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Abstract

Although the genetic basis of Duchenne muscular dystrophy has been known for almost

thirty years, the cellular and molecular mechanisms characterizing the disease are not

completely understood and an efficacious treatment remains to be developed. In this study

we analyzed proteomics data obtained with the SomaLogic technology from blood serum of

a cohort of patients and matched healthy subjects. We developed a workflow based on bio-

marker identification and network-based pathway analysis that allowed us to describe differ-

ent deregulated pathways. In addition to muscle-related functions, we identified other

biological processes such as apoptosis, signaling in the immune system and neurotrophin

signaling as significantly modulated in patients compared with controls. Moreover, our net-

work-based analysis identified the involvement of FoxO transcription factors as putative reg-

ulators of different pathways. On the whole, this study provided a global view of the

molecular processes involved in Duchenne muscular dystrophy that are decipherable from

serum proteome.

Introduction

Proteomics, the large scale analysis of proteins, is feasible thanks to the availability of different

technologies, such as mass spectrometry, gel-based techniques, antibody-based arrays and

recently developed aptamer-based technologies [1–3]. Despite these technological improve-

ments, the extraction of knowledge from the data produced is still challenging and the devel-

opment of data analysis workflows capable of providing additional insight compared to

traditional methods would be highly advantageous. In particular, a first desirable outcome is
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the identification of accurate diagnostic and prognostic markers suitable for subject stratifica-

tion, which would shorten the path to the application of precision medicine concepts to the

clinical practice [4–6]. Another highly desirable outcome is a better understanding of the dis-

ease on the basis of the newly available proteomic profiles. For this second aim a systems biol-

ogy approach based on network analysis would enable integration of highly descriptive disease

biomarkers with existing knowledge and potentially provide additional insight on the affected

biological processes [7–9]. In this work we introduce an approach to achieve both these aims

using recently published proteomics data obtained from a Duchenne Muscular Dystrophy

(DMD) cohort. DMD is a rare disease caused by mutations in the gene that encodes dystrophin.

The main clinical feature observed in DMD patients is the presence of muscular damage coupled

with chronic inflammation that leads to a progressive muscular degeneration and fibrosis. The

average age of diagnosis is usually at four-five years, when the symptoms appear and the disabil-

ity starts to arise [10]. The availability of disease biomarkers that can be assessed using simple,

non-invasive techniques would be useful to better understand the biological pathways altered in

the disease and could be used for an early diagnosis. To this second end, serum creatine kinase

(CK) level is usually evaluated. However, blood CK concentration shows high variability because

it is influenced by age of the child, physical activity extent and pharmacological treatments [11].

In our study we employed an optimized version of the rank-based classification algorithm intro-

duced in [12,13] to identify two biomarker panels based on SomaLogic profiles of DMD patients

and controls and characterize their classification performance. We then used the panels as the

starting point of an analysis aimed at identifying the biological pathways altered in the disease.

To circumvent the limitation represented by the relatively short list of proteins measurable in

blood with the SomaLogic array, we resorted to a network-based systems biology approach to

identify a list of biological processes that are affected in DMD. Therefore a first contribution of

our study is the identification of accurate diagnostic and prognostic markers suitable for subject

stratification. Another contribution is a better understanding of the disease in terms of pathways

identified as affected on the basis of the altered serum proteomic profiles.

Results

Workflow overview

We built a workflow based on a biomarker discovery algorithm and a tool for network analysis

that we recently developed [12–14] (Fig 1). The biomarker discovery algorithm identifies sub-

ject-specific lists of proteins, herein called signatures, which are then compared in order to

classify each subject as belonging to one of the two classes (affected or controls). The aggrega-

tion of the individual signatures produces a list of proteins useful for subject classification and

we refer to it as a ‘biomarker panel’. Since the method can be tuned to obtain panels of differ-

ent lengths, we applied it twice with different settings to obtain two biomarker panels, as

shown in Fig 1. The shorter one was obtained specifically for classification purposes, while the

longer one was derived to identify the biological processes affected by the disease. Specifically,

we used the proteins in the long biomarker panel as input to the network-based tool NASFin-

der that identified functional modules from the sub-networks connecting biomarker proteins

to known transcription factors.

Identification of a short biomarker panel that discriminate DMD patients

from controls

To identify biomarker panels associated with DMD, we analyzed concentration levels of 1128

blood proteins obtained using the SOMAscan technology on a cohort of 42 cases and 28
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controls from The Parent Project Muscular Dystrophy-Cincinnati Children’s Hospital Medical

Centre study (see details in Material and Methods). Overall, we determined that individual sig-

natures formed of just two proteins out of a panel of six were satisfactory to discriminate

DMD patients from controls with perfect accuracy (averaged over all the cross-validation

rounds) and permutation test p-value < 0.001. These six protein epitopes correspond to the

following genes: CA3, CD55, CDH5, CKB/CKM, FGG and TNNI2 (Table 1). Principal compo-

nent analysis performed on the dataset containing only data about these six proteins con-

firmed the separation between DMD patients and controls according to the main axis of

variation (S1 Fig). The contribution of each protein in achieving a control/affected

Fig 1. Study workflow. Proteomics data produced with SOMAscan technology were analyzed using a rank-based classification algorithm. We obtained two set

of proteins (biomarker panels) useful for subject classification and disease characterization. The longer biomarker panel was used as input for network-based

analysis.

https://doi.org/10.1371/journal.pone.0194225.g001

Table 1. Short biomarker panel.

SomaLogic ID UniProt ID Protein name� Gene Symbol p-value

3799–11_2 P07451 Carbonic anhydrase 3 CA3 1.31E-10

5069–9_3 P08174 Complement decay-accelerating factor CD55 3.89E-09

2819–23_2 P33151 Cadherin-5 CDH5 2.30E-09

3714–49_2 P12277 / P06732 Creatine kinase B-type / Creatine kinase M-type CKB CKM 1.32E-10

4989–7_1 P02679 Fibrinogen gamma chain FGG 2.77E-09

5440–26_3 P48788 Troponin I, fast skeletal muscle TNNI2 1.28E-10

� From Uniprot database

https://doi.org/10.1371/journal.pone.0194225.t001
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classification is illustrated in Fig 2. The heatmap of the measured protein levels shows that no

single protein level highly correlates with a partition of the subjects in two groups (Fig 2A).

Signatures of length two, as those selected by our method for inclusion in the short panel (Fig

2B, red boxes), are sufficient to correctly identify the control/affected status of each individual.

As an intermediate step, our algorithm computes a complete distance matrix based on the sim-

ilarity between each pair of subject signatures (shown in the form of a heatmap in Fig 2C). As

an aid in interpreting the distance matrix, a map of the subjects is drawn by using the shortest

N = 20% distances, with colors added afterwards according to control/affected status. In this

case, the map clearly shows the emergence of two well-defined groups, with subject perfectly

segregated by disease status (Fig 2D).

The six proteins are related to different fundamental aspects of the disease. In particular,

serum creatine kinase is a marker of muscular damage [15] and it has been known for a long

time for being increased in DMD patients, even if it is not DMD-specific [16]. Similarly, car-

bonic anhydrase 3 is another indicator of muscular damage and it is highly expressed in skele-

tal muscle. Also troponin is a muscle–specific protein involved in regulating muscle

contraction and it was found in blood after prolonged exercise [15]. In addition to these pro-

teins with a muscle origin, the biomarker panel included CD55, which encodes a regulator of

complement cascade and, together with fibrinogen and cadherin, is likely involved in fibrosis,

a DMD hallmark [17,18].

Fig 2. Signature-based classification of affected vs. control subjects for each individual. (A) Heatmap of the six proteins included in the biomarker

panel (columns) across the 70 subjects (rows). Control subjects: top 28 rows; affected subjects: bottom 52 rows. (B) Signatures composed of at least two

proteins (red boxes) out of six are needed to accurately classify each subject as being a member of either the control or the affected group. (C) The

heatmap of the distance matrix shows that signatures of length two are actually sufficient to correctly divide subjects into two groups. (D) A map of the

subjects based on the distance matrix confirms that the two emerging groups are of homogeneous composition and points to a possible subgroup of

affected individuals (green: control subjects, red: affected subjects; colors were added after the map was drawn).

https://doi.org/10.1371/journal.pone.0194225.g002
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Identification of a longer biomarker panel to investigate the disease biology

Despite the usefulness of the six proteins in the biomarker panel for classification purposes,

they showed a limited applicability in understanding the pathways altered in the disease since

only key aspects of the disease could be identified. We speculated that a longer list would be

more likely to highlight the set of impaired pathways in a statistically significant way. For this

reason, we trained the classification algorithm using different settings to obtain the longest

protein list allowing classification accuracy close to 100% and we identified 52 proteins that

are able to discriminate between disease and healthy controls with accuracy of prediction of

98.75% and permutation test p-value < 0.001 (Table 2).

To evaluate the biological role of these proteins we first analyzed their tissue-specific

expression using the transcript expression levels in Human Protein Atlas (HPA) dataset [19].

This analysis identified eleven proteins of the biomarker (21%) as tissue specific in HPA and,

among them, highlighted an over-representation of muscle-specific proteins (Fig 3 and S1

Table). In fact, skeletal muscle resulted a significantly enriched tissue (p-value = 7.831e-05;

Fisher’s exact test) with five proteins showing specific expression: Carbonic anhydrase 3

(CA3), Creatine kinase M-type (CKM), Mitogen-activated protein kinase 12 (MAPK12),

Tropomyosin beta chain (TPM2) and Troponin I, fast-twitch isoform (TNNI2). In addition,

the biomarker included one protein specific of heart muscle, the Cardiac troponin I (TNNI3).

Four proteins, despite not being tissue specific, showed elevated expression in a group of tis-

sues—HPA group enriched proteins—that included skeletal or heart muscle (CaMK-II sub-

unit alpha (CAMK2A), CaMK-II subunit beta (CAMK2B), Heart-type fatty acid-binding

protein (FABP3) and myoglobin (MB)). Notably, the biomarker also showed an over-represen-

tation of liver-specific proteins (p-value = 0.006; Fisher’s exact test).

Since the serum protein levels in DMD patients are known to be affected by age, we investi-

gated how the proteins in the biomarker panel change according to the age of patients. After

having verified that the age distribution in patients is not significantly different from controls

(p-value of Kolmogorov-Smirnov test: 0.82; Fig 4), we tested the presence of a relationship

between age and protein levels. We identified 31 proteins whose serum level changes signifi-

cantly with age. The top 5 proteins are shown in Fig 4 and the full list of biomarker proteins is

shown in S2 Fig and S2 Table. With two exceptions, in all cases the protein levels decreased

with age in DMD patients while they remain stable in controls. Nine of them showed a signifi-

cant age-related change also in controls but the variation observed in the two groups was dif-

ferent and did not affect their separation (S3 Fig). These results are not unexpected since the

disease is known to affect protein levels along its progression and this change has been related

to the progressive loss of muscle mass [20]. Given the presence in the cohort of 28 DMD sub-

jects treated with steroids, we checked if the treatment influenced the protein levels and 32

proteins of the biomarker panel resulted significantly associated with the treatment, indicating

proteins potentially affected by the drug (S4 Fig). Despite the presence in the dataset of patients

treated with steroids and patients not treated, this did not affect the classification (S5 Fig).

Gene-set enrichment analysis

To identify the biological processes altered in the disease we first computed the overlap

between the 52 biomarker proteins and gene sets retrieved by MSigDB [21]. Specifically, gene

set enrichment analysis was performed using hallmark gene sets and the canonical pathways

from KEGG, Reactome and Biocarta (Table 3). The analysis with hallmark gene sets confirmed

the over-representation of skeletal muscle proteins with a significant enrichment for “myogen-

esis” gene set (BH corrected p-value 0.000304). The genes coding the biomarker proteins pres-

ent in the “myogenesis” gene set are: TNNI2, CKM, TPM2, FABP3, MAPK12, GSN, MB, CKB,
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Table 2. Long biomarker panel.

SomaLogic ID UniProt ID Gene Symbol p-value

5451–1_3 Q13740 ALCAM 5.89E-07

4194–26_3 Q92688 ANP32B 3.27E-09

3799–11_2 P07451 CA3 1.68E-10

3326–58_2 Q9BY67 CADM1 7.29E-07

3350–53_2 Q9UQM7 CAMK2A 9.83E-10

3351–1_1 Q13554 CAMK2B 5.35E-08

3419–49_2 Q13557 CAMK2D 5.51E-09

3290–50_2 Q6YHK3 CD109 7.00E-07

5103–30_3 Q8TD46 CD200R1 3.00E-07

5069–9_3 P08174 CD55 6.39E-09

5337–64_3 P42081 CD86 2.78E-07

2819–23_2 P33151 CDH5 2.81E-09

3714–49_2 P12277 P06732 CKB CKM 6.67E-10

2670–67_4 P06732 CKM 1.50E-09

2827–23_2 P78423 CX3CL1 1.32E-07

4545–53_3 Q96DA6 DNAJC19 1.45E-07

2677–1_1 P00533 EGFR 1.55E-06

4908–6_1 P17813 ENG 4.88E-08

4696–2_2 P05413 FABP3 1.52E-09

5029–3_1 Q12884 FAP 1.46E-06

3052–8_2 P48023 FASLG 1.75E-06

4907–56_1 P02671 P02675 P02679 FGA FGB FGG 5.03E-09

2796–62_2 P02671 P02675 P02679 FGA FGB FGG 9.31E-09

4989–7_1 P02679 FGG 4.31E-09

2765–4_3 O95390 GDF11 3.84E-07

4272–46_2 P06744 GPI 8.07E-10

3709–4_2 P24298 GPT 3.57E-09

4775–34_3 P06396 GSN 6.53E-08

4553–65_3 Q7Z4V5 HDGFRP2 5.49E-07

4232–19_2 P08069 IGF1R 7.63E-07

3073–51_2 O95998 IL18BP 1.58E-06

5092–51_3 P78504 JAG1 1.51E-07

2475–1_3 P10721 KIT 2.48E-07

3890–8_2 P07195 LDHB 3.05E-08

5005–4_1 P53778 MAPK12 2.12E-10

3042–7_2 P02144 MB 9.01E-10

3853–56_1 P40925 MDH1 9.10E-07

5107–7_2 P46531 NOTCH1 7.60E-07

4179–57_3 None None 1.65E-08

3390–72_2 P42336 P27986 PIK3CA PIK3R1 2.63E-08

2692–74_2 P14555 PLA2G2A 1.39E-07

2212–69_1 P00750 PLAT 1.60E-07

2961–1_2 P04070 PROC 5.45E-07

2696–87_2 O60542 PSPN 1.07E-06

5115–31_3 Q969Z4 RELT 4.87E-08

3220–40_2 P07949 RET 7.67E-10

3864–5_2 P62081 RPS7 7.06E-09

(Continued)
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NOTCH1 and CAMK2B. In addition to the muscle-related biological functions, Biocarta path-

way analysis revealed the presence of proteins involved in the coagulation cascade and pointed

out the presence of different signaling pathways differentially regulated in DMD individuals

compared with controls (Table 3). In particular, significantly enriched Biocarta pathways

included different gene sets related to insulin receptor—PI3K/Akt pathway (igf1-mtor path-

way, akt pathway and igf1r pathway), consistent with the already described role of PI3K/Akt in

muscle atrophy and hypertrophy [22,23].

Identification of disease sub-networks and molecular regulators

characterizing DMD

In the next step of the analysis we further investigated the presence of deregulated regulatory

circuits in DMD using a network-based approach. In our workflow we applied NASFinder, a

network analysis tool we recently developed [14]. Specifically, we mapped on a global signaling

interaction network the 52 proteins in the biomarker panel and we identified the sub-networks

connecting these proteins with transcription factors (TF). We opted for the use of TF as source

nodes because they are at the top of signaling and regulatory cascades. The connections

between TF and proteins of interest were established by NASFinder preferentially through

Table 2. (Continued)

SomaLogic ID UniProt ID Gene Symbol p-value

5122–92_2 Q9H2E6 SEMA6A 9.31E-07

2665–26_2 Q02223 TNFRSF17 4.19E-07

4472–5_2 P07951 TPM2 1.26E-06

5440–26_3 P48788 TNNI2 3.88E-10

5441–67_3 P19429 TNNI3 2.31E-09

https://doi.org/10.1371/journal.pone.0194225.t002

Fig 3. Tissue specificity from Human Protein Atlas. (a) Bar chart showing the number of proteins in each of the categories defined by Human

Protein Atlas to classify the proteins according to their level of tissue-specificity. (b) Bar chart showing the tissues in which the tissue-enriched

proteins are expressed. The stars above the columns indicate the significance of enrichment analysis (���Fisher’s exact test p-value< 0.0001; ��

Fisher’s exact test p-value< 0.001).

https://doi.org/10.1371/journal.pone.0194225.g003
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differentially expressed proteins (see details in Materials and Methods). To identify the biologi-

cal processes associated with the disease regulatory circuits we performed a network-based

pathway enrichment analysis. The significant pathways are reported in Table 4 together with

Fig 4. Age-related changes of biomarker levels in DMD patients and control. The first chart shows the age distribution in cases and controls while the other charts

show the variation in serum protein level for the five proteins showing the most significant age related change. The red dots correspond to the data for DMD patients

while the blue ones to the controls. The lines in the corresponding colors show the regression line, while the gray area corresponds to the confidence interval.

https://doi.org/10.1371/journal.pone.0194225.g004
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Table 3. Gene-set enrichment analysis.

pathway pathway description # genes BH adjusted

p-value

HALLMARK_MYOGENESIS Genes involved in development of skeletal muscle

(myogenesis)

10 0.000304117

BIOCARTA_AMI_PATHWAY Acute Myocardial Infarction 5 0.012630235

BIOCARTA_CREB_PATHWAY Transcription factor CREB and its extracellular signals 5 0.012630235

BIOCARTA_SARS_PATHWAY The SARS-coronavirus Life Cycle 3 0.023907602

BIOCARTA FIBRINOLYSIS PATHWAY Fibrinolysis Pathway 4 0.023907602

BIOCARTA CACAM PATHWAY Ca++/ Calmodulin-dependent Protein Kinase Activation 3 0.028852412

BIOCARTA STATHMIN PATHWAY Stathmin and breast cancer resistance to antimicrotubule

agents

3 0.028852412

BIOCARTA PGC1A PATHWAY Regulation of PGC-1a 3 0.028852412

BIOCARTA EXTRINSIC PATHWAY Extrinsic Prothrombin Activation Pathway 4 0.037936344

BIOCARTA BAD PATHWAY Regulation of BAD phosphorylation 4 0.037936344

BIOCARTA ACH PATHWAY Role of nicotinic acetylcholine receptors in the regulation

of apoptosis

3 0.037936344

BIOCARTA IGF1MTOR PATHWAY Skeletal muscle hypertrophy is regulated via AKT/mTOR

pathway

3 0.046573009

BIOCARTA AKT PATHWAY AKT Signaling Pathway 3 0.046573009

BIOCARTA INTRINSIC PATHWAY Intrinsic Prothrombin Activation Pathway 4 0.046573009

BIOCARTA IGF1R PATHWAY Multiple antiapoptotic pathways from IGF-1R signaling

lead to BAD phosphorylation

3 0.046573009

KEGG GLIOMA Glioma 7 0.01806724

REACTOME UNBLOCKING OF NMDA RECEPTOR GLUTAMATE

BINDING AND ACTIVATION

Genes involved in Unblocking of NMDA receptor,

glutamate binding and activation

3 0.02196037

REACTOME CREB PHOSPHORYLATION THROUGH THE

ACTIVATION OF CAMKII

Genes involved in CREB phosphorylation through the

activation of CaMKII

3 0.02196037

REACTOME RAS ACTIVATION UOPN CA2 INFUX THROUGH NMDA

RECEPTOR

Genes involved in Ras activation uopn Ca2+ infux through

NMDA receptor

3 0.02196037

https://doi.org/10.1371/journal.pone.0194225.t003

Table 4. Network-based pathway enrichment analysis.

regulator # genes in the sub-

network

Pathway # pathway overlapping

genes

p-value Empirical p-value of DMD proximity

analysis

TP53 83 KEGG GLIOMA 11 4.82E-

10

0.513

FOXO1 89 KEGG PATHWAYS IN CANCER 21 2.57E-

09

0.11

FOXO1 89 BIOCARTA AMI PATHWAY 7 8.23E-

09

0.086

EGR2 76 BIOCARTA CREB PATHWAY 7 2.55E-

08

0.411

FOXO3 74 KEGG NEUROTROPHIN SIGNALING

PATHWAY

11 1.73E-

07

0.035

MEF2C 98 HALLMARK MYOGENESIS 15 3.38E-

07

0.312

MYB 87 REACTOME HEMOSTASIS 20 3.12E-

06

0.549

RBPJ 63 BIOCARTA BAD PATHWAY 4 0.0001 0.276

FOXO4 77 REACTOME IMMUNE SYSTEM 21 0.0028 0.481

https://doi.org/10.1371/journal.pone.0194225.t004
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the transcription factors that NASFinder identified as the most probable regulators. On the

whole, the resulting gene sets are partially overlapping, as shown in Fig 5 and S3 Table, sug-

gesting the presence of a shared regulated biological process that involves multiple pathways.

Indeed, only myogenesis did not show genes in common with other pathways and, as a confir-

mation of its peculiarity, the transcription factor selected as putative regulator was MEF2C, a

transcription activator specific of muscle genes. In the enrichment map it is interesting to

observe the centrality of BioCarta BAD pathway, a gene set related to the regulation of the pro-

apoptotic molecule BAD. Among the regulators of the sub-networks the Forkhead family of

transcription factors was the most represented with 3 members: FOXO1, FOXO3 and FOXO4.

They were respectively identified as regulators of the sub-networks enriched in genes involved

in acute myocardial infarction pathway, cancer pathways, neurotrophin signaling and immune

system pathway. In particular, eleven proteins in the NASFinder FOXO3 sub-network are

present in the neurotrophin pathway (p-value = 1.34 x 10−7). Seven of them (corresponding to

the genes CAMK2A,CAMK2B, CAMK2D, FASLG, MAPK12, PIK3CA and PIK3R1) derived

from the biomarker while the others (NFKB1, FOXO3, MAPK3 and PIK3CG) were added by

NASFinder on the basis of the differentially expressed proteins. It is interesting to observe that

7 proteins (coded by the genes MAPK12, CAMK2A, CAMK2B, CAMK2D,MAPK3, PIK3CA
and PIK3R1) were also identified in the Reactome immune system pathway (p-value = 0.003).

Considering all the sub-networks and the related pathways pinpointed by NASFinder,

PI3-kinase subunit alpha (PIK3CA) and PI3-kinase regulatory subunit alpha (PIK3R1) were

identified as the proteins shared among all pathways, with the exception of myogenesis and

myocardial infarction. The two proteins are subunits of phosphatidylinositol 3-kinase, a key

element in PI3K/AKT pathway, a regulator of several signaling cascades and in particular of

FoxO signaling [24].

To further investigate the relevance of the identified pathways in the disease biology, we

evaluated the closeness in the interactome between the proteins belonging to the pathways

described above and dystrophin, the protein mutated in the disease. Expecting that not all the

pathway proteins are necessarily involved in the disease, we calculated the shortest path dis-

tances between dystrophin and any of the pathway proteins. Among the nine pathways identi-

fied using the network-based pathway enrichment analysis (Table 4), the neurotrophin

signaling pathway resulted significantly closer to DMD than expected by chance (empirical p-

value = 0.035; Fig 6). These results offer a network-based support for the involvement of sig-

naling cascades, and specifically PI3K signaling, in the disease.

Fig 5. Pathway enrichment map showing the overlap among the pathways identified by NASFinder. The nodes

correspond to the pathways and the thickness of the edges connecting them is proportional to the number of shared

genes (indicated on the edges).

https://doi.org/10.1371/journal.pone.0194225.g005
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Fig 6. Network-based DMD-pathway proximity analysis. (A) Graphical representation of the subnetwork connecting dystrophin and the proteins in the neurotrophin

pathway. The gene symbols corresponding to differentially expressed proteins are written in black, those not modulated or not measured with the SomaLogic platform

are in white. When more than one path with the same shortest distance was identified, only those including differentially expressed genes are shown. (B) DMD, the genes

in the neurotrophin pathway, the differentially expressed genes and their direct connections are highlighted.

https://doi.org/10.1371/journal.pone.0194225.g006
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Comparison with published studies about proteomics in DMD

We selected five published proteomics studies performed on blood serum of subjects affected

by DMD or DMD mouse models [20,25–28] and checked if the proteins in our panel had been

already described as DMD biomarkers (S4 Table). Twenty-seven of the 52 proteins included in

our long biomarker panel were already identified as differentially present between serum of

DMD cases compared with controls in a previous analysis performed by Hathout and collabo-

rators [20]. To further assess the similarity of the results between the two studies, we investi-

gated their protein signature with our analysis workflow. Using Gene Set Enrichment

Analysis, although none was significant after multiple test correction, some of the most

enriched pathways are shared between the two studies (see S5 Table). Using NASFinder, the

analysis identified 12 statistically significant pathways (S6 Table). Interestingly, three of them

(immune system, hemostasis and myogenesis) are shared with our analysis, and for myogen-

esis the transcription factor identified as a close regulator is the same. Comparing our results

with the study by Ayoglu and collaborators [25], which was performed with an antibody bead

array platform, creatine kinase and carbonic anidrase were the proteins in common with those

of our long panel. GSN was already pinpointed in mass spectrometry analysis of human serum

by Cynthia Martin et al. [26]. In the comparison we also included two studies performed using

a DMD mouse model. In this case, nine proteins were in common with a study that used the

SOMAscan technology for proteomic profiling [27] and five proteins with a study based on

mass spectrometry [28].

Evaluation of gene expression patterns in DMD skeletal muscle

The serum proteomics detects the proteins present in the blood, however they can derive from

muscle degenerating fibers released into the systemic circulation rather than reflecting expres-

sion regulation. Based on this consideration we decided to analyze a type of evidence comple-

mentary to our proteomics data; specifically we selected a public dataset of genome-wide

expression data obtained from the skeletal muscle of DMD and controls (GSE1004). This data-

set contains expression data from quadriceps of patients with clinical symptoms consistent

with a DMD diagnosis, whose biopsies were shown to be dystrophin deficient [29]. After hav-

ing calculated the differentially expressed genes, to investigate the biological processes affected,

pathway enrichment analysis was performed using the differentially expressed genes as input

and we evaluated the overlap with the pathways identified by NASFinder. With the exception

of two Biocarta gene sets, all the pathways identified by NASFinder from the proteome datasets

resulted significantly enriched, as reported in Table 5. We further evaluated the dysregulation

Table 5. Comparison of NASFinder results with pathway enrichment analysis of dataset GSE1004.

Pathway # Genes in Overlap FDR qvalue

HALLMARK MYOGENESIS 31 7.03E-24

REACTOME IMMUNE SYSTEM 50 6.71E-16

REACTOME HEMOSTASIS 31 2.67E-12

KEGG PATHWAYS IN CANCER 22 2.83E-09

KEGG GLIOMA 7 0.000083

KEGG NEUROTROPHIN SIGNALING PATHWAY 8 0.000647

BIOCARTA AMI PATHWAY 3 0.0195

BIOCARTA CREB PATHWAY NA NA

BIOCARTA BAD PATHWAY NA NA

https://doi.org/10.1371/journal.pone.0194225.t005
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of these pathways in a dataset of DMD patients in early phases of the disease and controls

(GDS3027). These data allowed us to test the dysregulation of the pathways in a pre-symptom-

atic phase of the disease. With the exception of Biocarta gene sets, the other pathways resulted

among the top 20 results (S7 Table).

Discussion

In this study we adopted a system biology approach to study Duchenne muscular dystrophy.

Our workflow is based on the combination of two complementary methodologies: biomarker

identification and network analysis. We applied the algorithm for biomarker identification to

point out the essential features of the biological system, i.e. the minimum set of proteins able

to fully separate healthy from affected subjects, and then we applied the network analysis to

unravel the complex interactions among the proteins. Taking advantage of the flexibility of

our algorithm, we calculated two different protein lists, a short one and a long one. All the pro-

teins present in the short biomarker panel have been already described as DMD biomarkers in

Hathout et al. [20] and they are related to the main pathological features observed in DMD [6].

However, the short biomarker panel described here, compared with the signature in Hathout

et al. [20], has the advantage of being able to classify the subjects with only six proteins achiev-

ing perfect accuracy and high statistical significance (permutation test p-value < 0.001). Our

long biomarker panel has size comparable to the disease signature reported in Hathout et al.

(52 vs 46 proteins, respectively) but only approximately half of the proteins (26) are in com-

mon between the two lists. Such low overlap is not surprising in view of the fact that the differ-

ent approaches used in the two studies (classification-oriented vs statistical significance) have

been shown not to be equivalent [30]. From an investigational point of view, our classification-

oriented list provides some additional insights on less known aspects of the disease pathophys-

iology and in particular to identify deregulated pathways and potential regulators. Indeed, in

addition to proteins with a muscle origin, likely found in the serum proteome as a conse-

quence of sarcolemma leakage [31], our analysis pointed out several proteins involved in cell

signaling that, given their biological role, it is not surprising to detect in blood serum. Our

results are in line with growing evidences suggesting that the cellular structural instability

caused by the lack of dystrophin affects different signaling pathways [32–34]. In particular, the

network-based pathway enrichment analysis implemented in NASFinder identified nine path-

ways as significantly enriched and, among the influential nodes, different transcription factors

belonging to the FoxO family were identified as possible regulators. In humans FoxO proteins

are all expressed in skeletal muscle and they have been implicated in muscle homeostasis [35].

Specifically, regarding muscle mass, FoxO proteins were shown to enhance proteolysis

through the ubiquitin-proteasome and the autophagy-lysosome system [36]. Notably, a study

on sarcopenia, the physiological age-related loss of muscle mass, identified FOXO3 as an up-

regulated gene in muscles from old subjects [37] and another study found increased FOXO1
mRNA in aged muscle [38]. However, findings from a more recent study suggest that sarcope-

nia is not due to FoxO activation [39], highlighting the need for further studies to better under-

stand the role of FoxO proteins in physiological and pathological muscle conditions. Among

the sub-networks regulated by FoxO proteins, the neurotrophin signaling pathway, a cascade

of biological processes regulating cell survival and apoptosis [40], was identified as enriched in

our analysis. Although neurotrophins have been mainly linked to the nervous system [41],

recent studies indicated their involvement in skeletal muscle adaptation and regeneration [42].

Specifically, experimental evidences showed that neurotrophins are involved in muscle regen-

eration in dystrophic mice [43] and the nerve growth factor, the paradigm of neurotrophin

family, was identified in muscles from patients affected by DMD [44]. Interestingly, a recent
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study performed using the mdx mouse, a model of DMD, linked apoptosis of myofibers to the

presence of connexin, a protein channel involved in NF-κB activation, iNOS expression and

apoptotic cell death [45]. In our analysis NFKB1, a DNA binding subunit of the NFKB protein

complex, is present in the FOXO3 sub-network defined by NASFinder and the protein is part

of the neurotrophin-related signaling. The network proximity analysis (Fig 6) suggested that

the dysregulation of the neurotrophin signaling pathway in patients affected by DMD might

be mediated by Fas ligand (FASLG), a mediator of the cellular apoptotic signal that is a direct

interactor of the dystrophin protein [46]. A link between Duchenne muscular dystrophy and

FASLG has already been reported by Abdel-Salam et al. [47], which observed significantly

increased levels of FasLG mRNA expression in blood of DMD patients compared to controls.

In addition to neurotrophin signaling, our analysis pointed out, among the FoxO-related sub-

networks, an enrichment for the immune system signaling with FOXO4 identified as a regula-

tor. The role of FoxO proteins in immune system has been already described [48] and interest-

ingly, this process, together with hemostasis, another significant pathway in NASFinder

analysis, is a key player in fibrosis, a prominent feature of dystrophic muscle [49]. It is thus

conceivable that the dysregulation of blood proteins belonging to these pathways is a conse-

quence of the fibrotic process ongoing in muscles of DMD patients. Notably, modulation of

the immune response was suggested as a potential means to alleviate the disease intensity [50].

The other FoxO transcription factor with a pathway enriched sub-network was FOXO1. In

this case two pathways resulted enriched: BioCarta acute myocardial infarction and KEGG

pathways in cancer. While the presence of cardiac dysfunctions in subjects affected by DMD is

common [51], we consider the presence of enrichment in cancer pathways (also KEGG glioma

in TP53 network resulted enriched) a consequence of the bias introduced by the high number

of genes annotated in cancer pathways. Indeed, we noticed that most of the genes in cancer

pathways also belong to other enriched gene sets (S3 Table).

In conclusion, in this study we presented a new bioinformatics workflow based on bio-

marker identification and network analysis that we used to extract biological insights from

proteomics data obtained from a cohort of DMD subjects and controls. This methodology

allowed us to identify different pathways deregulated in the disease and to pinpoint a putative

role of FoxO signaling in DMD. One limitation of this study is the lack of validation of the bio-

marker panel classification performance using a second independent cohort of subjects. To

partially address this issue and avoid overfitting, we trained the algorithm that computed the

biomarkers according to a 5-fold cross-validation scheme. We also used a second dataset of a

very different nature (transcriptional profile of muscle from an unrelated cohort) to confirm

the end results of our analysis and we obtained a substantial confirmation of the results.

Another limitation of this study, as any form of in silico analysis, is that it relies entirely on

observational data. Therefore, our results will have to be validated by means of functional stud-

ies. Despite these limitations, our workflow derives its strength from the convergence of multi-

ple types of evidences from independent experiments, crossed with existing knowledge about

the biology of the disease.

Materials and methods

Dataset

The dataset analyzed in this study was obtained from a collaboration with SomaLogic and

includes subjects previously analyzed by Hathout and coworkers [20]. The present dataset con-

sists of 42 subjects affected by DMD and 28 healthy, age-matched volunteers (PPMD-C

cohort). The group of patients included 28 individuals treated with steroids. For each subject a

proteomic profile was obtained using the SOMAscan technology by SomaLogic. Briefly, this
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high throughput method is based on the use of aptamers with high affinity for the proteins.

The presence in the aptamers of a DNA sequence allows the quantification of the protein levels

in a simple way using microarray-based technology. Further details about the cohort and the

proteomic assay can be obtained from [20]. The original study was approved by the Cincinnati

Children’s Hospital Medical Center Institutional Review Board and informed consent was

obtained from patients or their parents or legal guardians. All methods were performed in

accordance with relevant guidelines and regulations.

Biomarkers identification

Protein biomarkers have been identified by means of an enhanced version of the rank-based

classification method previously introduced in [12,13]. Briefly, after a preliminary protein

selection phase based on the Wilcoxon test, the classification method ranks the filtered pro-

teins by expressions level separately for each sample and then it produces a set of subject-spe-

cific signatures, where each signature is the list of the first n1 and the last n2 proteins in the

ranking (n1 and n2 have the same value for all subjects and they are parameters estimated by

the method). An all-to-all signature comparison is then carried out using a distance metric

based on a weighted enrichment score [52], resulting in a distance matrix that systematically

quantifies the degree of similarity between the subjects. Subjects are then classified by the algo-

rithm into the two groups of controls and diseased, by assigning each sample to the group of

subjects whose elements have the lowest averaged distance from the sample. Finally, a protein

biomarker is extracted, which collects all the proteins included in at least one subject-specific

signature. Therefore, the proteins included in a biomarker are those required to compute the

corresponding subject classification.

In the enhanced version used here, the original classification method has been extended as

in our previous studies [53,54] with a genetic optimizer that automatically selects the method

parameters (signature length and feature selection stringency) to find the best compromise

between biomarker length and classification accuracy. In particular, the two biomarkers herein

presented provide the shortest and the longest protein list allowing classification accuracy

close to 100%. In the case of the longest biomarker, protein levels have also been preprocessed

to emphasize expression fold-changes by dividing protein levels by their averaged value in the

dataset.

To avoid overfitting, in all the considered cases the algorithm has been trained according to

a 5-fold cross-validation scheme, where 20% of the subjects were set aside for validation at

each round, and the remaining ones are used as training set for determining the biomarker.

Moreover, we also evaluated the statistical significance of the analysis by means of a permuta-

tion test in which we compared the observed classification accuracy of the method with an

empirical distribution of accuracy values obtained by 1000 random permutations of the pro-

tein labels. As a result of the permutation test we obtained in all cases a p-value< 0.001.

Linear regression was run to identify proteins in the biomarker panel associated with age,

after having log2 scaled the data. Furthermore, the presence of a treatment effect on protein

levels was tested using Wilcoxon test. For both analyses, p-values were adjusted for multiple

test correction using the Benjamini-Hochberg procedure.

Tissue specificity and gene set enrichment analysis

Tissue specificity was evaluated using the transcriptomic data in the Human Protein Atlas

(http://www.proteinatlas.org/) [19]. In this database proteins are classified as tissue enriched

(mRNA levels in one tissue at least five times higher than all other tissues), group enriched

(mRNA levels in a group of 2 to 7 tissues at least five times higher than all other tissues), tissue
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enhanced (mRNA levels in a particular tissue at least five times the average level in all tissues),

expressed in all (mRNA detected in all tissues), mixed (detected in a subset of tissues and

expression not markedly elevated in any) and not detected. To evaluate the enrichment in a

particular tissue we performed a Fisher’s exact test comparing the tissue enriched proteins in

the biomarker panel with the entire SomaLogic panel.

To perform gene set enrichment analysis we downloaded the gene sets from the Molecular

Signatures Database website [21], v5.1, updated in January 2016. In particular, the following

gene set collections were investigated: hallmark, BioCarta (http://www.biocarta.com/), KEGG

[55] and Reactome [56]. Hallmark is a refined collection defined by MSigDB derived from

multiple founders to point out relevant information about biological conditions avoiding

redundancy [57]. The enrichment was evaluated using the SomaLogic panel as a background

and the statistical significance was tested using the hypergeometric distribution (phyper func-

tion implemented in the R software).

Network analysis

To explore the interactions among the proteins in the biomarker panel and identifying puta-

tive regulators, we applied NASFinder, a tool we recently developed to analyze the connections

among genes of interest and their upstream regulators [14]. Briefly, the proteins in the bio-

marker panel are mapped to a reference protein-protein interaction network, that is, the

human signaling network from the Wang Lab - http://www.cancer-systemsbiology.org/

dataandsoftware.htm. Then, the subnetwork connecting the proteins of interest, in our case

the proteins in the biomarker panel, and the closest transcriptional factor (molecules selected

as regulators) is defined. If a protein of interest is not present in the reference network it is

added, if possible, from BioGRID [58] as detailed in [14]. The paths that connect transcription

factors and biomarker proteins are established by NASFinder preferentially through differen-

tially expressed proteins and they were identified in our study using the Bioconductor package

limma. Specifically, proteins were selected as significant when they showed a Benjamini-Hoch-

berg adjusted p-value less than 0.05 in the comparison between DMD subjects and controls.

Once the subnetworks were identified, we evaluated their overlap with reference pathways

from KEGG, Reactome, Biocarta and the hallmark collection in MSigDB, as in the gene-set

enrichment analysis. The significance of the overlap was calculated using one-sided Fisher’s

exact test. The degree of overlap among the pathways identified by NASFinder was visualized

using the Cytoscape App Enrichment Map v2.1.0 [59], run using Cytoscape 3.4.0. Enrichment

Map was run using default parameters and Overlap coefficient as a measure of similarity.

The network-based proximity analysis between DMD and the pathway genes was per-

formed with the R package igraph, using the protein-protein interaction network from the

Human Protein Reference Database (HPRD) [60]. This background network was preferred to

the signaling network used for the identification of pathways and regulators because it includes

only physical interactions among proteins instead of regulatory interactions. For all the path-

ways, all the shortest paths from DMD to the genes were calculated and the shortest path dis-

tance was defined as the minimal distance found. To assess the significance, we selected 1000

random genes and, for each of them, we calculated the minimal shortest distance to the path-

way. We thus obtained an empirical distribution that was used to calculate the proportion of

samples with a minimal shortest distance less or equal to the distance obtained using DMD.

Gene expression analysis

The datasets GSE1004 and GDS3027 were downloaded from NCBI GEO using the R Biocon-

ductor package GEOquery. Dataset GSE1004 was obtained measuring RNA expression in
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quadriceps biopsies and it includes 12 DMD patients and 12 controls. The DMD biopsies were

from young (5- to 7-year-old) males showing clinical symptoms consistent with a DMD diag-

nosis, and the biopsies were shown to be dystrophin deficient by immunofluorescence and/or

Western blotting [29]. For the purpose of this study we analyzed the data from the platform

HG_U95Av2 (GPL8300) which includes 11 controls and all the 12 cases. Dataset GDS3027

includes the expression profiles of skeletal muscles from 23 children in a pre-symptomatic

phase of Duchenne muscular dystrophy and 14 controls [61]. The analysis of differentially

expressed genes was performed with the R Bioconductor package limma. The gene-set enrich-

ment analysis was performed using the MSigDB tool of the GSEA package (http://www.

broadinstitute.org/gsea/msigdb/index.jsp) querying the same gene sets collections used in the

network analysis (obtained from hallmark, KEGG, Biocarta and Reactome).

Supporting information
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S5 Fig. Network plots showing the case control differentiation using the proteins in the

biomarker panels. The nodes of the network represent the samples, while colors indicate their

status (controls, disease without treatment, diseases with treatment). The length of the edges is

proportional to level of similarity between the sample signatures. In both cases we can observe
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