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Abstract

In this work we focus on a natural class of population protocols whose dynamics are
modelled by the discrete version of Lotka-Volterra equations. In such protocols, when an
agent a of type (species) i interacts with an agent b of type (species) j with a as the initiator,
then b’s type becomes i with probability Pij . In such an interaction, we think of a as the
predator, b as the prey, and the type of the prey is either converted to that of the predator
or stays as is. Such protocols capture the dynamics of some opinion spreading models and
generalize the well-known Rock-Paper-Scissors discrete dynamics. We consider the pairwise
interactions among agents that are scheduled uniformly at random.

We start by considering the convergence time and show that any Lotka-Volterra-type
protocol on an n-agent population converges to some absorbing state in time polynomial in
n, w.h.p., when any pair of agents is allowed to interact. By contrast, when the interaction
graph is a star, even the Rock-Paper-Scissors protocol requires exponential time to converge.
We then study threshold effects exhibited by Lotka-Volterra-type protocols with 3 and more
species under interactions between any pair of agents. We start by presenting a simple
4-type protocol in which the probability difference of reaching the two possible absorbing
states is strongly amplified by the ratio of the initial populations of the two other types,
which are transient, but “control” convergence. We then prove that the Rock-Paper-Scissors
protocol reaches each of its three possible absorbing states with almost equal probability,
starting from any configuration satisfying some sub-linear lower bound on the initial size of
each species. That is, Rock-Paper-Scissors is a realization of a “coin-flip consensus” in a
distributed system. Some of our techniques may be of independent value.

1 Introduction

Population protocols are a recent model of computation that captures the way in which the
complex behavior of systems (biological, sensor nets, etc.) emerges from the underlying local
interactions of agents. Agents are modeled as anonymous automata with a finite number of
states, and interactions (changes of state) occur between randomly chosen pairs of agents under
some fixed set of local rules. The interaction follows from the mobility of agents in the popula-
tion, as in the case of birds flying past each other in a flock in the setting originally described
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Figure 1: Examples of objective functions for opinion spreading: probability p that a given
type becomes dominant in the population as a function of the fraction r of its supporters in the
initial population.

by Angluin et al. [2, 4]. More generally, we can model agents as nodes of an interaction graph
G, and assume interactions take place along the edges of this graph.

Population protocols provide a way of describing dynamical effects which may occur in a
population. For example, one can imagine that members of a population can be either healthy or
infected, and whenever two individuals meet, if one is infected, then the other one also becomes
infected. Thus the interesting question becomes: how fast can the infection spread? Quite
naturally, population protocols are also used to model opinion spread in populations under
interactions. An interaction between a pair of agents, one holding opinion A and the other
opinion B, results in a possible change of opinion by one of the interacting agents. Such local
interactions result in a change over time of the relative sizes of the options holding opinions A
and B. Eventually, the population protocol may lead the system to converge to a state in which
one type, A or B, becomes dominant in the population. The probability of convergence to a
given dominant type may potentially depend on the initial state of the population in different
ways, e.g., exhibiting linear behavior, or transitions at one or more thresholds (cf. Fig. 1). In
fact, the ability of population protocols to converge to an opinion presented by at least some
threshold ratio of the population (e.g., a majority) lies at the heart of their study (cf. [5, 21]).

In this work, we focus on a natural scenario of interactions modeled by the discrete version
of Lotka-Volterra equations, with the goal of better understanding their applicability in the
computational framework of opinion spreading and voting protocols. In their original form, the
(continuous) Lotka-Volterra differential equation were initially applied in the modeling of peri-
odic chemical reactions and also in the predator-prey dynamics of fish in the Adriatic Sea [14,
p.11], and are perhaps best known for their connection to replicator dynamics and to evolving
strategies in game theory [14, 24]. In discrete Lotka-Volterra-type (LV-type) population proto-
cols, during an interaction, the initiating agent (holding some state A) tries to impose its state
on the other agent (holding some other state B) and succeeds with some probability PAB. The
LV-type protocol on k states is fully characterized by its k × k probability matrix P . LV-type
interactions are natural both in the context of predator-prey protocols, in that they correspond
to a possible expansion of the predating (initiating) agent into the ecological niche of its prey,
and in opinion propagation, in that they do not allow a new derived state C to be created as
a result of an interaction. Unlike their continuous variant, discrete LV-type protocols always
converge to an absorbing state in which no further state changes occur. We study the time
until such convergence happens in general, and look at the probability of achieving different
absorbing states depending on the initial distribution of states in the population for specific
protocols.
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1.1 Our Results

We start by proving in Section 2 a general convergence result: any LV-type protocol on a n-agent
population converges to some absorbing state in time O(poly(n)), w.h.p., under the model of
uniformly random interactions between agents (i.e., when the interaction graph is the complete
graph G = Kn). Whereas studies of the behavior of the continuous LV dynamics under artificial
stochastic noise of the random walk type have been performed for some particular dynamics in
the statistical physics community (cf. [24] for a survey), this is, to the best of our knowledge,
the first mathematically rigorous study of the impact of finite populations on the behavior
of the dynamics, and the first one to present results which hold for an arbitrary probability
matrix P of the protocol. Our proof takes advantage of the structure of the replicator dynamics
corresponding to the continuous Lotka-Volterra equations, which admit either stationary orbits
in the state space or have a repeller, depending on the parameters of the protocol.

By contrast, we also show in Section 2 that introducing an interaction constraint can severely
impact the convergence time for LV-type protocol. We consider a specific LV-type protocol
known as rock-paper-scissors (RPS), in which each of the three types overcomes exactly one
other type in cyclic manner, and show that RPS requires exponential time to converge to an
absorbing state when the interaction graph is a star (G = K1,n).

Next, we look at the applicability of LV-type protocols in the context of their threshold
behavior in voting problems which require a consensus of opinion. For the case of 2 types, the
only unbiased LV-type protocol encompasses the so-called “game of life and death” between
the 2 types, converging to a given absorbing state with probability proportional to its initial
representation in the population (regardless of the interaction graph G). We show, however,
that for 3 and more types, threshold effects become apparent even under uniform interactions
(G = Kn). We start by proposing in Section 3 a simple 4-type majority-type protocol, in which
the probability difference of reaching the two absorbing types is amplified with respect to the
ratio of the initial populations of the two other states. We close the paper by exhibiting in
Section 4, for the before-mentioned RPS protocol a completely different type of threshold effect
in the small population region. We prove that RPS reaches each of its three absorbing types
with almost equal probability (1/3±o(1)), starting from any configuration satisfying some sub-
linear lower bound on the sizes of the three types. Our proof proceeds by a Martingale-type
analysis, which may be of independent interest, and takes into account the symmetries of the
state space of the protocol. We can thus view the RPS protocol as an embodiment of the
“coin-flip consensus” illustrated in Fig. 1(c): any opinion with non-negligible representation in
the population, even a minority one, has an equal chance of success in the opinion-spreading
process. To the best of our knowledge, this is the first population protocol with polynomial-time
convergence for which such a property has been identified.

1.2 Related Work

Population Protocols and Majority Computation. The population protocol model of
Angluin et al. [2, 3] captures random interactions between finite-state agents, motivated by
applications in sensor mobility. Despite the limited computational capabilities of individual
sensors, such protocols permit at least (depending on available extensions to the model) the
computation of two important classes of functions: threshold predicates, which decide if the
weighted average of types appearing in the population exceeds a certain value, and modulo
remainders of similar weighted averages. With respect to threshold behavior, a major problem
is the design of majority protocols, which consist in obtaining convergence of all agents of the
population to a type initially represented by the majority of agents. Such a protocol, converging
to a population of a single type, was first proposed in [3]. Given the complete interaction graph,
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the type reached by the protocol is the initial majority type, w.h.p., provided that the initial
difference between the majority and minority type is ω(

√
n log n) for a n-agent population. This

protocol relies on 3 types, two of which represent the original types present in the population,
while the third is a transient type representing a blank opinion. A 4-state protocol for finding a
majority is presented in [5], based on a different principle of “leader” and “follower” agents, and
achieves similar performance guarantees. By contrast, [20] presented the first protocol which
converges to the initial majority type with probability 1, even when the difference between types
in the original population is constant. This protocol makes use of 4 states and finds a majority in
expected polynomial time, even in the case when interactions are not spread uniformly over the
population, but restricted to a connected subgraph of agent pairs. (We remark that none of the
mentioned majority protocols belongs to the LV-type considered in this paper, in particular,
due to the creation of transient states which do not exist in the initial population.) Other
applications and models of population protocols are surveyed in [5, 17, 21].

Spreading of opinion and voting. The spread of trust and opinion in a social network was
one of the original motivations for the study of population protocols [11]. Problems in which a
set of nodes has to converge to a consensus decision chosen from a candidate set of values pro-
posed by the participating nodes, are also of fundamental importance in distributed computing,
in tasks such as serialization of database operations or leader election [13]. Models of voting
processes, which solve such questions, involve the propagation of opinion through multiple push-
or pull-operations between pairs of agents, usually performed in parallel throughout the system.
From the perspective of security and simplicity of design, a desirable property of the protocols is
that at any time during the execution, the state of the node should describe its current opinion,
belonging to the set of opinions initially represented in the population. Under this constraint,
given a set of only 2 initial opinions, it is impossible to obtain convergence to the majority
opinion w.h.p. of correctness in the standard model of voting (cf. e.g. [8]). However, majority
voting can be achieved in many graph classes by extensions of the population protocol frame-
work, allowing simultaneous interactions between more than 2 nodes. Specifically, protocols in
which a node polls a constant number k of randomly chosen neighbors in the interaction graph
and changes its opinion as the majority opinion in the chosen neighborhood set, have been
considered in the literature. The number of required interactions until convergence is achieved
is shown to be O(n log n) for the complete interaction graph (both under sequential and parallel
pull actions of nodes [6, 9]), O(n log n) for random regular interaction graphs when k = 2 (under
parallel pull actions of nodes [8]) and O(n log logn) for Erdős-Rényi random interaction graphs
when k = 5 (under additional constraints on the initial placement of opinions [1]). Our work is
also related to the voting model of DeGroot [10], in which opinions spread through the network
due to weighted interactions between agents. However, the DeGroot model associates weights
of influence with particular agents, rather than with the opinions they hold, and consequently
the obtained equations for propagation of opinion are inherently linear.

Discrete Lotka-Volterra dynamics and cyclic games. The continuous Lotka-Volterra
dynamics, first defined in [19], give rise to several discrete variants of so-called predator-prey
models of interaction in a population, which differ essentially in the way the population size is
maintained after the prey is attacked by the predator. Such models studied in the literature
include the discrete May-Leonard model, in which the attacked agent (prey) disappears from
the system, leaving behind a special state representing an empty niche, which can be later filled
by another species, as well as the LV-type discrete dynamics studied in this work, in which the
niche left by the prey is immediately filled by the species of the predator (cf. [24] for further
generalizations of the framework). The LV-type model is particularly worthy of study due to
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its transient stability in a setting in which several species are in a cyclic predator-prey relation.
Cyclic LV-type protocols have been consequently identified as a potential mechanism for de-
scribing and maintaining biodiversity, e.g., in bacterial colonies [15, 16]. Cycles of length 3, in
which type 1 attacks type 2, type 2 attacks type 3, and type 3 attacks type 1, form the basis of
the best-known protocol, called rock-paper-scissors (RPS). The transient properties of RPS and
related protocols, describing in particular the time until the system collapses to an absorbing
state, have been studied in the statistical physics literature using a variety of experimental and
analytical techniques (mostly based on approximation with physical equations), under various
scheduler models: the standard model of sequentially occurring random interactions, models
with Θ(n) parallel encounters, models in which the discrete process is described by adding
stochastic noise to a continuous-time process, etc. The original analytical estimation method
applied to RPS was based on approximation with the Fokker-Planck equation [23]. A subse-
quent analysis of cyclic 3- and 4-species models using Khasminskii stochastic averaging can be
found in [12], together with a general discussion of the classification of dynamics according to
convergence speed. A mean field approximation-based analysis of RPS was performed in [22].
All of these results provide a qualitative understanding of cyclic protocols, and at a quanti-
tative level, provide evidence that the RPS protocol reaches an absorbing state after roughly
O(n2) interactions. Finally, we remark that in a computer science setting, [7] made the connec-
tion between the Lotka-Volterra equations and (computational) population protocols, defining
the class of so-called Linear Viral Protocols, in which the capacity of agents to participate in
interactions changes over time.

1.3 Model and Preliminaries

We consider population protocols in the following setting. The population V with k types
(species) is a set of n agents, with each agent v ∈ V assigned a state variable s, whose value at
time t is denoted st(v) ∈ {1, . . . , k} ≡ [k], describing its current type. The elements of V are
connected into an (undirected, connected) interaction graph G = (V,E). Agents assigned to
type i at time t, 1 ≤ i ≤ k, are called the population of type i at time t.

The population protocol P is a probability distribution over [k]2, taking values in [k]2. In
an execution of protocol P , at each time step t = 1, 2, 3, . . ., a scheduler daemon picks a pair
of interacting agents u, v ∈ V such that (u, v) ∈ E u.a.r., and updates the state variables of
these agents, sampling the pair (st+1(u), st+1(v)) according to the distribution P (st(u), st(v)).
We will say that the population protocol is of the Lotka-Volterra type (LV-type for short) if
the state of the initiating agent (the predator) never changes during an interaction, and the
state of the other agent (the prey) either remains unchanged or changes to that of the initiator,
i.e., for any transition which occurs with non-zero probability, we have st+1(u) = st(u) and
st+1(v) ∈ {st(u), st(v)}.

For i ∈ [k] and a fixed execution of protocol P , we will denote the size of the i-th population
as ni(t) = |{v ∈ V : st(v) = i}|, and its relative size as xi(t) = ni(t)/n. The set of states of all n
agents at time t is referred to as the state or configuration of the system. When the interaction
graph is the complete graph Kn, then we identify the state of the system with the vector x(t).
For G = Kn, the protocol P defines a Markov chain on the set X of possible states x(t). We
note that in this case, the size of the state space can be trivially bounded as O(nk), i.e., is
polynomial in n for any fixed protocol.

In the sequel, any LV-type protocol P will be identified with its k × k probability matrix
P , such that for an interaction (u, v), we have st+1(v) = st(u) with probability Pst(u),st(v), and
st+1(v) = st(v) with probability 1 − Pst(u),st(v). (Informally, we may write: “ij → ii with
probability Pij”.) In general, matrix P need not be skew-symmetric nor stochastic. We only
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assume that Pii = 0, for 1 ≤ i ≤ k, and that every type interacts in some way with at least one
other type (for every i, 1 ≤ i ≤ k, there exists j, 1 ≤ i ≤ k, such that Pij > 0 or Pji > 0). We
will denote the value of the minimal non-zero entry of matrix P as Pmin. For every LV-type
protocol, we construct the corresponding digraph ~D(P ), whose vertex set is the set of types [k],
and an arc (i, j) exists if Pi,j > 0. We call the dynamics irreducible if the digraph ~D(P ) has
no sources (i.e., there are no types without a predator, so each column of matrix P has at least
one non-zero entry) and is connected.

We remark that as n → ∞, our random process converges to its (deterministic) limit con-
tinuous dynamics, given by the following set of first-order differential equations (a special case
of the continuous Lotka-Volterra equations):

dxi(t)

dt
= xi(t)

k∑
j=1

[(Pij − Pji)xj(t)] , for 1 ≤ i ≤ k. (1)

The above dynamics is non-linear and exhibits non-trivial properties in terms of limit behavior
and stability measures such as the Lyapunov exponent (cf. [14]). Our discrete population case
with finite n can be informally seen as a special form of “noise” introduced into the Lotka-
Volterra equation (1).

In this paper, we also give our attention to two specific LV-type protocols:

• Rock-Paper-Scissors (RPS) is the LV-type protocol with k = 3 types (denoted 1, 2, 3),
whose probability matrix P has the following non-zero entries: P12 = P23 = P31 = 1.

• Wolves-and-Sheep (WS) is the LV-type protocol with k = 4 types (denoted X,Y, x, y),
whose probability matrix P has the following non-zero entries: PXY = PXx = PY X =
PY y = 1, PXy = PY x = 1/2.

Throughout the paper, we use the term “with very high probability” (w.v.h.p.) to denote

events occurring with probability at least 1 − e−Ω(log2 n) and the term “with high probability”
(w.h.p.) for events occurring with probability at least 1 − n−Ω(1). Thus, polynomially (resp.,
logarithmically) many events which individually hold w.v.h.p. (w.h.p.) also hold jointly w.v.h.p.
(w.h.p.) by virtue of the union bound. In time and distance analysis, we will use the notation Õ
and Ω̃ to conceal poly-logarithmic factors (Õ(f) = O(fpolylog(n)), Ω̃(f) = Ω(f/polylog(n))).

2 Convergence of Discrete LV-type Protocols

For any LV-type protocol, there exists a subset Xs ⊆ X of stationary absorbing states, which
remain unchanged under transformation P (for any x ∈ Xs, applying any transformation gov-
erned by protocol P to x preserves x). Note that for any state x ∈ X \ Xs, there exists an
execution of the system which reaches some absorbing state in a finite number of steps with
strictly positive probability.

2.1 Bound on Convergence Time under Complete Interactions

We start by showing that any LV-type protocol on a population of size n converges to an
absorbing state in time O(poly(n)), when there are no population constraints (the interaction
graph is Kn).

Theorem 2.1 (LV-type convergence for complete interactions). For any probability matrix P ,
there exists a constant c such that the LV-type protocol defined by P converges for the complete
interaction graph to an absorbing state in O(nc) steps, w.v.h.p.
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Before proceeding with the proof, we introduce some auxiliary notation. For a fixed matrix
P , we define the skew-symmetric nett interaction matrix A as A = P − P T . Observe that
Aij = Pij − Pji and equation (1) describing the continuous dynamics now takes the simpler
form:

dxi
dt

= xi(Aix), (2)

or in vector notation:
dx

dt
= x� (Ax),

where we treat x as a column vector, and Ai is the i-th row vector of matrix A, and � denotes
the element-by-element product of two column vectors (cf. [14, Chapter 7] for a more detailed
exposition of the properties of this continuous dynamics).

For a fixed real vector b ∈ Rk, which we will appropriately choose later, we define the
potential U of a system state x as (compare [14, equation (5.3)]):

U(x) =

k∑
i=1

bi lnxi,

and by U(t) we will mean U(x(t)). Observe that under evolution of the system given by the
continuous dynamics (2), we have:

dU

dt
=

k∑
i=1

bi
1

xi

dxi
dt

=

k∑
i=1

bi(Aix) =

k∑
j=1

((
k∑
i=1

biAij

)
xj

)
= bTAx.

We define vector b as follows:

(i) if there exists a non-zero vector b ≥ 0, such that bTA = 0, choose b as any such vector
with ‖b‖∞ = 1.

(ii) otherwise, choose b as any vector satisfying bTA > 0, with ‖b‖∞ = 1.

The completeness of the above definition follows from a basic theorem of linear optimiza-
tion, known as the “no arbitrage theorem” in financial mathematics (cf. also [14, proof of
Thm. 5.2.1])1.

Proof of Theorem 2.1. Observe that by the definition of the LV-type process, if a certain type i
has been eliminated by time t (xi(t) = 0), then it will never reappear (xi(τ) = 0, for all τ ≥ t).
We will now show that the number of non-zero values of xi, 1 ≤ i ≤ k, is reduced by at least
one within a polynomial number of steps, w.h.p. Note that this is sufficient to obtain the claim
of the theorem, since we may iterate the argument, each time restricting the definition of the
dynamics and the matrix A to those of the k types which are non-empty. In the rest of the
proof, we will be assuming w.l.o.g. that xi > 0, for all i. We will also be assuming that the
dynamics is irreducible; otherwise, if digraph ~D(P ) is disconnected, we can consider each of the
weakly connected components separately, and if any of the weakly connected components has
a source, then one can easily show that all the prey of this source is eliminated in a polynomial
number of steps.

1For completeness, we provide a short version of the argument. If (i) does not hold, then the non-negative
cone Rk

≥0 intersects with the kernel kerAT only at point 0. It follows that there must exist a strictly positive

vector h ∈ Rk
+ orthogonal to the kernel, h ⊥ ker(AT ). Since the orthogonal complement of ker(AT ) is the column

space of matrix A, which is equal to the row space of A (since A = −AT ), the equation bTA = h admits a solution
b, and it is possible to satisfy condition (ii).
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The main part of the proof is contained in the following claim.

Claim. For any irreducible LV-type protocol, there exists a constant nmin, such that for any
n > 0, for any initialization of the protocol with n agents, w.v.h.p. there exists a time step
T ∈ O(poly(n)) in which ni(T ) < nmin, for some type i, 1 ≤ i ≤ k.

Proof (of claim). For any t > 0, we consider the random variable δ representing the change
of the value of the potential function U between time steps t and t+ 1:

δ(t) = U(t+ 1)− U(t). (3)

We start by remarking that in a single time step, the change of potential is restricted to a
single interaction between some pair (i, j), and thus bounded by the following expression when
ni ≥ nmin, for all 1 ≤ i ≤ k:

|δ(t)| ≤ max
1≤i,j≤k

∣∣∣∣bi(ln
ni + 1

n
− ln

ni
n

)
+ bj

(
ln
nj − 1

n
− ln

nj
n

)∣∣∣∣ <
<2 max

1≤i≤k
| ln(ni)− ln(ni − 1)| < 4

nmin
. (4)

Since the probability of the interaction of the form (i, j) in the (t + 1)-st step is
ninj
n2 , and

this interaction increases ni by 1 and decreases nj by 1 with probability Pij , the expectation
Eδ(t) takes the form:

Eδ(t) =

k∑
i=1

k∑
j=1

ninj
n2

Pij

(
bi

(
ln
ni + 1

n
− ln

ni
n

)
+ bj

(
ln
nj − 1

n
− ln

nj
n

))
=

=
1

n2

k∑
i=1

k∑
j=1

bininj (Pij (ln(ni + 1)− ln(ni)) + Pji (ln(ni − 1)− ln(ni))) .

We now introduce the following notation for Taylor series remainders in the expansion with

respect to 1/x: ln(x+ 1)− ln(x) = 1
x −

1
2x2 (1− r+(x)

x ) and ln(x)− ln(x−1) = 1
x + 1

2x2 (1 + r−(x)
x ),

where 0 ≤ r+(x) ≤ 2/3 and 0 ≤ r−(x) ≤ 2/3, for every x > 1. Next, we obtain after elementary
transformations:

Eδ(t) =
1

n2

k∑
i=1

k∑
j=1

biAijnj −
1

2n2

k∑
i=1

k∑
j=1

bi
nj
ni

(
Pij

(
1− r+(ni)

ni

)
+ Pji

(
1 +

r−(ni)

ni

))

=
1

n2

k∑
i=1

k∑
j=1

binj

(
Aij −

1

2ni

(
Pij

(
1− r+(ni)

ni

)
+ Pji

(
1 +

r−(ni)

ni

)))
. (5)

We now use (5) to bound the expectation Eδ(t) depending on whether condition (i) or (ii)
is satisfied by vector b.

• Case (i): Let bi ≥ 0 for all 1 ≤ i ≤ k, bTA = 0, and bα = 1 for some α, 1 ≤ α ≤ k. We
have

∑k
i=1

∑k
j=1 biAijnj = 0. Consequently, assuming ni ≥ 2, for all 1 ≤ i ≤ k, we may

write:

Eδ(t) = − 1

2n2

k∑
i=1

k∑
j=1

bi
nj
ni

(
Pij

(
1− r+(ni)

ni

)
+ Pji

(
1 +

r−(ni)

ni

))
(6)

≤− 1

3n2

k∑
i=1

k∑
j=1

bi
nj
ni

(Pij + Pji) ≤ −
bα

3n2nα

k∑
j=1

nj (Pαj + Pjα) ≤ −Pmin

3n3
.
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In the above transformations, we took into account the fact that all bi are non-negative,
that 0 ≤ r+(ni), r

−(ni) ≤ 2/3 for ni > 1, and that by convention, the nonnegative-valued
matrix P has a non-zero entry in every row or corresponding column.

We now define a random variable δ′(t), given as δ′(t) = δ(t) + Pmin
3n3 in every step of the

process where ni ≥ 2, for all 1 ≤ i ≤ k, and set δ′(t) = 0 for all other steps of the process.
Clearly, Xt =

∑t
τ=0 δ

′(τ) is a super-martingale in t, satisfying the bound |Xt −Xt−1| ≤

|δ(t)| < 2 by (4). By Azuma’s inequality, Pr[Xt <
Pmin
6n3 t] ≥ 1 − exp

[
−
(
Pmin
6n3 t

)2
1
8t

]
=

1−O(e−n), for any sufficiently large value of t = Ω(n7). Observe, however, that the events
“δ′(τ) = δ(τ) + Pmin

3n3 for all τ ≤ t” and “Xt <
Pmin
6n3 t” cannot hold simultaneously, since

otherwise we have U(0) − U(t + 1) = Pmin
3n3 t − Xt >

Pmin
6n3 t = Θ(n4). On the other hand,

xi ≥ 1/n and so every potential U(τ) satisfies:

|U(τ)| ≤ k lnn = O(lnn),

hence such a potential difference is impossible. It follows that the probability that we
have ni ≤ 1, for some 1 ≤ i ≤ k, for all except at most Θ(n7) steps of the process, is
1−O(e−n).

• Case (ii): Let h = bTA, with hi ≥ hmin > 0 for all 1 ≤ i ≤ k, and let ‖b‖∞ = 1. Assuming
ni ≥ nmin = max{2, 2k

hmin
}, for 1 ≤ i ≤ k, we now have:

Eδ(t) =
1

n2

k∑
i=1

hini − k∑
j=1

bi
nj
2ni

(
Pij

(
1− r+(ni)

ni

)
+ Pji

(
1 +

r−(ni)

ni

))
≥ 1

n2

k∑
i=1

hminni −
k∑
j=1

nj
2nmin

(
4

3
+

4

3

) =
hmin

n

(
1− 4k

3nminhmin

)
≥ hmin

3n
.

Similarly as in the case of condition (i), we define a random variable δ′(t), given as
δ′(t) = δ(t)− hmin

6n in every step of the process where ni ≥ nmin, for all 1 ≤ i ≤ k, and set

δ′(t) = 0 for all other steps of the process. This time, Xt =
∑t

τ=0 δ
′(τ) is a sub-martingale

in t, satisfying the bound |Xt−Xt−1| ≤ |δ(t)| < 4
nmin

by (4). Applying Azuma’s inequality

once again, we obtain Pr[Xt > −hmin
6n t] ≥ 1 − exp

[
−
(
hmin
6n t

)2
1

2(4/n2
min)t

]
= 1 − O(e−n),

for a sufficiently large value of t = Θ(n2). By a similar potential difference argument as
before, we obtain that the event ni < nmin, for some 1 ≤ i ≤ k, occurs within the first
Θ(n2) steps with probability 1−O(e−n).

This completes the proof of the claim.

To obtain the claim of the theorem, we now need to notice that whenever the population
of some type drops below a constant threshold nmin, the probability that the population is
eliminated completely within the next O(1) steps of the irreducible protocol is polynomially
large in n. Indeed, suppose we have ni(t) ≤ nmin. Then, by the irreducibility of the protocol,
there must exist an active predator j of type i, 1 ≤ j ≤ k, with Pji ≥ Pmin and nj ≥ 1 by
assumption. The probability that species i is eliminated in the next ni(t) steps can be lower-
bounded by the probability of the occurrence of elimination of a representative of population i
by a representative of population j in each of those steps, (Pmin

n2 )nmin = 1/O(n2nmin). Overall,
after at most O(n2nmin+1) occurrences of the event “there exists 1 ≤ i ≤ k such that ni < nmin”,
each of which takes place every polynomial number of steps w.v.h.p. by the Claim, one of the
species will have been eliminated completely w.v.h.p., which gives the claim of the theorem.

9



We remark that the key property of LV-type protocols (i.e., that prey is changed to the
same type as the predator) is essential in guaranteeing the polynomial time of reaching an
absorbing state. For example, consider the following (non-LV) population protocol on 3 types
a,b, and c: {ab → ac, ac → aa, ca → cb, ba → bb, bb → ba}, where all the transitions occur
with probability 1. This protocol always preserves the type of the predator, but sometimes
sets the third type as the type of the prey. For this protocol, for any initialization such that
na(0) = Ω(n), nb(0) = Ω(n), the expected time to reach an absorbing state is exponential in n.

2.2 Rock-Paper-Scissors with the Star Interaction Graph

It turns out that for LV-type protocols, the convergence time may become exponential when the
interaction graph is not complete. Whereas all LV-type protocols with 2 species (e.g., the game
of life-and-death [14]) converge in polynomial time to an absorbing state for any interaction
graph, this is no longer true when the number of species is at least 3. We observe this for the
rock-paper-scissors (RPS) protocol on the star.

Definition 2.1. The Rock-Paper-Scissors (RPS) protocol is the LV-type protocol with k = 3

populations, given by the following matrix: P =

 0 1 0
0 0 1
1 0 0

.

Theorem 2.2 (RPS convergence on the star). The RPS protocol with a K1,n interaction graph,
initialized so that initially each type has at least nmin ≥ n/3−n/200 agents, reaches the absorbing

state in expected time Tabs ≥ en
Ω(1)

.

Proof. In this section we will fix G = (V,E) as a star on n + 1 vertices, or equivalently full
bipartite graph K1,n: V = {0, 1, . . . , n}, E = {(0, 1), (0, 2), . . . , (0, n)}. Full state of the system
is encoded by a quadruple St = (st(0), n1(t), n2(t), n3(t)) (for clarity of notation, we do not
count the state of a middle vertex towards any of ni(t)).

Thus, the transition probabilities of system are given as follow (assuming st(0) = 1 w.l.o.g.):

St+1 =(st+1(0), n1(t+ 1), n2(t+ 1), n3(t+ 1)) =

=


(1, n1(t), n2(t), n3(t)) with probability n1(t)

n

(1, n1(t) + 1, n2(t)− 1, n3(t)) with probability n2(t)
n

(3, n1(t), n2(t), n3(t)) with probability n3(t)
n

We define a sequence of timesteps of RPS process, that marks changes of st(0). More
specifically, we define a sequence of timesteps, where t0 = 0, and ti+1 is the smallest value
larger than ti such that sti+1(0) 6= sti(0).

Let us denote by d(t) = nmax(t)− nmin(t) the difference between largest and smallest of the
population. We denote the potential U(t) = n1(t)n2(t)n3(t).

Let T be an arbitrary timestep such that U(T ) ≤ 0.037025·n3, while U(T−1) ≥ 0.037025·n3.
Since

min
x∈[−1/300,1/300]

(1/3 + x)(1/3− 1/200− x/2)(1/3− 1/200 + x/2) ≥ 0.037025

then d(T ) ≥ n/100.
Let ∆T = n/1000. Thus, for any t ∈ [T, T + ∆T ], d(t) ∈ [ 8

1000n,
12

1000n]. Thus we denote
ti = T < ti+1 < ... < ti+∆i ≤ T + ∆T .

10



With probability at least (1− e−nΩ(1)
) we have tj+1− tj ≤ n0.1. Thus below we assume this

bound on length of this gap, and at the end of this analysis we will have to acknowledge the
failure probability of e−n

Ω(1)
.

Thus, ∆i ≥ n0.9. Let us take arbitrary tj such that T ≤ tj ≤ tj+3 ≤ T + ∆T . W.l.o.g. we
can assume that Stj = 1. Denote ∆1 = tj+1 − tj , ∆2 = tj+2 − tj+1 and ∆3 = tj+3. Thus, the
state at tj+3 fulfills:

(n1(tj+3), n2(tj+3), n3(tj+3)) = (n1(tj), n2(tj), n3(tj)) + (∆1 −∆2,∆3 −∆1,∆2 −∆3),

where:

E[∆1|Stj ] = λ1
n2(tj)

n3(tj)

E[∆2|Stj ] = λ2
n1(tj)

n2(tj)

E[∆3|Stj ] = λ3
n3(tj)

n1(tj)

λ1, λ2, λ3 ∈ [1−O(n−0.9), 1 +O(n−0.9)]

We can bound the expected potential change:

E[U(tj+3)− U(tj)|Stj ] = λ2n1(tj)
2 − λ3n2(tj)n3(tj) + λ3n3(tj)

2− (7)

− λ1n1(tj)n2(tj) + λ1n2(tj)
2 − λ2n1(tj)n3(tj) +R(tj)

where

R(tj) = n1(tj)E[(∆3 −∆1)(∆2 −∆3)|Stj ] + n2(tj)E[(∆1 −∆2)(∆2 −∆3)|Stj ]+
+ n3(tj)E[(∆1 −∆2)(∆3 −∆1)|Stj ] + E[(∆1 −∆2)(∆3 −∆1)(∆2 −∆3)|Stj ]

and satisfies
|R(tj)| = O(n).

Lemma 2.3.

E[U(tj+3)− U(tj)|Stj ] ≥
1

2
d(tj)

2(1−O(n−0.9))

Proof. Let us denote: ~u = (λ2n1(tj), λ1n2(tj), λ3n3(tj)), ~v = (n1(tj), n2(tj), n3(tj)), ~w =
(n3(tj), n1(tj), n2(tj)).

We can rewrite (7) to:

E[U(tj+3)− U(tj)|Stj ] = ~u ◦ (~v − ~w) +R(tj).

We denote ](~u,~v) = ε, ](~v − ~w,~v) = α and ](~v − ~w, ~u) = α′.

Observe, that |~u− ~v| ≤ O(n−0.9)|~v|. Thus, from sin(ε) ≤ |~u−~v||~v| , we have ε = O(n−0.9).

Observe, that |~v| = |~w| and that |~v − ~w| = Θ(d(tj)), thus

cosα = sin(
1

2
](~v, ~w)) = 1/2

|~v − ~w|
|~v|

= Θ(1)

Thus, since:

~v ◦ (~v − ~w) =
1

2
((n1(tj)− n2(tj))

2 + (n2(tj)− n3(tj))
2 + (n3(tj)− n1(tj))

2),
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we can bound:

~u ◦ (~v − ~w) = |~u||~v − ~w| cosα′ = (~v ◦ (~v − ~w))
|~u|
|~v|

cosα′

cosα
≥

≥ 1

2
d(tj)

2(1−O(n−0.9))
cos(α+ ε)

cosα
=

1

2
d(tj)

2(1−O(n−0.9))(cos ε− tanα sin ε) =

=
1

2
d(tj)

2(1−O(n−0.9))(1−O(n−0.9)2 −Θ(1) · O(n−0.9)) =
1

2
d(tj)

2(1−O(n−0.9))

which, since R(tj) = O(n), gives the desired claim.

We also observe following bound on potential change:

|U(tj+3)− U(tj)| ≤ 3 · n0.1 · O(n) · O(n) = O(n2.1)

We define a following submartingale:

W(i) = U(t3i)− i ·
1

2
· 1

1252
n2 · (1−O(n−0.9))

(being submartingale follows from application of Lemma 2.3 and observation that d(tj) ≥ 1
125n).

By application of Azuma’s inequality:

P (W(0)−W(
1

3
∆i)) ≥ Θ(n2.75)) ≤ e−

Θ(n5.5)

∆i·O(n4.2) = e−Ω(n0.3)

which is equivalent to saying, that w.v.h.p.:

U(t∆i) ≥ U(t0)−Θ(n2.75) + ∆i ·Θ(n2)(1−O(n−0.9)) > U(t0).

Thus, taking into account original e−n
Ω(1)

probability of failure, we get a following: for any
timestep T such that U(T ) falls below particular threshold, there exists w.v.h.p. a timestep
T ′ > T such that U(T ′) > U(T ). Thus the expected time to reach the absorbing state (which

requires U = 0) is at least en
Ω(1)

.

3 The Wolves-and-Sheep (WS) Protocol

In this section, we investigate the dynamics of the Wolves-and-Sheep LV-type protocol, aiming
at replicating dynamics of infection spreading for two different infections and two types of partial
immunity to infections.

Definition 3.1. The Wolves-and-Sheep (WS) protocol is the LV-type protocol with k = 4

populations (denoted X,Y, x, y), given by the following matrix: P =


0 1 1 1

2
1 0 1

2 1
0 0 0 0
0 0 0 0


In the considered setting, initially almost all the population consists of types x and y (sus-

ceptible agents known as “sheep”). A constant number of infected agents of types X and Y (the
“wolves”) are introduced into the population. Following the definition of the protocol, a wolf
acting as a predator infects a sheep of a type denoted by the same lower-case with probability
1, and a sheep of the opposite lower-case type with smaller probability (1/2). Thus, in the
protocol, population x of sheep has affinity towards X (or resistance for Y ), and population y
has affinity towards Y (or resistance for X).

12



A real-world setting for such a protocol is the following. Initially, a population of users
has smartphones of two different manufacturers (say, xPhones and yPhones). Simultaneously,
each of the manufacturers introduces a new smartphone model into the market. Upon meet-
ing someone with a new phone, a user will be convinced to upgrade to this model with some
probability, which is higher if they are already a user of the older product of the same manufac-
turer. How will the balance of market share of the two manufacturers change after the whole
market has adopted the new phone? It turns out that the market share of the new products
grows exponentially in time, until almost all users have upgraded. However, the growth rate for
the manufacturer with the initially (slightly) larger market share is larger, hence eventually, it
dominates almost all of the market.

We note that in the definition of the WS protocol, we also add some random drift between
the species X and Y , which does not affect the nature of the process, but allows us to achieve
an absorbing state in which eventually only the dominant type is represented.

Theorem 3.1 (majority amplification by WS). Let nX(0) = 1, nY (0) = 1, nx(0) = Θ(n) and

ny(0) = Θ(n), such that nx(0)
ny(0) = 1+ε

1−ε for some absolute constant ε > 0. Then the system reaches

the absorbing state with only population X, w.h.p.

Proof. We will divide the analysis into three consecutive phases.

Phase I. In the first steps of the process, we experience rather random behavior due to the
small populations of the wolves. Whereas we would like to show that nX(t)� nY (t), this may
initially not be the case: after cn steps, for c� log n, with probability roughly e−c we still have
nX(t) = 1, while nY (t) satisfies exponential growth and in expectation we have EnY (t) = 2Ω(c).
However, we can bound this behavior, showing that at some time tf = Θ(n log n), population
X has grown to nX(tf ) = Ω(log n), while nY (tf ) is bounded by a small polynomial of n, w.h.p.

Specifically, in Phase I we run the process for f = log2(α lnn) − 4 iterations, with the i-th
iteration, i = 1, 2, . . . , f starting at time ti−1 and ending at time ti (we assume t0 = 0). The
duration of the i-th iteration is δti = ti − ti−1 = αn lnn

2i
time steps, with α = 0.01ε.

We start by upper-bounding the size of population nY (tf ) at the end of the phase; note that
tf < 2αn lnn. We can trivially dominate the growth process for nY (t) by a simpler unbounded

growth process n′Y (t) given by the dependence: n′Y (t+1) = n′Y (t)+1 with probability
n′Y (t)
n and

n′Y (t+ 1) = n′Y (t), otherwise. For any c1 log2 n < s < log2 n− 1, where c1 > 0 is an arbitrarily
small positive absolute constant, by an application of Chernoff bounds for the negative binomial
distribution, we can lower-bound the length of the time interval during which n′Y grows from
2s to 2s+1 as at least n/4, with probability 1− n−Ω(1). Thus, we have at time tf :

nY (tf ) ≤ n′Y (tf ) ≤ 2c1 log2 n2
tf
n/4 < nc1+8α < n10α,

w.h.p, for a suitably chosen value of c1. Likewise, we can show that nX(t) < n10α and nY (t) <
n10α for all t ≤ tf , w.h.p.

Next, conditioned on the above events, we lower-bound the size of nX(tf ), considering the
value nX(ti) at the end of each iteration. Note that the probability of an interaction between
an individual from X and an individual from Y during Phase I can be upper-bounded as
O(tf

n10α

n
n10α

n ) = Õ(n−1+20α), thus we can assume that no such interaction occurs during Phase
I, w.h.p. We now prove by induction that in each of the f iterations of the phase, the value of
nX increases by a multiplicative factor of 2, w.h.p. By the inductive assumption, fix 1 ≤ i ≤ f
and let nX(ti−1) ≥ 2i−1. Since we have throughout the i-th iteration that nX(t) < n10α and
nY (t) < n10α, it follows that nx(t) + ny(t) ≥ 1 − n20α > 1

2 . Thus, process nX during our i-th
iteration dominates the growth process n′X , such that nX(ti−1) = 2i−1 and nX(t+1) = nX(t)+1

13



with probability 2i−1

4n and n′X(t + 1) = n′X(t), otherwise. Once again, applying the Chernoff
bound for the negative binomial distribution, we can upper-bound w.h.p. the length of the time
interval τi during which n′X grows from 2i−1 to 2i as:

τi ≤
4n

2i−1
(c2 lnn+ 2(2i − 2i−1)) =

(8c2)n lnn

2i
+ 8n ≤ (8c2 + α/2)n lnn

2i
<
αn lnn

2i
= δti,

where the first inequality holds with probability 1 − nΩ(1) for any arbitrarily small absolute
constant c2 > 0, and the last inequality holds when we choose c2 < α/16. In this way, we
have obtained the inductive claim, and overall, we have nX(tf ) ≥ 2f > α

16 lnn, w.h.p. By an
analogous analysis, we obtain nY (tf ) ≥ 2f > α

16 lnn, w.h.p.

Phase II. In the second phase, we start with populations of wolves α
16 lnn < nX(tf ) < n10α

and α
16 lnn < nY (tf ) < n10α. We will show that both populations now experience exponential

growth, but with a larger growth rate for population X. By the time the total population of
wolves has grown to a level of Θ(n/ log n), we have that nX asymptotically outgrows nY .

Let T be the first time step such that at least one of the populations of wolves exceeds the
threshold n

logn , i.e., nX(T ) = n
logn or nY (T ) = n

logn . Starting from time step tf , we will divide
time into intervals of duration βn, where β > 0 is a sufficiently small positive constant (we put
β = ε

128). We will now obtain w.h.p. bounds on the growth rate of the two processes during each
such time interval, until time T . (Since the population of wolves treated as a whole undergoes
exponential growth, we have T = O(n log n) w.h.p., thus we will need to perform union bounds
on only a small number of events associated with the O(log n) time intervals until time T .)

Now, fix a time interval It = [t, t+βn], for tf ≤ t ≤ T . Within this interval, we construct an
undirected graph Gt = (V,Et), where V is the population, and Et is the set of all pairs of agents
{i, j}, such that there exists an interaction between i and j during interval It. We observe that
Gt ∼ G′(n,m) where G′(n,m) is a variant of the Erdős-Rényi random graph model where we
choose m = βn edges uniformly at random, discarding repeated edges. This corresponds to an
average edge density of approximately 2β

n . For i ≥ 1, let V = S≤2 ∪ S>2, where S≤2 and ∪S>2

are subsets of agents belonging to connected components of Gt having at most 2 vertices and
more than 2 vertices, respectively. By performing a random graph analysis, we have w.h.p.:

|S≤2| ≥(1− o(1))

((
1− 2β

n

)n−1

n+ 2
2β

n

(
1− 2β

n

)2n−3(n
2

))
≥

≥(1− 2β)n+ 2βn(1− 4β) ≥ n− 8β2n.

Thus, we have |S>2| < 8β2n, w.h.p. Denoting by Y>2 = S>2 ∩ Y (t), by independence of choice
of sets S>2 and Y (t) and a simple Chernoff bound, we obtain |Y>2| < 16β2nY (t), w.h.p. We
will upper bound the size of set Y (t+ βn) as follows:

nY (t+ βn) ≤ nY (t) + ∆Y [t, t+ βn] + |Y>2|,

where ∆Y [t, t + βn] is the number of individuals which joined Y as a result of interactions
having individuals from set Y (t) as the initiator in the time interval [t, t+ βn]. The number of
considered interactions can be upper-bounded as (1+c3)βnY (t), for an arbitrarily small positive
constant c3 > 0, w.h.p. In each interaction involving an element of set Y (t), the current size
of Y increases by 1 if the interaction involves an element from y, and remains unchanged
otherwise. We can thus upper-bound the value ∆Y [t, t + βn] through stochastic domination,
running a process Y ′ for (1 + c3)βnY (t) steps, starting from Y ′0 = 0 and increasing Y ′ by 1 with
probability pY in each step, where:

pY =

(
1

2
− ε
)

+
1

2

(
1

2
− ε
)
≤ 3

4
− ε

2
.
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Applying another simple Chernoff bound, we eventually obtain w.h.p.:

∆Y [t, t+ βn] ≤(1 + c3)βnY (t) · (1 + c3)pY ≤

≤(1 + 3c3)

(
3

4
− ε

2

)
βnY (t) ≤

(
3

4
− ε

4

)
βnY (t),

for sufficiently small choice of constant c3. Overall, we have w.h.p.

nY (t+ βn) ≤
(

1 +

(
3

4
− ε

4
+ 16β

)
β

)
nY (t) ≤

(
1 +

(
3

4
− ε

8

)
β

)
nY (t). (8)

Now, we lower-bound the rate of growth of nX in the time interval [t, t + βn]. Since we have
nY ≤ n

logn throughout the considered interval, the number of interactions in the time interval
[t, t+ βn] having an element from X(t) as the prey can be upper-bounded as c4 lnn, w.h.p., for
an arbitrarily small positive constant c4 > 0. We denote by X∗(t) the subsect of individuals
from X(t) which do not become prey during the considered time interval; we have |X∗(t)| ≥
nX(t)− c4 lnn ≥ (1− 16c4

α )nX(t), for a suitable choice of constant c4. Now, we lower-bound the
number of interactions involving an individual from X∗ as the initiator during the time interval
[t, t + βn] as (1 − c5)βX∗(t), w.h.p., for an arbitrarily small constant c5 > 0. Since we have
nx ≥ (1+ε)n2 −

2n
logn and ny ≥ (1−ε)n2 −

2n
logn throughout the considered Phase II of the process,

it follows that the probability of increasing nX by 1 in a step in which an element from X∗ is
the initiator is at least:

pX =

(
1

2
+ ε− 2

log n

)
+

1

2

(
1

2
− ε− 2

log n

)
≥ 3

4
+
ε

2
− 3

log n
.

Overall, we get that the number of new elements joining X in time interval [t, t + βn] is at
least (1− c6)β

(
3
4 + ε

2

)
X∗(t), w.h.p., for an arbitrarily small positive constant c6 > 0. Of these

elements, we likewise have that (an arbitrarily small) constant proportion will be lost due to
interactions initiated by Y within the interval [t, t+βn], whereas the remaining ones will belong
to X(t+ βn). Overall, we obtain w.h.p.:

nX(t+ βn) ≥ X∗(t) + (1− c7)β

(
3

4
+
ε

2

)
X∗(t) ≥(

1 + (1− c7)β

(
3

4
+
ε

2

))(
1− 16c4

α

)
nX(t) ≥

(
1 +

(
3

4
+

3ε

8

)
β

)
nX(t) (9)

for some suitable choice of arbitrarily small positive constant c7 > 0 and of c4.
Equations (8) and (9) provide a separation of the growth rates of processes X and Y .

Observe, that for small enough β, we have (since 3/4+ε3/8
3/4−ε/8 < 1 + 2

3ε):

nX(t+ βn)

nX(t)
≥
(
nY (t+ βn)

nY (t)

)1+ 2
3
ε

.

Thus, we eventually obtain at the end of Phase II, w.h.p.: nX(T ) = n
logn , nY (T ) =

O(n0.1ε+1/(1+2/3ε)) = O(n1−ε 3
10 ) for ε ≤ 1.

Phase III. We are now in a situation that, w.h.p., in some timestep T0, nX(T0) ≥ n
logn ,

nY (T0) = O(nκ) for some constant 3
4 ≤ κ < 1. We can safely assume, that nY (T0) = Θ(nκ),

since by a simple coupling argument, swapping some of x and y for Y cannot help with reaching
absorbing state of only X.

We will analyse the speed of growth of both nX(t) and nY (t).
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Claim 3.2. There is increasing sequence of steps T0, T1, T2, . . . , Tj such that Tj is the first ele-

ment of this sequence satisfying nx(Tj)+ny(Tj) < n3/4, such that, w.h.p.: nY (Ti)
nY (T0) ≤

(
nX(Ti)
nX(T0)

)12
,

and that nX(Ti) = Θ̃(nX(T0)).

Proof. We proceed by induction on i:
We assume we have a moment Ti ≥ T0. From the inductive assumption: nY (Ti) =

Θ̃(nY (T0)) = Θ̃(nκ), and that nx(Ti) + ny(Ti) = Ω(n3/4). We pick as Ti+1 a timestep such
that in timesteps {Ti, . . . , Ti+1} there are nY (Ti)) events of X or Y attacking x or y.

Since nx(t) + ny(t) ≥ 1
2n

3/4, at each step with probability at least (1
2 − o(1))n−1/4 there is

attack of X or Y on x or y. Thus, by Chernoff bound, following is w.h.p.:

Ti+1 − Ti = 4n1/4nY (Ti)

Thus, the attacks of X on Y and of Y on X (a random walk, so to speak) accounts, w.h.p.,
for a change of population in the timesteps Ti, . . . , Ti+1 (denoted as ∆i):

∆i ≤ (Ti+1 − Ti)2/3 = Õ(nκ · n1/4)2/3 = o(nκ) = o(nY (Ti))

Observe that for any Ti ≤ t ≤ Ti+1:

nY (t) ≤ 2nY (Ti) + ∆i ≤ 2.01nY (Ti),

nY (t) ≥ nY (Ti)−∆i ≥ 0.99nY (Ti),

nX(t) ≤ nX(Ti) + nY (Ti) + ∆i ≤ 1.01nX(Ti),

nX(t) ≥ nX(Ti)−∆i ≥ 0.99nX(Ti).

Thus, if in the timestep t one of the members of populations x or y is drawn as a second
participant and one of X or Y is drawn as a first participant, we have increase in population of
X with probability at least (1− pi)/2 and increase in population of Y with probability at most
pi, for

pi ≤
nY (t)

nX(t) + nY (t)
≤ 2.03 · nY (Ti)

nX(Ti)
.

So, by Chernoff bound, we have, w.h.p:

nY (Ti+1) ≤ nY (Ti) + nY (Ti) · 1.1 · pi + ∆i ≤ nY (Ti) · (1 + 3
nY (Ti)

nX(Ti)
) (10)

nX(Ti+1) ≥ nX(Ti)−∆i + nY (Ti) · 0.9 · (1− pi)/2 ≥

≥ nX(Ti) ·
(

1 + 1
3
nY (Ti)
nX(Ti)

− 1
3

(
nY (Ti)
nX(Ti)

)2
)

(11)

From the inductive assumption:

nY (Ti)

nX(Ti)
= Θ̃(nκ−1). (12)

Thus, we observe that (by (11) and (12)):

nX(Ti+1) ≥ nX(Ti) ·
(

1 +
1

4

nY (Ti)

nX(Ti)

)
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and using (10):

nY (Ti+1)

nY (Ti)
≤
(
nX(Ti+1)

nX(Ti)

)12

which completes the inductive proof of claim.
Thus, we can now complete the proof of main theorem. By Lemma 3.2, at moment Tj we

will have following: nX(Tj) = Θ(n), nY (Tj) = O(nκ · (log n)12), nx(Tj) + ny(Tj) = O(n3/4).
At this moment, we can as well assume that all of x and y becomes Y , giving us a win for X

in following life-death game of wolves with probability at least 1− n3/4+nκ(logn)12

n , which holds
w.h.p.

4 The Rock-Paper-Scissors (RPS) Protocol

In this section, our goal is to show that the RPS protocol reaches each of absorbing states
with almost equal probability, given that the initial population of each species is linear (or
slightly sub-linear) in n. We recall that the probability matrix of the RPS protocol is given

by Definition 2.1. The corresponding matrix A is the following: A =

 0 1 −1
−1 0 1

1 −1 0

. The

RPS protocol admits a cyclic symmetry of behavior with respect to its species. For each of the
species a ∈ {1, 2, 3}, the relative change ∆xa in population of this species in the given step can
be expressed as:

∆xa =
1

n
·∆na =


+1/n, with probability xaxa+1,

−1/n, with probability xa+2xa,

0, otherwise,

(13)

where the population of at most one species changes in every step. The indices of populations
are always 1, 2, or 3, and other values should be treated as mod 3, in the given range. We
also introduce the continuous dynamics x̄(t) corresponding to the RPS process, given for each
species by the differential equation:

dx̄a
dt

=
x̄a
n

(x̄a+1 − x̄a+2), (14)

which corresponds precisely to the continuous dynamics (1), up to an additional time-scaling
factor of n introduced for easier comparison with the discrete process. In all further considera-
tions, we set the potential U used in the analysis as:

U(x) =
3∑
i=1

lnxi = ln(x1x2x3).

Lines U = const correspond to orbits in the continuous setting (14).

Theorem 4.1 (coin-flip consensus property of RPS). For any state x such that xa > n−0.002

for all a ∈ {1, 2, 3}, the probability of the system reaching any one of its three possible absorbing
states is 1

3 ± Õ(n−0.05).

The rest of this section is devoted to the proof of Theorem 4.1. The proof of the theorem
relies on the observation that the discrete RPS protocol approximately follows the limit cycle
(orbit) of its continuous version. More precisely, we will observe that for an appropriately
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chosen starting state x(0) = (x1, x2, x3) of the system, there is a time moment t (corresponding
to an approximate traversal of 1/3 of the limit cycle) for which the state is given as x(t) =
(x3 + ∆x3, x1 + ∆x1, x2 + ∆x2), with ∆xi sufficiently small. We will then use this to observe
that if the probability of reaching any fixed absorbing state i from state (x1, x2, x3) is p and
of reaching absorbing state i from state (x1 + ∆x1, x2 + ∆x2, x3 + ∆x3) is p∆, then by cyclic
symmetry of populations, the probability of reaching state (i+ 1) mod 3 from state x(t) is also
p∆. If p ≈ p∆, then state x(0) leads to absorbing states i and (i + 1) mod 3 with almost the
same probability.

At an intuitive level, the main arguments of the proof are the following. To show that the
probability of reaching an absorbing states are almost the same for points x(0) = (x1, x2, x3) and
y(0) = (x3, x1, x2), we perform a coupling of walks starting from x(0) and y(0). Here, coupling
of Markovian processes is understood in the usual sense (cf. e.g.[18]), though it is worth noting
that since we are interested only in reaching an absorbing state (and not measuring the number
of steps after which such a state is reached), we can in some steps of the coupling decide to
delay one of the walks, allowing the other to run, provided that each of the processes remains
unbiased. For simplicity, suppose that a walk x is located at a point at which all populations
are of linear size in N and the difference in size between the largest and smallest population is
also linear in n (e.g., U(x) = −20.) The behavior of the (undelayed) walk x under our evolution
in the next t steps (for t sufficiently small with respect to n) can be seen as a superposition of
three types of motion:

1. Propagation along the trajectory U(x) = const at a speed approximately given by the
evolution of the continuous process (14). The Euclidean distance traversed in a single
step is Θ(1/n), or Θ(t/n) over t steps.

2. Random drift along the trajectory U(x) = const (slowing or accelerating with respect to
the average speed). Over a short interval time of length t, this drift shifts the point by
±Õ(
√
t/n) along its trajectory.

3. Random drift orthogonal to the trajectory U(x) = const. Over a short interval time of
length t, this drift shifts the potential U of the point by ±Õ(

√
t/n).

The analysis of the process is somewhat technical, since the two types of random drift have
slightly biased averages (in particular, in Section 2.1 we took advantage of the fact that the
orthogonal drift has an outward bias over very long intervals of time), the probabilities of
different moves are changing over time, and the motion in different directions is not independent.
The drift and the propagation speed also depend on the relation between the maximum and
minimum of the sizes of the three populations, which change in time. Nevertheless, the random
drifts of our process behaves closely enough to a combination of independent random walks
that we can deal with them with a martingale-type analysis. We present the necessary tools in
Subsection 4.1, formulating them so that the claims hold even when the smallest population is
sublinear. After that, in Subsection 4.2 we formalize our coupling framework and perform the
claimed coupling of the points x and y (Lemma 4.8).

4.1 Technical lemmas

To begin with, we recall the following simple property of a simple random walk on a line: a
walk starting from point 0 and proceeding for T steps is confined to an interval of the form
[−Õ(

√
T ), Õ(

√
T )] w.v.h.p, but is likely to hit all points at a distance of o(

√
T ) from 0. By a

Doob martingale analysis, we state a generalization of this property applicable to a wider class
of processes (to the best of our knowledge requiring weaker assumptions than those in bounds
given in the literature).
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Lemma 4.2 (concentration and anti-concentration). Let ε > 0 be an absolute constant. For
t = 1, . . . , T , let X(t) =

∑t
τ=1 δ(τ), be a random process which satisfies the following condition

for some non-negative parameters c, α, σ: If |X(t− 1)| ≤ c
√
T 1+ε + αT , then:

(i) δ(t) is a bounded random variable, regardless of the history of the process:

|δ(t) | δ(t− 1), δ(t− 2), . . . , δ(0)| ≤ c,

(ii) The expectation of δ(t) is bounded, regardless of the history of the process:

|E(δ(t)|δ(t− 1), δ(t− 2), . . . , δ(0))| ≤ α,

(iii) The standard deviation of δ(t) is lower-bounded, regardless of the history of the process:

|Var(δ(t)|δ(t− 1), δ(t− 2), . . . , δ(0))| ≥ σ2.

Then:

• (Concentration bound) With probability at least 1− e−Ω(T ε) we have:

∀t∈{1,...,T} |X(t)| ≤ c
√
T 1+ε + αT. (15)

• (Anti-concentration bound) For any D ≥ c, with probability

at least 1− 82
(
c2

σ2
(D+αT ) lnT

σ
√
T

)2/3
, we have:

∃t∈{1,...,T} X(t) ≥ D. (16)

Proof. We apply a succession of Doob-type martingale filters to the process under consideration.
For a given realization of the process, let X ′(t) =

∑t
τ=1 δ

′(τ), where δ′(τ) ≡ δ(τ)−E(δ(τ)|δ(τ−
1), δ(τ − 2), . . . , δ(0)) if X ′(t − 1) ≤ c

√
T 1+ε, and δ′(τ) ≡ 0, otherwise. In other words, we

convert our process into a martingale by subtracting expectations of increments, and at the
same time enclose X ′(t) between two “barriers” placed at ±(c

√
T 1+ε). If one of these barriers

is crossed, X ′ becomes fixed at this value thereafter.
For the concentration bound, we start by showing that X ′(t) has very small probability of

crossing one of the barriers. Indeed, for all moments of time t before the barriers are hit we
have, X(t) = X ′(t) +

∑t
τ=1 E(δ(τ)|δ(τ − 1), δ(τ − 2), . . . , δ(0)), and |X ′(t)| ≤ c

√
T 1+ε. We

immediately have by induction on time that then the conditions |X(t)| ≤ c
√
T 1+ε + αT and

|E(δ(τ)|δ(τ − 1), δ(τ − 2), . . . , δ(0))| ≤ α are satisfied, and so |δ(t)| ≤ c and also |δ′(t)| ≤
2c. For any moment of time t after one of the barriers is hit we have δ′(t) = 0; thus, the
condition |δ′(t)| ≤ 2c holds throughout the time interval t = 1, . . . , T . By Azuma’s inequality
for martingales, we have for any time t:

Pr[|X ′(t)| ≥ c
√
T 1+ε] ≤ 2 exp

(
− c2T 1+ε

2(2c)2T

)
= 2e−T

ε/8.

Thus, taking the union bound over all moments of time, the bound [|X ′(t)| < c
√
T 1+ε] holds

throughout the time interval t = 1, . . . , T with probability p1 = 1 − Te−T ε/8 = 1 − elnT−T ε/8.
Thus, with probability p1 the barriers are not reached, and we have |δ′(t)−δ(τ)| ≤ α throughout
the entire time interval [1, T ]. Thus, we obtain that the sought concentration bound for process
X holds with probability p1 = 1− e−Ω(T ε).
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To show the anti-concentration bound, fix D′ > c arbitrarily. We will upper-bound the
probability p2 that the martingale X ′ does not hit a barrier located at level D′ (i.e., p2 =
Pr[∀t∈{1,...,T} X ′(t) < D′]). Unlike probability p1, which is very close to 1, we expect p2 to be

close to 0. Define martingale X ′′(t) =
∑T

τ=1 δ
′′(τ), where δ′′(τ) ≡ δ′(τ) if X ′′(τ − 1) < D′,

and δ′′(τ) = 0 otherwise. Observe that, conditioned on the events that process X ′ does not hit
either of its barriers at ±(c

√
T 1+ε) (which holds with probability at least p1) and that process

X ′′ does not hit its barrier at D′ (which holds with probability p2), in a given realization of the
process, δ′′(t) and δ(t) have the same variance. Thus, by (iii) we can write the following bound
on the variance of δ′′(t) which holds without conditioning:

Var(δ′′(t)) ≥ p∗2σ2,

where we introduce the notation: p∗2 = p2 − (1 − p1) = p2 − elnT−T ε/8. We now show that

p2 ≤ 16
(
c4

σ4
D′2

σ2T 1−2ε

)1/3
+elnT−T ε/8. Suppose, to the contrary, that p∗2 > 16

(
c4

σ4
D′2

σ2T 1−2ε

)1/3
. By

the additivity of variance of a martingale over its elements, we have:

E(X ′′2(T )) = Var(X ′′(T )) =
T∑
t=1

Var(δ′′(t)) ≥ p∗2σ2T.

On the other hand, since |X ′′(t)| ≤ c
√
T 1+ε + c ≤ 2c

√
T 1+ε by the same bound imposed on

process X ′(t) through its definition, t ∈ {1, . . . , T}, we also have:

X ′′2(T ) ≤ 4c2T 1+ε.

Since X ′′2(T ) is an upper-bounded non-negative random variable, we can apply Markov’s in-
equality to lower-bound its heavy tail:

Pr

[
X ′′2(T ) ≥ p∗2σ

2T

4

]
≥ 1

2

p∗2σ
2T

4c2T 1+ε
=

1

8
p∗2σ

2c−2T−ε (17)

and by transforming the expression on the left-hand side, we get:

Pr

[
|X ′′(T )| ≥ 2D′

√
p∗2σ
√
T

4D′

]
≥ 1

8
p∗2σ

2c−2T−ε, (18)

Since the maximum value attained by X ′′(T ) is upper-bounded by D′+c < 2D′, and by assump-

tion we have p∗2 > 16
(
c4

σ4
D′2

σ2T 1−2ε

)1/3
> 16D′2

σ2T
, we have

√
p∗2σ
√
T

4D′ > 1 and Pr

[
X ′′(T ) ≥ 2D′

√
p∗2σ
√
T

4D′

]
=

0. So, we can drop the absolute value in expression (18):

Pr

[
X ′′(T ) < −2D′

√
p∗2σ
√
T

4D′

]
≥ 1

8
p∗2σ

2c−2T−ε. (19)

On the other hand, EX ′′(T ) = 0 and X ′′(T ) < 2D′, so by Markov’s inequality:

Pr

[
X ′′(T ) < −2D′

√
p∗2σ
√
T

4D′

]
≤ 1

1 +

√
p∗2σ
√
T

4D′

<
4D′√
p∗2σ
√
T
. (20)

Combining the right-hand sides of expressions (20) and (19), we obtain:

1

8
p∗2σ

2c−2T−ε <
4D′√
p∗2σ
√
T
,
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and subsequently:

p∗2 <

(
1024c4

σ4

D′2

σ2T 1−2ε

)1/3

< 16

(
c4

σ4

D′2

σ2T 1−2ε

)1/3

,

a contradiction with our assumption. In this way, we have shown:

p2 ≤ 16

(
c4

σ4

D′2

σ2T 1−2ε

)1/3

+ elnT−T ε/8.

Now, conditioned on the event that X ′(t) does not hit any of the points ±(c
√
T 1+ε) which

holds with probability at least p1 = 1 − elnT−T ε/8, having X ′(t) ≥ D′ at some time t implies
X(t) ≥ D′ − at ≥ D′ − αT . Thus, putting D′ = D + αT , we have:

Pr[∀t∈{1,...,TX(t) < D] ≤ p2 + p1 = 16

(
c4

σ4

(D + αT )2

σ2T 1−2ε

)1/3

+ 2elnT−T ε/8.

Choosing ε so that T ε = 11 lnT , we can rewrite the above as:

Pr[∀t∈{1,...,T}X(t) < D] ≤ 16

(
c4

σ4

121(D + αT )2 ln2 T

σ2T

)1/3

+ 2T−3/8 <

< 82

(
c2

σ2

(D + αT ) lnT

σ
√
T

)2/3

,

which completes the proof of our anti-concentration bound.

We now need to define a meaningful random process based on the RPS protocol, for which
we could take advantage of Lemma 4.2 in the proof of Theorem 4.1. In fact, we will need to
bound more than one such process to close the analysis. We first introduce two measures of
distance of a pair of points x(a), x(b) in our state space:

• dU (x(a), x(b)) = |U(x(a))− U(x(b))|,

• d∞(x(a), x(b)) = ‖x(a) − x(b)‖∞ = max{|x(a)
1 − x

(b)
1 |, |x

(a)
2 − x

(b)
2 |, |x

(a)
3 − x

(b)
3 |}.

Lemma 4.3. Let x(0) be a point in the state space of RPS with U(x(0)) > −γ lnn for some
absolute constant 0 < γ < 1/6, let x(t) be the random variable representing the point reached
after following the population protocol for t steps starting from point x(0). Then, for sufficiently
large n and T ≤ n5/3, the following claim holds: ∀t∈{1,...,T} dU (x(t), x(0)) = Õ(T 0.5/n1−γ),
w.v.h.p.

Proof. To show the claim, we apply concentration bound (15) to the process X(t) = U(x(t))−
U(x(0)). We have X(t) =

∑t
τ=1 δ(τ), with random variable δ(t) given by: δ(t) = U(x(t)) −

U(x(t − 1)). Let v = eU(x(0)) > e−γ lnn = n−γ . We verify that the first two conditions of
Lemma 4.2 hold for ε such that T ε = log2 n, c = 4

nv , α = 8
n2v

. Indeed, suppose that the
condition from Lemma 4.2:

|U(x(t− 1))− U(x(0))| = X(t− 1) ≤ cT 0.5 log n+ αT

is satisfied at some time t − 1, l ≤ t ≤ T . Under this assumption, we have for T ≤ n5/3 and
sufficiently large n:

U(x(t− 1)) ≥U(x(0))− 4T 0.5 log n

nv
− 8T

n2v
>

>U(x(0))− n−1/6+log logn+γ > U(x(0))− ln 2,

21



hence the minimum size of a species at time t− 1 is then lower-bounded by:

eU(x(t−1)) >
v

2
.

Following (4), we then have:

|δ(t)| ≤ max
a∈{1,2,3}

∣∣∣∣(ln
na(t− 1) + 1

n
− ln

na(t− 1)

n

)
+

(
ln
na+1(t− 1)− 1

n
− ln

na+1(t− 1)

n

)∣∣∣∣ <
< max

a∈{1,2,3}
| ln(na(t− 1))− ln(na(t− 1)− 1)| < max

a∈{1,2,3}

2

na(t− 1)
<

2

neU(x(t−1))
<

4

nv
= c.

Next, we bound the expectation Eδ(t) by transforming the equality in (6) at point x(t− 1):

Eδ(t) ≤ − 1

3n2

3∑
a=1

(
na(t− 1)

na+1(t− 1)
+
na+1(t− 1)

na(t− 1)

)
< 0, (21)

Eδ(t) ≥ − 2

3n2

3∑
a=1

(
na(t− 1)

na+1(t− 1)
+
na+1(t− 1)

na(t− 1)

)
≥

≥ − 4

n ·mina∈{1,2,3} na(t− 1)
>
−8

n2v
= −α. (22)

Thus, we can apply concentration bound (15), obtaining that:

∀t∈{1,...,T} |U(x(t))− U(x(0))| = |X(t)| ≤ 4T 0.5 log n

nv
+

8T

n2v
= Õ(T 0.5/n1−γ)

holds with very high probability 1− e−Ω(T ε) = 1− e−Ω(log2 n).

Lemma 4.4. For a pair of points p, q lying on the same orbit U(p) = U(q) = U < −6, let
t̄ = t̄(p, q) > 0 denote that smallest time such that for the continuous process (14) originating
at p we have p̄(t̄) = q. If q is separated from p by at most 1/3 of the orbit (t̄(p, q) ≤ t̄(p, p)/3),
then the following relations hold:

0.05
t̄

n
eU ≤ d∞(p, q) ≤ t̄

n
.

Proof. The bound d∞(p, q) ≤ t̄
n follows immediately from the observation that for any t ≥ 0

and infinitesimal time interval dt, we have for the continuous process (14): d∞(p̄(t+dt), p̄(t)) ≤
dt
n . To show the lower bound on d∞(p, q), observe that the linear distance covered in each
infinitesimal time step can be lower-bounded as follows:

‖p(t+ dt)− p̄(t)‖2 ≥ d∞(p̄(t+ dt), p̄(t)) ≥ 1

n
min

a∈{1,2,3}
pa(t)·

· ( max
a∈{1,2,3}

pa(t)− min
a∈{1,2,3}

pa(t))dt ≥
eU

n

(
1

3
− eU/3

)
dt ≥ eU

6n
dt,

where we took into account that eU =
∏3
a=1 pa(t) and that U < −6. Denoting by l the length

of the traversal from p to q along the orbit U , we obtain:

l ≥ eU

6n
t̄
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The orbit x1x2x3 = eU is the boundary of a convex subset of the plane x1 + x2 + x3 = 1.
Moreover, the entire fragment of the considered orbit between points p and q is contained within
the triangle (p, q, o), where o is the intersection point of the straight lines in the considered plane,
adjacent to the orbit at points p and q, respectively. By the rotational symmetry of the orbit
under rotation by 2π/3 in its plane around the point (1/3, 1/3, 1/3) and the fact that p and q
are apart from each other by at most 1/3 of the orbit, it follows that ∠(poq) ≥ π/3. By applying
the law of cosines to triangle (p, q, o) we obtain:

‖p− o‖2 + ‖q − o‖2 ≤ 2‖p− q‖2.

Now, we can write the following bounds:

d∞(p, q) ≥ 1√
2
‖p− q‖2 ≥

1

2
√

2
(‖p− o‖2 + ‖o− q‖2) >

l

2
√

2
≥ eU

12
√

2n
t̄ > 0.05

eU

n
t̄,

which completes the proof.

Lemma 4.5. Let x be a point in the state space and let p be a point with minimum in-
finity norm distance to x from among all points having the same potential as p, i.e., p ∈
arg minp′{d∞(p′, x(ti)) : U(p′) = U(p)}. If U(x) < −3 and d∞(x, p) < eU(x), then

d∞(x, p) < dU (x, p).

Proof. Let d = d∞(x, p). Let xmin = mina∈{1,2,3} xa and let xmax = maxa∈{1,2,3} xa. We note

that xmin < eU(x) < 0.05 and xmax ≥ 1/3. Assume first that U(p) > U(x), and let r be the
point reached from x by moving d individuals from the largest population in x to the smallest
population in x. By the definition of the potential, we have:

U(r) ≥ U(x) + ln
xmin + d

xmin
− ln

xmax + d

xmax
≥ U(x) + d

(
1

2xmin
− 1

xmax

)
> U(x) + d.

Since d = d∞(x, p) = d∞(x, r), the straight line segment connecting x and r does not intersect
with the potential orbit U = U(p), hence U(p) ≥ U(r) > U(x) + d, which completes the proof
for the considered case.

When U(p) < U(x), we define r by moving d individuals from the smallest population in x
to the largest population in x; we omit the details of the analogous argument.

Lemma 4.6. Let x(0) be a point in the state space of RPS and let x(t) be the random variable
representing the point reached after following the population protocol for t steps starting from
point x(0). Then, for sufficiently large n and any positive integer T , the following claim holds:

(i) If T ≤ n2/3, then: ∀t∈{1,...,T} d∞(x(t), x̃(t)) = Õ(T 0.5/n), w.v.h.p., where x̃(t) = (x̃1(t), x̃2(t), x̃3(t))
is the following linear approximation to the considered process:

x̃a(t) = xa(0)

(
1 +

t

n
(xa+1(0)− xa+2(0))

)
, for a ∈ {1, 2, 3}.

Next, consider the process x̄(t) governed by the continuous RPS dynamics (14) with any starting
point x̄(0) such that d∞(x̄(0), x(0)) ≤ ∆, for some ∆ > 0. Then, the following claims hold:

(ii) If T ≤ n2/3, then: ∀t∈{1,...,T} d∞(x(t), x̄(t)) = Õ(∆ + T 0.5/n), w.v.h.p.

(iii) If T ≤ n5/3 and −10 > U(x(0)) > −γ lnn for some absolute constant 0 < γ < 1/6, then:
∀t∈{1,...,T} d∞(x(t), x̄(t)) = Õ((Tnγ−2/3 + 1) · (∆ + T 0.5nγ−1)), w.v.h.p.
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U=U(x(0))
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~x(0)=x(0) x(T)~

x(0) q(1)

x(t2)

p(2)

q(2)

(a)

Figure 2: Illustration of the proof of Lemma 4.6: (a) Short-term view (T < n2/3) and (b)
Long-term view (T > n2/3).

(iv) If n6γ ≤ T ≤ n4/3−8γ, ∆ ≤ T 0.5nγ−1, and −10 > U(x(0)) > −γ lnn for some absolute
constant 0 < γ < 1/6, then there exists an integer time step T ′ = (1 + o(1))T , such that
d∞(x(T ′), x̄(T )) = Õ(T 0.5nγ−1), w.v.h.p.

Proof. To show Claim (i), we apply the concentration bound (15) to each of the random pro-
cesses Xa(t) = xa(t)− x̃a(t), for a ∈ {1, 2, 3}. We have Xa(t) =

∑t
τ=1 δa(τ), where δa(t) is given

as:

δa(t) = ∆xa(t− 1)− 1

n
xa(0)(xa+1(0)− xa+2(0)),

and ∆xa is a random variable with distribution described by (13). We have |δa(t)| ≤ 2
n and

|Eδa(t)| =
1

n
|xa(t−1)(xa+1(t−1)−xa+2(t−1))−xa(0)(xa+1(0)−xa+2(0))| < 6t

n2
≤ 6T

n2
, (23)

where we took into account that |xi(t− 1)− xi(0)| < t/n, for all i ∈ {1, 2, 3} by the definition
of the population dynamics, which changes the size of each species by at most 1 in each step.
Thus, applying the concentration bound with c = 2

n , α = 6T
n2 , and ε = log2 n, we have that for

T ≤ n2/3:

∀t∈{1,...,T} |xa(t)− x̃a(t)| = |Xa(t)| ≤
2T 0.5 log n

n
+

6T 2

n2
= Õ(T 0.5/n)

holds with very high probability 1− e−Ω(T ε) = 1− e−Ω(log2 n). Applying the union bound over
all a ∈ {1, 2, 3}, we obtain the claim.

We now proceed to prove Claim (ii), assuming T ≤ n2/3 (see Fig. 2(a)). By Claim (i),
we have d∞(x(t), x̃(t)) = Õ(T 0.5/n) for all t ≤ T , w.v.h.p. It remains to observe that the
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continuous process is also close to the linear approximation x̃ (compare with (23)):

d∞(x̄(t), x̃(t)) ≤

≤ ∆ + max
a∈{1,2,3}

∫ t

τ=0

1

n
|x̄a(τ)(x̄a+1(τ)− x̄a+2(τ))− xa(0)(xa+1(0)− xa+2(0))| dτ ≤

≤ ∆ + max
a∈{1,2,3}

∫ t

τ=0

1

n
|x̄a(τ)(x̄a+1(τ)− x̄a+2(τ))− x̄a(0)(x̄a+1(0)− x̄a+2(0))| dτ+

+ max
a∈{1,2,3}

∫ t

τ=0

1

n
|x̄a(0)(x̄a+1(0)− x̄a+2(0))− xa(0)(xa+1(0)− xa+2(0))| dτ ≤

≤ ∆ +

∫ t

τ=0

6τ

n2
dτ +

∫ t

τ=0

6∆

n
dτ = ∆ +

3t2

n2
+

6t∆

n
≤ ∆ +

3T 2

n2
+

6T∆

n
= O(∆ + T 0.5/n).

Taking into account that d∞(x(t), x̄(t)) ≤ d∞(x(t), x̃(t)) + d∞(x̃(t), x̄(t)), we obtain the claim.
To prove Claim (iii), we only need to consider the case of T > n2/3, which is not covered by

the stronger Claim (ii). Let 0 = t0 < t1 < . . . < tl = T be fixed integer moments of time chosen
so that ti − ti−1 ≤ n2/3, for 1 ≤ i ≤ l, and l = O(T/n2/3). For 1 ≤ i ≤ l, let p(i) denote the
random variable representing the point on the orbit of the considered continuous dynamics x̄,
located closest in the infinity norm to the point x(ti) obtained after ti steps of evolution of the
discrete dynamics:

p(i) ∈ arg min
p
{d∞(p, x(ti)) : U(p) = U(x̄(0))},

and for consistency of notation, let p(0) = x̄(0). By Lemma 4.3, we have w.v.h.p. that for all
0 ≤ i ≤ l: dU (x(0), x(ti)) = Õ(T 0.5/n1−γ) and taking into account that dU (x(0), p(i)) ≤ ∆, we
obtain

dU (x(ti), p
(i)) = Õ(∆ + T 0.5/n1−γ).

By Lemma 4.5, we have d∞(x(ti), p
(i)) < dU (x(ti), p

(i)), thus,

d∞(x(ti), p
(i)) = Õ(∆ + T 0.5/n1−γ). (24)

Now, for 1 ≤ i ≤ l, define q(i) as the point obtained by applying the continuous dynamics (14)
to point p(i−1) for δti = ti − ti−1 steps. Note that q(1) = x̄(t1), but that for i > 1, a similar
correspondence need not hold precisely. However, since δti ≤ n2/3, we can apply Claim (ii) to
the discrete dynamics starting at point x(ti−1) and the continuous dynamics starting at point
p(i−1) and running for δti steps. Substituting Õ(∆ + T 2/3/n1−γ) for “∆” and O(n2/3) for “T”
in Claim (ii), we have:

d∞(x(ti), q
(i)) = Õ

(
(n2/3)0.5

n
+ (∆ + T 0.5/n1−γ)

)
= Õ(∆ + T 0.5/n1−γ), (25)

with very high probability. Combining the above bound with (24), we obtain:

d∞(p(i), q(i)) = Õ(∆ + T 0.5/n1−γ).

By applying the union bound, the above also holds for all 1 ≤ i ≤ l, w.v.h.p. Now, we introduce
the following auxiliary notation. For any pair of points p, q, such that U(p) = U(q), we define
by t̄(p, q) the smallest value of time t such that either point p is obtained by applying the
continuous dynamics (14) to starting point q for time t, or vice versa. For the considered set of
points, the following bound holds:

t̄(x̄(T ), q(l)) ≤
l−1∑
i=1

t̄(p(i), q(i)).
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By Lemma 4.4, we obtain that for a pair of points p, q at distance o(n) on the considered orbit
−10 > U = U(x̄(0)) > −γ lnn, the following relations hold:

d∞(p, q) = Ω(t̄(p, q)/n1+γ)

and
d∞(p, q) = O(t̄(p, q)/n).

Thus, we have:

d∞(x̄(T ), q(l)) = Õ(l · (∆ + T 0.5nγ−1)
n1+γ

n
) = Õ((Tnγ−2/3) · (∆ + T 0.5nγ−1)).

Combining the above with bound (25) for point q(l), we get:

d∞(x̄(T ), x(T )) = Õ((Tnγ−2/3) · (∆ + T 0.5nγ−1)) + Õ(∆ + T 0.5nγ−1) =

= Õ((Tnγ−2/3) · (∆ + T 0.5nγ−1))

The above holds w.v.h.p. By stating the obtained claim for all values of T ′ ∈ [n2/3, T ], and
applying a union bound over all such T ′, as well as for the case of smaller T ′ covered by Claim
(ii), we obtain Claim (iii).

To show claim (iv), we consider the set of points p(U) which lie at minimum distance
d∞ from point x̄(T ), taken over all potential orbits U = U(x(0)) ± Õ(T 0.5/n1−γ). Taking
into account Lemma 4.3, we will show that the evolution x(t) will intersect with set p(U)
after T ′ = (1 ± o(1))T steps; in this way, we will obtain the claim directly from Lemma 4.5.
By claim (iii), after T steps, our discrete evolution has reached a point x(T ) such that d =
d∞(x(T ), x̄(T )) = Õ((Tnγ−2/3 + 1) · (∆ + T 0.5nγ−1)) ≤ Õ(Tn−1−2γ), w.v.h.p. Taking into
account Lemma 4.4, we conclude that the intersection of the trajectory with set p(U) took
place at time T ′ = T ±O(dn1+γ) = (1± o(1))T .

4.2 The coupling framework

For a fixed absorbing state r ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we denote by pr(x) the probability
that the RPS population protocol (13), starting from initial state x, reaches absorbing state
r. To show that for a pair of states x, y we have pr(x) ≈ pr(y), we define a coupling on the
evolution of states x and y over time. Formally, we denote by R the set of possible actions
which can be taken in any step by the considered population protocol. In the context of RPS,
we define R = {1, . . . , n(n − 1)}, and treat elements of R as identifiers of ordered pairs of
elements of the population. By convention, we will assume that the elements are ordered in
each step, so that in a state (x1, x2, x3), the x1 elements belonging to species 1 have the smallest
identifiers, while the x3 elements belonging to species 3 have the largest. For any s ≥ 0 and
sequence S = (S1, . . . , Ss) ∈ Rs, we denote by x[S] the state reached by executing the population
protocol for s steps, starting from state x, choosing in the i-th step, 1 ≤ i ≤ s, an action of the
protocol encoded by the value Si ∈ R.

We will define F to be a random number generator over R if subsequent calls to F return
elements from R chosen uniformly and independently at random; formally, F = (F1, F2, . . . , ),
where all Fi ∼ unif(R) are independent random variables. By a slight abuse of notation, we
will denote by x[F, s] the random variable in the state space corresponding to the sequence of
actions x[(F1, . . . , Fs)].

We now provide a method for “skipping” some elements returned by a random number
generator, to create a new random number generator. We recall that if the decision whether or
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not to skip the i-th element in the sequence returned by a random number generator depends
only on the values of the previously generated elements (up to the (i− 1)-st, then such a gen-
erator remains unbiased. Formally, we call a sequence of functions φ = (φ1, φ

◦
1, φ2, φ

◦
2, . . .), with

φi : Ri−1 → {0, 1} being measurable (an elimination function) and φ◦i : Fi 7→ φ◦i (Fi) ∼ unif(R)
acting as a transformation of random variable Fi, a resampler on random number genera-
tors. For a random number generator F , we denote by φF = ((φF )1, (φF )2, . . .) the se-
quence of random variables with values in R, realized inductively as follows. The first ran-
dom variable (φF )1 takes the value of φ◦i1(Fi1), where i1 > 0 is the smallest index such that
φi1(F1, F2, . . . , Fi1−1) = 1. Next, (φF )2 takes the value of φ◦i2(Fi2), where i2 > i1 is the smallest
index larger than i1 such that φi1(F1, F2, . . . , Fi2−1) = 1, and so on. We note that the resampled
distribution φF is also a (uniform, independent) random number generator over R.

We are now ready to formulate the standard coupling technique in terms of applying resam-
plers to random number generators.

Proposition 4.7 (Coupling of delayed walks). Let F be a random number generator over R, let
x, y be two arbitrary starting points in the state space, and let r be an arbitrary absorbing state.
If there exist two filters φx, φy on a random number generator such that limt→+∞(x[φxF, t]) =
limt→+∞(y[φyF, t]) holds with probability 1− ε, for some ε ≥ 0, then |pr(x)− pr(y)| ≤ ε.

The validity of the above proposition follows from the fact that each of the marginals φxF ,
φyF represents an unbiased evolution of the system. Informally, we will apply the above tech-
nique as follows. We will sample numbers from R from a random number generator. Based
on all the numbers sampled so far, we will decide if the next number to be sampled should be
applied only in the evolution of the process originating from x, in the evolution of the process
originating from y, or in both those processes. (If only one process undergoes evolution in the
given step, the other process can be thought of as delayed in this step). In the following, we
will consider the walks in the state space originating from x and y, and we will execute the
following types of phases:

• One of the walks progresses until a given termination condition is met, while the other
walk is delayed.

• Both walks progress simultaneously in a given step t, with one walk following action
φ◦x t(Ft) and the other following action φ◦y t(Ft) in this step.

We are now ready to apply the coupling technique to obtain the main technical result of this
section.

Lemma 4.8. Fix γ = 0.005 and ε = 0.05. Let x(0) = (x1(0), x2(0), x3(0)) be arbitrarily fixed
with −12 > U(x(0)) > −γ lnn, and let y(0) = (x3(0), x1(0), x2(0)). Then, there exist a coupling
of x and y which leads to the same absorbing state with probability 1− Õ(n−ε).

Proof. The proof proceeds by a coupling of walks originating from x and y in the above-described
framework. By a slight abuse of notation, we will denote by x(t) and y(t) the position of each of
the two walks in the state space after t steps (i.e., after t applications of the random generator
F ), which may include steps in which a given walk is delayed. Our goal is to make points
x(t) and y(t) coalesce within a small number of steps T , i.e., to obtain x(T ) = y(T ) with
probability 1 − O(n−ε), where T � n1.33. Consequently, taking into account Lemma 4.3,
we will silently assume that the bounds −(1 + o(1))12 > U(x(t)) > −(1 + o(1))γ lnn and
−(1 + o(1))12 > U(y(t)) > −(1 + o(1))γ lnn are preserved throughout the coupling.

The coupling proceeds in five phases, illustrated in Fig. 3. We start by providing a high level
overview, thinking for now of the potential U(x(0)) = Θ(1) to simplify calculations. In Phase 1,
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point x approaches point y, which is stopped. In this way, the infinity norm distance between
x and y is reduced, at the cost of increasing the dU distance to slightly over n−0.5. Next, in
Phase 2 we run both walks independently, so that the distance dU in time follows a random
evolution resembling a random walk, and after slightly more than n steps, the value dU = 0
is hit with sufficiently high probability. Whereas the walks are now orthogonally aligned, we
also need to align them along the orbit, since we may at this point have them at a distance of
d∞ > n−1/3 apart. By allowing the slower walk to catch up, we reduce d∞ to slightly more
than n−2/3, at the cost of increasing dU to a similar value. In this way, we have decreased the
norm in both distances (from about n−0.5 to about n−2/3). We iterate Phase 2, reducing each
time the distance between the two walks in both norms, up to an iteration in which the size
of the populations in x and y differ by an arbitrarily small polynomial in n. (We remark that
multiple iterations of Phase 2 may also be replaced by a path-coupling argument of the type
used in [18], but this does not necessarily simplify the proof.) At this point, only a very small
number of time steps remains until coalescence. We first align the two states by evolving one of
them until the size of one of the three populations is identical for x and y at the end of Phase
3, and then perform a standard coupling by correlating the evolution of x and y in Phase 4, so
as to make the sizes of the other two populations meet for x and y, while maintaining equality
on the size of the population coalesced in Phase 3. Finally, after the coupling is achieved, we
evolve the coalesced state into an absorbing state in Phase 5.

Phase 1:

x = x(0)

y = y(0)= y(t1)

x(t1)

dU (x(t1), y(t1)) = Õ(n -0.5+1.5γ)

d∞ (x(t1), y(t1)) = Õ(n -0.5+1.5γ) 

Phase 2:

y(ti+1)

U=U(x(ti’))  U(y(ti’))

y(ti’)

x(ti’) = x(ti+1)

y(ti)

x(ti)

dU (x(ti), y(ti)) ≤ D

d∞ (x(ti), y(ti)) ≤ D

d∞ (x(ti), y(ti’)) = di’

dU (x(ti+1), y(ti+1)) ≤ D/2

d∞ (x(ti+1), y(ti+1)) ≤ D/2

Phase 3 Phase 4 Phase 5

d∞ (x(ts), y(ts)) = O(n -1+r)

y(ts’)

y(ts)

x(ts)= x(ts’)

x(tf )= y(tf )

d∞ (x(ts’), y(ts’)) = O(n -1+r +g)

Phases 3-5:

Figure 3: Illustration of the coupling for the proof of Lemma 4.8

• Phase 1. In the first t1 steps, for all t < t1 the walk x(t) progresses while the walk
y(t) is delayed. We choose the duration of the phase so that x(t1) and y(t1) as close to
each other in the infinity norm as possible, after walk x(t) has traversed approximately
1/3 of its orbit around the state space. Formally, let T be the number of steps of the
continuous evolution which transforms point x(0) into point y(0); we have by Lemma 4.4
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that t1 = O(n/eU(x)) = O(n1+γ). Next, let t1 be chosen as the time T ′ = (1 + o(1))T
which follows from Lemma 4.6(iv), i.e., the time such that the discrete process starting
from x(0) after T ′ steps satisfies d∞(y(0), x(T ′)) = Õ(T 0.5nγ−1) = Õ(n−0.5+1.5γ)), w.v.h.p.
Moreover, we also have dU (y(0), x(T ′)) = Õ(T 0.5nγ−1) = Õ(n−0.5+1.5γ)) by Lemma 4.3,
w.v.h.p. Since walk x progresses for t1 = T ′ steps and walk y is delayed throughout
(y(t1) = y(0)), at the end of this phase, we obtain dU (y(t1), x(t1)) = Õ(n−0.5+1.5γ) and
d∞(y(t1), x(t1)) = Õ(n−0.5+1.5γ), w.v.h.p.

• Phase 2 consists of a certain number (logarithmic in n) of iterations. We start iteration i at
time ti with dU (y(ti), x(ti)) ≤ D and d∞(y(t1), x(t1)) ≤ D, where D ≤ n−0.5+1.5γ . In each
iteration, we start by running both walks in parallel until a time t′i at which the two evolu-
tions are located on the same potential orbit (up to integer rounding): dU (y(t′i), x(t′i)) =
O(nγ−1). We introduce the following notation: let r(t) ≡ U(x(ti + t)) − U(y(ti + t))
and consider the process X(t) = r(t) − r(0). We can use the following sum representa-
tion: X(t) =

∑t
τ=1 δ(τ), with the increment δ(τ) given as δ(τ) = r(τ)− r(τ − 1). Notice

that |r(0)| = dU (y(ti), x(ti)) = O(nαi). We now apply the anticoncentration bound of
Lemma 4.2 to process X(t) with |r(0)| = d∞(y(ti), x(ti)) ≤ D to bound the probability
of r(t) having opposite sign to r(0), for some t ∈ [0, T ], where the length of the inter-
val is suitably chosen (T = n2+7γ+εD2). Without loss of generality of the argument, let
r(0) ≤ 0; then, we and ask about the probability of the event r(t) ≥ 0, which is equivalent
to X(t) = r(t)−r(0) > −r(0) = D occurring. (If r(0) > 0, we apply the anticoncentration
bound to process −X instead.) Now, by analyzing the change of potential U in a step
of the discrete dynamics (13), for the different pairs of possible agents, we obtain that
Lemma 4.2 is applicable to process X with the following parameters (compare with the
proof of Lemma 4.3 for a related derivation):

c = Õ(n−1+γ)

α = Õ(n−2+γ)

σ = Ω̃(n−1−0.5γ)

T = n2+7γ+εD2,

where ε is an absolute constant belonging to the range 0 < ε < 0.25− 4.75γ.

Then, we can bound the probability of failure for equation (16) as follows:

82

(
c2

σ2

(D + αT ) lnT

σ
√
T

)2/3

= Õ

((
(n−1+γ)2

(n−1−0.5γ)2

D + nγ−2T

n−1−0.5γ
√
T

)2/3
)

=

= Õ

(
n2/3+7γ/3D

2/3

T 1/3
+ n−2/3+3γT 1/3

)
= Õ(n−ε).

At this point, the time shift of the two processes can be bounded as:

d′i = d∞(x(t′i), y(t′i)) = Õ((Tnγ−2/3 + 1) · (D + T 0.5nγ−1)) =

= Õ((D2n4/3+8γ+ε + 1)Dn4.5γ+0.5ε).

Now, we proceed from time t′i to time ti+1 by aligning the two walks. Without loss of
generality, suppose that x(t′i) is lagging behind along its trajectory with respect to y(t′i)
(i.e., that a continuous evolution from point x(t′i) reduces its distance to point y(t′i)).
We now continue the evolution of point x(t′i) until it becomes close to point y(t′i), which
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remains motionless. By Lemma 4.6 (iv), we then have:

d∞(x(ti+1), y(ti+1)) = Õ
(

(ti+1 − t′i)0.5

n1−γ

)
= Õ

(
(d′in

1+γ)0.5

n1−γ

)
=

= Õ((Dn2/3+4γ+0.5ε + 1)D0.5n−0.5+3.75γ+0.25ε).

For D > n−2/3−4γ−0.5ε, we further bound this as:

d∞(x(ti+1), y(ti+1)) = Õ(Dn2/3+4γ+0.5ε(n−0.5+1.5γ)0.5n−0.5+3.75γ+0.25ε) =

= Õ(Dn−1/12+8.5γ+0.75ε) < D/2 = d∞(x(ti), y(ti))/2,

where the final inequality holds when we set γ = 0.005, ε = 0.05, and sufficiently large n.

For D ≤ n−2/3−4γ−0.5ε, we apply the following bound:

d∞(x(ti+1), y(ti+1)) = Õ(D0.5n−0.5+3.75γ+0.25ε) < D/2 = d∞(x(ti), y(ti))/2,

where the final inequality holds for sufficiently large n when D = ω(n−1+7.5γ+0.5ε).

We also recall that by Lemma 4.6 (iv), we can bound dU (x(ti+1), y(ti+1)) similarly to
d∞(x(ti+1), y(ti+1)), obtaining dU (x(ti+1), y(ti+1)) < D/2 under the same assumptions.

Thus, in every iteration of the coupling phase, starting from a pair of points (x(ti), y(ti))
such that D = ω(n−1+7.5γ+0.5ε), with probability 1 − Õ(n−ε) we reach in O(n2+7γ+εD2)
steps a new pair of points (x(ti+1), y(ti+1)) such that d∞(x(ti+1), y(ti+1)) < D/2 and
dU (x(ti+1), y(ti+1)) < D/2. The next iteration then starts. The phase is completed after
less than s iterations, where s = O(log n), with success probability 1 − Õ(n−ε). For the
chosen values of constants γ and ε, at the end of the phase, we obtain that D < n−1+ρ,
where ρ = 0.07.

• Phase 3. We start this phase from a pair of points (x(ts), y(ts)), such that d∞(x(ts), y(ts)) <
n−1+ρ. Our goal is to reach in a small number of steps a pair of points (x(t′s), y(t′s)) such
that one of the species has populations of exactly the same size in x(t′s) and y(t′s)), with-
out increasing d∞(x(t′s), y(t′s)) too much. Let a be the species such that the value of
xa+1(ts)−xa+2(ts) is maximized over a ∈ {1, 2, 3} (a represents the species which is most
likely to grow quickly in the next few steps). We then continue to evolve that of the walks
x(ts), y(ts), which has a smaller size of population a, while the other walk remains paused
throughout this phase. The phase ends at a time t′s, such that xa(t

′
s) = ya(t

′
s). We restrict

ourselves to a consideration of the case when ya(ts) < xa(ts) (walk y progresses, while x
is paused). Then, at each of the considered steps ts + t, for 0 ≤ t < n0.5, we have:

E(ya(ts + t+ 1)− ya(ts + t)) =
ya(ts + t)

n
(ya+1(ts + t)− ya+2(ts + t)) ≥

≥ ya(ts)

n
(ya+1(ts)− ya+2(ts))−

3t

n2
≥ n−1−γ(xa+1(ts)− xa+2(ts)− 2n−1+ρ)− 3t

n2
=

= Ω(n−1−γ).

The change of ya in each step of the walk is bounded by 1/n. Applying Azuma’s inequality,
we obtain that w.v.h.p. the deviation of ya from its expectation is bounded by Õ(

√
t/n).

Thus, w.v.h.p., for t = cnγ+ρ for a sufficiently large constant c, we have:

ya(ts + t) = ya(ts) + Ω(n−1−γcnγ+ρ ≥ ya(ts) + d∞(x(ts), y(ts)) > xa(ts).

Thus, the phase is completed within O(nγ+ρ) steps w.v.h.p. At the end of the phase, we
have xa(t

′
s) = ya(t

′
s), and d∞(x(t′s), y(t′s)) = O(n−1+γ+ρ).
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• Phase 4. In this penultimate phase, we allow both walks to progress simultaneously in each
time step starting from step t′s until they coalesce, under the following coupling. At time
step t′s, we arrange the elements of the populations of x(t) and y(t) in linear order, from 1 to
n, putting those from population 1 leftmost and those from population 3 rightmost. Every
step of a coupling corresponds to drawing a uniformly random pair (i, j) ∈ {1, . . . , n}2
from our random number generator, which corresponds to an interaction in which the
i-th and j-th agents in x(t) and y(t) interact with each other (the roles of i and j as
predator and prey will be defined later). We label the species of the agents as follows
s : {1, . . . , n} → {−1, 1, 2, 3}, where s(i) = 1, 2, or 3 if both of the agents located at the i-
th position (counting from the left) in x(t′s) and y(t′s) belong to the same respective species,
and s(i) = −1 otherwise. We remark that by the condition d∞(x(ts), y(ts)) = n−1+γ+ρ,
we have that |{i : s(i) = −1}| = O(n−1+γ+ρ). Note that the labels s are defined at time
t′s and never change afterwards.

The coupling process will be required to finish within T = n0.5−ε time steps of Phase
4. We will only consider the success of the coupling under the event that the generator
never makes any agent participate in more than one interaction throughout Phase 4.
(By a birthday paradox computation, this event holds with probability 1 − Õ(n−ε).)
We will also condition the success of our coupling on the event that no agent i with
s(i) = −1 is chosen to interact throughout the phase (this event holds with probability
1−O(Tn−1+γ+ρ) > 1−O(n−ε)). Under these conditions, we define the interactions for a
drawn random pair (i, j) in step t of Phase 4 as follows (independently of the step number,
until the termination condition x(t) = y(t) is reached):

– If {s(i), s(j)} = {a+1, a+2}, then we perform the interaction i→ j with probability
0.5 and the interaction j → i with probability 0.5, chosen independently for processes
x(t) and y(t). We recall that species a was defined in Phase 3 so that xa(t

′
s) = ya(t

′
s).

– If {s(i), s(j)} 6= {a + 1, a + 2}, then we perform the interaction i → j for both
processes.

Notice that since we take into account only the interaction of agents having a positive
value of s(i), and we never allow any agent to interact more than once, all interactions
performed by agents from population a will have the same outcome for both processes
x and y. Thus, we have xa(t) = ya(t) throughout Phase 4, and it suffices to show that
a similar equality will hold for the other populations. Equivalently, we will require that
Z(t) = X(t)−Y (t) = 0, where the processes X and Y are defined as X = xa+1(t)−xa+2(t)

and Y = ya+1(t)− ya+2(t). Let p = |{i:s(i)=a+1}|·|{i:s(i)=a+2}|
n2 = Ω(n−2γ). Observe that X

and Y are walk processes along the real line, such that in each step we have Pr[X(t +
1)−X(t) = 1] = p and Pr[X(t+ 1)−X(t) = 0] = 1− p. Likewise, we have independently
Pr[Y (t+ 1)−Y (t) = 1] = p and Pr[Y (t+ 1)−Y (t) = 0] = 1− p. (Note that probability p
does not change over time.) Thus, we have that process Z follows a lazy random walk on
the integer axis, with Pr[Z(t+ 1)−Z(t) = 1] = Pr[Z(t+ 1)−Z(t) = −1] = 2p(1− p) and
Pr[Z(t + 1) − Z(t) = 0] = 1 − 2p(1 − p). Since Z(t′s) = O(nd∞(x(t′s), y(t′s)) = nγ+ρ), by
the standard properties of hitting times of the random walk, we have that Z(t′s + t) = 0 is
achieved within time t = Õ( 1

2p(1−p)(nγ+ρ)2) = Õ(n4γ+2ρ), w.v.h.p. Noting that t < T =

n0.5−ε, we have that Phase 4 is successfully completed. Overall, at some time tf = t′s + t,

we have coalesced to a point x(tf ) = y(tf ) with probability at least 1− Õ(n−ε).

• Phase 5. After the two processes have coalesced at the end of Phase 4, we allow them to
progress under a complete coupling until they reach the same absorbing state.
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Lemma 4.8 almost completes the proof of Theorem 4.1. We only need to note that the
assumption on potential U(x(0)) made in Lemma 4.8 can be applied to any point x meeting
the assumptions of Theorem 4.1. The claim of the Theorem clearly holds for all points x such
that −12 ≥ U(x) ≥ −γ lnn. Note, however, that the given upper bound on U(x) can be
dropped: for any point x having potential too large, we can evolve it arbitrarily until a point
with potential at most −12 is reached, and then apply the claim of the Theorem. Finally, we
note that the required lower bound on U(x) follows from the assumptions made in Theorem 4.1:
if xa > n−0.002 for all a ∈ {1, 2, 3}, then U(x) ≥ 2 ln(n−0.002) + ln 1

3 > n−0.005 for sufficiently
large n.

We close the paper by remarking about the rate of convergence of RPS to an absorbing state.
In the RPS protocol, as soon as one of the populations becomes empty, xa = 0, it is immediate to
show that species a+ 1, without having any natural predators, will eliminate all representatives
of species a+ 1, and the system will stabilize to the absorbing state: xa+1 = 1, xa = xa+2 = 0
within O(n log n) steps. To bound the time until the first population is eliminated, we can
perform a special case of the analysis from the proof of Theorem 2.1, obtaining an overall
bound of Õ(n2) on convergence time. This corresponds to the quantitative results obtained in
the stochastic noise model presented in [12, 23].
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