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Abstract

It has been observed in the literature that as the cardinality of the prescribed discrete input-output
data set increases, the corresponding four-bar linkages that minimise the Euclidean norm of the
design and structural errors tend to converge to the same linkage. The important implication is that
minimising the Euclidean norm, or any p-norm, of the structural error, which leads to a nonlinear
least-squares problem requiring iterative solutions, can be accomplished implicitly by minimising
that of the design error, which leads to a linear least-squares problem that can be solved directly.
Apropos, the goal of this paper is to take the first step towards proving that as the cardinality of
the data set tends towards infinity the observation is indeed true. In this paper we will integrate the
synthesis equations in the range between minimum and maximum input values, thereby reposing
the discrete approximate synthesis problem as a continuous one. Moreover, we will prove that a
lower bound of the Euclidean norm, and indeed of any p-norm, of the design error for planar RRRR
function-generating linkages exists and is attained with continuous approximate synthesis.
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1. Introduction

Design and structural errors are important performance indicators in the assessment and op-
timisation of function-generating linkages arising by means of approximate synthesis. The design
error indicates the error residual incurred by a specific linkage in satisfying its synthesis equations.
The structural error, in turn, is the difference between the prescribed linkage output value and the5

actual generated output value for a given input value [1]. From a design point of view it may be
successfully argued that the structural error is the one that really matters, for it is directly related
to the performance of the linkage.

It was shown in [2] that as the cardinality of the prescribed discrete input-output (I/O) data-set
increases, the corresponding linkages that minimise the Euclidean norms of the design and structural10

errors tend to converge to the same linkage. The important implication of this observation is that
the minimisation of the Euclidean norm of the structural error can be accomplished indirectly via
the minimisation of the corresponding norm of the design error, provided that a suitably large
number of I/O pairs is prescribed. The importance arises from the fact that the minimisation of
the Euclidean norm of the design error leads to a linear least-squares problem whose solution can15

be obtained directly as opposed to iteratively [3, 4], while the minimisation of the same norm of
the structural error leads to a nonlinear least-squares problem, and hence, calls for an iterative
solution [1].

Several issues have arisen in the design error minimisation for four-bar linkages. First, the
condition number of the synthesis matrix may lead to design parameters that poorly approximate20

the prescribed function [5]. This problem can be addressed through careful selection of the I/O
pairs used to generate the synthesis matrix. It has also been suggested to introduce dial zeros
whose values are chosen to minimise the condition number of the synthesis matrix [6]. Second, the
identified design parameters have a dependence on the I/O set cardinality. As the number of I/O
pairs grows, the magnitude of the design error tends to converge to a lower bound. Hence, the I/O25

set cardinality might be fixed as soon as the magnitude of the design error reaches some pre-defined
minimum value [2].

Diverse interesting and useful optimisation strategies have been proposed recently for structural
error minimisation in planar four-bar function-generators. For example, in [7] the authors define
the least squares error between the desired and generated functions as the objective function for30

a sequential quadratic programming (SQP) approach. The proposed method solves a sequence
of optimisation subproblems, each of which optimises a quadratic model of the objective function
subject to a linearisation of the constraints based on the distribution of a finite set of precision
points. Another novel approach which considers the minimisation of the structural error of the link
lengths is described in [8]. The method treats one of the dyads as having fixed distances between35

joint centres, while the other dyad has links of variable length. The adjustable link lengths are
varied using a discrete set of precision points as benchmarks. A completely different approach is
used in [9] to develop a probabilistic, time-dependent function-generator synthesis method. The
authors introduce the concept of “interval reliability synthesis”. The dimensions of the link lengths
are treated as random variables while their mean values become the design variables, and the40

probability of failure to produce the function within a prescribed tolerance is minimised over a
defined time interval and corresponding position level interval of the function. While this method
achieves excellent results, it does not shed any light on the curious tendency observed in [2]. What
the vast body of literature reporting investigations into function-generator synthesis optimisation is
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missing is a systematic study of what the implications are of allowing the cardinal number of the45

I/O data set to tend towards infinity.
Hence, the goal of this paper is to take the first step towards proving that the convergence

observed in [2] is true for planar four-bar function-generators. More precisely, a proof will be given
for the design error that as the cardinality of the I/O data set increases from discrete numbers of
I/O pairs to an infinite number between minimum and maximum pairs that a lower bound for any50

p-norm of the design error exists, and corresponds to that of the infinite I/O set, thereby changing
the discrete approximate synthesis problem to a continuous approximate synthesis problem. To this
end, the design error minimisation occurs in the space of a continuous function possessing an Lp
norm defined later in this paper. However, our study is currently restricted to the planar RRRR
function-generating linkage, where R denotes revolute joint, synthesized using the kinematic model55

defined in [10].

2. Design error minimisation: the discrete approximate approach

The synthesis problem of planar four-bar function-generators consists of determining all relevant
design parameters such that the mechanism can produce a prescribed finite set of m I/O pairs,
{ψi, ϕi}m1 , where ψi and ϕi represent the ith input and output variables, respectively, and m is the60

cardinality of the finite data-set. We define n to be the number of independent design parameters
required to fully characterise the mechanism. For planar RRRR linkages, n = 3 [10]. If m = n, the
problem is termed exact synthesis and may be considered a special case of approximate synthesis
where m > n.

Figure 1: A four-bar linkage in two configurations.

We consider the optimisation problem of planar four-bar function-generators as the approxi-65

mate solution of an overdetermined linear system of equations with the least error. The synthesis
equations that are used to establish the linear system for a four-bar function-generator are the
Freudenstein Equations [10]. Consider the mechanism in Figure 1. The ith configuration is gov-
erned by:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi − ϕi), (1)
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where the k’s are the Freudenstein Parameters, which are the following link length ratios:

k1 =
(a2

1 + a2
2 + a2

4 − a2
3)

2a2a4
; k2 =

a1

a2
; k3 =

a1

a4
. (2)

Given a set of three Freudenstein parameters, the corresponding set of link lengths, scaled by a1,
are:

a1 = 1; a2 =
1

k2
; a4 =

1

k3
; a3 = (1 + a2

2 + a2
4 − 2a2a4k1)1/2. (3)

The finite set of I/O equations can be written in the following form, using Equation (1)70

Sk = b, (4)

where S is the m × 3 synthesis matrix, whose ith row is the 1 × 3 array si, b is an m-dimensional
vector, whereas k is the 3-dimensional vector of design variables called the Freudenstein parameters
[10]. For the planar RRRR mechanism we have:

si =
[

1 cosϕi − cosψi
]
, i = 1, ...,m, (5)

bi = cos (ψi − ϕi) , i = 1, ...,m, (6)

k =
[
k1 k2 k3

]T
. (7)

The synthesised linkage will only be capable of generating the desired function approximately.
The design error is the algebraic difference of the left-hand side of Equation (4) less the right-hand
side. Because we will be comparing errors associated with different cardinalities, we now include
the cardinality m in the definition. The m-dimensional design error vector dm for a finite discrete
set of m > 3 I/O pairs, {(ψi, ϕi)i=1...m}, is defined as:

dm = Smk− bm. (8)

If the output values prescribed by the functional relationship, ϕpres,i, correspond precisely to the
output values generated by the mechanism, i.e., ϕgen,i, then, ‖dm‖ = 0. However, for a general pre-
scribed function ϕpres(ψ), ‖dm‖ 6= 0 and we seek the Freudenstein parameter vector that minimises
the norm of the design error vector. In general, the weighted Euclidian norm is used:

‖dm‖2Wm,2 =
1

2
dTmWmdm, (9)

where Wm is an m×m diagonal matrix with strictly positive elements. In a typical design problem,
Wm is used to adjust the impact on the optimisation of specific I/O pairs. However, for the purposes
of this work, Wm will be set to the identity matrix, Im. The optimal Freudenstein parameters k∗m
for this norm are:

k∗m = S+
mbm, (10)

where S+
m is the Moore-Penrose generalized inverse of the synthesis matrix, and the corresponding

minimal design error is:

→ min
k
‖dm‖2 = ‖d∗m‖2 = ‖(Im − SmS+

m)bm‖2. (11)
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In general, for any matrix, square or rectangular, the condition number κ is a measure of how
invertible the matrix is: it is the ratio of the largest to smallest singular values. Consider the
system of linear equations represented by Ax = b. The matrix A may be viewed as a map from
vector space x to vector space b. A very large condition number of A implies that the smallest
singular value of the matrix is very small, meaning that b is poorly approximated by Ax. This
also implies that A−1b very poorly approximates x. Extremely large condition numbers indicate
that there is a near linear dependency among some of the rows of A, meaning that one, or more,
of its singular values is very close to zero. Such matrices are termed ill-conditioned. The condition
number κ is a property of the matrix A and entirely independent of the vector spaces x and b. For
numerical stability considerations, it is always desirable to have a well-conditioned synthesis matrix,
otherwise the numerical values of S+

m may be significantly distorted by very small singular values,
or singular values identically equal to zero, leading to optimised k that imply a mechanism which
very poorly approximates the function. Hence, the dial zeros α and β, illustrated in Figure 1, have
been introduced to minimise the condition number, κ, of Sm:

ψi = α+ ∆ψi; ϕi = β + ∆ϕi. (12)

When the dial zeros are substituted into Equation (1), the synthesis equation becomes:

k1 + k2 cos(β + ∆ϕi)− k3 cos(α+ ∆ψi) = cos(α+ ∆ψi − β −∆ϕi), (13)

and, the I/O pairs are regarded as a discrete set of incremental angular changes {(∆ψi,∆ϕi)i=0..m}.
The arrays d∗m, k∗m and Sm are now also functions of the dial zeros. With this modification, the75

design error minimisation problem can be efficiently solved in a least squares sense in two steps:

1. determine the dial zeros to minimise the condition number κm(α, β) of the synthesis matrix
Sm;

2. determine the corresponding optimal Freudenstein parameters using Equation (10).

3. Design error minimisation: the continuous approximate approach80

A major issue associated with the discrete approach to the design error minimisation is the
appropriate choice for the cardinality of the discrete I/O pair data set such that the minimisation
of the structural error is implied. Indeed, the choice of m depends on the prescribed function
∆ϕpres(∆ψ) and m is generally fixed when some level of convergence is observed. For the example
used in [2] m = 40 was observed to be a good choice. We now propose to evaluate the design error
over the continuous range between minimum and maximum, or initial and final, input values of
the prescribed function, denoted [∆ψ0,∆ψf ] . We only consider functions that are continuous over
[∆ψ0,∆ψf ], that are defined in a function space, denoted C0([∆ψ0,∆ψf ]), whereupon the following
Lp-norm has been defined for any continuous function f on the closed interval [∆ψ0,∆ψf ]:

∀f ∈ C0([∆ψ0,∆ψf ]), ‖f‖p =

(∫ ∆ψf

∆ψ0

|f(ψ)|pdψ
)1/p

, (14)

where p is an interger such that p ≥ 1. Imposing the Lp-norm upon this function space makes
C0([∆ψ0,∆ψf ]) an Lp-space. Such Lp-spaces are defined using a generalisation of the vector norm
for finite-dimensional vector spaces [4]. Vector norms are special cases of the family of Lp-norms,
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often denoted by lp while Lp is reserved for norms in function spaces [4]. The most common Lp-
norms for a continuous function f on a closed interval [a, b], and in fact, the most commonly used85

vector norms [11], are the maximum or Chebyshev norm, the Euclidean norm, and the so called
Manhattan norm1 which are respectively defined by:

‖f‖∞ = max
x∈[a,b]

|f(x)|; (15)

‖f‖2 =

(∫ b

a
f(x)2dx

)1/2

; (16)

‖f‖1 =

∫ b

a
|f(x)|dx. (17)

The Manhattan and Chebyshev norms are the limiting cases (p = 1 and p = ∞, respectively) of
the family of Lp-norms [4]. The Lp-norms obey the following relationship:

‖f‖∞ ≤ · · · ≤ ‖f‖2 ≤ ‖f‖1 (18)

Typically, the most appropriate norm must be selected to evaluate the magnitude of the objective
function for the error minimisation, given a function that is to be approximated by the resulting
linkage. However, it turns out that Lawson’s algorithm [12, 13] can be used to sequentially min-90

imise the Chebyshev norm via the minimisation of the Euclidean norm [14]. This means that the
continuous approximate approach to the design error minimisation is independent of the Lp-norm
because it applies to both the Chebyshev and Euclidean norms, and hence all intermediate ones.
Therefore, without loss in generality the Euclidean norm will be used in the example in Section 5,
which follows the development of the approach.95

Assuming that the prescribed function belongs to C0([∆ψ0,∆ψf ]), the design error is defined
using the Euclidean norm, though any Lp-norm could be used [14]:

‖d(α, β)‖2 =

(∫ ∆ψf

∆ψ0

(k1 +k2 cos(β+∆ϕ)−k3 cos(α+∆ψ)−cos(α+∆ψ−β−∆ϕ))2d∆ψ

) 1
2

. (19)

After some algebraic manipulation, it can be shown that the square of Equation (19) is a quadratic
function in terms of the Freudenstein parameters:

‖d(α, β)‖22 = kTA(α, β)k− 2e(α, β)Tk + c(α, β). (20)

The matrix A(α, β) is a 3× 3 a symmetric positive semidefinite matrix whose six distinct elements

1The term Mahattan norm arises because the vector norm corresponds to sums of distances along the basis vector
directions, as one would travel along a rectangular street plan.
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aij are:

a11 =

∫ ∆ψf

∆ψ0

d∆ψ = ∆ψf −∆ψ0;

a12 =

∫ ∆ψf

∆ψ0

cos(β + ∆ϕ)d∆ψ;

a13 = −
∫ ∆ψf

∆ψ0

cos(α+ ∆ψ)d∆ψ;

a22 =

∫ ∆ψf

∆ψ0

cos2(β + ∆ϕ)d∆ψ

a23 = −
∫ ∆ψf

∆ψ0

cos(β + ∆ϕ) cos(α+ ∆ψ)d∆ψ

a33 =

∫ ∆ψf

∆ψ0

cos2(α+ ∆ψ)d∆ψ;

while e(α, β) is a 3-dimensional vector whose elements are:

e1 =

∫ ∆ψf

∆ψ0

cos(α+ ∆ψ − β −∆ϕ)d∆ψ;

e2 =

∫ ∆ψf

∆ψ0

(cos(β + ∆ϕ) cos(α+ ∆ψ − β −∆ϕ))d∆ψ;

e3 = −
∫ ∆ψf

∆ψ0

(cos(α+ ∆ψ) cos(α+ ∆ψ − β −∆ϕ))d∆ψ;

and finally c(α, β) is a scalar having the form:

c =

∫ ∆ψf

∆ψ0

cos2(α+ ∆ψ − β −∆ϕ)d∆ψ.

When A(α, β) is positive definite, the optimal Freudenstein parameters k∗(α, β) which minimise
‖d(α, β)‖22 (or equivalently ‖d(α, β)‖2) are:

k∗(α, β) = A−1(α, β)e(α, β), (21)

and the square of the minimal design error is:

min
k
‖d(α, β)‖22 = ‖d∗(α, β)‖22 = c(α, β)− e(α, β)TA−1(α, β)e(α, β). (22)

The assumption of positive definiteness for A(α, β) will be discussed in Section 4. However, a100

necessary condition for A(α, β) to be positive definite is that it is non-singular. This justifies a
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posteriori why we use the dial zeros. In this case, as in Section 2, the design error minimisation
problem is solved in two steps:

1. determine the dial zeros to minimise the condition number κ(α, β) of A(α, β);
2. determine the corresponding optimal Freudenstein parameters using Equation (21).105

Intuitively, the continuous approximate approach should correspond to the limit of the discrete
approximate approach. This is proven to be so in the next section.

4. The design error of the discrete approximate approach is lower bounded by that of
the continuous approximate approach

In this section, we assume that ∆ϕpres(∆ψ) is a continuously differentiable function, however110

Propositions 1, 2, and 3, which follow, only require continuity. With this assumption and using the
notation introduced in the previous sections, the following propositions hold.

Proposition 1. A(α, β) is positive semidefinite, and

lim
m→∞

κm(α, β) = κ(α, β).

Proposition 2. If A(α, β) possesses full rank, then,

lim
m→∞

k∗m(α, β) = k∗(α, β).

Recall that k∗(α, β) minimises the design error under the condition that A(α, β) is positive
definite. Now, from Proposition 1, we can claim that A(α, β) is at least positive semidefinite.
However, the positive definitiveness is not guaranteed and it justifies the need for the assumption115

in Proposition 2.

Proposition 3. If A(α, β) possesses full rank, then,

lim
m→∞

∆ψf −∆ψ0

m
‖d∗m(α, β)‖2 = ‖d∗(α, β)‖2.

Proposition 4. If the optimal solution (α∗, β∗) is unique, then,

lim
m→∞

(α∗m, β
∗
m) = (α∗, β∗).

Proposition 5. If the optimal solution (α∗, β∗) is unique, then,

lim
m→∞

κm(αm, βm) = κ(α∗, β∗).

Moreover, if A(α∗, β∗) possesses full rank, then,

lim
m→∞

k∗m(αm, βm) = k∗(α∗, β∗),

and
lim
m→∞

∆ψf −∆ψ0

m
‖d∗m(αm, βm)‖2 = ‖d∗(α∗, β∗)‖2.

Proposition 5 is our main result. It essentially states that the optimal Freudenstein parame-
ters and the minimal design error for the discrete approach converge to the optimal Freudenstein
parameters and the minimal design error for the continuous approach.
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4.1. Proofs120

Proof of Proposition 1: the proof of Proposition 1 requires the following result.

Proposition 6. Let f be a continuous function on some interval [a, b], then [4]

lim
n→+∞

n−1∑
i=0

b− a
n

f(a+ i
b− a
n

) =

∫ b

a
f(x)dx.

From Proposition 6, the elements of Am(α, β) =
∆ψf −∆ψ0

m
STm(α, β)Sm(α, β) converge to the

elements of A(α, β).
Recall the definitions for positive definiteness and positive semidefiniteness: a real n×n matrix

A is positive definite if, for all vectors x ∈ R, xTAx > 0, and positive semidefinite if, for all vectors125

x ∈ R, xTAx ≥ 0. Now, from the definitions of the elements aij of A(α, β) we have

A(α, β) =

∫ ∆ψf

∆ψ0

Bd∆ψ, (23)

where B is a symmetric 3× 3 matrix:

B =


1 cos(β + ∆ϕ) − cos(α+ ∆ψ)

cos(β + ∆ϕ) cos2(β + ∆ϕ) − cos(β + ∆ϕ) cos(α+ ∆ψ)

− cos(α+ ∆ψ) − cos(β + ∆ϕ) cos(α+ ∆ψ) cos2(α+ ∆ψ)

 . (24)

Matrix B has the special property that it is the vector product of vector v and its transpose, where

v =


1

cos(β + ∆ϕ)

− cos(α+ ∆ψ)

 , (25)

such that

vvT = B. (26)

Then, for each vector x = [x1, x2, x3]T in R3 the function

f(x,∆ψ) = xTBx

has only non-negative values, as

f(x,∆ψ) = xTBx = xT (vvT )x = (xTv)2 ≥ 0.

From this result, it necessarily follows that130

xTAx = xT
(∫ ∆ψf

∆ψ0

Bd∆ψ

)
x =

∫ ∆ψf

∆ψ0

(xTBx)d∆ψ =

∫ ∆ψf

∆ψ0

f(x,∆ψ)d∆ψ ≥ 0,

9



which completes the proof. Now, given an arbitrary function, the function-generator designer need
only check that the eigenvalues of the matrix A defined by the given function are all greater than
zero.

Proof of Proposition 2: the proof of Proposition 2 requires the following proposition.

Proposition 7. If a sequence of matrices Mn converges to a matrix M and M is invertible then,135

M−1
n converges to M−1 [15].

From Proposition 1, Am(α, β) converges towards A(α, β). A(α, β) possesses full rank by hy-
pothesis, then there must be some index m0 such that ∀ m ≥ m0 and Am(α, β) possesses full rank.
Hence, ∀ m ≥ m0 Sm(α, β) possesses full rank and the pseudo-inverse S+

m(α, β) is:

S+
m(α, β) = (STm(α, β)Sm(α, β))−1STm(α, β) =

∆ψf −∆ψ0

m
A−1
m (α, β)STm(α, β). (27)

Equation (10) then becomes:

k∗m(α, β) = A−1
m (α, β)

(
∆ψf −∆ψ0

m
STm(α, β)bm(α, β))

)
. (28)

From Proposition 6,
(

∆ψf −∆ψ0

m
STm(α, β)bm(α, β)

)
converges to e(α, β). From Proposition 7,

A−1
m (α, β) converges towards A−1(α, β), hence k∗m(α, β) converges towards A−1(α, β)e(α, β) which

is equal to k∗(α, β) in Equation (21). This completes the proof.

Proof of Proposition 3: Equation (11) can be rewritten:

‖d∗m(α, β)‖22 = bTm(α, β)bm(α, β)−
(
STm(α, β)bm(α, β)

)T
k∗m(α, β). (29)

Multiply Equation (29) by
∆ψf −∆ψ0

m
. From Proposition 6,

(
∆ψf −∆ψ0

m
STm(α, β)bm(α, β)

)
140

converges to e(α, β) and
(

∆ψf −∆ψ0

m
bTm(α, β)bm(α, β)

)
converges to c(α, β). From Proposition 2,

k∗m(α, β) converges towards k∗(α, β). This completes the proof.

Proof of Proposition 4: the proof of Proposition 4 requires the following proposition:

Proposition 8. Let f be a function continuously differentiable on [a, b], then [16]∣∣∣∣∣
∫ b

a
f(x)dx− lim

n→+∞

n−1∑
i=0

b− a
n

f(a+ i
b− a
n

)

∣∣∣∣∣ ≤ (b− a) max{f ′(x), x ∈ [a, b]}
n

.

The dial zeros are members of a compact set defined by the Cartesian product K = [−π, π] ×
[−π, π]. Hence, the maximum of the first derivative of any entry of Am(α, β) is bounded uniformly145

relative to (α, β). From Proposition 8, it follows that the elements of Am(α, β) converge uniformly
relative to (α, β) towards the elements of A(α, β).
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The sequence (α∗m, β
∗
m) belongs to K. Hence, there exists a subsequent (α∗ϕ(m), β

∗
ϕ(m)) which

converges to some (α∗ϕ, β
∗
ϕ). From the uniform convergence of Am(α, β), it follows that the elements

of Aϕ(m)(α
∗
ϕ(m), β

∗
ϕ(m)) converge towards the elements of A(α∗ϕ, β

∗
ϕ). Following the same arguments

used in the proof of Proposition 1, we get:

lim
m→∞

κϕ(m)(α
∗
ϕ(m), β

∗
ϕ(m)) = κ(α∗ϕ, β

∗
ϕ), (30)

or (α∗ϕ(m), β
∗
ϕ(m)) minimises the condition number of Aϕ(m)(α, β), hence:

∀(α, β) ∈ K,κϕ(m)(α
∗
ϕ(m), β

∗
ϕ(m)) ≤ κϕ(m)(α, β).

From Equation (30) and Proposition 1, taking the limit on both sides of this inequality gives:

∀(α, β) ∈ K,κ(α∗ϕ, β
∗
ϕ) ≤ κ(α, β).

Hence, (α∗ϕ, β
∗
ϕ) minimises the condition number of A(α, β). In other words, each convergent

(α∗m, β
∗
m) converges to a minimum of the condition number ofA(α, β). By hypothesis, this minimum

is unique. Hence, ∀ϕ, (α∗ϕ, β∗ϕ) = (α∗, β∗) and the whole sequence (α∗m, β
∗
m) converges to (α∗, β∗).150

This completes the proof.

Proof of Proposition 5: the first statement of Proposition 5 has been proved in the proof
of Proposition 4, see Equation (30). From the uniform convergence arising from Proposition 8
the convergence in Proposition 2 and Proposition 3 is in fact uniform. The last two statements
of Proposition 5 follow. To be completely rigorous, Proposition 7 should be modified to uniform155

convergence, but doing so introduces no contradictions.

5. Example

The preceding results for continuous approximate synthesis that minimises the design error are
now illustrated with an example. Let the prescribed function be the Ackerman steering condition
for terrestrial vehicles. The steering condition can be expressed as a trigonometric function whose
variables are illustrated in Figure 2:

sin(∆ϕpres −∆ψ)− ρ sin(∆ψ) sin(∆ϕpres) = 0, (31)

with ρ denoting the length ratio b/a, where a is the distance between front and rear axles, and b
the distance between the pivots of the wheel-carriers, which are coupled to the chassis. With the
dial zeros, the expression for the steering condition becomes:

sin(β + ∆ϕpres − α−∆ψ)− ρ sin(α+ ∆ψ) sin(β + ∆ϕpres) = 0. (32)

For our example, ρ = 0.5 and [∆ψ0,∆ψf ] = [−40.00, 30.00], where angles are specified in degrees.
With these values, the prescribed function, i.e. the steering condition, is continuously differentiable.
Hence, Proposition 5 must apply.160
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Figure 2: Graphical illustration of the Ackerman steering condition.

m α∗m β∗m α∗ β∗

10 -61.80 67.320 – –
40 -62.17 68.73 – –
100 -62.23 69.03 – –
400 -62.26 69.17 – –
1000 -62.27 69.20 – –
∞ – – -62.27 69.22

Table 1: Optimal dial zeros.

m k1 k2 k3 κm κ∗ ‖dm‖2 ‖d∗‖2
10 -0.993 0.412 -0.429 18.24 – 6.93× 10−4 –
40 -1.001 0.406 -0.425 20.79 – 6.44× 10−4 –
100 -1.003 0.405 -0.424 21.38 – 6.31× 10−4 –
400 -1.003 0.404 -0.424 21.69 – 6.24× 10−4 –
1000 -1.004 0.404 -0.424 21.75 – 6.23× 10−4 –
∞ -1.004 0.404 -0.424 – 475.03 – 6.23× 10−4

Table 2: Optimised Freudenstein parmeters, condition numbers, and normalised design errors.
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5.1. Establishing the Optimal Dial Zeros and Freudenstein Parameters
The multi-dimensional Nelder-Mead downhill simplex algorithm [17] is employed to find the

optimal values for the dial zeros. Table 1 lists (α∗m, β
∗
m) for different values of m, as well as (α∗, β∗).

From the optimal dial zeros obtained in Table 1, it is now possible to compute the optimal Freuden-
stein parameters. Table 2 lists the optimised Freudenstein parameters, ki, synthesis matrix condition165

numbers κm, and design error norms which have been normalized by dividing by
√
m for comparison

for different values of m as well as the values using the continuous approach.
Continuous approximate synthesis eliminates the problem of determining an appropriate cardinal

number for the data-set because it evaluates the case for m→∞. Hence there is no need to search
for some convergence in order to set the proper value of m, which eliminates a source of error.170

However, the continuous approach requires numerical integrations, which itself is a source of error.
These errors are in fact of the same nature. Indeed, from the development of Section 4, it is clear
that discrete approximate synthesis is essentially a numerical integration method itself: Romberg’s
method for example, which is an extrapolation on the trapezoidal rule [4]. Hence, comparing
the errors arising from the discrete approximate synthesis with continuous approximate synthesis175

is equivalent to comparing the error terms of two different numerical integration methods. The
example presented above employed the Matlab function quadl, which employs recursive adaptive
Lobatto quadrature [18].

6. Conclusions and Future Work

In this paper a proof has been given that the design error of planar RRRR function-generating180

linkages synthesised using over-constrained systems of equations established with discrete I/O data
sets is bounded by a minimum value established using continuous approximate synthesis between
minimum and maximum I/O values. Evaluating the design error over the entire continuous range
of the function requires the use of a functional normed space, thereby changing the discrete ap-
proximate synthesis problem to a continuous approximate synthesis problem. Assuming that the185

prescribed function ∆ϕpres(∆ψ) is continuously differentiable, it is shown that the dial zeros, the
optimal Freudenstein parameters, and the minimal design error for discrete approximate synthesis
converge towards the dial zeros, the optimal Freudenstein parameters and the minimal design er-
ror for continuous approximate synthesis. In other words, the continuous approach corresponds to
the discrete approach after setting the cardinality of the I/O set to m → ∞, and represents the190

bounding optimal values.
The extension of this work is to investigate how the structural error as defined in [2] bounds the

design error. First, it should be determined whether the structural error minimisation problem can
be formulated and, more importantly solved, using the continuous approach. Second, it should be
investigated whether in this case too, the continuous approach corresponds to the discrete approach195

with m → ∞. This is certainly much more challenging due to the increased complexity of the
continuous structural error minimisation problem, which is a non-linear problem with equality
constraints, compared to the continuous design error minimisation problem, which is a quadratic
problem without any constraints. Finally, one might ask whether our developments could be applied
to other mechanism topologies, such as planar mechanisms possessing prismatic joints, as well as200

spherical, or spatial linkages.
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