
Mechanism

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository
www.elsevier.com/locate/mechmt

Mechanism and Machine Theory 41 (2006) 359–381

and
Machine Theory
Reciprocating excitation of a flexible beam: Benchmark study

R.G. Langlois, M.J.D. Hayes *

Department of Mechanical and Aerospace Engineering, Carleton University, 3135 Mackenzie Building,

1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6

Received 22 October 2004; received in revised form 15 June 2005; accepted 14 July 2005
Available online 5 October 2005
Abstract

A long and slender flexible beam is set in oscillatory motion to observe its deflection. A novel application
of digital image processing is employed to obtain contactless discrete measurements of the beam tip deflec-
tion. We compare the measured data to those predicted by a flexible multibody dynamics simulation
(FLXDYN). This study is intended as a benchmark. Moreover, the system is described in sufficient detail
to enable other investigators to repeat, and build upon results herein presented for the first time.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Flexibility is an inherent property of structural members. It becomes one of major concern
when mechanical systems are designed with tight shape and dimension tolerances, required to
be lighter in weight, and to move at higher speeds. In addition there are many applications that
use deformations, and corresponding strengths of structural members, to assemble machine com-
ponents and avoid interference among parts: selectively compliant assembly robot arms
(SCARA), for example. The dynamic characteristics of flexible beams, such as deflection under
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inertial loading, are closely related to their material properties, geometry, and boundary condi-
tions. Hence, a mathematical model and measurement system are required to experimentally
determine characteristics of interest.

Multibodydynamics formulations have been proposed and refined since the 1970s that, using var-
ious levels of sophistication, includemodellingof flexible bodies—both for systemshavingopen- and
closed-loop topology. Correspondingly, benchmark problems have been developed where alterna-
tive dynamics formulations have been comparedwith each other, and in some cases, to experimental
results. Arguably, the two most common benchmark problems are the flexible beam spin-up prob-
lem for open-loop systems (see, for example, Haering et al. [1]) and the slider-crank mechanism for
closed-loop systems (see, for example, Meijaard [2]). Many other benchmark problems have also
been used. However, it is widely recognized that additional benchmark problems, that include as-
pects not present in published examples, would be of potentially lasting benefit to the multibody
dynamics community. Further, development of measurement approaches that facilitate the collec-
tion of kinematic response data for flexible links inmultibody systems could contribute to improving
the availability of a greater number of published benchmark problems in the long term.

In this paper, we introduce a benchmark study in multibody dynamics via the examination of a
flexible body undergoing reciprocating motion driven by a relatively stiff crank-rocker mecha-
nism. We investigate the dynamic performance of flexible bodies using dynamic simulation,
and empirical data for verification. The experimental apparatus, illustrated in Fig. 1, uses a com-
mercially available long and slender aluminum beam as the flexible body. A motor-driven four-
bar crank-rocker linkage provides reciprocating oscillations to excite the beam. The flexible beam
is rigidly clamped to the relatively stiff rocker. The excitation angular frequency is measured using
a rotational potentiometer. Surface strains are continuously measured at four locations along the
length of the beam to estimate the coefficients of proportional damping. An off-the-shelf digital
camera is used to acquire still images of the beam in motion. The rocker angle and beam deflec-
tion are extracted from the images thereby providing contactless measurements.
Fig. 1. Experimental apparatus.
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The determination of the deflection of the beam and the angular position of the clamp using a
contactless digital image processing approach is novel, up to the knowledge of the authors. Typ-
ically, such deflections are inferred from measurements obtained with surface-mounted strain
gauges. The radial distortion of the lens is moderate, given the large field of view required for
the 835 mm effective length of the clamped-free beam. However the linear distortion is eliminated
by post-processing using principles of elementary projective geometry.

An analytical flexible multibody dynamics formulation is presented which automatically gener-
ates and solves the governing equation of the reciprocating beam problem. The code is an adapted
version of FLXDYN [3]. The formulation does not place limits on the flexible bodies in terms of the
magnitude of deformation or the level of internal damping. The code generates the time history of
the moving beam starting from rest, through spin-up, to steady-state reciprocating motion. The
output of the simulation is in agreement with the deflection of selected points along the length
of the beam measured with the digital camera.
2. Experiment design and apparatus

Given the absence of literature examining open-loop flexible beam dynamics excited by recip-
rocating motion, we developed a reproducible benchmark study. The intention is to validate sim-
ulation results yielding lateral deflection of the beam under oscillating motion. The experimental
apparatus consists of a long slender aluminum beam cantilevered to the rocker link of a planar
crank-rocker mechanism such that the beam was flexible in a plane parallel to the plane of the
mechanism, perpendicular to the gravity vector thereby mitigating its effects. The crank is driven
by a geared-down DC motor. The beam dimensions are listed in Table 1.

Four 120 ± 0.3 X strain gauges are located at distances [5, 204, 403, 603] mm along the beam
measured from the clamped end mounted to the rocker. The four strain gauges were bonded to
the beam so their direction of sensitivity aligned with the longitudinal axis of the beam. A poten-
tiometer is attached to the base-fixed revolute joint so as to measure its angular frequency. The
effective length of the flexible beam is 835 mm. The mechanism configuration and strain gauge
locations are shown pictorially and schematically in Figs. 1 and 2.

Static beam deflections were first measured and compared to static output from the simulation.
For this purpose, the beam was removed from the crank-rocker mechanism and setup such that it
would bend in a vertical plane as the result of weights associated with masses of different size sus-
pended from the free end of the beam. The corresponding strains and tip displacements were mea-
sured under the effect of the applied loads. For each of three masses used, repeated readings of a
precision ruled straight-edge were used to directly measure the difference between the vertical
position of the beam tip prior to application of the tip weights and the deflected positions once
the weights were attached and the system was allowed to settle to equilibrium.
Table 1
Flexible beam geometric parameters

Height, h Thickness, t Clamp-free end length, lc Pivot point-free end length, lp Area moment of inertia, IA

19.050 mm 3.175 mm 835.000 mm 843.000 mm 5.08095 · 10�11 m4



Fig. 2. Schematic illustration of mechanism configuration and strain gauge attachment points.
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For the dynamic testing the beam was mounted to the follower link using a rigid hub. A pre-
cision potentiometer was used to continuously measure the angular frequency of the follower link.
A data acquisition system was configured to sample the follower orientation and the strains at
each of the four locations. The sampling rate was set to 400 Hz; and a Butterworth filter was used
with the pass band set to 150 Hz and the stop band set at 200 Hz. While the apparatus allows the
mechanism to be operated over a range of speeds, the data presented herein corresponds to a near-
sinusoidal crank excitation frequency of 0.92 Hz.

Dynamic beam deflection measurements were obtained with an off-the-shelf digital camera.
After determining the dial zeros of the rocker extrema, still images can be mapped to potentiom-
eter data recording the angular position of the rocker. Then using a novel technique to remove the
projective linear distortion from the scene, scaled measurements can be made directly from the
post-processed images. Beam tip and intermediate point lateral and longitudinal deflections were
thus measured without contacting the oscillating beam. These deflections are then compared to
the simulation predictions of lateral deflections.

2.1. Linkage input/output equations

The input/output equation for the four-bar linkage illustrated in Fig. 3 is obtained using ele-
mentary Cartesian analysis. The mechanism is a Grashof crank-rocker where the ith input crank
angle is wi, and the corresponding rocker output angle is ui. The link lengths are denoted ai,
i 2 {1,2,3,4}. To derive a useful form of the output angle u in terms of the input angle w the po-
sition vectors for points P and Q located on the distal revolute pair centres in the crank and rock-
er, respectively, are used. The coupler, a3, is modelled as a rigid body of fixed length. This length
must be equal to the 2-norm of the vector difference {p} � {q}. The position vectors may be
expressed as:
fpg ¼
a2 cosw

a2 sinw

� �
; ð1Þ

fqg ¼
a1 þ a4 cosu

a4 sinu

� �
. ð2Þ



Fig. 3. The four-bar linkage used to generate the motion of the flexible beam.
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Invoking the Pythagorean theorem, it must be that
a23 ¼ ðxp � xqÞ2 þ ðyp � yqÞ
2
; ð3Þ
or, using Eqs. (1) and (2)
a23 ¼ ða2 cosw� a1 � a4 cosuÞ2 þ ða2 sinw� a4 sinuÞ2. ð4Þ
Eq. (4) can be expanded, and rewritten as [4,5]
A sinuþ B cosuþ C ¼ 0; ð5Þ
where
A ¼ sinw;

B ¼ cosw� a1
a2

;

C ¼ a1 cosw
a4

� a21 þ a22 � a23 þ a24
2a2a4

.

A straightforward quadratic equation in the tangent of the half angle is obtained using the half-
angle trigonometric substitutions
sinu ¼ 2 tanðu=2Þ
1þ tan2ðu=2Þ ; cosu ¼ 1� tan2ðu=2Þ

1þ tan2ðu=2Þ

in Eq. (5) yielding:
f ðuÞ ¼ 2A tanðu=2Þ þ Bð1� tan2ðu=2ÞÞ þ Cð1þ tan2ðu=2ÞÞ ¼ 0. ð6Þ

Solving for tanu=2 leads to
tanðu=2Þ ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 � C2

p
Bþ C

. ð7Þ
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For each distinct value of w the quantities A, B, and C, may be computed, and two distinct val-
ues of the output angle u, corresponding to the elbow-up and elbow-down configurations, result:
u ¼ 2 arctan
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 � C2

p
Bþ C

. ð8Þ
The elbow-up configuration is given by the positive radicand, giving the input/output angles for
the linkage in Fig. 3.

2.2. Extrema

For the motion generating Grashof crank-rocker linkage the link lengths are:
a1 ¼ 340 mm;

a2 ¼ 45 mm;

a3 ¼ 330 mm;

a4 ¼ 65 mm.
Substituting these values into Eq. (8) yields the input/output equation
u ¼ 2 arctan
3

5

4 sinwþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5056� 2601cos2wþ 765 cosw

ph i
99 coswþ 125

0
@

1
A. ð9Þ
The extreme output angles occur for values of the input angle, w that satisfy the first derivative
of Eq. (6) with respect to the output angle, u:
df ðuÞ
du

¼ �2 arctan
A

�Bþ C

� �
¼ �2 arctan

117

5

sinw
99 coswþ 125

� �
¼ 0. ð10Þ
Values of w that satisfy Eq. (10) are np, where n is any integer. For n = an even integer (including
0), the corresponding elbow-up output angle is u = 62.598�. For n = an odd integer, the corre-
sponding elbow-up output angle is u = 150.474�. The linkage in these two extreme configurations
is illustrated in Fig. 4. The nominal rocker output angular range is
Du ¼ 150:474� � 62:598� ¼ 87:876�. ð11Þ
Fig. 4. Output extrema of the linkage.
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3. Multibody dynamics formulation

This section provides an overview of the analytical flexible multibody dynamics formulation
that has been developed and applied for automatically generating and solving the equations of
motion of the reciprocating beam problem. The formulation does not place limiting restrictions
on the flexible bodies in terms of the magnitude of deformation or the level of internal damping.

The first step in the automated analysis is to determine the system topology and assign config-
uration coordinates and generalized speeds to the system. The Hopcroft and Tarjan version of the
depth first search algorithm [6] is used to identify a unique path from ground to each body in the
system. Rigid body configuration coordinates accounting for joint motion {qr} and flexibility
coordinates accounting for deformation of flexible bodies {qf} are assigned along the paths.
The actual flexible bodies consist of flexible element bodies interconnected by fixed joints. The
deformation field within flexible bodies is discretized using a finite element approach where each
element is treated as a separate body. The deformation field in body i can be written
fdijg ¼ ½Nij�fqfig; ð12Þ

where [Nij] are the finite element shape functions for body i evaluated at location j.

The generalized speed vector {u} is defined as the time derivative of the configuration coordi-
nate vector
fug ¼ f _qg. ð13Þ

Using the configuration coordinates and generalized speeds, the position and velocity functions

for the system are developed. These functions may be used to evaluate the position and velocity of
all important points in the system.

Consider the body illustrated schematically in Fig. 5. The dashed line indicates the deformed
shape of body i. The position~pij of differential volume j on body i is expressed in global coordi-
nates as
~pij ¼~pAi�1
þ~pAi=Ai�1

þ ½T i� ~rj=Ai þ~dij

� �
ð14Þ
and the velocity~vij is obtained directly by differentiating the position function (Eq. (14))
~vij ¼~_pAi�1
þ~_pAi=Ai�1

þ ½T i�~_dij þ ½ _T i� ~rj=Ai þ
~_dij

� �
; ð15Þ
Fig. 5. Schematic representation of a single body.
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where the vectors are defined in Fig. 5 and [Ti] is the rotational transformation matrix from the
local coordinates of body i to global coordinates.

Eq. (15) can be used to evaluate the instantaneous velocity of any point in the system as a linear
function of the generalized speeds, allowing a composite velocity vector {V} to be written
fV g ¼ ½V �fug; ð16Þ
where [V] is the partial velocity matrix which reflects how each generalized speed affects the veloc-
ity of each key point in the system.

Kane�s equation without multipliers [7] is used to formulate the dynamic equations numerically
at each time step. It states
fQ�g þ fQeg þ fQig ¼ f0g; ð17Þ
where {Q*} is a vector of generalized inertia forces; {Qe} is a vector of generalized external forces;
and {Qi} is a vector of generalized internal forces.

The contribution of each individual body to the generalized inertia force is obtained by differ-
entiating the momentum function of the body. The resulting contribution is of the form
fQ�
i g ¼ fQ�

V g þ ½Q�
M �f _ug; ð18Þ
where fQ�
V g contains centripetal and Coriolis force terms that can be evaluated from known con-

figuration coordinates and generalized speeds; the second term depends on unknown derivatives
of generalized speeds.

The generalized external force vector {Qe}, if applicable, is evaluated by considering the effect
of each non-constraint applied force on each degree of freedom. This is accomplished by mapping
forces onto the degrees of freedom using the partial velocity matrix [V] such that
fQe
kg ¼ ½V ik�TfF kg; ð19Þ
where {Fk} represents force k acting on body i.
The generalized internal force contribution from each body results from strain-induced stiffness

forces fQi
isg and strain-rate-produced damping forces fQi

idg
fQi
ig ¼ fQi

isg þ fQi
idg. ð20Þ
Moderate to large deformation causes the nonlinearity between strain and displacement to be-
come an important consideration in developing the element equations [8].

The approach that is used in this formulation involves describing the deformation field using a
full set of orthogonal coordinates and forming the total strain energy as a function of the strain
(or displacements) only. Strains are defined with the nonlinear strain displacement relations offer-
ing accuracy, generality, and widespread applicability.

The potential energy functional pp for a single flexible element in a multibody system, such as
the one shown in Fig. 6, is formed in the same way as is done in conventional finite element anal-
ysis [9,10]
opp

oDr

� �
¼ ð½Ke� þ ½Kr�ÞfDrg � fF ng ¼ f0g; ð21Þ



Fig. 6. Flexible planar beam element.
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where {Fn} is a vector of nodal reaction forces in local coordinates, {Dr} is a vector of element
nodal displacements in element local coordinates, and the total element stiffness matrix [KT] com-
prises the elastic stiffness matrix [Ke] and the geometric stiffness matrix [Kr].

The multibody dynamics formulation development requires an expression for {opp/oq} which is
the vector of partial derivatives of the potential energy functional for an element with respect to
each of the generalized coordinates qi in the multibody system. The chain rule allows this vector to
be expanded
opp

oq

� �
¼ opp

oDr

� �T
oDr

oq

� 	
. ð22Þ
Next, the nodal displacements are linearized about the current configuration
fDrg ¼ fDr0g þ fdDrg ð23Þ

where {Dr0} is a vector of nominal nodal displacements and {dDr} is a vector of small changes in
relative nodal displacements. These changes can be linearly related to the generalized coordinates
fdDrg ¼ ½T �T½A�fdqg; ð24Þ

where [A] is the transformation matrix relating nodal displacements to multibody coordinates in
the global coordinate system and [T] is the coordinate transformation from element global to local
coordinates. Differentiating Eq. (24) with respect to {q} yields
oDr

oq

� 	
¼ ½T �T½A�. ð25Þ
By comparing expressions for the absolute velocity of the element nodes, it can be shown that [A]
is a matrix analogous to [V] but relating the nodal velocity components to the generalized speeds.

Substituting Eqs. (21) and (25) into Eq. (22) and transposing the result produces the column
vector of generalized internal forces caused by internal stiffness
fQi
isg ¼ opp

oq

� �T

¼ ½Ai�T½T �ð½Ke� þ ½Kr�ÞfDrg. ð26Þ
This result can be added directly to the system generalized internal force vector (Eq. (20)).
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The generalized internal forces generated by material damping within flexible elements are trea-
ted analogously. The contribution of nodal damping forces {Fnd} to the generalized internal force
vector is
fQi
idg ¼ ½Ai�T½T �fF ndg. ð27Þ
The expression for fQi
idg remains general. Damping within flexible bodies can be included pro-

vided that {Fnd} can be calculated from the state of the system and time. This provides maximum
flexibility in the choice of damping model used for representing material damping within flexible
bodies. For the simple case of proportional damping
fF ndg ¼ a0½M � þ a1½KT�ð Þf _Drg; ð28Þ
where [M] is the consistent element mass matrix [9,10] and f _Drg is the vector of first time deriv-
atives of the element relative nodal displacements.

For the six-degree-of-freedom planar beam element shown in Fig. 6, the deformation field with-
in each element is expressed in terms of the nodal degrees-of-freedom using the shape functions
uðxÞ ¼ x
L
D4 ð29Þ
and
wðxÞ ¼ 3
x
L

� �2

� 2
x
L

� �3
� �

D5 þ
x2

L
x
L
� 1

� �� �
D6; ð30Þ
where u corresponds to the local longitudinal direction of the beam element and w corresponds to
the lateral direction.

The corresponding right halves of the stiffness matrices are
½Ke� ¼

�EA
L

0 0

0 � 12EI

L3

6EI

L2

0 � 6EI

L2

2EI
L

EA
L

0 0

0
12EI

L3
� 6EI

L2

0 � 6EI

L2

4EI
L

2
6666666666666666666664

3
7777777777777777777775

ð31Þ
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and
½Kr� ¼ P

� 3

L
0 0

0 � 6

5L
1

10

0 � 1

10
� L
30

3

L
0 0

0
6

5L
� 1

10

0 � 1

10

2L
15

2
6666666666666666664

3
7777777777777777775

; ð32Þ
where
P ¼ EA
L

D4. ð33Þ
Numerical solutions to the overall approach can be obtained by substituting Eq. (18) into
Kane�s equation (Eq. (17)) and rearranging the resulting governing equations so that the only
dependence on the unknown derivatives of generalized speeds is on the left-hand side of the
equation
½Q�
M �f _ug ¼ �ðfQ�

V g þ fQeg þ fQigÞ. ð34Þ

The dynamic solution then consists of:

1. building Eq. (34) numerically and solving it for the unknown derivatives of the generalized
speeds, f _ug;

2. integrating f _ug to obtain the generalized speeds, {u}, at the next time step; and
3. integrating the generalized speeds {u} to obtain the configuration coordinates at the next

time step.

This procedure is repeated for the duration of the simulation. Numerical integration has been
performed using the IMSL DDRIV2 explicit multi-step integration routine developed by Kahaner
and Sutherland [11]. The integrator continuously evaluates the numerical stiffness of the equations
and for non-stiff equations uses a variable-order adaptive-time-step Adams method; for stiff equa-
tions, it switches to Gear�s method. Absolute and relative integration tolerances were both set to
10�4.

An expanded form of the formulation presented here, that includes capability for automatically
analyzing systems containing closed kinematic loops has been implemented in the flexible multi-
body computer program FLXDYN that has been validated for open- and closed-loop systems that
contain both rigid and flexible bodies [3].

The formulation is found to be efficient and versatile for predicting the forward dynamics of
multibody systems, including systems containing heavily damped very flexible substructures.
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For the specific case of the reciprocating flexible beam problem, the multibody system used for
the analysis comprises two flexible beam elements. The inboard end of the inboard element is con-
nected to ground by a revolute joint. The inboard end of the outboard element is effectively can-
tilevered to the outboard end of the inboard element using a �fixed� joint. Seven generalized
coordinates are required to describe the system kinematics: q1 is the rotational degree-of-freedom
through the revolute joint; q2 through q4 are the longitudinal deflection, lateral deflection, and
rotation of the outboard end of the inboard element defined in a coordinate system rotating with
the inboard end of the beam; q5 through q7 are similar coordinates for the outboard element and
defined in a coordinate system attached to the inboard end of the outboard element. Experience
with the experimental apparatus indicates that, for the external excitation frequencies considered,
the dynamic response of the flexible beam is dominated by the first mode of beam vibration. Con-
sequently, a two-flexible-element representation of the system is considered adequate.

The revolute joint angle and angular velocity are effectively prescribed functions of time with
the four-bar mechanism generating the input forcing function. The prescribed motion is intro-
duced into the multibody dynamic formulation by rearranging and partitioning Eq. (18) such that
Q�
pp Q�

pu

Q�
up Q�

uu

" #
_up
_uu

� �
¼

Gpðqp; qu; up; uu; tÞ
Guðqp; qu; up; uu; tÞ

( )
; ð35Þ
where subscript p indicates prescribed values that are known functions of time and subscript u
indicates unprescribed values, and {G} has been used to represent the generalized right-hand side
force vector for simplicity and clarity. The lower partition of Eq. (35) can be solved for the
unknown derivatives of the unprescribed generalized speeds f _uug
½Q�
uu�f _uug ¼ fGuðqp; qu; up; uu; tÞg � ½Q�

up�f _upg. ð36Þ
Next, if desired, the upper partition of Eq. (36) can be solved for the prescribed forces required to
produce the prescribed motion. In this particular application, the prescribed generalized coordi-
nate and generalized speed is q1 and u1 respectively, with all others being unprescribed.

The effective system damping results both from internal material damping and aerodynamic
damping. Using the experimental apparatus, it should be possible to obtain modal damping ratios
corresponding to the first and second vibration modes. These damping ratios can in turn be re-
lated to the proportional damping coefficients used in the multibody dynamic formulation (refer
to Eq. (28)) [12] such that
fn ¼
1

2xn

X
i

aix2i
n ; ð37Þ
where xn is the frequency of mode n. Letting i equal 0 and 1 for proportional damping
f1
f2

� �
¼

1

2x1

x1

2
1

2x2

x2

2

2
664

3
775 a0

a1

� �
. ð38Þ
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This equation is solved for the proportional damping coefficients by inverting the coefficient
matrix resulting in
a0
a1

� �
¼ 2

x2
2 � x2

1

x1x2
2 �x2

1x2

�x1 x2

� 	
f1
f2

� �
. ð39Þ
Results obtained from using the dynamic formulation are compared with measured displace-
ment results in Section 5.2.
4. Digital image processing

An off-the-shelf digital camera was used to acquire images: the Canon Powershot A70. The idea
was to explore if obtaining high quality deflection measurements was feasible using a relatively
low-cost camera. The camera has an array of approximately 3.2 million pixels, suggesting that
employing centre-of-area computations could yield the coordinates of very accurate construction
points to characterize the beam centre line.

After application of segmentation and filtering algorithms the spurious background data in the
raw digital image is annihilated. The best-fit beam centre line is established using Prewitt edge
detection and a two-dimensional moment computation about the vertical and horizontal pixel
directions yielding a two-dimensional vector of construction points through the longitudinal beam
centre line to sub-pixel accuracy. The following describes the techniques used.

4.1. Mean convolution mask

A convolution mask is an m · n dimensional window that is centred on each element in the
image data matrix. One of the simplest such noise reduction masks to implement is the mean filter,
or mean convolution mask [13]. The benefit of implementing this filter is that local peaks and
valleys in pixel intensity caused by noise will be reduced. The value of each pixel intensity,
p(i, j), is replaced by the average of all the m · n values in the local neighbourhood:
pði; jÞ ¼ 1

M

X
ðm;nÞ2N

f ðm; nÞ; ð40Þ
where M is the total number of pixels in the neighbourhood N. In this paper we use a 3 · 3 neigh-
bourhood about (i, j) whose elements are all set equal to 1 giving
pði; jÞ ¼ 1

9

Xiþ1

m¼ði�1Þ

Xjþ1

n¼ðj�1Þ
f ðn;mÞ. ð41Þ
The effects of applying this mean filter to the segmented scene is illustrated by Fig. 7(a) and (b).

4.2. Sub-pixel accuracy

The lateral deflection of selected points on the longitudinal centre line of the beam edge seen in
Fig. 7(b) is estimated by first detecting the bounding edges with a Prewitt operator [14]. An edge



Fig. 7. (a) Raw digital image; (b) same image after filtering.
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detection operator is another type of convolution mask whose elements are weighted such that the
weighted sum of the elements in the product of the mask with image data produce larger inten-
sities in the proximity of sharp transitions between adjacent pixels. The elements of these convo-
lution masks can be weighted to accentuate pixels containing horizontal or vertical edges with
transitions from high to low or low to high intensity (Fig. 8).

The hub angle is computed after establishing its best-fit centre line [15]. The angle of this centre
line is then computed relative to the horizontal pixel direction. A 5 · 1 boxcar operator [14] is then
used to smooth the detected edge pixels. The centre of area of the edge pixels is then computed by
establishing their moment centres in two-dimensions [16]. The result is a set of construction points
for the centre line of the beam edge given in sub-pixel accuracy coordinate pairs.
Fig. 8. (a) Deflected and undeflected reference beam; (b) hub angle and tip deflection computed to sub-pixel accuracy.
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4.3. Projective distortion correction

Metric data in digital images acquired with a camera are necessarily subject to projective dis-
tortion destroying the Euclidean metric. An image of a registration object of known geometry
can be used to eliminate this distortion and restore the Euclidean metric [17].

Two distinct sets of four points in the projective plane P2 uniquely determine a projective col-
lineation if the points in the two sets are distinct, and if no three points are on the same line. Let
the first set of four points have the coordinates W(W0 : W1 :W2), X(X0 : X1 : X2), Y(Y0 : Y1 : Y2),
and Z(Z0 : Z1 : Z2). Let the second set of four points have the coordinates w(w0 : w1 : w2),
x(x0 : x1 : x2), y(y0 : y1 : y2), and z(z0 : z1 : z2).

When expressed as a vector, the ratios implied by the homogeneous coordinates can be scaled
by an arbitrary factor:
fw0 : w1 : w2gT ¼ lfw0 : w1 : w2gT. ð42Þ
The corresponding affine coordinates are
xw ¼ lw1

lw0

; yw ¼ lw2

lw0

. ð43Þ
This is why different scalar multiples of a set of homogeneous coordinates represent the same
point in the projective plane.

The projective collineation may be viewed as a linear transformation that maps the coordinates
of a point described in a particular coordinate system onto the coordinates of a different point in
the same coordinate system. The geometry can be represented by the vector–algebraic relationship
k
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Without loss in generality, we can set q = k/l and express Eq. (44) more compactly as
qfW g ¼ ½T �fwg. ð45Þ
The elements of the linear transformation matrix depend on the details of the mapping. As it rep-
resents a general projective collineation there are no orthogonality conditions on the rows or col-
umns of [T]. This means that the elements can take on any numerical value. Thus the mapping
between two points in an arbitrary collineation consists of nine variables. If we wish to determine
the mapping given a point and its image then [T] represents nine unknowns, but, because of the
use of homogenous coordinates, at most eight are independent. Still, to remain general the scaling
factor q must be counted among the unknowns because the given points come from a Cartesian
coordinate system while the mapping is projective. The result is that the coordinates of four
points, along with those of their images, are enough to uniquely define the eight independent ele-
ments of the transformation matrix and the four independent scaling factors, qi, i 2 {1,2,3,4}.

The vertices of an arbitrary quadrilateral represent four pointsW, X, Y, and Z. We consider the
image of these four points w, x, y, and z, to be the vertices of a quadrilateral whose dimensions are
known, centred on the origin of the coordinate system in which the quadrilateral is defined. Now a
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set of equations must be written so that the elements of [T] can be computed in terms of the point
and image coordinates:
t11w0 þ t12w1 þ t13w2 � q1W 0;

t21w0 þ t22w1 þ t23w2 � q1W 1;

t31w0 þ t32w1 þ t33w2 � q1W 2;

t11x0 þ t12x1 þ t13x2 � q2X 0;

..

.

t31z0 þ t32z1 þ t33z2 � q4Z2.

ð46Þ
Eq. (46) represent 12 equations in 13 unknowns, however we can set t11 = 1. It is a simple mat-
ter to solve for the 12 unknowns, however we only require the eight elements of [T].

In the experiment a registration object consisting of a pair of orthogonal grooves intersecting in
a square of known geometry was used. It was placed in the scene containing the beam and pho-
tographed. The image of the four corners of the known quadrilateral were used to compute the [T]
used to straighten the lines in subsequent images and to provide a scaling factor. This action com-
pensates only for linear projective and not higher order radial distortion. We assume the linear
component is dominant and thereby forego the need for a full camera calibration.
5. Results and discussion

5.1. Static loading

A test was performed to verify the output of FLXDYN under static loading conditions. These re-
sults were compared to theoretical deflections based on beam geometry, properties, and tip load,
as well as those based on measured surface strain. The beam was removed from the crank-rocker
mechanism and set up such that it would bend in a vertical plane as the result of weights associ-
ated with masses of different magnitude suspended from its free end. The tip displacements and
strains at locations of interest resulting from the tip loads were measured and predicted. Care
was taken to exclude the influence of the self-weight of the beam from measurements and
predictions.

5.1.1. Direct measurement
For each of the three masses used, repeated reading of a precision-ruled straight edge was used

to directly measure the difference between the vertical position of the beam tip prior to application
of the tip weights and the deflected positions once the weights were attached and the system was
allowed to settle to equilibrium. These directly measured deflections are listed in Table 2.

5.1.2. Theoretical displacement
Knowing the material properties, geometry, and applied tip loads, a simple beam bending

calculation was performed to ensure consistency between the beam parameters and the physical



Table 2
Strains (l) and tip displacement (mm) associated with tip mass (kg)

Strain 1 Strain 2 Strain 3 Strain 4 Tip displacement Mass

Measured 191.00 143.00 96.00 52.00 26.99 0.051
Theoretical 186.63 141.34 96.05 50.53 26.84
Estimate 190.69 143.35 96.76 50.71 27.23
FLXDYN 27.91

Measurement 361.00 272.00 185.00 100.00 51.59 0.100
Theoretical 362.64 274.64 186.63 98.18 52.14
Estimate 360.35 273.04 185.76 98.08 51.86
FLXDYN 53.84

Measurement 534.00 403.00 276.00 148.00 78.18 0.149
Theoretical 537.82 407.30 276.78 145.60 77.33
Estimate 533.01 404.90 276.14 146.08 76.90
FLXDYN 79.38
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reality of the system. The beam tip deflection [18] was calculated for each of the three known tip
weights using
Table
Flexib

Youn

6.8900
d ¼ 1

3

PL3

EI
; ð47Þ
where E is Young�s modulus for the beam material, I is the area moment of inertia of the beam, P
is the magnitude of the applied force (weight), L is the distance between the force application
point and the beam cantilever point, and d is the deflection of the free end. The material parameter
values used to represent the beam are provided in Table 3. The three theoretical tip deflection
results are given in Table 2.

5.1.3. Bending theory estimate
Beam bending theory [18] relates beam surface strain, applied bending moment, and beam cur-

vature such that
d2y
dx2

¼ e
h
¼ M

EI
; ð48Þ
where
M ¼ ðL� xÞP ð49Þ

and y is the deflection of the beam along its length x from the clamped end, e is strain, h is the
distance from the centre line to the surface of the beam, and M is the bending moment present
at position x along the beam.
3
le beam material parameters

g�s modulus, E Density, q Proportional damping coefficients, a0, a1

· 1010 N/m2 2.6882 · 103 kg/m3 0.1 s�1, 0.1 s
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Consequently, using the known tip weights, it is possible to integrate the beam curvature cal-
culated from Eq. (48) to predict the shape of the deflected beam and ultimately the tip deflection.
While possible, this approach would not directly contribute to the required measurement ap-
proach as in the dynamic situation, the inertial loading along the length of the beam will not
be known a priori. Consequently, instead, the measured strains at four locations were used to cal-
culate the beam curvature. This data was then curve fitted along the length of the beam, and inte-
grated, using appropriate boundary conditions, to obtain the beam deflected shape and tip
deflection. Results are presented in Table 2. This approach is similar to [19].

5.1.4. Simulated results
The FLXDYN formulation described in Section 3 was also used to predict the beam tip deflection.

Transient simulations were set up where the beam was allowed to settle to equilibrium under the
influence of constant downward tip forces, corresponding to each of the three tip weights, from its
initially undeflected condition. The results for the tip deflection are included in Table 2. Strains at
each of the four strain gauge locations were not extracted from the FLXDYN simulation for the sta-
tic case as strain evaluation is not a necessary intermediate step in the dynamic solution. Section
5.2 describes how strains can be evaluated through a post-processing step.

5.1.5. Static results
Inspection of the summary results presented in Table 2 shows excellent agreement between the

measured, calculated, predicted, and simulated strains for the three static load cases considered. In
general, the simulated results produced the largest tip deflections and those farthest from the di-
rectly measured values in two of three cases considered, though the difference was limited to 1.53–
4.36% based on the measured values. This deviation is on the order of the resolution of the static
deflection measurements themselves.

5.2. Dynamic results

5.2.1. Damping estimate
The geometric and material properties of the flexible beam were known or easily measured.

This allowed inertial and stiffness properties of the beam to be determined directly. However,
coefficients of the proportional damping model described in Section 3 had to be estimated
experimentally. The preferred approach, also described in Section 3, is based on experimental
determination of the damping ratios for the two lowest-frequency bending modes. Due to dif-
ficulties in exciting the second vibration mode in the experimental setup it was not possible to
determine the proportional damping coefficients in this way. Instead, it was decided to assume
equal coefficients a0 and a1 and to iteratively adjust their value until the logarithmic decrement
for simulated strains at strain gauge location two agreed with those measured in an experiment
where the beam tip was deflected, released from rest, and allowed to settle to its equilibrium
position.

It should be noted that while strain is not a standard output from the FLXDYN simulation, it
can readily be evaluated from the state variables. The FLXDYN formulation uses a complete
expression for the axial fiber strain at a distance z above the centroidal axis of the beam such
that
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where u and w are the deformation components in the axial and lateral directions at differential
volume locations within the beam. The physical interpretation of each strain term follows.

• ou
ox is the linear strain term that results from elongation of the beam.

• 1
2

ou
ox


 �2
is the nonlinear strain term resulting from elongation of the beam.

• 1
2

ow
ox


 �2
is the nonlinear strain term accounting for membrane strain caused by bending.

The expression comes from a geometric interpretation of what happens to a segment length
when bending occurs [9]. An approximation is made that is valid when ow

ox


 �2 � 1 which restricts
the development to small relative rotations. In practice, beams may be modelled with a suffi-
cient number of elements such that each one undergoes small rotations.

• z o2w
ox2 is the contribution of bending to the axial strain for differential elements located a distance

z away from the centroidal axis [9].

• z ou
ox

o2w
ox2 is a nonlinear coupling term between axial and bending effects at locations offset from

the centroidal axis.

• 1
2

z o2w
ox2

� �2

is the nonlinear term corresponding to bending.

However, for the small tip deflections occurring in this experiment, it is sufficient to consider
only the linear strain contributions ou

ox and �z o2w
ox2 .

The deformation field within the element is expressed in terms of the nodal degrees-of-freedom
using the shape functions given in Eqs. (29) and (30). Differentiating these expressions with respect
to x yields
du
dx

ðxÞ ¼ 1

L
qx; ð51Þ

d2w
dx2

ðxÞ ¼ 6
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� 12x
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� 2

L

� �
qh; ð52Þ
where qx, qy, and qh are the generalized coordinates corresponding to beam element tip elonga-
tion, lateral deflection, and rotation; and x is the location of interest expressed relative to the in-
board end of the beam element.

Using this approach resulted in proportional damping coefficients a0 = a1 = 0.00087. This value
was then used in the reciprocating dynamic case. It was observed that this value grossly underes-
timated damping as evidenced by the amplitudes of the measured strains and the measured tip
deflections. The need for higher damping is attributed to both higher rates of internal losses
and aerodynamic damping in the relatively high-speed reciprocating beam case. Fig. 9 shows mea-
sured strains at each of the four strain gauge locations. Strains at each location are scaled versions
of each other supporting the observation that the beam exhibits almost exclusively first-mode
behaviour. Considering the strains at location two, the proportional damping coefficients were
again adjusted until the mean strain amplitude trace shown for location two in Fig. 9 was



Fig. 9. Experimentally measured beam strain at locations 1, 2, 3, and 4; and simulated strain at location 2 (shown as the
smooth line on the location 2 plot).
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obtained. Proportional damping values a0 = a1 = 0.1 were found to much more closely reflect the
experimental conditions. A more rigorous treatment of damping should be considered in future
work.

5.2.2. Tip deflection
The input excitation function
U ¼ 0:7669 sinð4:970tÞ ð53Þ

was used to prescribe the angle U of the inboard end of the beam as a function of time t. The
angular velocity and angular accelerations of the inboard end of the beam result from successive
time derivatives of Eq. (53).

Beam tip position versus time and input angle versus time results were output by the FLXDYN

simulation described in Section 3.
Fig. 10 compares the simulated beam tip positions with the corresponding tip positions ex-

pected for a rigid beam. The graph shows the expected result that flexibility results in a greater
range of y positions as the beam tip deflects beyond the range of motion of the rigid beam and
that, as a result of deflection, the x tip position is often inboard of the corresponding rigid beam
tip position.

The position results were then post-processed to extract the longitudinal (along the undeflected
axis of the beam) and lateral (perpendicular to the undeflected axis of the beam) deflections rel-
ative to the hypothetical rigid beam. The steady-state results for lateral beam tip deflection versus



Fig. 10. Simulated flexible beam tip positions (dark) and corresponding rigid body beam tip positions (light).

Fig. 11. Simulated (solid) and measured (points) lateral beam tip deflection versus input angle.
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input angle are presented in Fig. 11. The plot was generated from three cycles of steady-state
deflection data. The fact that a single contour exists confirms that steady state was indeed reached.
The presence of two tip deflections for all input angles other than the input angle extrema reflects
that tip deflections in opposite directions occur for opposite directions of travel of the beam dur-
ing its reciprocating motion.

Tip deflection measurements during steady-state beam motion were made using the image pro-
cessing outlined in Section 4. The contactless measurement system yielded large errors, but for an
excitation period of approximately 0.92 Hz the system behaved reliably. This should not be taken
as a condemnation of the approach, rather an indication that further work needs be done to im-
prove its reliability.

Five hub angle and tip deflection pairs, such as those shown in Fig. 8(a) and (b) were obtained
at 0.92 Hz excitation. These data points are plotted in Fig. 11, along with the simulated steady-
state tip deflection versus input hub angle. While there are clearly insufficient tip deflection mea-
surements to draw conclusions with statistically quantified certainty, general agreement between
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simulated and available measured results is apparent. We believe this result to justify further
investigation. To improve the measurement precision the camera radial distortion must be dealt
with.
6. Conclusion

This paper introduced the reciprocating flexible beam problem as an interesting benchmark
problem in flexible multibody dynamics. The system was described in sufficient detail to allow
it to be modelled by other researchers. The FLXDYN multibody dynamics formulation was de-
scribed and shown to be one valid method for predicting the flexible beam dynamic response.
A novel image collection and processing approach using off-the-shelf components was described
as an economical and effective method for non-contact tip deflection measurement. Using this ap-
proach, experimentally-measured tip deflections were shown to generally agree with simulated re-
sults. While a limited volume of data was collected in this study and rigorous statistical analysis
was not possible, the results are encouraging and motivate further quantification of the experi-
mental apparatus and refinement of the non-contact digital image processing measurement tech-
nique. Subsequent research must address limiting or modelling the effect of aerodynamic
damping, increasing the amplitude of beam bending to span the range from geometrically linear
to geometrically nonlinear deflection, and improving the image collection and processing tech-
nique to allow the collection of continuous deflection traces with higher resolution.
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