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Abstract: We know that quantum logics are the most prominent logical systems associated to the 
lattices of closed Hilbert subspaces. But what does it happen if, following a quantum computing 
perspective, we want to associate a logic to the process of quantum registers measurements? This 
paper gives an answer to this question, and, quite surprising, shows that such a logic is nothing else 
that the standard propositional intuitionistic logic.
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1. Introduction7

The long tradition of Quantum Logics comes from the ideas of Birkoff and von Neumann [1]8

(see also [2] for an extended tutorial on the subject) , where they defined a new "non classical" logic9

to deal with the algebraic structures obtained from Hilbert spaces by means of quantum projective10

measurements. Although Quantum Logics are extremely interesting for their ability to formalize11

quantum-algebraic structures such as orthomodular lattices, these logics are inadequate to reason on12

the computational aspects relevant to Quantum Computing.13

Quantum Computing born from Feynman’s ideas exposed in [3] where, in order to simulate14

complex quantum systems, the author proposed a new computational paradigm based on quantum15

physics. The basic units of the standard quantum computing model are the so called quantum bits,16

or qubits for short (mathematically, normalized vectors of the Hilbert Space C2). Qubits represent17

informational units and can assume both classical values 0 and 1, and all their super-positional values18

(see e.g. [4] for an extended treatment of quantum computing).19

Following the quantum computing paradigm, a numbers of authors have proposed both20

paradigmatic languages [5–9] and logical systems in order to cope with quantum computations,21

see e.g. [10–15]. Most of these latter approaches are based on a modal logic viewpoint, where the main22

subject of the study is the treatment of unitary transformations.23

But what can we say, from a purely logical point of view, about the measurement process of24

quantum registers? More precisely, let us suppose to have a quantum register |ψy and, starting from25

|ψy, to perform an arbitrary numbers of projective measurements. In such a way we obtain a tree-like26

computational structure, which we call here observational tree, with root |ψy and where each node is a27

quantum state resulting from a sequence of measurements.28

This paper give a positive answer to the following question:29

"Is there a propositional logic that has the observational trees as set of models?"30

1.1. A gentle informal introduction of our proposal31

First, let us suppose to have a denumerable set Q “ teiuiPω of qubits with distinguishable names
and an arbitrary finite non-empty set R “ tei1 , . . . eiku Ď Q. Let RegQ be the set of quantum registers
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based on Q. As we know, each quantum register in RegQ can be represented by an expression of the
kind

j“2k
ÿ

j“1

aj
ˇ

ˇei1 “ vj1 , . . . eik “ vjk

D

where each vji P t0, 1u and each aj P C.32

As a second step let us fix a standard propositional language, where Q is the set of propositional33

symbols.34

It is immediate to observe that each
ˇ

ˇei1 “ vj1 , . . . eik “ vjk

D

is a standard boolean evaluation of35

propositional symbols ei1 , . . . eik , namely:36

eij is true in
ˇ

ˇei1 “ vj1 , . . . eik “ vjk

D

ô eij “ 1

In order to simplify the notation, given a finite set R “ tei1 , . . . eiku of qubits, we can represent37

each element
ˇ

ˇei1 “ vj1 , . . . eik “ vjk

D

of the computational basis as a subset C (eventually empty) of R,38

where eik P C iff eik “ 1. As a consequence, each quantum register can be represented by an expression39

of the form
ř

CiP2R ai |Ciy.40

The idea is that the truth of a propositional symbol must be stable under measurement, i.e. if e is true in a41

quantum register |φy “
ř

ai |Ciy iff then each possible measurement1 of φ returns (probabilistic) a set42

of new quantum registers in which in turn p is true. Following this intuition we set that e is true in43
ř

CiP2R ai |Ciy iff e is true in each |Ciy iff e P Ci.44

The notion truth for a generic formula is therefore given in terms of stability under measurements.45

Let us consider for example the cases of disjunction and implication:46

• a formula A_ B is true in a quantum state |ψy iff after every sequence (eventually the empty47

sequence) of measurements of |ψy in the resulting state |ψy we have either the truth of A or those48

of B;49

• a formula A Ñ B is true in a quantum state |ψy iff after each sequence (eventually the empty50

sequence) of measurements of |ψy, in the resulting state |ψy we have that if A is true then B is51

true;52

In order to formalize the notion of truth above sketched we need to introduce suitable partial order53

structures, where the order is naturally induced by the measurement process. We call these structures54

observational trees. Observational trees represent the core of our investigation, these structures will55

allow us to explain the constructive nature of the logic of measurement, and its deep difference from56

the classical logic.57

Synopsis58

In Section 2.2 we introduce the key notion of observational trees. The observational logic LP is59

semantically defined in Section 3, where we state the relationship between observational trees and60

intuitionistic Kripke models. Section 4 is finally devoted to possible further work.61

2. A quantum tree model for observations62

In order to introduce the notion of observational trees, in Section 2.1 we first recall some basic63

notions. Formal definition of observational trees is in Section 2.264

1 in order to simplify the treatment we consider here only the so called PVM-ProjectionValue Measurement [4]
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2.1. Background65

In the following paragraph, we briefly introduce the notion of trees seen as sets of sequences66

of natural numbers (see e.g. [16]), and the mathematical representation of quantum registers and67

quantum measurement operators (see e.g. [4]).68

2.1.1. Trees69

Let S˚ be the set of finite sequences of natural numbers. We denote the empty sequence by x y70

and an arbitrary sequence by xn0, . . . , nky. We use the symbol ˚ for concatenation of sequences. We71

define a partial ordering ď on S˚ as follows: t ď x y for all t P S˚ and xn0, . . . , nky ď xm0, . . . , mly if and72

only if l ď k and ni “ mi for all 0 ď i ď l. We denote by ă the associated strict order.73

A tree T “ xT,ďy is a partial order with of T Ď S˚ satisfying the property that whenever t P T74

and t ď s then s P T. Elements of T are called nodes. A leaf is a node with no successors. With E we75

denote the set of edges of T , namely the set tpα, α ˚ xnyq : α, α ˚ xny P T, n P Nu.76

Given a tree T and s P T, we let Ts the tree defined by: s1 P Ts ô s ˚ s1 P T. Notice that Tx y “ T.77

In the graphical representation of a tree, if i ă j we put t ˚ xiy to the left of t ˚ xjy.78

2.1.2. Quantum registers79

Let P be a denumerable set of propositional symbols and let X be a finite non void subset of P,80

moreover let F be the set of finite parts of X.81

Let us consider the Hilbert-space `2pFq of square summable, F-indexed sequences of complex
numbers

HX “ tφ | φ : FX Ñ Cu ,

equipped with an inner product x. | .y and the euclidean norm }φ} “
a

xφ|φy.82

The elements of the setRX “ tφ P HX : }φ} “ 1u are called q–registers (quantum registers), and83

represent the superposition states of a quantum system.84

For any c P FX let |cy : FX Ñ C be the function

|cy pdq “

#

1 if c “ d
0 if c ‰ d.

The set CBpXq of all such functions is a Hilbert basis for `2pFq. In particular, following the literature on85

quantum computing, CBpFq is called the computational basis of `2pFq. Each element of the computational86

basis is called base q-register.87

Let us assume to fix an enumeration tbiui of FX. We shall use Dirac notation for the elements φ, ψ88

of R, writing them |φy , |ψy. As usual, each quantum state |φy is expressible via the computational89

basis as
ř

i ai |biy.90

In the following, with a little abuse of notation, we will write:91

• p P |biy to mean that p P bi;92

• and p P
ř

i ai |biy to mean that @aj ‰ 0.p P
ˇ

ˇbj
D

93

2.1.3. Measurement operators94

We introduce now a standard definition of measurements operators in terms of orthogonal95

projectors.96

Definition 1. Let P : HX Ñ HX be a linear operator, P is called orthogonal projector iff97

• P is hermitian;98

• kerpPq K impPq.99
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With OX we denote the set of orthogonal projectors ofHX.100

Let x P r0, 1sR and P P OX. |ψy Ñx
P |φymeans that x “ xψ | P | ψy and |φy “ P|ψy

?
x101

A register observation is obtained performing an arbitrary, finite sequence of orthogonal102

projections:103

Definition 2. Let K P N. A sequence pPiqiăK of orthogonal projectors is an observation iff
ř

iăK Pi “ Id. Let104

us denote with M the set of observations.105

2.2. Observation Trees106

We can now introduce our tree models.107

Definition 3 (Observational Tree). Let X a finite set of propositional symbols. An observational tree is a108

structure TX “ xxT,ďy, p, a, sy where109

• T “ xT,ďy is an abstract tree;110

• p, a, s are the following labelling functions:111

– p : EÑ p0, 1sR;112

– a : T ÑM;113

– s : T Ñ RX Y t0u114

for which some constraints holds. Let us suppose that apαq “ pPiqiăk PM, then:115

– @i ă k. pPipαq ‰ 0 ñ α ˚ xiy P Tq;116

– if @j ě K. α ˚ xjy R T;117

– @i ă K if α ˚ xiy P T then118

- ppα, α ˚ xiyq “ xspαq | Pi | spαqy119

- spα ˚ xiyq “ Pipspαqq?
ppα,α˚xiyq

120

Informally:121

• p assigns a (correct) probability to each edge;122

• a assigns to each node a sequence of observations (an element in M), in particular the sequence123

that generates the current (evaluation of the) state, starting from the root node;124

• s assigns to each node a quantum register.125

The following property trivially holds:126

Proposition 1 (Monotonicity). Let TX “ xxT,ďy, p, a, sy an observational tree, then

@α P T.p q P spαq ñ @β ď α. q P spβqq

Remark 1. In the graphical representation of observation trees we will omit nodes labeled with 0-vectors.127

3. The logic of observations128

In this section we semantically define the logic LP of quantum observations. As anticipated in129

the introduction, we fix the set of propositional symbols to the set of qubit names and we adopt the130

standard connectives of propositional logic. Formally:131

Definition 4 (Language of LP). The language LP of LP is built upon propositional symbols, which we set132

to P and connectivesÑ,^,_,K.133
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We also exploit some auxiliary notation. Let us denote with FormP the set of resulting well formed134

formulas built in the standard way. Given a formula A let we denote with PrAs the set of propositional135

symbols occurring in A.136

We define now the semantics of a formula w.r.t. on observational tree.137

Definition 5 (Semantics). The semantics of a formula A w.r.t to an observational tree TX with X Ě PrAs is138

defined as:139

• TX, α ( q iff q P spαq;140

• TX, α * K141

• TX, α ( A^ B iff TX, α ( A & TX, α ( B142

• TX, α ( A_ B iff TX, α ( A OR TX, α ( B143

• TX, α ( A Ñ B iff @β ď α TX, β ( A ñ TX, β ( B144

Proposition 2. 1. TX, α ( A ô @β ď α ñ TX, β ( A;145

2. TX, x y ( A ô @α P TX.TX, α ( A.146

Proof. By easy induction on the structure of the formula A, following Definition 5. Let us show some147

case for 1), as a title of example. Let A be a propositional symbol q: the thesis follows by Proposition 1148

(monotonicity). Let A be of the sharp B ^ C. By i.h., for all β ď α, we have both TX, β ( B and149

TX, β ( C then, by Definition 5, TX, β ( B^ C. Other cases are similar and 2) plainly follows from150

1).151

With TX ( A we mean that @α.TX, α ( A (A is true in TX). With ( A we mean that152

@TPrAs.TPrAs ( A (A is valid).153

It is easy to observe that, given a formula A, the set of propositional symbols is enough to state its154

satisfiability in a model.155

Proposition 3. Let A be a formula, then for each X Ě PrAs we have that TX ( A iff TPrAs ( A.156

We can formally state a relationship between observational trees and Kripke models. In section 3.1157

we show how to extract a Kripke model from an observation tree. The converse is shown in Section 3.2.158

3.1. From observational trees to Kripke models159

Let TX “ xxT,ďy, p, a, sy an observational tree. We associate to TX a Kripke model KTX “ xTT, ĎT160

, VTy defined in the following way:161

• TT “ T;162

• α Ď β ô β ď α;163

• VT : TT Ñ 2P is s.t. q P VTpαq ô q P spαq.164

Proposition 1 ensures that KTX is an intuitionistic model:165

Proposition 4. KTX is an intuitionistic Kripke model.166

The semantics interpretation the Kripke models above defined is standard:167

Definition 6 (Kripke Semantics). The semantics of a formula A w.r.t to an Kripke Model KTX with X Ě PrAs168

is defined as:169

• KTX , α , q iff q P VTpαq;170

• KTX , α . K;171

• KTX , α , A^ B iff KTX , α , A & TT, α , B;172

• KTX , α , A_ B iff KTX , α , A OR KTX , α , B;173
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• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs
, A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A
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r

r

r

1/√2 ⎟r⟩ + 1/√2 ⎟∅⟩ 

⎟r⟩ ⎟∅⟩

⎟r⟩ ⎟∅⟩

⎟r⟩ ⎟∅⟩

1/2 1/2

1 1

⟨⟩

⟨0⟩

⟨0,0⟩

⟨0,0,...,0⟩

⟨1⟩

⟨1,0⟩

⟨1,0,...,0⟩

⟨⟩

⟨0⟩

⟨0,0⟩

⟨0,0,...,0⟩

⟨1⟩

⟨1,0⟩

⟨1,0,...,0⟩

(a) observation tree (b)  Kripke Models

Figure 1. Tertium Non Datur: a counterexample

Proof. We show a simple procedure to associate an observational tree TK “ xN, Ď, p, a, sy to K “ xN,ď202

, Vy.203

step 1 choose a set of distinguishable propositional symbols PN “ tpt : t P Nu s.t. PT X N “ H and204

build the Hilbert Space isHPNYPT .205

step 2 define Ď as ď´ 1 (t Ď u ô u ď t);206

step 3 Let aptq be the set of projectors Ot “ tPi1 , . . . Pimu defined as:207

Ot =

$

’

’

&

’

’

%

H if t is a leaf

tPi1 , . . . Pimu s.t. @j P r1, ms.Pij is the projector in the subspace of registers

β s.t. t ˚ xijy P β and t ˚ xijy Ď t, otherwise.

208

step 4 The functions p, s are univocally defined by the following labelling sx y of the root.209

Let us consider the set of L of leaves of K, and consider for each u P: the set Cu “ tt : t P N & u Ď210

t & t P Nu and the set Pru “
Ť

tPCu
Vptq. We define sx y “

ř

uPL
1?
|L|
|Cu Y Pruy211

Given the above translation the proof proceeds by means of a standard induction on the length of212

formulas.213

Example 1. Let us consider the tree-like Kripke model of figure 2-(a). Applying the four steps above scripted we
obtain an observational model as in figure 2-(b) where the relevant Hilbert space is

Hr,s,u,v,px0y,px0y,px1,0y,px1,1y,px1,1,0y

(for the sake of readability, we have depicted only the labelling function a.)214

As a corollary of Theorem 2, we can state the following:215
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{r,u,v}

⟨⟩

⟨0⟩ ⟨1⟩

⟨1,0⟩ ⟨1,1⟩

⟨1,1,0⟩

{r,s,v}

{s,v}

{s,u,v}

{s,r,u,v}

{v}

a) a kripke model

⟨⟩

⟨0⟩ ⟨1⟩

⟨1,0⟩ ⟨1,1⟩

⟨1,1,0⟩

1/√6|v⟩ + 1/√6|p⟨0⟩,r,u,v⟩ +1/√6| p⟨1⟩,s,v⟩ + 
1/√6|p⟨1⟩,p⟨1,0⟩,r,s,v⟩  + 1/√6|p⟨1⟩,p⟨1,1⟩,s,u,v⟩ + 
1/√6|p⟨1⟩,p⟨1,1⟩,p⟨1,1,0⟩,s,r,u,v⟩ 

|p⟨0⟩,r,u,v⟩ 

1/2| p⟨1⟩,s,v⟩ +
1/2|p⟨1⟩,p⟨1,0⟩,r,s,v⟩  + 
1/2|p⟨1⟩,p⟨1,1⟩,s,u,v⟩ + 
1/2|p⟨1⟩,p⟨1,1⟩,p⟨1,1,0⟩,s,r,u,v⟩ 

1/2|p⟨1⟩,p⟨1,1⟩,s,u,v⟩ + 
1/2|p⟨1⟩,p⟨1,1⟩,p⟨1,1,0⟩,s,r,u,v⟩ 

|p⟨1⟩,p⟨1,0⟩,r,s,v⟩ 

|p⟨1⟩,p⟨1,1⟩,p⟨1,1,0⟩,s,r,u,v⟩ 

b) the associated observational model

Figure 2. The transformation of a Kripke model in a observational tree
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Corollary 2. ( A ñ, A216

Therefore Corollary 1 and 2 give us the final theorem:217

Theorem 3. The class of valid formulas w.r.t. the classes of observational trees is exactly the class of intuitionistic
provable formula, or in other words:

( A ô, A

4. Possible developments218

The further investigations based on the proposed approach will follow two different directions of219

research.220

1. We have shown that intuitionistic logic is "the" logic of observational tree. This means that we221

could think to move from the model theoretic approach to a proof theoretical one. It is well222

known that, via the so called Curry-Howard isomorphism, it is possible to associate a lambda223

calculus to the intuitionistic proofs. Is it possible to give a quantum interpretation of such a224

calculus? Our idea is to start again with the BHK interpretation of intuitionistic logic. For225

example, according to this interpretation, a proof of A Ñ B could be seen as a measurement226

process that transforms each measurement process A into one of B.227

2. We think also to extend the model theoretic approach in order to deal with unitary228

transformations. One possibility we have in mind is to add a temporal (classical? intuitionistic?)229

dimension to intuitionistic logic, so that we can move in two different directions: an intuitionist230

one linked to the measurement process, and an linear temporal one that is linked to unitary231

evolution of the quantum system. The studies of Finger and Gabbay on the temporization of232

logical system could help (see e.g.[17].)233
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