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ABSTRACT

We have previously isolated and described an
Escherichia coli ribosome-bound ATPase, RbbA,
that is required for protein synthesis in the presence
of ATP, GTP and the elongation factors, EF-Tu and
EF-G. The gene encoding RbbA, yhih, has been
cloned and the deduced protein sequence harbors
two ATP-motifs and one RNA-binding motif and is
homologous to the fungal EF-3. Here, we describe
the isolation and assay of a truncated form of the
RbbA protein that is stable to overproduction and
purification. Chemical protection results show that
the truncated RbbA specifically protects nucleotide
A937 on the 30S subunit of ribosomes, and the pro-
tected site occurs at the E-site where the tRNA is
ejected upon A-site occupation. Other weakly pro-
tected bases in the region occur at or near the
mRNA binding site. Using radiolabeled tRNAs, we
study the stimulating effect of this truncated RbbA
on the binding and release of different tRNAs
bound to the (aminoacyl) A-, (peptidyl) P- and (exit)
E-sites of 70S ribosomes. The combined data sug-
gest plausible mechanisms for the function of RbbA
in translation.

INTRODUCTION

The functional domains of the ribosome include a peptidyl
transferase center, a GTPase center and three tRNA binding
sites. Of these, the A-site hosts the aminoacylated-tRNA, the
P-site harbors the peptidyl tRNA, and the E-site is involved
in the exit of free tRNA. The elongation facet of transla-
tion consists of three reactions: decoding of the mRNA by
aminoacyl-tRNA, peptide bond synthesis by the peptidyl
transferase and EF-G mediated translocation (1-3).

During decoding, the aminoacyl-tRNA is attached to the
ribosome as a GTPeEF-Tueaminoacyl-tRNA complex (4).
The ribosomal proteins L7/L12 promote GTP hydrolysis
and EF-TueGDP unbinds from the ribosome before a peptide
bond can be formed. EF-Ts catalyzes the exchange of GDP
in EF-TueGDP with GTP (1-3). Following peptide bond
formation, the peptidyl-tRNA must be translocated from
the A-site to the P-site and the deacyl-tRNA must also be
translocated from the P- to the E-site. Translocation results
in movement of the mRNA so as to expose the next codon
of the mRNA in the A-site. This process is accelerated by
EF-G in the presence of GTP (5,6). The hydrolysis of GTP
also presumably induces the release of the EF-G from the
ribosome (3,6).

Fungi harbor a factor, called EF-3, which is a ribosome-
dependent ATPase (7,8). The fungal EF-3 allows the tRNA
to be released from the E-site upon A-site occupation in a
reaction analogous to that of a protein first discovered in
Escherichia coli and called W, which ejects tRNAs from a
post-translocation intermediate on 70S ribosomes (9). The
W protein appears to be a truncated version of RbbA. The
name of the W protein was changed to RbbA to indicate
the fact that the protein is a ribosome-bound ATPase
(10,11). Recently, it has been reported that the fungal EF-3
also promotes release of tRNA from a post-translocation
intermediate on yeast ribosomes (12).

We have previously reported that the transfer of
aminoacyl-tRNAs into peptides directed by MS2 RNA in a
reconstituted system requires hydrolysis of both ATP and
GTP (13). RbbA, an intrinsic ATPase that binds to 70S
ribosomes and to 30S subunits, is responsible for the ATP
requirement (10,11).

The gene encoding RbbA, yhih, has been identified. The
amino acid sequence of RbbA reveals the presence of
two ATP-binding domains in the N-terminal region of the
protein. The C-terminal region of the protein bears extensive
sequence similarity to the yeast EF-3, a ribosome-dependent
ATPase (10).
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Here, we report the isolation of a truncated form of the
RbbA protein that can be easily overproduced and purified.
This protein was found to be stable and fully active in trans-
lation assays. We study the localization of the truncated
RbbA on ribosomes using chemical protection against base-
specific reagents. The ribosomal binding sites affected by
the truncated RbbA and its sensitivity to antibiotic inhibition
suggest possible mechanisms for its action in translation.

MATERIALS AND METHODS
Materials

["*C]Phe (30 Ci/mM), [*H]Phe (58 Ci/mM) and [y->*P]ATP
(250 Ci/mM) were from the Amersham Corp. DNA, RNA,
PCR purification and gel extraction kits were from Qiagen
and AMV-reverse transcriptase was from Pharmacia.
Dimethyl sulphate (DMS), diethyl pyrocarbonate (DEP),
kethoxal (Ke) and carbodiimide (CMCT) were from
Aldrich-Gold. [PH]fMet-tRNA™®' (1.1 Ci/mg) was a gift
from Dr D.L. Shinabarger and S. Swaney (Pharmacia, Corp.
Kalamazoo, MI). tRNA™¢ and tRNA™ were from Boehrin-
ger Mannheim. The sequencing reactions were performed with
the USB sequencing Kkit.

Preparation of 70S ribosomes and tRNA labeling

70S ribosomes from mid-log E.coli MRE 600 cells were pre-
pared as described previously (10,11). The tRNAs were
labeled with [y-**PJATP using T4 polynucleotide kinase
and [7-33P]ATP. The labeled tRNAs were purified as
described (14).

Overproduction and ATPase assay of His-tagged RbbA

XL1-blue E.coli cells harboring the plasmid, pQE9-yhih (10),
were grown in Luria—Bertani (LB) media at 30°C until an
ODgoo ~0.65. Isopropyl-B-p-thiogalactopyranoside (IPTG)
was added at a final concentration of 2 mM and the cells
were grown for an additional 4 h at 30°C. Cells were harvested
and lysed by sonication in lysis buffer [SO0 mM KH,PO,/
K,HPO, (pH 8.0), 300 mM KCI]. The lysed cell suspension
was centrifuged for 20 min at 15000 X g and the supernatant
was incubated with 0.5 ml Ni-NTA agarose beads (Qiagen)
for 45 min at 4°C. The bead suspension was then packed in a
3 ml column and washed with 20 vol lysis buffer followed
by 20 vol lysis buffer at pH 6.1. The N-terminally His-tagged
RbbA was eluted with lysis buffer at pH 7.0 containing
250 mM imidazole and passed through a NAP-10 gel filtration
column (Pharmacia) equilibrated with 50 mM HEPES-OH
(pH 7.2), 50 mM KCI, 1 mM Mg(OAc),, 1| mM DTT. All
purification buffers contained complete EDTA-free protease
inhibitors (Boehringer Mannheim). For the ATPase assay,
the hydrolysis of [y-*>P]ATP was measured using ammonium
molybdate as described previously (10) using 8 pmol ribo-
somes and 16 pmol of RbbA.

Poly rU-directed polyPhe synthesis

In vitro synthesis was as described (10) with a few modifica-
tions. Ribosomes (8 pmol) were programmed with 25 ng poly
rU in 50 pl reaction buffer [20 mM Tris—HCI (pH 7.4), 40 mM
NH4Cl, 6 mM Mg(OAc),, 1 mM DTT, 0.6 mM ATP and
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0.1 mM GTP] for 15 min at 37°C. Reactions also contained
20 pmol EF-Tu, 12 pmol C-terminally His-tagged EF-G, Phe-
tRNAP" synthetase (1 pg) and 0.5 uCi [14C]Phe (30 Ci/mM).
For RbbA stimulation, 16 pmol N-terminally His-tagged
RbbA was used.

RNA modification and primer extension analysis

The 30S and 70S ribosomes with or without the RbbA protein
were modified using DEP, DMS, kethoxal or CMCT (15).
Adenines and cytosines were also determined (15). The pri-
mers were first selected to span the 1492 region of the 16S
rRNA that confers resistance to hygromycin B which is a
specific inhibitor of RbbA. Half pmol rRNA (modified or
native; with or without the RbbA) and 0.5 pmol of primer
(that specifically anneals to a region of 16S in 70S ribosomes)
were added to 6 pul of 10 mM Tris—HCI (pH 6.9), 40 mM KC1
and 0.5 mM EDTA. The solution was heated at 95°C for 30 s
and transferred to 50°C for 20 min.

Three pl of the annealed primer-template mixture was trans-
ferred to a fresh tube where 2 pl of an extension mixture
(25X reverse transcriptase buffer, 0.2 ul [OL-SSS]dATP,
1.6 ul 0.75 mM dCTP, dGTP and dTTP and 1 U of AMV
reverse transcriptase) was added. The reactions were incu-
bated at 37-42°C for 15 min, and then chased with 2 ul of
dATP for 15 min at 37-42°C. The extension reaction
was terminated by adding 5 pl of stop solution (loading
buffer containing 80% deionized formamide) provided by
the Sequenase™ Version 2.0 DNA Sequencing Kit (USB,
Cleveland, OH). The tubes were then heated for 3 min at
95°C, chilled on ice and 1 pl was loaded on a DNA sequencing
gel. The DNA sequence was determined (16) according to the
instructions from the manufacturer (USB, Cleveland, OH).

Purification of [*’H]Phe-tRNA'"®

Preparation of [°’H]Phe-tRNAP"™ was according to our previ-
ous paper (17). Briefly, Phe-tRNA"™ synthetase from E.coli
was isolated from an 80% ammonium sulphate precipitate of
the ribosomal wash fraction and purified. Aminoacylation of
pure tRNAP™ from E.coli was carried out in a 5 ml incubation
mixture at 37°C for 20 min. The reactions contained: 7.5 mM
Tris—HCI (pH 7.2), 15 mM KCI, 15 mM M%(OAC)Z, 1.5 mM
DTT, 5mM ATP, 0.75 mg tRNA™®, 0.15 Ci[*H] Phe (500 nM/
mCi) and 25 ug Phe-tRNA®™ synthetase from E.coli. After
aminoacylation, the [3H]Phe—tRNAP he was extracted with
phenol/chloroform, and purified by chromatography on
Mono-Q columns. Over 80% of the [3H]Phe-tRNA e was
recovered.

Binding of labeled tRNAs to 70S ribosomes

Reactions (45 pl total volume) contained 16.6 mM Mg(OAc),,
35 mM Tris—HCI (pH 7.4), 93 mM NH,CI, 3.5 mM DTT,
0.35 mM GTP, 9 pmol AUGUS3;, 8 gmol 70S ribosomes and
either 20 pmol EF-Tu, 1.2 pmol [**P]tRNA™*" or 8 pmol
tRNA™™ and/or 16 pmol RbbA as described below. For
RbbA, 0.2 mM ATP was supplemented. All reactions were
incubated at 30°C for 10-12 min.

For A-site binding, the reactions contained the indicated
concentrations of AUGU5, EF-Tu, tRNA™® and [*H]Phe-
tRNAP" (10 000 d.p.m.). Where indicated, reactions were sup-
plemented with 16 pmol RbbA and 0.2 mM ATP. Tetracycline
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(0.1 to 0.5 mM) sensitivity was used as a further indication of
A-site binding (18).

For P-site binding, 70S ribosomes, AUGU; and [3H]fMet-
tRNA™e (50000 d.p.m.) were added to the reactions and
P-site occupation was assessed by estimating the amount of
puromycin reactivity.

E-site binding was detected blg first binding AUGUs3;,
[*PItRNA™¢' and [*H]Phe-tRNA™ or N-acetyl-[*H]Phe-
tRNAP™®  to  70S ribosomes and estimating the
amount reactivity of each tRNA to either puromycin or tetra-
cycline. In order to determine the effect of RbbA on A-, P- and
E-sites as well as the stability of the complex, two of the
differentially labeled tRNAs were used in the reactions.
[33P]tRNAfMét, binds to the P-site as well as to the E-site
(18) whereas fMet-tRNA™® preferentiall¥ binds to the
P-site. Thus, to block the binding of the [ 3P]tRNAﬂvIet to
the P-site, fMet-tRNA™®  was used to disg}ace the
[P*PItRNA™¢" on the P-site. Further, [**PJt(RNA™*" bound
on the E-site is released from the ribosomes in the presence
of ATP and the RbbA protein, and is insensitive to tetracyc-
line inhibition. The [*PJtRNA™® bound on the P-site is
insensitive to RbbA.

Since the initial rate of binding of [33P]tRNAﬂVIet to ribo-
somes was found to be insensitive to RbbA and ATP addition,
a second assay was used to determine the release of
[PPIRNA™" from ribosomes. Thus, the [*PJ(RNA™<
was first bound to 70S ribosomes with AUGU; for 10 to
12 min at 30°C, ATP and RbbA were then added and the
incubation was continued for 12 min. The reactions were
terminated with 4 ml binding buffer at 4°C, the fractions
were washed with the binding buffer and the filtrates were
collected on Millipore filters (0.45 W) prior to determining the
radioactivity.

RESULTS
Purification of an RbbA fragment

The purification scheme for the RbbA protein described in
Materials and Methods consistently yielded a protein of
61 kDa when analyzed by SDS-PAGE (Figure 1). The protein
is considerably smaller than the 97 kDa full-length RbbA
encoded by the yhih gene. The fragment corresponds to the
N-terminal region of the complete RbbA protein and contains
ATP-binding motifs. The sequence of the gene encoding the
complete protein contains a transmembrane domain at the C-
terminal end. This domain does not occur in this truncated
form of RbbA. Mass spectrometric analysis confirmed that
the polypeptide indeed corresponds to 61000 Da and is
about 98% homogeneous (data not shown). No other frag-
ments of the protein could be observed by mass spectrometry
or SDS-PAGE (Figure 1).

To examine whether the truncated form of RbbA resulted
from a nonsense mutation, its entire open reading frame was
sequenced and compared with that from the GenBank. No
nonsense codons were found in the sequence. Our previous
observations demonstrated that the full-length protein is dif-
ficult to over-express, extremely unstable and rapidly prote-
olyzed making it very difficult to isolate and to store. Although
the reason for this instability is not known, the mass spectrum
analysis suggests that the complete protein (894 amino acid
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Figure 1. SDS-PAGE of the processed (truncated) recombinant RbbA
protein. Lanes: M, Molecular weight markers; 1, Total E.coli lysate prior to
IPTG induction; 2, E.coli lysates after IPTG induction; 3, An aliquot of
supernatant after incubation with Ni-NTA resins; 4, An aliquot from the flow
through of the NTA column used to purify the RbbA; 5, Eluted with 250 mM
imidazole from the NTA column and finally dialyzed and concentrated
RbbA protein.

residues) is probably processed by proteolysis at the proline
residue #541. We asked whether this truncated protein (541
amino acid residues) harbors the ATPase and translation-
promoting activity ascribed to the full-lengh RbbA protein.

RbbA stimulates synthesis and ribosome-dependent
ATP hydrolysis

The full-length RbbA was originally isolated based partly on
its ATPase activity and on its ability to stimulate in vitro
polyPhe synthesis (10,11). This RbbA harbors both ribosome-
independent and ribosome-dependent ATPase activities (10).
Poly rU-directed polyPhe synthesis was examined in the pres-
ence of GTP, ATP and Phe-tRNA synthetase, EF-Tu and EF-G
(10). EF-Tu or EF-G alone had no detectable activity. The
combination of EF-Tu and EF-G promoted a small amount of
synthesis due to the limiting concentration of GTP. The RbbA
protein could not replace EF-Tu or EF-G in the assay (data not
shown). With ATP, RbbA markedly increased the amount of
polyPhe synthesis (Figure 2A). It is therefore concluded that
the truncated RbbA protein can be scored by its ability to
stimulate polyPhe synthesis.

We asked whether the truncated protein could also promote
the ribosome-dependent hydrolysis of ATP. The truncated
RbbA or ribosomes alone catalyzed a low level of ATP
hydrolysis. Addition of this RbbA to ribosomes markedly
enhanced the ribosome-dependent ATPase activity of 70S
ribosomes (Figure 2B). Thus, the truncated RbbA is fully
active in promoting synthesis and the ribosome-dependent
hydrolysis of ATP.

Effect of RbbA on tRNA binding to the ribosome A-site

We examined whether the truncated RbbA affects the A-site
bound tRNA. As shown in Figure 2C, the EF-Tu-dependent
[*H]Phe-tRNAP™ binding is significantly stimulated by the
presence of RbbA and ATP. Formation of the complex
required that the [*>PJtRNA™¢" be bound to the ribosome
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Figure 2. (A) Stimulation of polyPhe synthesis by RbbA. PolyPhe synthesis directed by poly rU was conducted as described in Materials and Methods using ATP,
GTP and Phe-tRNA™™ synthetase in the reactions. Lanes: 1, Reaction with 0.6 mM ATP, 0.1 mM GTP and 1 pg Phe-tRNAP"® synthetase; 2, Lane 1 + RbbA; 3,
Lane 1 +EF-Tu;4,Lane 1 +EF-G;5,Lane 1 +EF-Tu +EF-G; 6, Same as Lane 5 except with addition of RbbA. (B) ATP hydrolysis by 70S ribosomes in the presence
of RbbA. Hydrolysis of [Y—33PJATP was measured as described in Materials and Methods. Lanes: 1, 17—33PJATP only; 2, [y-33PJATP + 70S ribosomes; 3, [y-33PJATP
+RbbA; 4, [y->>P]ATP+ ribosomes +RbbA. (C) Binding of [’H]Phe-tRNA"™ to the A-site in the presence of deacyl [**P]JtRNA™®", The binding of [*H|Phe-tRNA""™
(20000 d.p.m.) to the A-site was described in Materials and Methods with deac l-tRNA™Met present in the reactions and ATP added where indicated. Lanes: 1,
Reaction contained AUGU3—programmcd ribosomes, [*°PItRNA™¢; 2, Lane1+ [°H]Phe-tRNA™* (16 000 d.p.m.); 3, Lane 1+ [*HJPhe-tRNA™™ + RbbA; 4, Lane
1+ EF-Tu; 5, Lane 1+ [*H]Phe-tRNA™™ + EF-Tu +RbbA; 6, Lane 1 + [°H]Phe-tRNA™ + EF-Tu + RbbA + 0.2 mM ATP. (D) Binding of [**P[tRNA™®!
and N- acelyl [’H]Phe-tRNA™™ to 70S rlbosomes Binding was performed as described in Materials and Methods, and in the legend to Figure 2C except that
N-acetyl- [ H]Phe-tRNA™™ was used instead of [°’H]Phe-tRNA™, Lanes: 1, Reaction contained GTP, AUGU;-programmed ribosomes, deacyl-[ P*PItRNA™® and

N-acetyl- [ H]Phe- {RNAPP® (6000 dpm); 2, Lanel+ ATP; 3, Lanel+ RbbA; 4, Lanel+ ATP +RbbA.

P-site. The binding of [*H]Phe-tRNA™ had no significant
effect on the binding of the [*>PJtRNA™®" (data not shown).

The specificity of these interactions was examined with
N-acetyl-[*H]Phe-tRNAP™. Again, at the early stages (10—
12 min), ATP and RbbA had no effect on the binding of
the [**PItRNA™*" (o ribosomes (data not shown). In contrast,
at later stages (20 min), the b1nd1ng of N-acetyl-[*H]Phe-
tRNAP™ to the AUGU;otRNA™®" eribosome complex was
markedly reduced by the combination of RbbA and ATP
(Figure 2D). The [*PJtRNA™" also remained bound to the
ribosome after the 20 min incubation. Thus, RbbA in the
presence of ATP had no effect on the [33P]tRNAﬂvIet bound
to the P-site when the A-site was occupied with an aminoacyl-
tRNA or by the peptidyl-tRNA analogue.

We proceeded to study the effect of RbbA on the binding
and unblndlng of tRNAs to the ribosome P- or E-sites. To
this end, [*PIt(RNA™® or [*H]fMet-tRNA™® were bound to
ribosomes with the AUGU; hexamer as the mRNA. We found
no significant dlfference in the initial or subsequent reaction
of the P-site bound [PH]fMet-tRNA™¢! with the addition of
RbbA and ATP (data not shown). In marked contrast, the

[33P]tRNAfMet that is first bound to ribosomes with the
AUGU; message is rapidly released from the particles by a
subsequent incubation with RbbA in the presence of ATP
(Figure 3A). Addition of a twenty-fold molar excess of dea-
cyl-tRNAF™ (8 pmol) relative to 0.4 pmol [**PIt(RNA™*! to
the reactions consistently increased the observed release of
the tRNA. Tetracycline is an A-site specific inhibitor and
has little or no effect on P- or E-site bound-tRNA (18). The
presence of tetracycline has a small effect on the release of
the [*’PJtRNA™¢" (Figure 3A). Therefore, the [**PJtRNA™¢!
must have bound to the E-site and RbbA must directly or
indirectly act at this site to promote its release from the
ribosome.

A summary of the experiments on the release [*>PJt(RNA™¢!
promoted by RbbA and ATP is shown in Figure 3B. The
figure also summarizes the effect of the A-site inhibitor, tetra-
cycline, andthe non- ctMgnate tRNAPhe on the RbbA-promoted
release of [**PIt(RNA™', Figure 3B shows that a 5-6% inhibi-
tion by tetracycline is consistently observed.

A consistent but relatively small competition of
P*PItRNA™®" binding occurred upon addition of excess
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Figure 3. (A) Binding of [**PJtRNA™®' to 70S ribosomes. The reactions were
as described in Materials and Methods. Lanes: 1, Reaction contained AUGU3-
programmed ribosomes, 1.2 pmol deacyl—[33 P]tRNAfM“; 2,Lane 1 + RbbA; 3,
Lane 1 + ATP; 4, Lane 1 + RbbA +0.1 mM tetracycline; 5, Lane 1 + ATP +
RbbA; 6, Lane 1+ ATP+ RbbA +RNA™. (B) Release of
**PIRNA™® from ribosomes. Release of deacyl [**PItRNA™® from 70S
ribosomes programmed with AUGUswas as described in Materials and
Methods. Binding was limited to 10 min at 30°C followed by incubation with
RbbA, ATP, deacyl tRNA™¢t or buffer as indicated. Lanes: 1, Reactions
contained the AUGU3-programmed 70S ribosomes and deacyl [>*PJtRNA™¢";
2, Lane 1+ 0.1 mM tetracycline; 3, Lane 1+ RbbA + ATP; 4, Lane
1 + RbbA + 0.2 mM ATP + 8 pmol tRNAP™.

non-cognate tRNAP™ and not with smaller concentrations.
The lack of extensive competition for the entrance of the
[**PItRNA™¢ by the tRNAP™ confirms that the predicted
specificity of the sites was conserved in the given experimen-
tal conditions.

Binding site of RbbA on ribosomes

The RbbA protein binds to 70S ribosomes and to the 30S
subunit. RbbA also binds specifically to the 16S rRNA
nucleotides that make part of its binding site on the ribosome
(10,11,19).

Study of the bases protected by binding of RbbA to the
ribosome against the action of the base-specific reagents,
DMS, kethoxal, CMCT or DEP indicated that A937 is strongly
protected against DEP treatment by interactions of the
protein with the 70S ribosome (Figure 4). RbbA did not
confer protection against action of CMCT nor kethoxal
(data not shown). Weak protections were observed with
DMS and this may be due to other, possibly distal, interactions
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Figure 4. Chemical protection footprinting analysis of 70S ribosomes com-
plexed to the RbbA protein. The 70S ribosome was treated with DMS with or
without the RbbA protein as described in Materials and Methods. Reactions
with (+) or without (—) RbbA were treated with DEP prior to annealing the
primer and extension by reverse transcriptase.

of the protein with the ribosome. Such effects are commonly
observed (3). Two other bases, A915 and A949 were also
consistently observed to be weakly protected by the
protein. No protections were observed around G889, G890
or G925 which are protected by RbbA on the protein-free
16S rRNA (19).
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Figure 5. Mapping of protected bases. RbbA chemical protected footprinted
bases were mapped on the public data base 1 YL4 structure, which is made up of
Thermus thermophilus bases but with E.coli numbering (20). The 16S rRNA
backbone is shown in dark blue. The 16S rRNA bases that contact the 50S
subunit are enlarged and in light green. Nucleotide bases that contact the
E-site RNA are shown as enlarged purple bases. Enhanced truncated RbbA
protected bases A949 and A915 are in red and A937 is in pink. Base A937 was
also a base that has direct contact with the E-site tRNA (20). The pink and
orange spirals represent A-site and P-site tRNAs, respectively. The cyan atomic
structure is the mRNA that runs though the 30S subunit. Previous RbbA pro-
tected bases G889, G890 and G925 are shown in yellow. If a structure were
available for the E-site tRNA, it would be right of the orange spiral tRNA and
contacting the enlarged purple bases as well as A937.

Interestingly, the protected base (A937) resides in the E-site
of the ribosome (20). This data suggests that RbbA protects
the ribosomal E-site, but does not exclude other possible con-
tacts of the protein with the mRNA binding region that occurs
around the more weakly protected A915 and A949 (Figure 4).

The relative positions of the nucleotides that are protected
by RbbA are shown in the 3D model of the 30S subunit
(Figure 5). The A-site and P-site tRNAs (in pink and orange,
respectively) are shown for reference. The most strongly pro-
tected base, A937, resides on the E-site of the 30S subunit (20).
The other two bases that are weakly protected from modifica-
tion of the 16S rRNA, A949 and A915, occur near the region
that binds the mRNA on the 30S subunit. For comparison,
G889, G890 and G925 that are protected by RbbA on the
protein-free 16S rRNA are shown in the diagram. Thus, the
position of the protected bases is consistent with the proposed
function for the RbbA protein to release the tRNA from the
E-site.
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DISCUSSION

A ribosome-dependent ATPase, RbbA, has been identified
and isolated from Escherichia coli cells (10,11). The gene
encoding the full-length RbbA has also been identified as
open reading frame yhih that potentially encodes 894 amino
acids. The N-terminal sequence harbors two ATP-binding
domains characteristic of many ABC transporters (21) and
an aminoacyl-tRNA synthetase motif suggesting possible
interactions with RNA (10,11).

As shown here, the truncated RbbA stimulates synthesis of
polyPhe in vitro as well as the ATPase activity. The existence
of conserved ATP-binding domains within this short form of
RbbA suggests that the truncated RbbA, but not some intrinsic
property of 70S ribosomes, is responsible for the ATPase
activity.

At least two (22) or perhaps three molecules of GTP are
hydrolyzed by ribosomes (one by each contact with aminoa-
cyl-tRNAeGTPeEF-Tu and EF-GeGTP) in each round of
translation (22). The need for additional energy from the
hydrolysis of ATP is not understood, but ATP hydrolysis is
required for the stimulation of synthesis in both E.coli and
Sacharomyces cerevisiae when physiological concentrations
of GTP and ATP are used with RbbA or EF-3 (9-12). Neither
EF-3 nor RbbA possess nucleotidase activity.

Study of the 16S rRNA bases protected by RbbA in the
intact 70S ribosome revealed that the E-site base, A937, is
specifically protected by interactions of RbbA with the ribo-
some. This base is part of the E-site that is involved in the
release of [*PJtRNA™¢' that is postulated to occur upon
occupation of the A-site during synthesis (18). The E-site
may also have a function in translational fidelity (18,23). In
addition, A915 and A949 were weakly protected against the
action of DEP on the 70S ribosome. The latter bases reside in
the neck of the 30S subunit which is involved in mRNA
binding (24). Immune-EM data suggest that the mRNA
binds around the neck of the 30S subunit such that its
5" end occupies the platform side and the 3’ end is near the
shoulder of the subunit (25). Recently, the position of the
mRNA has been determined by X-ray diffraction analysis
of the 70S ribosome (26). The mRNA was found to occur
threaded through a channel that wraps around the neck of
the 30S subunit (26). These data confirm previous studies
of the position of the mRNA on the ribosome (24,25). Further,
the channel through which mRNA threads during synthesis is
closed and additional energy may be required to open it in
order to enable mRNA movement. It is possible that the
ribosome-dependent ATPase interacts with these protected
sites in order to enhance mRNA movement. However, the
strongest protection of A937 by RbbA occurs on the E-site
of the ribosome.

Thus, the most obvious possible function of RbbA may be
linked to the binding of the protein to the E-site and suggests
that this interaction promotes the release of the deacyl-tRNA
that must occur during synthesis. It has been amply docu-
mented that the A and the E-sites of the ribosome are allo-
sterically linked in a negative fashion such that binding of
the deacyl-tRNA to the E-site prevents aminoacyl-tRNA bind-
ing to the A-site and binding of aminoacyl-tRNA to the A-site
prevents deacyl-tRNA binding to the E-site (18). We find
that RbbA indeed stimulates the binding of Phe-tRNAP™ to
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the A-site in the presence of EF-Tu as well as release of
the [*>PItRNA™®', presumably from the E-site of the ribo-
some. By binding to the E-site, RbbA could stimulate the
entrance of aminoacyl tRNA to the A-site. However, the
sequence of the reactions stimulated by RbbA is unknown.

The peptidyl-tRNA analogue, N-acetyl-Phe-tRNA™™, was
found to be released from the A-site by the RbbA protein in
the presence of ATP. This suggests that the aminoacyl moiety
of the tRNA may be essential for the RbbA-promoted stimu-
lation of the aminoacyl-tRNA to the A-site. Thus, the primary
function of RbbA (and EF-3) to release [>*PJtRNA™® from
the E-site after peptide-bond formation fits all of the reported
observations. Since the release of [3 3P]tRNAfMet is part of the
translocation process, it remains possible that the RbbA-
stimulated ejection of the [33P] tRNA™¢! {5 linked to the move-
ment of mRNA during translocation. This could explain the
protection by RbbA of bases that bind mRNA to the ribo-
some as well as the inhibition by hygromycin B which alters
both fidelity and translocation.

An important clue to the function of the RbbA protein is
that the RbbA-stimulated ribosome-dependent ATPase is
specifically inhibited by hygromycin B, an antibiotic that
impairs translational fidelity and translocation of mRNA on
ribosomes (19). Single molecule fluorescence (FRET) studies
have identified several intervening steps in the process of
aminoacyl-tRNA selection that are targeted by different anti-
biotics (23). These steps are essential to the accurate decoding
of aminoacyl-tRNA and include an accommodation of the
ternary complex of EF-TueGDPeaminoacyl-tRNA followed
by a marked rotation of the complex after codon—anticodon
interaction. Several other intermediate steps precede the
interaction of the complex with the GTPase center of the
50S subunit resulting in hydrolysis of GTP, ejection of
EF-TueGDP and proofreading for non-cognate aminoacyl-
tRNAs (23). It is possible that the initial accommodation of
the ternary complex may indeed be a target for the action of
RbbA. The ternary complex is weakly bound to the ribosome
by interactions of EF-Tu with the L7/L12 protein and by
interactions of the tRNA with the mRNA and with portions
of the 30S subunit.

Residues A1492, A1493 and G530 mediate the early
events involved in codon recognition. G530 binds EF-Tu
whereas A1492 and A1493 are involved, with ribosomal pro-
tein S12, in recognition of the codon—anticodon complex and
appear responsible for the induced fit or domain closure
mechanism that participates in decoding and selection against
non-cognate codons. A1494, which is the base protected by
hygromycin B, a specific inhibitor of RbbA, occurs adjacent to
the bases involved in codon—anticodon recognition (23). Thus,
it may be that the RbbA protein acts to release the deacyl-
tRNA from the E-site by interfering with the codon—anticodon
interaction. A similar conclusion was deduced from related
experiments carried out with EF-3 (8).

The hypotheses that RbbA accelerates the release of the
deacyl-tRNA from the ribosome and the inhibition of
this reaction by antibiotics that affect translational fidelity
suggest that suitable mutants of RbbA ought to increase
translational errors. This work also suggests that EF-3
and RbbA serve the same function in translation. The
sequence homology and common reactions catalyzed by
both proteins confirm this conclusion, as is the fact that

most essential functions of the translation apparatus are highly
conserved (27,28).

NOTE ADDED IN-PROOF

Two conformations of 70S ribosomes have been detected by
X-ray crystallography. One of these has the deacyl-tRNA™<
in the E-site while the other conformation has the tRNA™®
in the pre-translocation, P/E, hybrid site (29). Thus, it is pos-
sible that the deacyl-tRNAfMet used in this study bound to the
P/E hybrid state, underscoring its possible involvement in
translocation.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors are grateful to Dr K. Nierhaus (Max-Planck-
Institut fiir Molekulare Genetik, Berlin) for discussion and
for a gift of the plasmid encoding the C-terminally His-tagged
EF-G, Dr B.C. Clark (Aarhus University, Denmark) for the
plasmid encoding the EF-TueGST fusion. The authors thank
Dr K. Chakraburtty (Medical College of Wisconsin) for a gen-
erous gift of anti-EF-3 (Saccharomyces cerevisiae) antibody.
The authors are also grateful to Dr Dean L. Shinabarger and
Steven Swaney for a gift of ["H]fMet-tRNA™®', The authors
thank Monica Becker for her help with the illustrations and
for editing the manuscript. This work was supported by grants
from the Natural Science and Engineering Research Council of
Canada. J.X. was a post-doctoral fellow of the CIHR, Canada.
Funding to pay the Open Access publication charges for this
article was provided by NSERC.

Conflict of interest statement. None declared.

REFERENCES

1. Yonath,A. and Bashan,A. (2004) Ribosomal crystallography: initiation,
peptide bond formation, and amino acid polymerization are hampered
by antibiotics. Annu. Rev. Microbiol., 58, 233-251.

2. Wilson,D.N. and Nierhaus,K.H. (2003) The ribosome through the
looking glass. Angew. Chem. Int. Ed. Engl., 42, 3464-3486.

3. Liljas,A. (2004) Ribosomal sites and ribosomal states. The catalysts-
translation factors. The process-translation (Chapters 8, 9, 11). Structural
Aspects of Protein Synthesis. World Scientific Publishing Company,
New Jersey, London, Singapore, Beijing, Shangai, Hong-Kong, Taipei,
and Chennai, pp. 75-98, 99-158, 175-207.

4. Nissen,P.M., Kjeldgaard,M., Thirup,S., Polekhina,G., Reshetnikova,L.,
Clark,B.F. and Nyborg,J. (1995) Crystal structure of the ternary
complex of Phe—tRNAPhe, EF-Tu and a GTP analog. Science,

270, 1464-1472.

5. Rodnina,M.V., Savelsbergh,A., Katunin,V.I. and Wintermeyer,W.
(1997) Hydrolysis of GTP by elongation factor G drives tRNA movement
on the ribosome. Nature, 385, 37-41.

6. Wilson,K.S. and Noller,H.F. (1998) Molecular movement inside the
translational engine. Cell, 92, 337-349.

7. Andersen,C.F., Anand,M., Boesen,T., Bich Van,L., Kinzy,T.G. and
Andersen,G.R. (2004) Purification and crystallization of the yeast
translation elongation factor EF-3. Acta. Crys., D60,

1304-1307.

8. Triana-Alonso,F.J., Chakraburtty K. and Nierhaus,K.H. (1995)

The elongation factor 3 unique in higher fungi and essential for protein



12.

13.

14.

15.

biosynthesis is an E site factor. J. Biol. Chem., 270,
20473-20478.

. Ganoza,M.C., Cunningham,C. and Green,R.M. (1995) A new factor

from Escherichia coli affects translocation of mRNA. J. Biol. Chem.,
270, 26377-26381.

. Kiel,M.C., Aoki,H. and Ganoza,M.C. (1999) Identification of a

ribosomal ATPase in Escherichia coli cells. Biochimie., 81,
1097-1108.

. KielLM.C. and Ganoza,M.C. (2001) Functional interactions of an

Escherichia coli ribosomal ATPase. Eur. J. Biochem., 268,

278-286.

Chakraburtty,K. and Triana-Alonso,F.J. (1998) Yeast elongation

factor 3: structure and function. Biol. Chem., 379,

831-840.

Green,R.H., Glick,B.R. and Ganoza,M.C. (1985) Requirements for

in vitro reconstruction of protein synthesis. Biochem. Biophys. Res.
Commun., 126, 792-798.

Nishizuka,Y. and Lipmann,F. (1966) Comparison of guanosine
triphosphate split and polypeptide synthesis with a purified E.coli
system. Proc. Natl Acad. Sci. USA, 55, 212-219.

Xu,J., Golshani,A., Aoki,H., Remme,J., Chosay,J., Shinabarger,D.L. and
Ganoza,M.C. (2005) Protected nucleotide G2608 in 23S rRNA confers
resistance to oxazolidinones in E.coli. Biochem. Biophys. Res. Commun.,
328, 471-476.

. Sanger,F., Nicklen,S. and Coulson,A.R. (1997) DNA sequencing with

chain terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74,
5463-5467.

. Ganoza,M.C., Aoki,H., Burkhardt,N. and Murphy,B.J. (1996) The

ribosome as affinity matrix: efficient purification scheme for translation
factors. Biochimie., 78, 51-61.

. Burkhardt,N., Junemann,R., Spahn,C.H. and Nierhaus,K.H. (1998)

Ribosomal tRNA binding sites: three site model of translation. Crit. Rev.
Biochem. Mol. Biol., 33, 95-149.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Nucleic Acids Research, 2006, Vol. 34, No. 4 1165

Ganoza,M.C. and Kiel,M.C. (2001) A ribosomal ATPase is a target for
hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob.
Agents and Chemo., 45, 2813-2819.

Yusupov,M.M., Yusupova,G.Z., Baucom,A., Lieberman,K.,
Earnest,T.N., Cate,J.H. and Noller,H.F. (2001) Crystal structure of the
ribosome at 5.5 A resolution. Science, 292, 883-896.

Davidson,A.L. and Chen,J. (2004) ATP-binding cassette transporters in
bacteria. Annu. Rev. Biochem., 73, 241-268.

Czworkowski,J. and Moore,P.B. (1996) The elongation phase of protein
synthesis. Prog. Nucleic Acid. Res. Mol. Biol., 54, 293-332.
Blanchard,S.C., Gonzalez,R.L.Jr, , Kim,H.D., Chu,S. and Puglisi,J.D.
(2004) tRNA selection and kinetic proofreading in translation.

Nature Struct. Mol. Biol., 11, 1008-1014.

Sergiev,P.V., Lavirk,I.N., Wlassoff,V.A., Dokudovskaya,S.S.,
Dontsova,0.A., Bogdanov,A.A. and Brimacombe,R. (1997) The path
of the mRNA through the bacterial ribosome: a site-directed
crosslinking study using new photoreactive derivatives of guanosine
and uridine. RNA, 3, 464-475.

Shatsky,I.N., Bakin,A.V., Bogdanov,A.A. and Vasiliev,V.D. (1991) How
does mRNA pass through the ribosome? Biochemie., 73, 937-945.
Gulnara,Z., Yusupova,H., Yusopova,M.M., Cate,J.M.D. and Noller,H.F.
(2001) The path of messenger RNA through the ribosome. Cell, 106,
233-241.

Triana,F., Nierhaus,K.H., Ziehler,J. and Chakraburtty,K. (1993) Defining
the function of EF-3, a unique elongation factor in low fungi.

In Nierhaus,K.H., Franceschi,F., Subramanian,A., Erdmann,V. and
Wittmann-Liebold,B. (eds), The Translation Apparatus. Plenum
Publishing Corp., NY, pp. 327-338.

Ganoza,M.C., Kiel,M.C. and Aoki,H. (2002) Evolutionary conservation
of reactions in translation. Microbiol. Mol. Biol. Rev., 66, 460-485.
Schawirth,B.S., Bovinskaya,M.A., Hau,C.W., Zhang,W.,
Vila-Sanjurjo,A., Holton,J.M. and Cate,J.H. (2005) Structure of the
bacterial ribosome at the 3.5 A resolution. Science, 310, 827-834.



