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In recent years, dynamic languages, such as JavaScript or Python, have faced an important
increment of usage in a wide range of fields and applications. Their tricky and misunderstood
behaviors pose a hard challenge for static analysis of these programming languages. A key
aspect of any dynamic language program is the multiple usage of strings, since they can
be implicitly converted to another type value, transformed by string-to-code primitives or
used to access an object-property. Unfortunately, string analyses for dynamic languages
still lack precision and do not take into account some important string features. Moreover,
string obfuscation is very popular in the context of dynamic language malicious code, for
example, to hide code information inside strings and then to dynamically transform strings
into executable code. In this scenario, more precise string analyses become a necessity. This
paper is placed in the context of static string analysis by abstract interpretation and proposes
a new semantics for string analysis, placing a first step for handling dynamic languages string
features.

1 Introduction
Dynamic languages, such as JavaScript or Python, have faced an important increment of usage in
a very wide range of fields and applications. Common features in dynamic languages are dynamic
typing (typing occurs during program execution, at run-time) and implicit type conversion
[38], lightening the development phase and allowing not to block the program execution in
presence of unexpected or unpredictable situations. Moreover, one important aspect of dynamic
languages is the way strings may be used. In JavaScript, for example, strings can be either used
to access property objects or transformed into executable code, by using the global function
eval. In this way, dynamic languages provide multiple string features that simplify writing
programs, allowing, at the same time, statically unpredictable executions which may make
programs harder to understand [38]. For this reason, string obfuscation (e.g., string splitting) is
becoming one of the most common obfuscation techniques in JavaScript malware [42], making
hard to statically analyze code. Consider, for example, the JavaScript program fragment in Fig. 1
where strings are manipulated, de-obfuscated, combined together into the variable d and finally
transformed into executable code, the statement ws = new ActiveXObject(WScript.Shell). This
command, in Internet Explorer, opens a shell which may execute malicious commands. The
command is not hard-coded in the fragment but it is built at run-time and the initial values
of i,j and k are unknown, such as the number of iterations of the loops in the fragment. All
these observations suggest us that, in order to statically understand statements dynamically
generated and executed, it may be extremely useful to statically analyze the string value of
d. Unfortunately, existing static analyzers for dynamic languages [26, 29, 31, 32], may fail to
precisely analyze strings in dynamic contexts. For instance, in the example, existing static
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vd , ac , la = "";
v = "wZsZ "; m = " AYcYtYiYvYeYXY ";
tt = " AObyaSZjectB ";
l = " WYSYcYrYiYpYtY . YSYhYeYlYlY ";

while (i+=2 < v. length )
vd = vd + v. charAt (i);

while (j+=2 < m. length )
ac = ac + m. charAt (j);

ac += tt. substring (tt. indexOf ("O"), 3);
ac += tt. substring (tt. indexOf ("j"), 11)

;

while (k+=2 < l. length )
la = la + l. charAt (k);

d = vd + "= new " + ac + "(" + la + ")";
eval(d);

Figure 1: A potentially malicious obfuscated JavaScript program.

analyzers [29, 31, 32] lose precision on the eval input value, losing any information about it.
Namely, the issue of analyzing dynamic languages, even if tackled by sophisticated tools as
the cited ones, still lacks formal approaches for handling the more dynamic features of string
manipulation, such as dynamic typing, implicit type conversion and dynamic code generation.
Contributions. In this paper, we focus on the characterization of an abstract interpretation-
based [14] formal framework for handling dynamic typing and implicit type conversion, by
defining an abstract semantics able to (precisely, when possible) capture these dynamic features.
Even if we still do not tackle the problem of analyzing dynamically generated code (by using
statements such as eval), we strongly believe that such a semantics is a necessary step towards
a sufficiently precise analysis of dynamically generated code. Indeed, the domain we propose
allows us to collect (and potentially approximate) the set of all the string values that a variable
may receive during computation (at each program point). It should be clear that, in order to
analyze what an eval statement may execute, we surely need to (over-)approximate the set of
precise values that its parameter may have. Hence, we propose an approach aiming at defining
a collecting semantics for strings. With this task in mind, we first discuss how to combine
abstract domains of primitive types (strings, integers and booleans) in order to capture dynamic
typing. Once we have such an abstract domain, we define on it an abstract semantics for an
IMP language, augmented with implicit type conversion, dynamic typing and some interesting
string operations, whose concrete semantics is inspired by the JavaScript one. In particular, for
each one of these operations we provide the algorithm computing its abstract semantics and we
discuss their soundness and completeness.
Paper structure. In Sect. 2 we recall relevant notions on finite state automata and the core
language we adapt for this paper and the finite state automata domain, highlighting some
important operations and theoretical results, respectively. In Sect. 3 we discuss and present two
ways of combining abstract domains (for primitive types) suitable for dynamic languages. Then,
In Sect. 4 we present the novel abstract semantics for string manipulation programs. Finally, in
Sect. 5 we discuss the related work compared to this paper and we conclude the paper.

2 Background

2.1 Basic notations and concepts

String notation. We denote by Σ a finite alphabet of symbols, its Kleene-closure by Σ∗ and
a string element by σ ∈ Σ∗. If σ = σ0σ1 · · ·σn, the length of σ is |σ|= n+ 1 and the element in
the i-th position is σi. Given two strings σ,σ′ ∈ Σ∗, σ ·σ′ is their concatenation. A language
is a set of strings, i.e., L ∈ ℘(Σ∗). We use the following notations: Σi def= { σ ∈ Σ∗ | |σ| = i } and
Σ<i def=

⋃
j<i Σj . Given σ ∈Σ∗, i, j ∈N (i≤ j ≤ |σ|) the substring between i and j of σ is the string
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Exp ::= Id | v ∈ V | Exp + Exp | Exp - Exp | Exp * Exp | Exp / Exp | Exp && Exp
| Exp || Exp | ! Exp | Exp > Exp | Exp < Exp | Exp == Exp | Exp.substring(Exp,Exp)
| Exp.charAt(Exp) | Exp.indexOf(Exp) | Exp.length

Block ::= { } | { Stmt }

Stmt ::= Id = Exp; | if (Exp) Block else Block | while (Exp) Block | Block | Stmt Stmt | ;

Figure 2: IMP syntax

σi · · ·σj−1, and we denote it by substring(σ,i,j). We denote by ΣZ
def= {+,−, ε} · {0,1, . . . ,9}+ the

set of numeric strings, i.e., strings corresponding to integers. I : ΣZ→ Z maps numeric strings
to the corresponding integers. Dually, we define the function S : Z→ΣZ that maps each integer
to its minimal numeric string representation (e.g., 1 is mapped to the string "1", and not "+1").
Regular languages and finite state automata. We follow [28] for automata notation. A
finite state automaton (FA) is a tuple A = (Q,q0,Σ, δ,F ) where Q is a finite set of states, q0 ∈Q
is the initial state, Σ is a finite alphabet, δ ⊆Q×Σ×Q is the transition relation and F ⊆Q is
the set of final states. In particular, if δ :Q×Σ→Q is a function then A is called deterministic
FA (DFA).1 The class of languages recognized by FAs is the class of regular languages. We
denote the set of all DFAs as Dfa. Given an automaton A, we denote the language accepted by
A as L (A). A language L is regular iff there exists a FA A such that L = L (A). From the Myhill-
Nerode theorem [19], for each regular language there uniquely exists a minimum automaton,
i.e., with the minimum number of states, recognizing the language. Given a regular language L,
we denote by Min(L) the minimum DFA A s.t. L = L (A).
The programming language. We consider an IMP language (Fig. 2) that contains represen-
tative string operations taken from the set of methods offered by the JavaScript built-in class
String [41]. Other JavaScript string operations can be modeled by composition of the given
string operations or as particular cases of them. Primitive values are V = S∪Z∪B∪ {NaN}
with S def= Σ∗ (strings on the alphabet Σ), B def= {true,false} and NaN a special value denoting
not-a-number.
Implicit type conversion. In order to properly capture the semantics of the language IMP,
inspired by the JavaScript semantics, we need to deal with implicit type conversion [4]. For each
primitive value, we define an auxiliary function converting primitive values to other primitive
values (Fig. 3). Note that all the functions behave like identity when applied to values not
needing conversion, e.g., toInt on integers. Then, toStr : V → S maps any input value to
its string representation; toInt : V→ Z∪{NaN} returns the integer corresponding to a value,
when it is possible: For true and false it returns respectively 1 and 0, for strings in ΣZ it
returns the corresponding integer, while all the other values are converted to NaN. For instance,
toInt(“42”) = 42, toInt(“42hello”) = NaN. Finally, toBool : V→B returns false when the input
is 0, and true for all the other non boolean primitive values.
Semantics. Program states are partial maps from identifiers to primitive values, i.e., States :
Id→ V. The concrete big-step semantics J·K : Stmt× States→ States is quite standard,
and it includes dynamic typing and implicit type conversion. Also the expression semantics,
J·K :Exp×States→V, is standard; we only provide the formal and precise semantics of the IMP
string operations. Let σ,σ′ ∈ S and i, j ∈Z (values which are not strings or numbers respectively,

1We consider DFA also those FAs which are not complete, namely such that a transition for each pair (q,a)
(q ∈Q, a ∈ Σ) does not exists. They can be easily transformed in a DFA by adding a sink state receiving all the
missing transitions.
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toStr(v) =



v v ∈ S
“NaN” v = NaN

“true” v = true
“false” v = false
S(v) v ∈ Z

toInt(v) =



v v ∈ Z
1 v = true
0 v = false∨v = NaN

I(v) v ∈ S∧v ∈ ΣZ

NaN v ∈ S∧v 6∈ ΣZ

toBool(v) =


v v ∈ B
true v ∈ Zr{0}∨v ∈ Sr{ε}
false v = 0∨v = ε∨v = NaN

Figure 3: IMP implicit type conversion functions.

are converted by the implicit type conversion primitives. Negative values are treated as zero).
substring: It extracts substrings from strings, i.e., all the characters between two indexes. The

semantics is the function Ss: S×Z×Z→ S defined as:

Ss(σ,i, j) def=
{

Ss(σ,j, i) j < i

substring(σ,i,max(j, |σ|)) otherwise

charAt: It returns the character at a specified index. The semantics is the function Ca: S×Z→ S
defined as follows:

Ca(σ,i) def=
{
σi 0≤ i < |σ|
ε otherwise

indexOf: It returns the position of the first occurrence of a given substring. The semantics is
the function Io: S×S→ Z defined as follows:

Io(σ,σ′) def=
{

min{ i | σi . . .σj = σ′ } ∃i, j. σi . . .σj = σ′

−1 otherwise

length: It returns the length of a string σ ∈ S. Its semantics is the function Le: S→ Z defined
as Le(σ) def= |σ|.

concat: The string concatenation is handled by IMP plus operator (+). The concrete semantics
relies on the concatenation operator reported in Sect. 2, i.e., Cc(σ,σ′) = σ ·σ′.

2.2 The finite state automata domain for strings

In this section, we describe the automata abstract domain for strings [11,36,43], namely the do-
main of regular languages over ℘(Σ∗). In particular, our aim is that of underlying the well known
theoretical foundations of regular languages (and therefore of DFA) characterizing automata as
a domain for abstracting the computation of program semantics in the abstract interpretation
framework. The exploited idea is that of approximating strings as regular languages represented
by the minimum DFAs [19] recognizing them. In general, we have more DFAs than regular
languages, hence the domain of automata is indeed the quotient Dfa/≡ w.r.t. the equivalence
relation induced by language equality: ∀A1,A2 ∈ Dfa. A1 ≡ A2 ⇔ L (A1) = L (A2). Hence, any
equivalence class is composed by the automata that recognize the same regular language. We
abuse notation by representing equivalence classes in the domain Dfa/≡ w.r.t. ≡ by one of its
automata (usually the minimum), i.e., when we write A ∈Dfa/≡ we mean [A]≡. The partial or-
der vDfa induced by language inclusion is ∀A1,A2 ∈Dfa/≡ . A1 vDfa A2⇔L (A1)⊆L (A2), which
is well defined since automata in the same ≡-equivalence class recognize the same language.
The least upper bound (lub) tDfa : Dfa/≡×Dfa/≡→Dfa/≡ on the domain Dfa/≡, corresponds
to the standard union between automata: ∀A1,A2 ∈Dfa/≡.A1tDfa A2

def= Min(L (A1)∪L (A2)). It
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(a)
a b c

(b)
x y z

(c)

a b c

x y z

Figure 4: (a) A1 (b) A2 (c) Min(A1∪A2)

(a)
a

(b)
a a

(c)

a

Figure 5: (a) A1 s.t. L (A1) = {ε,a} (b)A2 s.t. L (A2) = {a,aa} (c) A1∇1A2

is the minimum automaton recognizing the union of the languages L (A1) and L (A2). This
is a well-defined notion since regular languages are closed under union. As example, consider
Fig. 4, where the automaton in Fig. 4c is the lub of A1 and A2 given in Fig. 4a and Fig. 4b,
respectively. The greatest lower bound uDfa : Dfa/≡×Dfa/≡→Dfa/≡ corresponds to automata
intersection, since regular languages are closed under finite intersection: ∀A1,A2 ∈Dfa/≡.A1uDfa

A2
def= Min(L (A1)∩L (A2)).

Theorem 1. 〈Dfa/≡,vDfa,tDfa,uDfa,Min(∅),Min(Σ∗)〉 is a sub-lattice but not a complete meet-
sub-semilattice of ℘(Σ∗).

In other words, there exists no Galois connections between Dfa/≡ and ℘(Σ∗), i.e., there may
exists no minimal automaton abstracting a language.2 However, this is not a concern, since
the relation between concrete semantics and abstract semantics can be weakened still ensuring
soundness [15]. A well known example is the convex polyhedra domain [18].
Widening. The domain Dfa/≡ is an infinite domain, and it is not ACC, i.e., does not contain fi-
nite ascending chains. For instance, consider the set of languages {{ ajbj | 0≤ j ≤ i }}i≥0⊆℘(Σ∗)
forming an infinite ascending chain, then also the set of the corresponding minimal automata
forms an ascending chain on Dfa/≡. This clearly implies that any computation on Dfa/≡ may
lose convergence [15]. Most of the proposed abstract domains for strings [12,29,31,32] trivially
satisfy ACC being finite, but they may lose precision during the abstract computation [16]. In
these cases, domains must be equipped with a widening operator approximating the lub in order
to force convergence (by necessarily losing precision) for any increasing chain [16]. As far as
automata are concerned, existing widenings are defined in terms of a state equivalence relation
merging states recognizing the same language, up to a fixed length n (set as parameter for tuning
the widening precision) [6, 21]. We denote this parametric widening with ∇n, n ∈ N [21].

Example 1. Consider the following IMP fragment
str = ""; while (x++ < 100) { str += "a"; }

Since the value of the variable x is unknown, also the number of iterations of the while-loop
is unknown. In these cases, in order to guarantee soundness and termination, we apply the
widening operator. In Fig. 5a we report the abstract value of the variable str at the beginning of
the second iteration of the loop, while in Fig. 5b the abstract value of the variable str at the end
of the second iteration. Before starting a new iteration, in the example, we apply ∇1 between
two automata, namely we merge together all the states having the same outgoing character. The
minimization of the obtained automaton is reported in Fig. 5c. The next iteration will reach the
fix-point, guaranteeing soundness and termination.

2Note that, some works have studied automatic procedures to compute, given an input language L, the regular
cover of L [20] (i.e., an automaton containing the language L). In particular, [10,20] have studied regular covers
guaranteeing that the automaton obtained is the best w.r.t. a minimal relation (but not minimum).
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>
S]
6⊥B]

6⊥ {NaN}Z]
6⊥

⊥
Figure 6: Coalesced sum abstract domain for IMP

3 An abstract domain for string manipulation

In this section, we discuss how to design an abstract domain for string manipulation dealing also
with other primitive types, namely able to combine different abstractions of different primitive
types. In particular, since operations on strings combine strings also with other values (e.g.,
integers), an abstract domain for string analysis equipped with dynamic typing must include all
the possible primitive values, i.e., the whole V = Z∪B∪S∪{NaN}. The idea is to consider an
abstract domain for each type of primitive value and to combine these abstract domains in a
unique abstract domain for V. Consider, for each primitive value D, an abstract domain D] (we
denote the domain D] without bottom as D]

6⊥), equipped with an abstraction αD : D→D] and a
concretization γD : D]→ D forming a Galois insertion [14].
Coalesced sum. One way to merge domains is the coalesced sum [13]. The resulting domain
contains all the non-bottom elements of the domains, together with a new top and a new bottom,
covering all the elements and covered by all the elements, respectively. In our case, if we consider
the abstract domains Z], S] and B], the coalesced sum is the abstraction of ℘(V) depicted in
Fig. 6. This is the simplest choice, but unfortunately this is not suitable for dynamic languages,
and in particular for dealing with dynamic typing and implicit type conversion. The problem
is that the type of variables is inferred at run-time and may change during execution. For
example, consider the following IMP fragment: if (y< 5) x = “42”; else x = true; . The value
of the variable y is statically unknown hence, in order to guarantee soundness, we must take
into account both the branches, meaning that x may be both a string and a boolean value, after
the if statement. On the coalesced sum domain, the analysis would lose any precision w.r.t.
collecting semantics by returning αS(“42”)tαB(true) =>.
Cartesian product. In order to catch union types, without losing too much precision, we
need to complete [23–25] the above domain in order to observe collections of values of different
types. In order to define this combination, we rely on the cartesian product, following [22].
Hence, the complete abstract domain w.r.t. dynamic typing and implicit type conversion is:
Z]×B]×S]×℘({NaN}), abstraction of ℘(V). In this combining abstract domain, the value of
x after the if-execution is precisely (⊥,αB(true),αS(“42”),⊥), now an element of the domain,
inferring that the value of x can be αB(true) or αS(“42”), but surely not an abstract integer or NaN.

In the following, we consider the abstract domain V] for string analysis obtained as cartesian
product of the following abstractions: Z] = Int (the well-known abstract domain of intervals [14]),
S] = Dfa/≡, B] = ℘({true,false}).

4 The IMP abstract semantics

In this section, we define the abstract semantics of the language IMP on the abstract domain V].
In particular, we have to define the expressions abstract semantics J·K] : Exp×States→ V],
which is standard except for the string operations that will be explicitly provided by describ-
ing the algorithm for computing them. Let us first recall some important notions on regular
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languages, useful for the algorithms we will provide.
Definition 1 (Suffixes and prefixes [19]). Let L ∈ ℘(Σ∗) be a regular language. The suffixes of L
are Su(L) def= { y ∈Σ∗ | ∃x∈Σ∗.xy ∈ L }, and the prefixes of L are Pr(L) def= { x∈Σ∗ | ∃y ∈Σ∗.xy ∈
L }.

We can define the suffixes from a position, namely given i ∈ N, the set of suffixes from i is
Su(L, i) def= { y ∈ Σ∗ | ∃x ∈ Σ∗. xy ∈ L, |x| = i }. For instance, let L = {abc,hello}, then Su(L,2) =
{c, llo}.
Definition 2 (Right quotient [19]). Let L1,L2 ∈ Σ∗ be regular languages. The right quotient of
L1 w.r.t. L2 is Rq(L1,L2) def= { x ∈ Σ∗ | ∃y ∈ L2. xy ∈ L1 }.
For example, let L1 = {xab,yab} and L2 = {b,ab}. The right quotient of L1 w.r.t. L2 is Rq(L1,L2) =
{xa,ya,x,y}.
Definition 3 (Substrings/Factors [7]). Let L ∈ ℘(Σ∗) be a regular language. The set of its
substrings/factors is Fa(L) def= { y ∈ Σ∗ | ∃x,z ∈ Σ∗. xyz ∈ L }.

These operations are all defined as transformations of regular languages. In [19] the cor-
responding algorithms on FA are provided. In particular, let A,A1 ∈ Dfa/≡ and i ∈ N, then
SU(A), PR(A), SU(A, i), FA(A) and RQ(A,A1) are the algorithms corresponding to the transforma-
tions Su(L(A)), Pr(L(A)), Su(L (A), i), Fa(L (A)) and Rq(L (A),L (A1)), respectively. Namely,
∀A,A1 ∈Dfa/≡, i ∈ N, the following facts holds:

Su(L (A)) = L (SU(A)), Pr(L (A)) = L (PR(A)), Fa(L (A)) = L (FA(A))
Rq(L (A),L (A1)) = L (RQ(A,A1)), Su(L (A), i) = L (SU(A, i))

As far as (state) complexity is concerned [44], prefix and right quotient operations have linear
complexity, while suffix and factor operations, in general, are exponential [39, 44].

4.1 Abstract semantics of substring

In this section, we define the abstract semantics of substring, i.e., we define the operator SS] :
Dfa/≡× Int× Int→Dfa/≡, starting from an automaton, an interval [i, j] of initial indexes and
an interval [l,k] of final indexes for substrings, and computing the automaton recognizing the
set of all substrings of the input automata language between the indexes in the two intervals.
Hence, since the abstract semantics has to take into account the swaps when the initial index is
greater than the final one, several cases arise handling (potentially unbounded) intervals. Tab. 1
reports the abstract semantics of SS] when i, j ≤ l (hence i≤ k). The definition of this semantics
is by recursion with four base cases (the other cases are recursive calls splitting and rewriting
the input intervals in order to match or to get closer to base cases) for which we describe the
algorithmic characterization. Consider A∈Dfa/≡, i, l ∈Z∪{−∞}, j,k ∈Z∪{+∞} (for the sake
of readability we denote by t the automata lub tDfa, and by u the glb uDfa), the base cases are

1. If i, j, l,k ∈ Z (first row, first column of Tab. 1) we have to compute the language of all the
substrings between an initial index in [i, j] and a final index in [l,k], i.e., Ss(L (A), [i, j], [l,k])3.
For example, let L = {a}∗∪{hello,bc}, the set of its substrings from 1 to 3 is Ss(L, [1,1], [3,3])
= {ε,a,aa,el,c}. The automaton accepting this language is computed by the operator

SS(A, [i, j], [l,k]) def=
⊔

a∈[i,j],b∈[l,k]
(RQ(SU(A,a),SU(A, b))uMin(Σb−a))t(SU(A,a))uMin(Σ<b−a)

3We abuse notation by denoting with Ss also the additive lift to languages and to sets of indexes: Ss :
℘(Σ∗)×℘(Z)×℘(Z)→ ℘(Σ∗) defined as Ss(L, I,J) = { Ss(L, i, j) | i ∈ I,j ∈ J }= { Ss(σ,i, j) | σ,∈ L, i ∈ I,j ∈ J }.
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SS](A, [i, j], [l,k])
i, j ≤ l (i≤ k) l,k ∈ Z l =−∞, k ∈ Z l ∈ Z, k = +∞ l =−∞, k = +∞

i, j ∈ Z SS(A, [i, j], [l,k]) SS](A, [i, j], [0,k]) SS→(A, [i, j], l) SS](A, [i, j], [0,+∞])

i=−∞, j ∈ Z SS](A, [0, j], [l,k]) SS](A, [0, j], [0,k]) SS](A, [0, j], [l,+∞]) SS](A, [0, j], [0,+∞])

i ∈ Z, j = +∞ SS](A, [l,k], [k,+∞])
tSS](A, [i,k], [l,k]) SS](A, [i,+∞], [0,k]) SS→(A, [i, l], l) t SS↔(A, l) SS](A, [i,+∞], [0,+∞])

i=−∞, j = +∞ SS](A, [0,+∞], [l,k]) SS](A, [0,+∞], [0,k]) SS](A, [0,+∞], [l,+∞]) FA(A)

Table 1: Definition of SS] when i, j ≤ l (i≤ k)

(a)

l
a n

g

h
e l l

o

(b)

a
n

g

e
l l

o

Figure 7: (a) A, L (A) = {lang,hello}. (b) A′ = SS](A, [1,1], [3,+∞]), L (A′) = {an,ang,el,ell,ello}.

2. When both intervals correspond to [−∞,+∞], the result is the automaton of all possible
factors of A (last row, last column), i.e., FA(A);

3. If [i, j] is defined and the interval of final indexes is unbounded, i.e., [l,+∞] (first row, third
column), we have to compute the automaton recognizing Ss→(L (A), [i, j], l) def=

⋃
a∈[i,j]{Ss(σ,a,k) |σ ∈

L (A), k ≥ l }, i.e., all the strings between a finite interval of initial indexes and an un-
bounded final index. The automaton accepting this language is computed by

SS→(A, [i, j], l) def=
⊔

a∈[i,j]
RQ(SU(A,a),SU(SU(A, l)))

The abstract semantics returns the least upper bound of all the automata of substrings
from a in [i, j] to an unbounded index greater than or equal to l;

4. When both intervals are unbounded ([i,+∞] and [l,+∞], third row, third column of
Tab. 1), we split the language to accept. In particular, we compute the substrings between
[i, l] and [l+∞] (falling down into the previous case), and the automaton recognizing the
language of all substrings with both initial and final index any value greater than l, i.e.,
the language Ss↔(L (A), l) def= { Ss(σ,a,b) | σ ∈L (A), a,b≥ l }. This latter set is computed
by the algorithm SS↔(A, l) def= FA(SU(A, l))

We show here the table only for the case i, j ≤ l (i≤ k). Only few cases are not considered and
they are reported in Tab. 2 and Tab. 3 in the appendix. In Fig. 7 we report an example obtained
applying the rules in the tables.

Theorem 2 (Termination of SS]). For each A ∈Dfa/≡, I,J ∈ Int, SS](A, I,J) performs at most
three recursive calls, before reaching a base case.

Theorem 3. SS] is sound and complete: ∀A∈Dfa/≡, I,J ∈ Int.Ss(L (A), I,J) = L (SS](A, I,J)).

4.2 Abstract semantics of charAt

The abstract semantics of charAt should return the automaton accepting the language of all the
characters of strings accepted by an automaton A, in a position inside a given interval [i, j]: This
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Figure 8: (a) A1, L (A1) = {abc,hello}. (b) A2, L (A2) = {abc,hello}∪{(abb)+c}.
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b
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Figure 9: (a) A, L (A) = {ddd,abc,bc}. (b) A′′, L (A′′) = {bcd,aaab}

is computed by CA] : Dfa/≡× Int→Dfa/≡

CA](A, [l,h]) def=



⊔
i∈[l,h] SS(A, [i, i], [i+ 1, i+ 1]) l,h ∈ Z

CA](A, [0,h])tMin({ε}) l =−∞,h ∈ Z,h≥ 0
Min({ε}) l =−∞,h ∈ Z,h < 0
Min(chars(SU(A, l)))tMin({ε}) l ∈ Z, l ≥ 0,h= +∞
Min(chars(A))tMin({ε}) l =−∞ or l ∈ Z, l < 0,h= +∞

We call SS (defined before) when the interval index [l,h] is finite. In the last two cases, we use
the function chars : Dfa/≡→ ℘(Σ1), returning the set of characters read in any transition of an
automaton. When l∈Z,h= +∞, we return the characters starting from l together with Min({ε})
while, when l=−∞, we simply return the characters of the automaton together with Min({ε}).
Theorem 4. CA] is sound and complete: ∀A ∈Dfa/≡, I ∈ Int, Ca(L (A), I)4 = L (CA](A, I)).

4.3 Abstract semantics of length

The abstract semantics of length should return the interval of all the possible string lengths
in an automaton, i.e., it is LE] : Dfa/≡ → Int computed by Alg. 1, where minPath,maxPath :
Dfa/≡×Q×Q→ ℘(Q) return the minimum and the maximum paths between two states of the
input automaton, respectively. len :℘(Q)→N returns the size of a path, and hasCycle : Dfa/≡→
{true,false} checks whether the automaton contains cycles.
The idea is to compute the minimum and the maximum path reaching each final state in the
automaton (in Fig. 8a, we obtain 3 and 5). Then, we abstract the set of lengths obtained so far
into intervals (in the example, [3,5]). Problems arise when the automaton contains cycles. In
this case, we simply return the undefined interval starting from the minimum path, to a final
state, to +∞. For example, in the automaton in Fig. 8b, the length interval is [3,+∞].
Theorem 5. LE] is sound but not complete: ∀A ∈Dfa/≡ Le(L (A))⊂ LE](A).

4.4 Abstract semantics of indexOf

The abstract semantics of indexOf is IO] : Dfa/≡×Dfa/≡→ Int and should return the interval
of possible positions of strings in a language inside strings of another language. Consider for
instance, the automaton A in Fig. 9a and suppose to call IO](A,A′) where A′ = Min({bc}). The
idea is that of building, for each state q in A, the automaton Aq which is A where all the states are

4In the following, for all the string semantics, we abuse notation for the additive lift to languages and intervals.
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Algorithm 1: LE] : Dfa/≡→ Int alg.
Input: A = (Q,Σ, δ,q0,F )
Output: LE](A)

1 P_len← 0; p_len←∞
2 if hasCycle(A) then
3 foreach qf ∈ F do
4 p←minPath(A, q0, qf );
5 if len(p)< p_len then

p_len← len(p) ;
6 end
7 return [p_len,+∞];
8 else
9 foreach qf ∈ F do

10 p←minPath(A, q0, qf );
11 P←maxPath(A, q0, qf );
12 if len(p)< p_len then

p_len← len(p) ;
13 if len(P)> P_len then

P_len← len(P) ;
14 end
15 return [p_len,P_len];
16 end

Algorithm 2: IO] : Dfa/≡×Dfa/≡→ Int alg.
Input: A = (Q,Σ, δ,q0,F ),A′ = (Q′,Σ, δ′, q′0,F ′)
Output: IO](A,A′)

1 indexesOf←∅
2 foreach q ∈Q do
3 Aq← (Q,Σ, δ,q,Q);
4 if Aq uDfa A′ 6= ∅ then
5 indexesOf←

indexesOf ∪{len(minPath(A, q0, q))};
6 if ∃p= path(q0, q) s.t. hasCycle(p) then
7 indexesOf← indexesOf ∪{+∞}
8 end
9 else

10 indexesOf← indexesOf ∪{−1};
11 end
12 end
13 if |L (A)|== |L (A′)|== 1 then
14 return [min(indexesOf),min(indexesOf)];
15 else
16 return [min(indexesOf),max(indexesOf)];
17 end

(a)
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b (b)
c

d

(c)
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a

b

c

c
d

d

Figure 10: (a) A, L (A) = { an | n ∈ N }∪{b} (b) A′, L (A′) = { cdn | n ∈ N } (c) A′′ = CC](A,A′)

final and the initial state is q. Hence, we check whether Aq uA′ is non empty and we collect the
size of the minimum path from q0 to q in A. If there exists at least one state from which any string
accepted by A′ cannot be read, we collect -1. In the example, Aq0 adds {0}, Aq1 adds {1}, while all
the other states add {−1}. Finally, we return the interval [min{−1,1,0},max{−1,1,0}] = [−1,1].
The full algorithm is reported in Alg. 2.
Theorem 6. IO] is sound but not complete: ∀A,A′ ∈Dfa/≡ . Io(L (A),L (A′))⊂ IO](A,A′).

As a counterexample to completeness, consider the automaton A′′ in Fig.9b: IO](A′′,Min({b})) =
[−1,3] 6⊂ Io(L (A′′),{b}) = {0,3}. The interval [−1,3] contains also indexes where the string b is
not recognized (e.g., 2), but it also contains the information (−1) meaning that there exists at
least one accepted string without b as substring, which is not true.

4.5 Abstract semantics of concatenation

The abstract semantics of string concatenation is CC] : Dfa/≡×Dfa/≡→Dfa/≡ and returns the
concatenation between two automata. Since regular languages are closed under the concatena-
tion operation, even finite state automata do. In Fig. 10, we report an example of concatenation
between two automata. Hence, CC] exactly implements the standard concatenation operation
between automata. Given the closure property on automata, the following result holds.
Theorem 7. CC] is sound and complete: ∀A,A′ ∈Dfa/≡ .Cc(L (A),L (A′)) = CC](A,A′).
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(a)

+ [0−9]
[0−9]

[0−9] (b)

- [0−9]
[0−9]

Figure 11: (a) toStr]([0,+∞]). (b) toStr]([−∞,0])

4.6 Concerning abstract implicit type conversion

In this section, we discuss the abstraction of the implicit type conversion functions. For space
limitations, we will focus only on the conversion of automata into other values, being the con-
versions concerning booleans, not-a-number and intervals straightforward. Let toBool] :V]→B]

be applied to A ∈Dfa/≡: If AuMin({ε}) = ∅, it returns {true}, when A = Min({ε}) the func-
tion returns {false}, otherwise the function returns {true,false}. Implicit type conversion
to Dfa/≡ is handled by the function toStr] : V]→ Dfa/≡. As far as non numeric strings are
concerned, toStr] returns Min({NaN}). If the input is the boolean value true [false] it returns
Min({true}) [Min({false})], otherwise it returns Min({true})tMin({false}). Converting in-
tervals to FA is more tricky. If l,h∈Z, the conversion to automata is simply

⊔
i∈[l,h] Min({S(i)}).

The interval-to-automaton conversion for [0,+∞] and [−∞,0] are respectively shown in Fig. 11a
and Fig. 11b. Other unbounded intervals, [+l,+∞] and [−l,+∞] (l > 0), are converted in
toStr]([0,+∞])rtoStr]([0, l]) and toStr]([−l,0])ttoStr]([0,+∞]), respectively. Conversions of in-
tervals [−∞, l] and [−∞,−l] (l > 0) are analogous, while, toStr]([−∞,+∞]) = Min(ΣZ). Finally,
toInt] : V]→ Int∪{NaN} handles conversion to intervals. Given an automaton A, if AuMin(ΣZ) =
∅, the automaton is precisely converted to NaN, otherwise, if AvDfa Min(ΣZ) it means that L (A)
contains only numeric strings. For the sake of precision, we check whether A recognizes positive
numeric strings (checking if the initial state reads only + or number symbols), negative numeric
strings (checking if the initial state reads only − or 0 symbols) or both. In the first case, we
return [0,+∞], in the second [−∞,0] and in the last [−∞,+∞].

The abstract interpreter for the abstract semantics so far defined has been tested by means
of the implementation of an automata library5. This library includes the implementation of all
the algorithms concerning the finite state automata domain and provide well-known operations
on automata such as suffix, right quotient, and abstract domain-related operations, such as tDfa,
uDfa, and a parametric widening for tuning precision and forcing convergence. The library is
suitable and easily pluggable into existing static analyzers, such as [29,31,32,37]. The bottleneck
of our library is the determinization operation, having exponential complexity [28] (we rely on
determinization in the minimization algorithm, in order to keep the automata arising during
the abstract computations minimum and deterministic). It worth noting that, as reported
in Thm. 1, ℘(Σ∗) (string concrete domain) and Dfa/≡ (abstract string domain) do not form
a Galois connection but, nevertheless, this is not a concern. We have shown, for the core
language we adopted, that the abstract semantics we have defined for string operations guarantee
soundness hence, if the abstract interpreter starts from regular initial conditions (i.e., constraints
expressible as finite state automata) it will always compute regular invariants. Indeed, it is
sound to start from > initial conditions that, in our string abstract domain, is expressible by
Min(℘(Σ∗)), that it is regular.
Example: Obfuscated malware. Consider the fragment reported in Fig. 1 in the introduc-
tion. By computing the abstract semantics of this code, we obtain that the abstract value of d, at

5Available at www.github.com/SPY-Lab/fsa and the IMP static analyzer at www.github.com/SPY-Lab/mu-js

www.github.com/SPY-Lab/fsa
www.github.com/SPY-Lab/mu-js
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Figure 12: Ad abstract value of d before eval call of the program in Fig. 1

the eval call, is the automaton Ad in Fig. 12. The cycles are caused by the widening application
in the while computation. From this automaton we are able to retrieve some important and
non-trivial information. For example, we are able to answer to the following question: May Ad

contain a string corresponding to an assignment to an ActiveXObject? We can simply answer by
checking the predicate AduMin(Id · {new ActiveXObject(} ·Σ∗ · {)}) 6= ∅, checking whether Ad

recognizes strings that are concatenations of any identifier with the string new ActiveXObject,
followed by any possible string. In the example, the predicate returns true. Another interest-
ing information could be: May Ad contain eval string? We can answer by checking whether
AduMin({eval}) 6= ∅, that is false and enforce that any explicit call to eval cannot occur.
We observe that such analysis may lose precision during fix-point computations, causing the cy-
cles in the automaton in Fig. 12, due to the widening application. Nevertheless, it worth noting
that such result is obtained without any precision improvement on fix-point computations, such
as loop unrolling or loop-sensitiveness analyses. We think these analyses will drastically decrease
false positives of the proposed string analysis but we will address this topic for future work.

5 Discussion and related work

In this paper, we have proposed an abstract semantics for a toy imperative language IMP,
augmented with string manipulation operations, expressive enough to handle dynamic typing
and implicit type conversion. In our abstract semantics, we have combined the DFA domain
with abstract domains for the other primitive types, necessary to deal with static analysis of
programs with dynamic typing. The proposed formal framework allows us to formally prove
soundness and to study precision of the abstract semantics of each string operation: Depending
on the property of interest, one can tune the degree of precision, namely the completeness of
any string operation.
Analysis vs verification. Even if several solutions, also involving finite state machines, have
been proposed for string solving and verification [2,33,43], it worth noting that our approach is
placed instead in the context of string static analysis. Among the years, there has always been
the intuition that program analysis was harder than verification: given a program, the aim of
the former is to derive invariants for each program point, the one of the latter is instead to check
whether a certain property holds for the given input program. Recently, this concept has been
formalized from a computability point of view [17], confirming this belief. Hence, our approach,
placed in the context of static analysis of string manipulation programs, has goals that are hardly
comparable with the solutions proposed in the context of verification, such those cited above.
Main related work. The issue of analyzing strings is a widely studied problem, and it has
been tackled in the literature from different points of view. Before discussing the most related
works, we can observe what makes our approach original w.r.t. all the existing ones: (1) We
provide a modular abstract domain parametric on the the abstractions of the different primitive
types, this allows us both to obtain a tunable semantics precision and to handle dynamic typing
for operation having both integer and string parameters, e.g., substring; (2) Our focus is on



V. Arceri, I. Mastroeni 13

the characterization of a formal abstract interpretation-based framework where it is possible to
prove soundness and to analyze completeness of string operations, in order to understand where
it is possible to tune precision versus efficiency.
The main feature we have in common with existing works is the use of DFA (regular expressions)
for abstracting strings. In [43], the authors propose symbolic string verificator for PHP based on
finite state automata, represented by a particular form of binary decision diagrams, the MBDD.
Even if it could be interesting to understand whether this representation of DFAs may be used
also for improving our algorithms, their work only considers operations exclusively involving
strings (not only integers such as substring) and therefore it provides a solution for different
string manipulations. In [11], the authors propose an abstract interpretation-based string ana-
lyzer approximating strings into a subset of regular languages, called regular strings and they
define the abstract semantics for four string operations of interest together with a widening. This
is the most related work, but our approach is strictly more general, since we do not introduce
any restriction to regular languages and we abstract integers on intervals instead of on constants
(meaning that our domain is strictly more precise). In [36], the authors propose a scalable static
analysis for jQuery that relies on a novel abstract domain of regular expressions. The abstract
domain in [36] contains the finite state automata one but pursues a different task and do not
provide semantics for string manipulations. Surely it may be interesting to integrate our library
for string manipulation operators into SAFE. Finally, [35] proposes a lattice-based generalization
of regular expression, formally illustrating a parametric abstract domain of regular expressions
starting from a complete lattice of reference. However, this work does not tackle the problem
of analyzing string manipulations, since it instantiates the parametric abstract domain in the
network communication environment, analyzing the exchanged messages as regular expressions.
Finite state machines (transducer and automata) have found a critical application also in model
checking both for enforcing string constraints and to model infinite transition systems [34]. For
example, the authors of [1] define a sound decision procedure for a regular language-based logic
for verification of string properties. The authors of [9] propose an automata abstraction in the
context of regular model checking to tackle the well-known problem of state space explosion.
Moreover, other formal systems, similar to DFA, have been proposed in the context of string
analysis [3, 8, 27]. As future work, it can be interesting to study the relation between standard
DFA and the other existing formal models, such as logics or other forms of FA.
In the context of JavaScript, several static analyzers have been proposed, pushed by the wide
range of applications and the security issues related to the language [29,31,32,37]. TAJS [29] is a
static analyzer based on abstract interpretation for JavaScript. The authors focus on allocation
site abstraction, plugging in the static analyzer the recency abstraction [5], decreasing the num-
ber of false positives when objects are accessed. Upon TAJS, the authors have defined a sound
way to statically analyze a large range of non-trivial eval patterns [30]. In [37], the authors
define the Loop-Sensitive Analysis (LSA) that distinguishes loop iterations using loop strings, in
the same way call strings distinguish function calls from different call sites in k-CFA [40]. The
authors have implemented LSA into SAFE [32], a JavaScript web applications static analyzer.
As future work, it may be interesting to combine LSA with our abstract semantics for decreasing
the false positives introduced by the widening during fix-point computations.
Future ideas. In this paper we have proposed string static program analysis for a set of relevant
string manipulation operations, whose semantics is inspired by the JavaScript behaviors. We
are currently working on extending our framework in order to fully cover the JavaScript String
built-in global object, formally defining the remaining methods contained in it. Afterwards, the
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first aim is to involve out abstract semantics into a static analyzer for JavaScript, that uses
finite state automata to approximate strings. In order to decrease the number of false positives
in our string approximation in presence of loops, several techniques will be involved, such as
loop unrolling and LSA [37]. The domain described in this paper has been equipped only with
a widening, to enforce termination in fix-point computations, that may lead to a big loss of
precision. A narrowing will be studied and involved in our static analyzer in order to retrieve
some precision lost when widening is applied.
We conclude by observing that we are strongly confident that an important future application of
our semantics may be the string-to-code primitives analysis. Consider, for instance, in JavaScript
programs, the eval function, transforming strings into code. As already observed, our semantics
is sound and precise enough for answering to some non-trivial property of interest. Hence, we
think this semantics for strings can be a good starting point for a sound and precise enough
analysis of eval, for example in JavaScript, which is still an open problem in static analysis.

References
[1] P. Abdulla, M. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer & J. Stenman (2014): String

Constraints for Verification. In: CAV’14.
[2] P. Abdulla, M. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer & J. Stenman (2015): Norn: An

SMT Solver for String Constraints. In: CAV’15.
[3] R. Alur & P. Madhusudan (2004): Visibly pushdown languages. In: STOC’04.
[4] V. Arceri & S. Maffeis (2017): Abstract Domains for Type Juggling. ENTCS 331.
[5] G. Balakrishnan & T. Reps (2006): Recency-Abstraction for Heap-Allocated Storage. In: SAS’06.
[6] C. Bartzis & T. Bultan (2004): Widening Arithmetic Automata. In: CAV’04.
[7] H. Bordihn, M. Holzer & M. Kutrib (2009): Determination of finite automata accepting subregular

languages. Theor. Comput. Sci. 410(35).
[8] A. Bouajjani, P. Habermehl, L. Holík, T. Touili & T. Vojnar (2008): Antichain-Based Universality

and Inclusion Testing over Nondeterministic Finite Tree Automata. In: CIAA’08.
[9] A. Bouajjani, P. Habermehl & T. Vojnar (2004): Abstract Regular Model Checking. In: CAV’04.

[10] C. Câmpeanu, A. Paun & S. Yu (2002): An Efficient Algorithm for Constructing Minimal Cover
Automata for Finite Languages. Int. J. Found. Comput. Sci. 13(1).

[11] T. Choi, O. Lee, H. Kim & K. Doh (2006): A Practical String Analyzer by the Widening Approach.
In: APLAS’06.

[12] G. Costantini, P. Ferrara & A. Cortesi (2015): A suite of abstract domains for static analysis of
string values. Softw., Pract. Exper. 45(2).

[13] P. Cousot (1997): Types as Abstract Interpretations. In: POPL’97.
[14] P. Cousot & R. Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In: POPL’77.
[15] P. Cousot & R. Cousot (1992): Abstract Interpretation Frameworks. J. Log. Comput. 2(4).
[16] P. Cousot & R. Cousot (1992): Comparing the Galois Connection and Widening/Narrowing Ap-

proaches to Abstract Interpretation. In: PLILP’92.
[17] P. Cousot, R. Giacobazzi & F. Ranzato (2018): Program Analysis Is Harder Than Verification: A

Computability Perspective. In: CAV’18.
[18] P. Cousot & N. Halbwachs (1978): Automatic Discovery of Linear Restraints Among Variables of a

Program. In: POPL’78.



V. Arceri, I. Mastroeni 15

[19] M. D. Davis, R. Sigal & E. J. Weyuker (1994): Computability, Complexity, and Languages: Fund.
of Theor. CS. Academic Press Professional, Inc.

[20] M. Domaratzki, J. Shallit & S. Yu (2001): Minimal Covers of Formal Languages. In: DLT’01.
[21] V. D’Silva (2006): Widening for Automata. Diploma Thesis, Institut Fur Informatick, UZH.
[22] Aymeric Fromherz, Abdelraouf Ouadjaout & Antoine Miné (2018): Static Value Analysis of Python

Programs by Abstract Interpretation. In: NFM’18.
[23] R. Giacobazzi & I. Mastroeni (2016): Making abstract models complete. MSCS 26(4).
[24] R. Giacobazzi & E. Quintarelli (2001): Incompleteness, counterexamples and refinements in abstract

model-checking. In: SAS’01.
[25] R. Giacobazzi, F. Ranzato & F. Scozzari. (2000): Making Abstract Interpretation Complete. JACM

47(2).
[26] D. Hauzar & J. Kofron (2015): Framework for Static Analysis of PHP Applications. In: ECOOP’15.
[27] L. Holík, P. Janku, A. Lin, P. Rümmer & T. Vojnar (2018): String constraints with concatenation

and transducers solved efficiently.
[28] J. Hopcroft & J. Ullman (1979): Introduction to Automata Theory, Languages and Computation.

Addison-Wesley.
[29] S. Jensen, A. Møller & P. Thiemann (2009): Type Analysis for JavaScript. In: SAS’09.
[30] S. H. Jensen, P. A. Jonsson & A. Møller (2012): Remedying the eval that men do. In: ISSTA’12.
[31] V. Kashyap, K. Dewey, E. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wiedermann & B. Hard-

ekopf (2014): JSAI: a static analysis platform for JavaScript. In: FSE’14.
[32] H. Lee, S. Won, J. Jin, J. Cho & S. Ryu (2012): SAFE: Formal specification and implementation of

a scalable analysis framework for ECMAScript. In: FOOL’12.
[33] T. Liang, A. Reynolds, N. Tsiskaridze, C. Tinelli, C. Barrett & M. Deters (2016): An efficient SMT

solver for string constraints. Formal Methods in System Design 48(3).
[34] A. Widjaja Lin & P. Barceló (2016): String solving with word equations and transducers: towards a

logic for analysing mutation XSS. In: POPL’16.
[35] J. Midtgaard, F. Nielson & H. R. Nielson (2016): A Parametric Abstract Domain for Lattice-Valued

Regular Expressions. In: SAS’16.
[36] C. Park, H. Im & S. Ryu (2016): Precise and scalable static analysis of jQuery using a regular

expression domain. In: DLS’16.
[37] C. Park & S. Ryu (2015): Scalable and Precise Static Analysis of JavaScript Applications via Loop-

Sensitivity. In: ECOOP’15.
[38] M. Pradel & K. Sen (2015): The Good, the Bad, and the Ugly: An Empirical Study of Implicit Type

Conversions in JavaScript. In: ECOOP’15.
[39] E. Pribavkina & E. Rodaro (2010): State Complexity of Prefix, Suffix, Bifix and Infix Operators on

Regular Languages. In: DLT’10.
[40] M Sharir & A Pnueli (1978): Two approaches to interprocedural data flow analysis. NYU CS, NY.
[41] W3S: JS String Ref. www.w3schools.com/jsref/jsref_obj_string.asp. Accessed 16-06-2018.
[42] W. Xu, F. Zhang & S. Zhu (2012): The power of obfuscation techniques in malicious JavaScript

code: A measurement study. In: MALWARE’12.
[43] F. Yu, T. Bultan, M. Cova & O. H. Ibarra (2008): Symbolic String Verification: An Automata-Based

Approach. In: SPIN’08.
[44] S. Yu, Q. Zhuang & K. Salomaa (1994): The State Complexities of Some Basic Operations on

Regular Languages. Theor. Comput. Sci. 125(2).

www.w3schools.com/jsref/jsref_obj_string.asp


16 Static Program Analysis for String Manipulation Languages

A Appendix: Algorithms
Alg. 3 computes the right quotient between two automata, A1 and A2. For each state q of A1,
we build a new automaton Ai, equals to A1, except that the only initial state is q (line 3). If Ai

recognizes strings of A2, i.e., Ai∩A2 6= ∅, the algorithm collects q in FRQ (lines 4-5). Finally, the
result is an automaton equals to A1, except that the set of final states is FLQ. We abuse notation
of Min by denoting the minimization operation on automata.

Algorithm 3: RQ : Dfa/≡×Dfa/≡→Dfa/≡ algorithm
Input: A1,A2 ∈Dfa/≡ s.t. A1 = (Q1, q0

1,Σ, δ1,F1),A2 = (Q2, q0
2,Σ, δ2,F2)

Output: RQ(A1,A2)
1 FRQ←∅
2 foreach q ∈Q1 do
3 Ai← (Q1, q,Σ, δ1,F1);
4 if A2∩Ai 6= ∅ then
5 FRQ← FRQ∪{q};
6 end
7 end
8 return Min((Q1, q0

1,Σ, δ1,FRQ));

Alg. 4 [19] computes the suffix automata of A. For each state q, the algorithm checks if there
exists a path from q to a final states (line 3). If it is the case (line 4), q is collected in ISU.
Finally, the result is the (minimum) automaton equals to A, except that the set of the initial
states is ISU. Dually, Alg. 5 computes the prefix automata of A.

Algorithm 4: Algorithm of SU : Dfa/≡→Dfa/≡

Input: A ∈Dfa/≡ s.t. A = (Q,q0,Σ, δ,F )
Output: SU(A)

1 ISU←∅
2 foreach q ∈Q do
3 if ∃p ∈ F.∃path(q,p) then
4 ISU← ISU∪{q};
5 end
6 end
7 return Min((Q,ISU,Σ, δ,F ));

Algorithm 5: Algorithm of PR : Dfa/≡→Dfa/≡

Input: A ∈Dfa/≡ s.t. A = (Q,q0,Σ, δ,F )
Output: PR(A)

1 FPR←∅
2 for q ∈Q do
3 if ∃p. p= path(q0, q) then
4 FPR← FPR∪{q};
5 end
6 end
7 APR = Min((Q,q0,Σ, δ,FPR));

B Appendix: Selected proofs
Proof. (of Theorem 1) Consider the family of languages on Σ = {a,b}

Li
def= { anbn | n≤ i }∪{ anbm | n,m > i }
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SS](A, [i, j], [l,k])
l < i≤ k l,k ∈ Z l =−∞

k ∈ Z
l ∈ Z

k = +∞
l =−∞
k = +∞

i, j ∈ Z Table 1 Table 1 SS](A, [l, j], [i, j]) tDfa

SS](A, [i, j], [j,+∞]) Table 1

i=−∞
j ∈ Z Table 1 Table 1 Table 1 Table 1

i ∈ Z
j = +∞

SS](A, [l,k], [i,k])tDfa

SS](A, [l, i], [i,+∞])tDfa

SS](A, [i,k], [k,+∞])
Table 1 SS](A, [l,+∞], [i,+∞]) Table 1

i=−∞
j = +∞ Table 1 Table 1 Table 1 Table 1

Table 2: Definition of SS] when i > l, i≤ k.

SS](A, [i, j], [l,k])
i > k ∨ (i≤ l, j > l) l,k ∈ Z l =−∞

k ∈ Z
l ∈ Z

k = +∞
l =−∞
k = +∞

i, j ∈ Z Table 1 Table 1

i≤ l, j > l

SS](A, [l, j], [l, j]) tDfa

SS](A, [i, l], [l,+∞]) tDfa

SS](A, [l, j], [j,+∞])

Table 1

i=−∞
j ∈ Z Table 1 Table 1 Table 1 Table 1

i ∈ Z
j = +∞

i > k

SS](A, [l,k], [i,+∞]) Table 1 if i≤ l Table 1; if i > l Table 2 Table 1

i=−∞
j = +∞ Table 1 Table 1 Table 1 Table 1

Table 3: Definition of SS] for the remaining cases.

These languages are trivially regular since we require the same number of a and b only up to a
fixed bound, the parameter i, for all the strings with a number of a and b greater than i we do
not fix any relation between the lengths.
We can prove that the intersection of all these languages is a context free, not regular, language.
Namely we have that

⋂
i∈NLi = { anbn | n ∈ N }. In particular, consider akbk, then ∀i. k > i we

have that akbk ∈ { anbm | n,m > i } ⊆ Li, while ∀i. k ≤ i we have akbk ∈ { anbn | n ≤ i } ⊆ Li,
hence akbk ∈

⋂
i Li. Consider now ajbk ∈

⋂
i Li, then j = k since otherwise (suppose without

losing generality that j ≤ k) ∀i. j ≤ i we have ajbk /∈ Li. Therefore ajbk = akbk ∈ { anbn | n ∈N }.
Hence, we have the equality of the intersection with a well-known not regular language.

Proposition 1. For all L in ℘(Σ∗), for all i, j ∈ Z, we have Ss(L, i, j) = Nps(L, i, j)∪Ps(L, i, j),
where Nps(L, i, j) = Su(L, i)∩Σ<j−i and Ps(L, i, j) = Rq(Su(L, i),Su(L, j)) ∩ Σj−i6.

Proof. For the sake of simplicity, we assume that i and j are positive and j≥ i, since our rewriting
handles these corner cases. We separately prove that the new definition exactly computes these

6In order to be coherent with the IMP semantics of substring, we have that if i and j are negative then they
are treated as zero, and if j < i the values are swapped (the substring is always computed from the smaller to the
greater value).
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two classes of partition.

Nps(L, i, j) = { substring(σ,i,n) | j > n= |σ|,σ ∈ L }
= { y | ∃x ∈ Σ∗. xy ∈ L, j > |xy|, |x|= i }
= { y | ∃x ∈ Σ∗. xy ∈ L, j > |x|+ |y|, |x|= i }
= { y | ∃x ∈ Σ∗. xy ∈ L, j > i+ |y|, |x|= i }
= { y | ∃x ∈ Σ∗. xy ∈ L, |x|= i }∩{ y | j > i+ |y| }
= Su(L, i)∩{ y | |y|< j− i }
= Su(L, i)∩Σ<j−i

Ps(L,i,j) = { substring(σ,i,j) | j ≤ n= |σ|,σ ∈ L }
= { y | ∃x,z ∈ Σ∗. xyz ∈ L, |x|= i, |xy|= j, |y|= j− i }
= { y | ∃z ∈ Σ∗. |y|= j− i,yz ∈ Su(L, i),z ∈ Su(L, j) }
= { y | ∃z ∈ Σ∗. yz ∈ Su(L, i),z ∈ Su(L, j) }∩{ y | |y|= j− i }
= Rq(Su(L, i),Su(L, j))∩Σj−i

Lemma 1. Let L ∈ ℘(Σ∗) be a regular language, i, j ∈ Z. Then

Ss→(L, i, j) = Rq(Su(L, i),Su(Su(L, j)))

Proof.

Ss→(L, i, j) = { Ss(σ,i,k) | σ ∈ L,k ≥ j }
= { y | ∃x,z ∈ Σ∗. |x|= i, |xy|= k,k ≥ j, xyz ∈ L }
= { y | ∃z ∈ Su(L,k),k ≥ j. yz ∈ Su(L, i) }
= { y | ∃z ∈ Su(Su(L, j)). yz ∈ Su(L, i) } (∗)
= Rq(Su(L, i),Su(Su(L, j)))

where (∗) holds since we can prove that
⋃

k≥j Su(L,k) = Su(Su(L, j)). By definition Su(Su(L, j)) =
{ z ∈Σ∗ | ∃x,y ∈Σ∗. |x|= j, xyz ∈ L }, while Su(L,k) = { z ∈Σ∗ | ∃w∈Σ∗.|w|= k, wz ∈ L }. Hence,
if z ∈ Su(Su(L, j)) then we have that ∃k ≥ j. |xy|= k, namely ∃k ≥ j. z ∈ Su(L,k). On the other
hand, if z is in the union above then ∃k ≥ j. z ∈ Su(L,k,), but there exists x,y ∈ Σ∗ such that
w = xy (|w|= k) with |x|= j and |y|= k− j, but then by definition yz ∈ Su(L, j), and therefore
z ∈ Su(Su(L, j)).

Lemma 2. Let L be a regular language, i, j ∈ Z. The following fact holds

Ss↔(L, i) = Fa(Su(L, i))
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Proof.

Ss↔(L, i) = { Ss(σ, l,k) | σ ∈ L, l,k ≥ i }
= { y | ∃x,z ∈ Σ∗. |x|= l, |xy|= k, l,k ≥ i,xyz ∈ L }
= { y | ∃x,z ∈ Σ∗. yz ∈ Su(L, l), |xy|= k, l,k ≥ i,xyz ∈ L }
= { y | ∃x,z ∈ Σ∗. yz ∈ Su(Su(L, i)), |xy|= k,k ≥ i,xyz ∈ L }
= { y | ∃z ∈ Σ∗. yz ∈ Su(Su(L, i)),z ∈ Su(Su(L, i)),xyz ∈ L }
= { y | ∃z ∈ Σ∗. yz ∈ Su(Su(L, i)),xyz ∈ L }
= Pr(Su(Su(L, i)))
= Fa(Su(L, i))

Theorem 8. Let A ∈Dfa/≡, i, j ∈ Z. The following facts holds

L (SS(A, i, j)) = Ss(L (A), i, j)
L (SS→(A, i, j)) = Ss→(L (A), i, j) L (SS↔(A, i)j) = Ss↔(L (A), i)j

Proof. By definition and by Proposition 1, Lemma 1 and Lemma 2.

Of Thm. 4. For space limitations, we report the proof for the case l ∈ Z, l ≥ 0,h = +∞. The
other cases are straightforward.

Ca(L (A), [l,+∞])
= {Ca(σ,i) | σ ∈L (A), i ∈ [l,+∞] }
= { y | ∃x,z ∈ Σ∗. |x|= i, i ∈ [l,+∞], |y| ≤ 1,xyz ∈L (A) }
= { y | ∃z ∈ Σ∗. yz ∈ Su(L (A), i), i ∈ [l,+∞], |y| ≤ 1,xyz ∈L (A) }
= { y | ∃z ∈ Σ∗. yz ∈ Su(L (A), i), i ∈ [l,+∞],xyz ∈L (A) }∩{ y | |y| ≤ 1 }
= { y | ∃z ∈ Σ∗. yz ∈ Su(Su(L (A), l)) }∩Σ≤1

= Pr(Su(Su(L (A), l)))∩Σ≤1

= L (PR(SU(SU(A, l)))uDfa Min(Σ≤1))
= L (FA(SU(A, l))uDfa Min(Σ≤1))
= L (CA](A, [l,+∞]))

Of Thm. 5. LE] is not complete, i.e. (LE](A) 6⊂ Le(L (A)). As a counterexample, consider the
automaton A2 in Fig. 8b.

LE](A) = [3,+∞] = { n+ 3 | n ∈ N } 6⊂ Le(L (A)) = {3,5}∪{ 3n+ 1 | n > 0 }

As far as soundness is concern, we argue ∀σ ∈L (A). |σ| ∈ γ(LE](A)). Let consider the following
cases:
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A has cycle : if σ is the minimum string accepted by A, its length is computed by searching
for the minimum path from the initial to final states (lines 4-9 and lines 15-17), hence,
the resulting interval takes into account |σ| (line 10 and line 22). Strings of length greater
than the minimum, it is contained in the resulting interval, since it is positive unbounded.

A has not cycle : if σ is the minimum string accepted by A, its length is contained in the
resulting interval as explained in the previous case. If σ is the maximum string accepted
by L (A), Alg. 1 searches for the maximum length path from the initial to final states
(lines 18-20) and the returning interval contains |σ| (line 22); Otherwise, if σ is not the
minimum or the maximum string accepted by L (A)], it trivially belongs to the resulting
interval, since the interval goes from minimum string length and maximum string length.
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