly important because under these conditions, PSII is partly degraded
and the resulting free LHCII trimers can no longer dissipate the absorbed energy by photochemical quenching.
Reduction in LHCBM9 by 50–70% in knockdown lines led to decreased photosynthetic activity upon illu-

mination and reduced levels of PSII supercomplexes. Moreover, hydrogen production was severely affected in
Chlamydomonas [92]. Further functional analysis revealed that in the presence of LHCBM9, chlorophyll fluor-
escence decay is faster and less singlet oxygen is produced indicating that this protein is a better quencher than
the other LHCBM proteins or is a preferential docking site for LHCSR proteins. Hence, it is important for
photoprotection during stress conditions by facilitating light energy dissipation and by stabilizing PSII super-
complexes. LHCBM9 expression appears to be regulated through some hypothetical retrograde signaling path-
ways which remain to be elucidated. The observation that LHCBM9 mRNA and protein accumulation is
induced within the timeframe of hours suggests that the protective function of LHCBM9 becomes important
when the stress conditions prevail for hours or more. Taken together, these studies suggest that LHCBM9
participates in an acclimation process to general stress conditions that involves the remodeling of PSII–LHCII
supercomplexes and results in reduced ROS formation and thus enhanced photoprotection.

SCPs, small cab-like proteins: possible roles
The SCP proteins (small cab-like proteins) also called OHPs or HLIPs (high light-inducible proteins) in cyano-
bacteria, are small CAB (chlorophyll a/b binding)-like proteins containing one trans-membrane domain that is
related to the first and third TM helices of LHCII proteins which contain the chlorophyll-binding sites
(Table 2). It was proposed that these proteins act as carrier proteins of chlorophyll and it was indeed shown
that they bind chlorophyll in vitro [96]. SCPs/OHPs have been implicated in the assembly of the PSII reaction
center [97]. During this process, insertion of cofactors such as chlorophyll and carotenoids constitutes an
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essential step but is prone to photo-oxidative damage. These proteins have also been suggested to function in
the PSII repair cycle by serving as a temporary pigment reservoir when PSII components are being replaced
[98,99]. This could explain their low affinity for pigments. SCPs appear to prevent degradation of chlorophylls
associated with PSII and could mediate chlorophyll reutilization during repair of photodamaged PSII [100]. In
cyanobacteria, the OHP proteins HLIC and HLID together with the short chain dehydrogenase/reductase
YCF39, the ortholog of chloroplast HCF244, form a complex binding chlorophyll a and β-carotene. This
complex binds to the PSII D1/D2 reaction center complex but it is not essential for its assembly [101].
Chlorophyll synthase CHLG can be co-immunoprecipitated with HLID and YCF39 [102]. HLID appears to

be the key factor for assembling this CHLG protein–pigment complex important for proper chlorophyll biosyn-
thesis. Whereas HLID binds chlorophyll a and β-carotene in a 3:1 ratio, more pigments are bound to the
CHLG complex. These include chlorophyllide a, chlorophyll a and three different carotenoids: myxoxantho-
phyll, zeaxanthin and β-carotene. These results suggest that the HLID–YCF39 complex may mediate the deliv-
ery of chlorophyll to the newly synthesized D1 and D2 proteins during assembly of the PSII reaction center
complex and protect it from photodamage. Besides being associated with PSII, these proteins have also been
proposed to interact with trimers of PSI in cyanobacteria [103]. It is possible that some of the functions
ascribed to the SCPs are related to those of MSF1 mentioned above.
Similarly, in land plants, OHP1 appears to deliver chlorophyll to the PSII reaction center and can be

co-purified with D1/D2, HCF136, HCF244 and HCF173 [97]. Loss of OHP1 or OHP2 leads to a pale-green
phenotype and accumulation of the photosystems is reduced [97,104]. Thylakoid organization is altered in
mutants lacking OHP1 with a nearly complete absence of stromal lamellae and swelling of the marginal thyla-
koids [105]. Recently, it was shown that OHP1 and OHP2 form a heterodimer which could mimic the crossed
arrangement of the first and third helix critical for chlorophyll binding of LHC proteins (Table 2). Moreover,
the stromal part of OHP2 interacts with HCF244. OHP2 is required for the stability of OHP1 and HCF244
and specifically involved in the assembly of the PSII complex [106]. Formation of the PSII reaction center
complex is specifically inhibited in the absence of OHP1 and OHP2 in Arabidopsis [105]. Moreover, changes in
the critical residues of the chlorophyll-binding sites of these proteins interfere with their function further sug-
gesting that they are chlorophyll-binding proteins. Further studies revealed that OHP1, OHP2 and HCF244
together with D1, D2, PSBI and Cytb559 form a PSII–RC-like complex for a limited period at an early stage of
PSII assembly and also during PSII repair [105]. OHP1, OHP2 and HCF244 are subsequently released from
the PSII–RC-like complex and replaced by other PSII subunits. This complex is distinct from the RC center
sub-complex in the intact PSII complex and appears to be the counterpart of the cyanobacterial YCF39–HLID
complex in which HLID binds chlorophyll a and β-carotene and dissipates absorbed energy [101,102].
Ultrafast absorption spectroscopy reveals that this process occurs through a direct energy transfer from the
chlorophyll a Qy state to the β-carotene S1 state [107]. Taken together, these studies indicate that the mechan-
isms governing PSII-RC assembly are highly conserved both in prokaryotic and eukaryotic photosynthetic
organisms and that there is a tight coordination between chlorophyll synthesis and assembly of the
photosystem complexes.

Conclusions
The picture which is emerging from numerous studies of the large LHC protein family is that even though the
members of this family are very similar, some of these proteins perform specific functions mostly related to dis-
sipation of excess absorbed light excitation energy when the capacity of the photosynthetic machinery is satu-
rated. They appear to play a key role in photoprotection as seen by the fact that in many cases plants lacking
any of these proteins are significantly more vulnerable to photodamage under various stress conditions.
However, many of these stress-induced LHC proteins differ from the common LHC proteins of the light-
harvesting systems in three major aspects. First, whereas common LHC proteins stably accumulate during most
of the plant/algal life cycle, this is not the case for the stress-induced LHC proteins. These proteins are often
barely detectable under normal growth conditions, but are strongly induced under stress conditions such as
high light, elevated temperature, desiccation and nutrient deprivation. Second, while common LHC proteins
contain invariably three TM domains, some stress-induced proteins contain one, two, three or four TM helices
with characteristic chlorophyll-binding motifs (Table 2). Third, besides their role in photoprotection, some of
these proteins participate actively in the assembly and/or repair of the reaction centers of PSII and PSI. This is
particularly true for the OHP proteins OHP1 and OHP2 which together with ORF244 form a transient
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complex, called RC-like complex with the PSII reaction center proteins D1, D2 and CYTB559 [105].
Interestingly, a similar complex has been reported in cyanobacteria with YCF39, the ORF244 ortholog, and the
PSII reaction center proteins [108] indicating that this assembly pathway has been conserved in photosynthetic
organisms. Although the action of these OHPs is not yet fully understood at the molecular level, a possible
model is that they bind newly synthesized chlorophyll molecules transiently and insert them into the reaction
center in a co-ordinated way during assembly. In this way, no free chlorophyll is released and thereby photo-
damage of the cells is minimized. A similar scheme may apply to MSF1 in Chlamydomonas, a three-helix
LHC-like protein which appears to be preferentially involved in the assembly of the PSI core complex [85].
From an evolutionary point of view, these small LHC-like proteins are of special interest because they

suggest possible evolutionary pathways in which three-helix LHC proteins evolved presumably from the
prokaryotic one-helix HLIPs through a series of duplications and fusions [73,109].
Among the stress-induced proteins involved in photo-protection, several play key roles in qE-NPQ. This is

particularly the case or the four-helix PSBS protein in land plants although it is still not clear how this protein
act in the quenching process in spite of the determination of its crystal structure [19]. Because this protein
does not bind any pigment, it is unlikely to contain the quenching site and probably acts as a trigger by inter-
acting with nearby LHC proteins of the antenna once it is activated by the low pH of the thylakoid lumen.
Although PSBS has also been conserved in green algae and is induced under high light, it does not appear to
be involved in qE-NPQ. In these organisms, this process is mediated by the LHCSR proteins containing three
TM helices. In contrast with PSBS, the LHCSR proteins bind pigments and could harbor the quenching site.
Whereas PSBS and LHCSR require a low lumenal pH to be activated for dissipation of the light excitation
energy by qE-NPQ, this is not the case for LHCBM9 of Chlamydomonas, a three-helix LHC protein that accu-
mulates under stress conditions even if the pH is neutral. Interestingly, LHCBM9 substitutes common LHCII
proteins in the antenna trimers and stabilizes PSII supercomplexes in an energy-dissipative mode. How
LHCBM9 is induced and how it acts in the antenna complexes remains to be explored.
Taken together, these studies reveal that stress-induced LHC proteins play key roles not only in the dissipa-

tion of excess light excitation energy and prevention of photo-oxidative damage but that at least some of these
proteins actively participate in the assembly pathway of photosynthetic complexes possibly by mediating the
transfer of newly synthesized chlorophylls into the nascent complex. A challenging task will be to understand
how these proteins promote these processes at the molecular level.
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LHC, light-harvesting complex; OHPs, one-helix proteins; PSI, photosystem I; PSII, photosystem II; TM,
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