
MIME: A Formal Approach to (Android)
Emulation Malware Analysis?

Fabio Bellini, Roberto Chiodi, and Isabella Mastroeni

Dipartimento di Informatica - Università di Verona - Italy
(fabio.bellini|roberto.chiodi)@studenti.univr.it

isabella.mastroeni@univr.it

Abstract. In this paper, we propose a new dynamic and configurable
approach to anti-emulation malware analysis, aiming at improving trans-
parency of existing analyses techniques. We test the effectiveness of ex-
isting widespread free analyzers and we observe that the main problem
of these analyses is that they provide static and immutable values to the
parameter used in anti-emulation tests. Our approach aims at overcom-
ing these limitations by providing an abstract non-interference-based ap-
proach modeling the fact that parameters can be modified dynamically,
and the corresponding executions compared.

Keywords: Anti-emulation malware, abstract non-interference, program
analysis

1 Introduction

The recent technological escalation led to a massive diffusion of electronic devices
with permanent Internet connection. One of the most widespread mobile OS is
Android, that have reached more than 1 billion device activations in the last year,
with an average of 1.5 million activations per day. By installing software coming
from untrusted markets, a user may cause/introduce lots of vulnerabilities on his
system, such as privilege escalation, remote control, financial charge and data
leakage [18]. For instance, one in five Android users faces a mobile threat, and
the half of them installs trojans designed to steal money.

The problem. In order to study malware payloads, it is necessary to analyze ma-
licious software by using specific tools, based on emulation and virtualization,
which statically and dynamically analyze the code. The problem is that some
malware try to avoid these analyses by exploiting environment detection tricks
allowing them to understand whether they are emulated or not. These techniques
are called anti-emulation checks [6, 15]. If an anti-emulation check detects the
presence of a virtual environment, the malware changes its behavior showing only
harmless executions or simply aborting the computation. In [11] it has been pro-
posed a method to automatize the creation of red pills, generating thousands

? This work is partly supported by the MIUR FIRB project FACE (Formal Avenue
for Chasing malwarE) RBFR13AJFT.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217592041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 MIME

of mnemonic opcodes that trigger different behaviors in real and emulated en-
vironments. Futhermore, lots of anti-emulation checks were find out for many
different emulation environments like QEMU, Bochs and VMWare [4,8,13,14,16].
On the other hand, several tools were developed to reduce discrepancies between
real and emulated environments, trying to obtain perfect transparency [3, 7, 17].
Recently, the security focus moved to the Android mobile environment, where
virtualization on devices is inefficient and not widespread nowadays. There are
currently some Android analyzers available that scan applications trying to ex-
tract their main features like permissions, services or used networks, for detecting
malicious actions. The problem, is that also Android malware started to embed
anti-emulation checks, making them resilient to analyses, and, in [12], it is shown
how simple is to bypass analyzers by using trivial anti-emulation checks.

Our approach. We test 28 samples belonging to 15 different known malware
families on 9 analysis frameworks available online, such as Andrubis and Virus-
Total. We analyze the obtained results, providing a more specific perspective
on the connection between the state-of-the-art of anti-emulation techniques and
our samples sources. This work allows us to identify the limitations of the exist-
ing analyzers, such as the lack of versatility and customization, usually caused
by the general trend to prefer better performance instead of stronger protec-
tion. Moreover, we observe that there are no formal frameworks allowing us to
semantically understand the problem of anti-emulation. A semantic comprehen-
sion would allow us to compare different techniques, and to understand how we
can tune our analysis in order to adapt it to different attacking scenarios. In the
existing literature, the only attempt to formalize the notion of anti-emulation is
given as an interference between the environment and the program execution [6].
The problem with this notion is that it is too strong, since benign applications
may change behaviors depending on the environment. Hence, we propose a for-
mal definition of anti-emulation, given in terms of abstract non-interference [5],
a weakening of non-interference based on abstract interpretation [2], where both
the property that can/cannot interfere, and the output observation are modeled
as properties of the concrete behavior. This formal framework is used for better
understanding how we can make anti-anti-emulation checks stronger depend-
ing on the platform we work on, allowing us to improve existing analysis tools
and providing a first overview of an ideal analysis framework called Multiple
Investigation in Malware Emulation (MIME).

2 Limitations of Existing Android Malware Analyses

We started the test phase analyzing the anti-emulation checks in Android well-
known malware families. In our work, we consider: BadNews, BaseBridge, BgServ,
DroidDream Light, Droid KungFu – 1, 2, 3, 4, Sapp, Update –, FakeMart, Gein-
imi, Jifake, OBad and ZSone. For each malware family, we chose two different
variants to verify how frameworks react to small code differences that are not re-
lated to malware payload – only in Jifake and Droid KungFu Update this was not
possible, because only one version was available. We submitted all these samples

MIME 3

to 9 different analyzers, free and available with Web interface: AndroTotal An-
drubis, APKScan, Dexter, ForeSafe, Mobile-SandBox, VirusImmune, VirusTotal
and VisualThreat. In our tests, we submitted samples which were statically and
dynamically analyzed or scanned by a pool of anti-virus software: all the previous
frameworks could cover one or more of these categories. By summarizing, we col-
lected 252 different combinations malware-analyzer that are fully available in [1].
In order to avoid emulation, most of malware check several environment issues,
such as constants in Android Build class and/or other information as IMEI1,
IMSI2 and telephone sensors management. Thus, in order to verify the behavior
and, consecutively, the presence of anti-emulation checks in those malware, we
mainly need dynamic analysis: this means that the most complete results come
from Andrubis, APKScan, ForeSafe and VirusTotal. Nevertheless, we observe
that even these frameworks use trivial anti-emulation-related parameters, such
as IMEI, IMSI, etc. Other kinds of malware anti-emulation checks are also in
general used, as shown in the following example.

deviceId=android.provider.Settings.System.getString(context1.
getContentResolver () ,"android_id ");

if (deviceId == null){
deviceId = "Emulator ";

}

Listing 1.1. Geinimi anti-emulation check inspecting the android id value.

We can observe that, most of the actual frameworks do not provide the pos-
sibility to dynamically customize the configuration of the virtual machine (in
the following denoted VM), making easy for a malware to detect the virtual
environment. Finally, the analyzers we considered in the test phase, do not al-
low multiple execution in different virtual environments, but always provide the
same configuration for the VM, hence, if different executions in different envi-
ronments are required, it is necessary to manually upload the samples in several
frameworks. All these limitations make the analysis of anti-emulation malware
often imprecise (being detected) and/or expensive.

3 Formal definition of Anti-emulation

We show here that the existing notion of anti-emulation [6] is too strong for
really capturing the problem, and we propose a model based on abstract non-
interference. In non-interference we have some information to protect that has
not to interfere with the observable information. In the anti-emulation field, the
information to protect is the “kind” (virtual or not) of execution environment:
when a malware uses anti-emulation techniques there is a flow of information
from the “kind” of execution environment to the malware.

Abstract Non-interference Suppose the variables of program split in private (H)
and public (L). Let ρ a property characterizing the attacker observation, while

1 International Mobile Equipment Identity.
2 International Mobile Subscriber Identity.

4 MIME

φ is the property stating what, of the private data, can flow to the output
observation, also called declassification. A program P satisfies ANI if ∀h1, h2 ∈
H,∀l ∈ L: φ(h1) = φ(h2) ⇒ ρ(JP K(h1, l)) = ρ(JP K(h2, l)). Whenever the attacker
is able to observe the output property ρ, then it can observe nothing more than
the property φ of the input [5, 9, 10].

Observational Semantics and formal definition of anti-emulation. We focus on
Android applications which are written in Java and compiled to Dalvik byte-
code, with the possibility to use a large part of the standard Java library. Let
App be the set of Android applications. According to the definition in [6], we
model the behavior of a program A as a function depending on the input mem-
ory σ ∈ Mem and on the environment E ∈ Env. An environment provides “all
the aspects of the system the program might query or discover, including the
other software installed, the characteristics of hardware, or the time of day” [6].
In order to describe the actions performed by a program we consider a set of
Events E describing the relevant actions performed by the application during
its execution. Let Σ = E × Mem be the set of program states then, the observa-
tional semantics is: J·K : App −→ (Env × Mem → ℘(Σ∗)). Given A ∈ App, JAK is
a function providing the trace of events executed by the program A depending
on an hosting environment E and on an initial input σ. The only formal charac-
terization of anti-emulation [6] says that P uses anti-emulation techniques if its
execution under a real environment Er changes its behavior under an emulated
environment Ee, although input σ is the same and environments are very similar:
JPK(Ee, σ) 6= JPK(Er, σ). In this case, 6= denotes the fact that the two executions
are ”observationally” different.

The ANI-based approach. Our approach, is based on what we observe of the
program executions, i.e., on the granularity of the set E modeling the events,
namely the actions, considered suspicious. In particular, we have to identify the
set M ⊆ E of the suspicious/malicious events. We denote B

def
= E r M the set

of all the supposed benign events. The set M can be extracted depending on
known information regarding the sample that we want to analyze. For instance,
when considering applications handling images could be malicious the action of
sending an SMS, while this action is perfectly acceptable for instant messaging
applications. Alternatively, we can use the common payloads investigated in [18].

Let E ⊆ Env the admitted range of variation for (virtual and real) environ-
ments, σ ∈ Mem an input for the application A, let X ⊆ Σ∗ and X|E ⊆ E the set
of events in the traces in X

SelE(〈E, σ〉) =

{
〈E, σ〉 if E ∈ E
〈E, σ〉 otherwise

ObsM (X) =

{
True if X ∩M 6= ∅
False otherwise

SelE decides whether an environment is in the considered range E or not, while
ObsM checks whether the application shows only benign behaviors or even ma-
licious ones.

The core of the abstract non-interference-based model of anti-emulation is
the flow of information between the execution environment and the application
behavior. Our definition strongly depends on the set M . Thus, fixed the set M

MIME 5

and given the abstractions SelE and ObsM defined above, an application A does
not use anti-emulation with respect to E and M if:

∀〈E1, σ1〉, 〈E2, σ2〉 ∈ Env× Mem. SelE(〈E1, σ1)〉 = SelE(〈E2, σ2〉)⇒
ObsM (JAK(〈E1, σ1〉)) = ObsM (JAK(〈E2, σ2〉))

(1)

The malware does not contain any anti-emulation check, with respect to the envi-
ronment range E and the malicious actions set M , if by varying the environment
inside E we observe only malicious actions (the malware does not contain anti-
emulation checks) or only benign actions (the model does not capture the correct
anti-emulation checks of the malware analyzed).

4 Multiple Investigation in Malware Emulation (MIME)

We propose an analyzer architecture based in a configurable VM called MIME
– Multiple Investigation in Malware Emulation. Existing analyses use an envi-
ronment setting which is static and immutable, in the sense that they cannot be
configured depending on the application contexts. Moreover, from our empirical
studies, we observed that the problem of existing analyses is that parameters
are set to fixed, and often trivial, values. This means that a truly transpar-
ent analyzer should be able to provide values that the malware expects from a
real environment. Unfortunately, it is quite unrealistic to find a value robust to
different malware. The idea we propose is to consider the ANI definition of anti-
emulation, where we look for anti-emulation checks by analyzing malware several
times, and each time under different environment settings. In other words, we
let the input environment to vary, by setting a list of anti-emulation parameters
(such as IMEI, IMSI, . . .), and we observe how the corresponding execution is
affected. Our goal is the automation of this formal model by making systematic
the variation of the environment setting and automatic the corresponding execu-
tions and comparisons. The main idea of MIME is to perform several executions
depending a configurable environment, which is systematically modified until
we find an anti-emulation check (detected by an evaluation function) or until
we exhaustively explore the space of environments we consider. In Figure 1, we
show the proposed analysis architecture.

Fig. 1. Simple architecture of a MIME customizable analyzer.

Configuring MIME architectures. We choose a pool of n anti-emulation-connected
input parameters. We associate with each parameter a list of prearranged values,
in order to automatize the environment setting. It is worth noting, that both
the set of parameters and the corresponding values can be easily customized. In

6 MIME

the MIME strategy, we represent these parameters like rotors, and each value
corresponds to a position: by changing only one position at a time, we can detect
which are the malware reactions. In general, let pi the i-th parameter, let Ri be
the rotor for pi, and let Vi be the set of values for pi. This idea, in our for-
mal model corresponds to consider a set Ei for each parameter pi, which simply
corresponds to the execution environment where the parameter pi is set to one
of the values in Vi, while all the other parameters are set to a default/trivial
initial value (for IMEI it may be all 0s). This choice is necessary since we aim
at understanding precisely whether the parameter pi, and not others, may affect
execution. In this case, we consider Eq. 1, with input abstraction SelEi

. Namely,
the MIME strategy proposes to verify n times the Eq. 1, each time with respect
one parameter pi, i.e., with respect to Ei. Now, the evaluation function returns
a boolean value identifying the presence of at least one malicious action in M .

Using MIME for analyzing anti-emulation malware. Let us explain how the
MIME strategy aims at improving the transparency of existing analyses. It is
clear that the price to pay is in the performance of the analysis. Let Rotors

be the matrix of all rotors, each rotor i has a number of possible different val-
ues maxi. Suppose to have n + 1 rotors, then we define max as maximal value
in

{
maxi

∣∣ i ∈ [0, n]
}

. Let M be the analyzed malware, and mem the machine
state memory. Config is the array containing the n + 1 positions of the rotors
used for setting the environment. Execute corresponds to the observation of the
malware execution, formally it corresponds to the observed semantics J·K where
Config corresponds precisely to its environment input. Evaluate corresponds
to the evaluation function that, as we noticed before, is modeled by the output
abstraction ObsM . Finally, position anti emu is the array of the rotor posi-
tions where an anti-emulation check is detected by the evaluation. Listing 1.2

Function: Mime
Input: M, Rotors[n+1][max],mem
result = null;
for each k in [0,n] Config[k]=0; // Environment reset (rotors initial pos)
trace = Execute(M,Config ,mem);
val_0=Evaluate(trace);
for each k in [0,n] Config[k]=max_k; // Environment setting to max rotors pos
trace = Execute(M,Config ,mem);
val_m = Evaluate(trace);
if (val_0 != val_m) result = to_string(Catching_anti_emu(M, Rotors ,mem));
if (val_0 == val_m)

if (val_0) result = malware; // M is a malware without anti -emulation
else result = pot_not_malware; //M is not recognized as malware

Output: result

Listing 1.2. MIME approach in anti-emulation malware recognition.

implements the idea that we first compute the default configuration of rotor
parameters, whose evaluation val 0 is true if a malicious action in M is ob-
served. Then we execute the malware in the smarter configuration possible in
our model, where the rotors are set to the maximal values, and we evaluate
in val m whether the corresponding execution exhibits malicious events. If the
two values are different it means that somewhere in the code, there is an anti-
emulation check, and therefore we launch the function Catching anti emu. If

MIME 7

the two values are both equal to true then it means that the malware does not
use anti-emulation checks. Finally, if the values are both equal to false, and
we knew that it was a malware, it means that it uses an anti-emulation check
based on different parameters or it uses a conjunctive combination of tests on
the known parameters. We lose this situation since we check parameters one
at time. However, to the best of our knowledge, based on the experimental re-
sults, this last situation is not used by anti-emulation checks. Listing 1.3 shows

Function: Catching_anti_emu
Input: M, Rotors[n+1][max],mem
position_anti_emu[n] = null;
for each i in [0,n] {

for each k in [0,n] Config[k]=0; // Environment reset
for each j in [0, max_i -1]{

Config[j]= Rotors[i,j];
trace = Execute(M,Config ,mem);
val = Evaluate (trace);
if (val) position_anti_emu[i] = j; break;
else j = j+1;

}
i = i+1; // change rotor

}
Output: position_anti_emu

Listing 1.3. Catching anti-emulation checks in MIME.

Catching anti emu. In this case, we have to vary the environment setting look-
ing for the parameters responsible of the anti-emulation check. Since we aim at
observing the interference of each single parameter on the malware behavior, we
let only one rotor at time to change value, while all the others are set to default
initial values. For this reason, each time we finish to analyze the interference of
one rotor, we reset it before changing rotor. We always check all the rotors since
there may be more than one anti-emulation check. val becomes true if some
malicious action is detected, at this point since we know that there was also an
harmless execution (the routine is called only in this case), it means that the
current rotor contains an anti-emulation check in the current position, that we
store in position anti emu. At the end of the execution, this vector contains all
the rotor positions, namely the parameters values, used in anti-emulation checks.
If at the end this vector is all null, then it means that the anti-emulation checks
involve unobserved parameters or are based on different techniques.

5 Future Works

We develop our approach in the Android word however, our approach to anti-
emulation can be easly generalized to any platform. In this case, it is necessary to
change the Evironment setting and the VM, in order to let it analyze desktop
malware. Until now, no implementation of our approach has been made, so a
possible future implementation of MIME will be useful to successfully analyze
anti-emulation malware. This would help also in understanding the scalability
problem. Finally, our ANI model of anti-emulation is strongly related to the
definition of the M set of the malicious events. We would like to improve this

8 MIME

model and study in depth the relation between the M set and the anti-emulation
checks detection in malware, characterizing the amount of both false positives
and negatives.

References

1. F. Bellini, R. Chiodi, and I. Mastroeni. Mime: A formal approach for multiple inves-
tigation in (android) malware emulation analysis. Technical Report RR 97/2015,
2015. http://hdl.handle.net/11562/926789.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Conf.
Record of POPL ’77, pages 238–252. ACM, 1977.

3. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hard-
ware virtualization extensions. In Proc. of CCS ’08, pages 51–62. ACM, 2008.

4. P. Ferrie. Attacks on virtual machine emulators. Symantec Corporation, 2007.
5. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-

interference by abstract interpretation. In Proc. of POPL ’04, pages 186–197.
ACM, 2004.

6. M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song. Emulating emulation-
resistant malware. In Proc. of VMSec ’09, pages 11–22. ACM, 2009.

7. M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting environment-
sensitive malware. In Proc. of RAID’11, pages 338–357. Springer-Verlag, 2011.

8. T. Liston and E. Skoudis. On the cutting edge: Thwarting virtual machine detec-
tion, 2006.

9. I. Mastroeni. On the rôle of abstract non-interference in language-based security.
In Proc. APLAS ’05, LNCS 3780, pages 418–433. Springer-Verlag, 2005.

10. I. Mastroeni. Abstract interpretation-based approaches to security - A survey
on abstract non-interference and its challenging applications. In Semantics, Ab-
stract Interpretation, and Reasoning about Programs: Essays Dedicated to David
A. Schmidt on the Occasion of his 60th Birthday., pages 41–65, 2013.

11. R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi. A fistful of red-pills:
How to automatically generate procedures to detect cpu emulators. In Proc. of
WOOT ’09, page 2. USENIX Association, 2009.

12. T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis.
Rage against the virtual machine: Hindering dynamic analysis of android malware.
In Proc. of EuroSec ’14, pages 5:1–5:6. ACM, 2014.

13. D. Quist, V. Smith. Detecting the presence of virtual machines using the local
data table. Offensive Computing, 2006.

14. T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators. In Proc.
of ISC ’07, pages 1–18. Springer-Verlag, 2007.

15. Joanna Rutkowska. Red pill... or how to detect vmm using (almost) one cpu
instruction, 2004.

16. K. Vishnani, A. R. Pais, and R. Mohandas. Detecting & defeating split personality
malware. In Proc. of SECURWARE 2011, pages 7–13, 2011.

17. L. K. Yan, M. Jayachandra, M. Zhang, and H. Yin. V2e: Combining hardware vir-
tualization and software emulation for transparent and extensible malware analysis.
SIGPLAN Not., 47(7):227–238, March 2012.

18. Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution.
In Proc. of SP ’12, pages 95–109. IEEE Computer Society, 2012.

