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Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many tempo-
rally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoid-
ance). Human activities and global environmental change represent potential threats to migrating animals (from individuals 
to species), and research is underway to understand mechanisms that control migration and how migration responds to mod-
ern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, 
management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biome-
chanical aspects of animal migration that will help us to understand how migratory animals interact with current and future 
anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to 
the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the 
conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting 
temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation 
during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress 
physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of 
animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered envi-
ronments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind 
or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, 
uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and 
the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological 
approaches to the conservation of migratory animals.
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Introduction
Migration is one of nature’s most captivating phenomena. 
Migratory movements can be as vast as the transcontinental 
treks of African wildebeest or as minute as diel vertical migra-
tion of zooplankton within metres of the water surface. 
Movement is an inextricable component of animal behaviour, 
but migration is distinct from dispersal or station-keeping 
behaviours because it is predictable, directional and persistent 
(Dingle and Drake, 2007), owing to physiological changes 
that underlie the migratory life stage. Migration is exhibited 
by every major animal taxon and, ultimately, maximizes sur-
vival and reproductive success through the utilization of key 
habitats, food sources and breeding grounds and/or the avoid-
ance of adverse environmental conditions (Dingle and Drake, 
2007). The movement of large numbers of animals from one 
region to another can benefit ecosystems by linking nutrient 
sources and increasing local diversity; these factors may 
increase ecosystem resilience in times of disturbance (Bauer 
and Hoye, 2014). Conversely, the unique physiological 
demands of migration may leave migratory species more sus-
ceptible to disturbance (Wilcove and Wikelski, 2008).

Life-history phenotypes such as migration are expressed 
through behaviours exhibited by individuals in response to 
internal changes to their physiology (Ricklefs and Wikelski, 
2002). Physiology therefore plays an important and founda-
tional role in animal migration, and migratory physiology is a 
mechanistic sub-discipline of migration and movement biol-
ogy (Bowlin et al., 2010; Dingle, 2014; Jachowski and Singh, 
2015). Changes to the central nervous system characterize 
migration, because migrating animals are undistracted by cues 
that would otherwise elicit vegetative responses (Dingle, 
1996). Moreover, physiological mechanisms control the tim-
ing, locomotion and synchronicity of migration, which dictate 
migratory behaviour and ultimate success (Wingfield et al., 
1990). Migration is composed of complex and dynamic inter-
actions among individual genetics, behaviour, physiology, bio-
mechanics and the environment (Dingle, 2006). In addition, 
migrations are inherently challenging; large-scale movement 
across complex landscapes requires vast amounts of energy 
(Wikelski et  al., 2003; Bowlin et  al., 2005; Bishop et  al., 
2015). Furthermore, some species conduct migrations without 
interruption for refuelling, working off fixed energy reserves 
(Stephens et al., 2009). Given that a failed migration directly 
affects lifetime fitness of individuals (Dingle, 1980), natural 
selection has the potential to alter populations and migratory 
phenotypes rapidly. In some cases, this can lead to changes in 
population structure, evolutionary bottlenecks, inbreeding 
depression and extirpation or extinction (Wilcove and 
Wikelski, 2008), which have broader impacts on animal com-
munities and entire ecosystems.

Over the last several decades, global changes and biodiver-
sity losses have created a challenging landscape for conserva-
tion science. Climate change, habitat alteration, species 
invasions and pollution are altering landscapes and creating 
new challenges for animals. Migratory species represent a 

unique challenge because of their high mobility and their reli-
ance on multiple habitats to complete their life history, mean-
ing that they may be subject to multiple and varied threats in 
different habitats such that predicting and understanding their 
ability to adapt is difficult (Robinson et al., 2009; Sih et al., 
2011; Gienapp, 2010). Conservation is a varied and dynamic 
science, the goals of which extend beyond simply avoiding 
extinction risk to understanding and conserving the traits and 
attributes of species that make them successful (Redford et al., 
2011). Novel methodologies and solutions are constantly 
developing in an effort to achieve conservation objectives, 
including an increasing synergy between conservation and 
physiology (Wikelski and Cooke, 2006; Coristine et al., 2014; 
Lennox and Cooke, 2014). Conservation physiology focuses 
on understanding and predicting the responses of animals to 
environmental change and the potential for solving diverse 
conservation problems using physiological knowledge, 
approaches and tools (Cooke et  al., 2013a,b). Given the 
importance of physiological mechanisms to animal migration, 
there are opportunities to implement physiology to enhance 
our understanding of migratory species and populations as 
well as develop novel conservation approaches that are 
informed by animal physiology. Here, we review the physiol-
ogy of animal migration and demonstrate conservation physi-
ology approaches for future research on human-induced 
environmental changes focused on key conservation questions 
where conservation physiology has the potential to play an 
important role. Although we consider all animal taxa in our 
review, the conservation physiology of migration literature is 
disproportionately rich in studies focused on fish and birds, 
which is reflected to some extent in the coverage below.

Review
Orientation and navigation
The success of migration depends on an animal’s ability to 
orient and navigate along migratory paths and requires phys-
iological mechanisms for taking the best migratory route 
(Åkesson and Hedenström, 2007; Bauer et al., 2011; Fig. 1). 
Birds (Mouritsen and Hore, 2012), sea turtles (Lohmann 
1991; Luschi et al., 2007), bats (Holland et al., 2006; Tian 
et al., 2010), salamanders (Phillips and Borland, 1992) and 
salmon (Putman et al., 2014) are among species that use mag-
netic signals for orientation (Wiltschko and Wiltschko, 2005; 
Lohmann et al., 2007, 2008). Cellular mechanisms supporting 
magnetoreception have not been unequivocally demonstrated 
to date (Tian et al., 2010; Edelman et al., 2015), but magnetite 
integrated into sensory tissue has been located in bird beaks 
(Fleissner et al., 2003), salamander thymoids and turtle heads. 
Magnetic orientation is usually used to orient at long dis-
tances, such as in the open ocean (Putman et al., 2013, 2014). 
Long-distance navigation can be disturbed by a variety of 
human developments that create or modify magnetic signa-
tures used by animals. The specific factors that affect animal 
navigation or homing depend on the navigation techniques 
used by the animal. There is some evidence that geomagnetic 
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detection by birds can be disrupted by magnetic fields created 
around cities (Ritz et al., 2004, 2009; Engels et al., 2014). 
However, evidence that this is occurring in the wild is lacking.

Light from the sun and other celestial bodies can be 
entrained by migrating animals for orientation (Able, 1982). 
Specifically, animals can detect polarized light from the sun to 

correct their movement path (Helbig, 1991; Reppert et al., 
2004). Artificial lights can distract animals from their move-
ment path (e.g. Dacke et al., 2003; Mazor et al., 2013); for 
example, beach, street and pathway lighting can entrain 
hatchling sea turtles, resulting in fewer successful migrations 
to the sea and reduced recruitment (Tuxbury and Salmon, 
2005). Furthermore, seabirds can be disoriented at night when 
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Figure 1: Migration is a suite of physiological changes that manifest as predictable, persistent, oriented movement of animals between 
environments in order to exploit seasonal productivity and maximize fitness. Genetics, physiology (including metabolism and condition) and 
environmental conditions can influence transition to the migratory life stage (1). Prior to entering the migratory arena, animals accumulate fuel, 
and their bodies often undergo physiological remodelling to reduce the cost of transport during migration, including atrophy of some organs 
and hypertrophy of exercise muscles or organs (2). The timing of migration is synchronized with distant environmental conditions via hormonal 
regulation, with an important role being played by melatonin produced by the photosensitive pineal gland in response to changing day lengths 
(3). Upon departure, animals use a variety of behavioural strategies to maximize the energetic efficiency, including soaring or gliding (4), as well 
as periodic stopovers to replenish energy stores (5). To find their target habitat, migrating animals have a variety of strategies for orienting, 
wayfinding and interpreting visual, olfactory and other sensory information from the environment that indicates their proximity to high-quality 
habitat (6). Once migrating animals reach their target habitat, they exit the migratory arena and resume vegetative behaviour.



exposed to artificial light sources such as ships, lighthouses 
and oil and gas platforms, often ending in collision between 
the bird and the structure (Montevecchi, 2006). Light pollu-
tion from buildings, ships, aeroplanes and other structures has 
the potential to distract and disorient migrating animals and 
can increase the risk of death via collision or exhaustion when 
animals follow lights indefinitely (Jones and Francis, 2003; 
Merkel, 2010).

At close range, migrating animals generally rely on olfac-
tory or visual cues to locate fine-scale areas in a habitat by 
searching for landmarks or appraising habitat qualities 
(Lohmann et al., 2008; Ueda, 2012). Experiments disrupting 
visual and olfactory pathways in migrating Oncorhynchus 
masou in coastal regions demonstrated a reduced ability to 
locate and enter natal streams (Ueda et al., 2000). Likewise, 
sea turtles use water- and airborne olfactory cues, which are 
believed to provide a source of navigational information 
throughout migrations (Koch et al., 1969; Lohmann et al., 
2008). Turtle species that demonstrate high nesting site fidel-
ity are thought to imprint on chemical gradients from natal 
grounds to guide reproductive migrations (Hasler and Scholz, 
1983; Endres and Lohmann, 2013). Olfactory systems can 
also detect conspecific pheromones; indeed, red-sided garter 
snakes (Thamnophis radix parietalis) use these chemical sig-
natures to follow movements of conspecifics to feeding areas 
and hibernacula and to locate partners during vernal breeding 
migrations (Lemaster et al., 2001). Alteration of chemical sig-
natures in target habitats can mask or dilute chemical cues, 
causing animals to lose track of scents and become lost on 
migration. Acidification of inland waters from acid rain or 
pollution completely stopped further upstream migration of 
sockeye salmon (Oncorhynchus nerka; Ikuta et al., 2001). 
Stormwater runoff from roadways flushes chemicals into riv-
ers, some of which (e.g. copper from brake pads) can impair 
olfactory sensitivity in coho salmon (Oncorhynchus kisutch) 
after even temporary exposure (McIntyre et al., 2008), per-
haps interfering with navigation. Changes to water flow from 
redirection of water associated with irrigation, hydroelectric 
power generation and/or infilling of headwaters for develop-
ment can redistribute or dilute chemical signatures, reducing 
the ability of aquatic animals to navigate, make successful 
migrations and recruit (Sato et  al., 2000; Burnett et  al., 
2014a).

Energetics
Migratory species travelling long distances between habitats 
require adaptations to optimize energetic output. Endurance 
during migration is a function of energy availability; there-
fore, accumulation of fuel is an essential mechanism support-
ing migration (Fig. 1). Fatty acids are the most efficient fuel 
source per unit weight and are important for reducing the cost 
of transport for migrating animals (Butler and Woakes 1990; 
Jenni and Jenni-Eiermann, 1998; McWilliams et al., 2004; Del 
Raye et al., 2013). To accumulate fuel, animals can pre-empt 
migration with hyperphagia, dietary changes and/or increased 
food assimilation efficiency (Bairlein, 2002; Santra et  al., 

2008). However, animals preparing to migrate must have 
access to food of sufficient quality and quantity in order to 
execute migration; therefore, identification and conservation 
of key food sources and habitat types is essential (e.g. Alonso-
Mejía et al., 1997). When key habitats and food sources are 
degraded or lost, actions such as supplemental feeding or 
enrichment may mitigate impacts on migratory populations. 
To reduce maintenance costs during the migration, atrophy of 
non-essential organs (e.g. alimentary; Piersma and Lindström, 
1997; Piersma et al., 1999) and hypertrophy of locomotory 
and cardiac muscle (Piersma et al., 1999; King et al., 2015) 
take place. To compensate for low metabolism, reptiles may 
circulate thyroxine (Southwood and Avens, 2010) to increase 
oxygen consumption, heart mass and metabolic enzyme activ-
ity, suggesting an endocrine role in facilitating migratory 
activity (see also Bishop et al., 1995). Summer growing sea-
sons are extending and winters are shortening, which can pro-
long residence at summering grounds, increase risk of 
pathogen incubation (e.g. Bartel et al., 2011) and reduce the 
time available for the essential preparatory process of feeding 
and establishing fuel stores, resulting in decreased energy 
available for migration (e.g. beluga whale, Delphinapterus 
leucas; Bailleul et al., 2012). Ensuring protection of or supple-
menting existing habitats necessary for animals preparing to 
migrate might be beneficial for conserving migrants; for 
example, Masero (2003) found that anthropogenic salinas in 
Spain provided valuable replacement habitat for shorebirds 
initiating hyperphagia prior to migration. Increased tempera-
tures result in higher costs of activity during migration; activ-
ity in warm temperatures increases cardiac stress and limits 
distribution of oxygen to tissues (e.g. Pörtner and Farrell, 
2008; Eliason et al., 2013). Correspondingly, there is a need to 
understand better how plasticity and evolution in animals 
under thermal stress contribute to resilience (Anttila et al., 
2014). Rapid dehydration can occur when birds experience 
warm temperatures, increasing the need for stopover during 
migration and delaying arrival (McKechnie and Wolf, 2009), 
potentially necessitating the protection of larger tracts of land 
that are important for stopover. In fact, some species may 
become incapable of or lose their will to move when tempera-
tures are high, which can delay migration and result in mis-
matched timing of arrival relative to peak environmental 
conditions (e.g. fish: Baisez et al., 2011; Eliason et al., 2013; 
mammals: Post and Forchhammer, 2008).

Behavioural strategies are combined with physiological 
mechanisms to limit the cost of transport and maximize dis-
tance that it is possible to travel per unit of fuel. During migra-
tion, animals exploit wind and ocean currents for conveyance 
along the migration path (Wikelski et al., 2006). In addition, 
animals may maintain activity near to but not exceeding their 
upper aerobic limit to sustain endurance; such findings can 
contribute to improved design and management of fish pas-
sage structures at dams for fish migrating to and from repro-
ductive sites (Burnett et al., 2014b; Silva et al., 2015). Given 
that it is costly to transport large amounts of fuel along 
 migration, some species interrupt migration to refuel 
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(Alerstam et al., 2003; Dingle and Drake, 2007; Sawyer and 
Kauffman, 2011). The need to feed during migration makes 
movement paths somewhat predictable and can allow for pro-
tected areas or strategic shipping/aircraft routes. Indeed, pat-
terns of foraging behaviour and corresponding dive 
physiology of sea turtles moving to and from nesting habitat 
can allow for better management of shipping operations (e.g. 
Eckert et al., 1989; Plot et al., 2015). Other animals, such as 
birds and whales, make stopovers in highly productive feeding 
areas to refuel. Stopover time is influenced by food availabil-
ity, fuel load and the rate of fuel deposition (Hedenström and 
Alerstam, 1997; Eikenaar and Bairlein, 2014). At stopover 
sites, birds will restore their alimentary organs, feed quickly 
and then re-atrophy the organs prior to departure. However, 
other animals spend much of their migration at stopover sites, 
allowing them to maximize energy intake and migrate syn-
chronously with plant phenology (Mate et al., 2011; Jones 
et al., 2014; Sawyer et al., 2009). Urbanization and habitat 
degradation are affecting the availability of the key stopover 
sites where animals replenish energy stores, and the frag-
mented habitats can exacerbate stress (Ellis et al., 2012). A 
lack of suitable stopover habitat can exhaust the energy avail-
able for migration (Faaborg et al., 2010; Braithwaite et al., 
2015) or might concentrate many individuals at some rare, 
productive islands in a landscape. Stopover habitats are disap-
pearing, and establishment of alternative stopover sites 
(Garaita and Arizaga 2015) or the use of supplemental feed-
ing (Jones et al., 2014) may be necessary to conserve migra-
tory animals. Although natural areas offer many benefits to 
animals, Liu and Swanson (2014) found that birds using mod-
ified habitat did not have higher stress than those using natu-
ral habitat, indicating the potential for adaptation to the loss 
of natural stopover habitat. Nonetheless, continued reduction 
and replacement of natural stopover habitat for migrants 
could encourage mass aggregations, which can rapidly deplete 
the available resources and increase disease transmission 
among individuals (Altizer et  al., 2011). For this reason, 
immunology is an increasingly important aspect of the conser-
vation physiology of migratory animals (e.g. Mallory et al., 
2015). Ultimately, understanding the importance of stopover 
habitats and their role in replenishing fuel provides necessary 
information for conservation. Bonter et al. (2007) inferred the 
importance, and thereby the conservation priority, of migra-
tory bird corridor habitats by measuring the body condition 
of birds and identifying the most important sites. Whitlock 
et al. (2015) further suggested seasonal protection of key for-
aging habitats for Pacific bluefin tuna (Thunnus orientalis) 
based on observations of high energy intake in certain 
hotspots of the Pacific Ocean.

Timing
The timing of migration exerts a considerable influence on 
fitness because it affects resource availability. Properly timed 
migration is important for avoiding unfavourable conditions 
and arriving at stopover sites and the ultimate destination at 
an appropriate time when environmental conditions are suit-

able. Mismatched timing may result in migrations coinciding 
with depleted food sources at stopover sites or reduced breed-
ing opportunities at the destination (Meltofte, 1985). The tim-
ing of migration is somewhat determined by genetics 
(Berthold, 1996) and circadian/circannual biorhythms; how-
ever, the environment exerts a secondary influence on migra-
tion (Richardson, 1990; Fig. 1). Together, biotic and abiotic 
cues combine to control the endocrine system of migratory 
animals, which regulates the physiological and morphological 
changes necessary to prepare for departure, locomotion and 
arrival (Fig. 1).

Preparation for migration begins prior to departure and 
ensures that energetic reserves are sufficient for the journey 
(Ramenofsky and Wingfield, 2007). Consequently, departure 
is influenced in part by fuel reserves and body condition 
(Brodersen et al., 2008), which cue the release of behaviour-
mediating hormones. In insects, juvenile hormone is the prin-
cipal endocrine cue for initiating migration behaviour 
(Chapman et al., 2015). In vertebrates, fluxes in melatonin 
influence preparation for migration. The photosensitive pineal 
gland entrains information about photoperiod and controls 
melatonin secretion, which tracks circadian and circannual 
changes (Bradshaw and Holzapfel, 2007; Tosches et al., 2014; 
Winkler et al., 2014). In turn, melatonin stimulates androgen 
production (Crossin et al., 2010), a primary cue for the breed-
ing migration of fish and birds (Wingfield et al., 1990). Among 
birds, melatonin concentrations regulate migratory restless-
ness (i.e. Zugunruhe) and a transition to nocturnal activity 
prior to departure (Gwinner, 1996). In addition to melatonin, 
fluxes of glucocorticoids, catecholamines, thyroxine, prolactin 
and leptin contribute to the timing of migration (Cornelius 
et al., 2013).

An important consequence of relying on fixed signals, such 
as photoperiod, is that changes to the climate result in the 
temporal mismatch of key life-history events (e.g. migration, 
breeding) of migratory animals from suitable environmental 
conditions (e.g. plant flowering, insect emergence). However, 
there is evidence of plasticity in the timing of migration 
because birds can adjust their migration timing, for example 
to compensate for poor weather (Richardson, 1990; Cochran 
and Wikelski 2005; Ramenofsky, 2011). Nonetheless, there 
are limits to such plasticity (DeWitt et al., 1998), and climate 
change may advance too rapidly for plasticity to compensate 
(e.g. Gauthier et al., 2013). Reed et al. (2011) predicted that 
natural advances in the timing of migration are likely to facil-
itate persistence of salmon, and efforts to manipulate migra-
tion timing might prove beneficial, such as by artificially cuing 
freshwater migration (e.g. by manipulating temperature or 
flow in rivers). In addition, it remains uncertain how endoge-
nous clocks that are sensitive to photoperiod will respond to 
extreme and accelerated environmental change rather than to 
gradual changes (Kumar et al., 2010).

The rate of migration and timing of arrival are controlled by 
multiple factors, including intraspecific differences,  particularly 
when early arrival confers fitness benefits. The rate of move-
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ment is likely to be related to optimization of energy use (e.g. 
Braithwaite et al., 2015), and stopover timing is probably con-
trolled by circadian rhythms (Bartell and Gwinner, 2005; 
Sauman et al., 2005). However, birds that arrive in unfavour-
able conditions can depart and return later (Hahn et al., 2004). 
Glucocorticoids influence the arrival of migrating birds, with 
high corticosterone corresponding to earlier arrival (Lobato 
et al., 2010). The influence of glucocorticoids (e.g. corticoste-
rone, cortisol) is important from a conservation perspective 
because they fluctuate throughout life to stimulate life-history 
transitions but can be manipulated by stress, which can poten-
tially interfere with the expression of key life-history events 
and/or have measurable fitness consequences (Bush and 
Hayward, 2009). The exact location where individuals termi-
nate migration depends on the species, with some exhibiting 
strict philopatry (e.g. Lea et al., 2015) and others simply seek-
ing suitable habitat. Understanding the difference is non-trivial 
because philopatric species have less flexible migrations and 
can therefore be more susceptible to environmental change. 
Competition can also influence patterns of settlement that drive 
selection for the timing of migration (Møller, 1994; Drent et al., 
2003). Arrival at breeding grounds coincides with reproductive 
maturation for most migratory species associated with territo-
riality, meaning that social groups or flocks of migrants 
(Ramenofsky and Wingfield, 2007) break, and individuals that 
were cooperative during migration become antagonistic.

Human interference can also affect the timing of animal 
migration, an important example of which is because of inter-
actions with fisheries (Raby et al., 2015b). The mobility of 
many migratory species exposes them to fisheries and, indeed, 
many of the most important fisheries resources are migratory 
species, including salmonids, tunas, billfishes and cods. 
However, many non-teleost migrants are affected by fisheries 
as bycatch, particularly elasmobranchs, cetaceans, sea turtles 
and seabirds (Hall et al., 2000; Raby et al., 2011). For bycatch 
(which includes target species protected by harvest restric-
tions), interactions with fisheries are stressful and can have 
lethal and sublethal effects on fitness. Encounters with fisher-
ies can cause physical damage to tissues (e.g. bleeding, baro-
trauma), reflex impairment from muscular exhaustion or 
insufficient oxygen delivery to the brain (Raby et al., 2015b), 
physiological disturbance in the muscle and blood (Cooke 
et al., 2013a) or external infection. After fisheries interactions, 
animals may require hours or days to restore homeostasis, 
during which time migration is delayed and predation risk is 
enhanced (Raby et al., 2014). In Atlantic salmon (Salmo salar) 
fisheries, release from recreational fisheries is associated with 
anomalous downriver movement, migratory delays and 
shorter migration (Lennox et al., 2015). Such delays or altera-
tions to the migratory schedule can impair fitness of migrating 
animals, and research is ongoing in fisheries sectors to under-
stand how migrations are affected by these human interac-
tions and interferences. Efforts to reduce the impact of 
fisheries on aquatic resources rely on physiological knowledge 
and tools and include strategies for developing assessment 
protocols (e.g. Raby et al., 2012) and recovery strategies and 

tools (Farrell et al., 2001; Donaldson et al., 2013; Raby et al., 
2015a; Robinson et  al., 2015) for animals destined to be 
released by fishers. However, further efforts are needed to 
explore revival of non-teleost species that are often affected by 
fisheries.

Synthesis
Although migration is ‘behaviour’, it is the manifestation of 
integrated physiological processes in animals (Berthold, 1996; 
Dingle, 2006). Migration incorporates considerable physio-
logical adaptation as well as genetic, ontogenetic and mor-
phological traits underlying a migratory syndrome (Dingle, 
2006). Our overview of the physiological mechanisms con-
trolling migration provides a mechanistic model of migration 
(see Fig. 1), explaining how and why it occurs, how it is regu-
lated by animals, and some documented and potential changes 
to migration faced by animals in a changing world. Our phys-
iological model of migration generalizes complex processes 
that sometimes have considerable variation among taxa but 
performs reasonably well in summarizing the important phys-
iological variables that regulate migratory behaviour and its 
fitness end points. However, as a discipline focused on the cel-
lular, biomechanical and biochemical processes of organisms, 
physiology has the capacity to provide more than information 
about individuals and can also generate knowledge that 
informs conservation (Tracy et al. 2006; Wikelski and Cooke, 
2006; Cooke et al. 2013b; Madliger et al., 2016; Fig. 2).

Physiology is positioned to directly inform conservation 
efforts for managing migratory species (e.g. Cooke et  al., 
2012), including those that are obligatorily migrants as well 
as partial or facultative migrants (e.g. Chapman et al., 2012). 
Human activities and global change are altering the migratory 
arena and changing the balance of costs and benefits associ-
ated with migration such that there is the potential for various 
severe fitness impairments for migrating animals (Fig. 2). In 
some cases, ecosystem connectivity is threatened by develop-
ment and sprawl, construction of dams, roads and tall build-
ings as well as the deterioration of the acoustic environment 
associated with anthropogenic noise (Tennessen et al., 2014). 
At temperate latitudes, springtime is advancing, deciduous 
plants are blooming earlier (Menzel, 2002), rain is replacing 
snow (Knowles et al., 2006), and resident species are advanc-
ing activity and reproduction (Gibbs and Breisch, 2001). In 
polar zones, sea surface temperatures are rising, ice cover is 
receding (Parmesan, 2006), primary production is changing 
(Smol et al., 2005), and atmospheric circulation patterns are 
altering winter conditions in the Northern hemisphere (e.g. 
polar vortexes in Eastern North America; Kim et al., 2015). 
These changes are challenges for animals and particularly for 
migratory species, which rely on many different habitats and 
geographical areas to complete their life history. Challenges 
that arise during migration can manifest as reduced fitness of 
migratory species (Fig. 2); therefore, the fundamental chal-
lenge posed to conservation is to understand and mitigate fit-
ness impairments of migratory species in a changing world. 
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Addressing conservation challenges will increasingly rely on 
understanding the physiological mechanisms that define 
migration (e.g. Cooke et  al., 2012). There are increasing 
examples of physiology informing conservation initiatives 
(Lennox and Cooke, 2014), although the nascence of conser-
vation physiology means that the success stories are limited, 
but growing (Madliger et al., 2016). Therefore, we foresee 
considerable potential for migratory physiology to be applied 
for conservation, and offer some relevant examples.

Some animals navigate using temporally unstable naviga-
tional cues, meaning that it is necessary to predict where the 

animals will be in order to monitor them and conserve criti-
cal habitat. Putman et al. (2013) suggested that the direction 
that sockeye salmon migrate through Queen Charlotte 
Straight (i.e. entering from the north or south direction) is 
predictable based on sea surface temperature and geomag-
netic field drift. The ability to forecast the timing or direction 
of migration by understanding the physiological mechanisms 
used by fish to orient has conservation implications, particu-
larly for fisheries and water resource management. 
Furthermore, anthropogenic noise can create perturbations 
in otherwise stable navigational cues, such as the electromag-
netic field. Electromagnetic noise is emitted everywhere 
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Figure 2: Migration is a physiologically challenging life-history stage, and there are many adaptations that animals have evolved for optimizing 
fitness (Fig. 1). Migratory species should optimally move through areas of high fitness in the migratory arena; however, anthropogenic change is 
altering the path through the migratory arena, which has consequences for lifetime fitness (represented by curved arrows). Some important 
conservation challenges are highlighted in this figure to demonstrate how they interface with fitness impairment. Conservation agendas must 
focus on mitigating such challenges to maintain high fitness of individual migrants and conserve migratory phenotypes, populations and species.



humans use electronic devices. Inability to orient during 
migration will decrease the likelihood of survival, increase 
the energetic cost of migration, delay arrival and, ultimately, 
impair fitness. Indeed, nocturnally migrating songbird popu-
lations are currently in dramatic decline, and the effect of 
anthropogenic electromagnetic noise on migratory physiol-
ogy may be an underappreciated factor in their conservation. 
In a more general sense, the ability to predict migrations can 
be used to influence the management of humans (e.g. by man-
aging vehicle operations, fisher behaviour, or dam operations 
or by reducing electromagnetic noise) or, alternatively, to 
influence the animals themselves (i.e. alter the route taken by 
migrants).

Using knowledge of the physiological basis for migratory 
path selection to prevent interactions with barriers is an 
active area of research for terrestrial and aquatic organisms. 
Improved understanding of sensory mechanisms (Blumstein 
and Berger-Tal, 2015) can be used in the development of 
management strategies, such as deflecting animals away 
from turbines or barriers using visual (lights), auditory 
(blasts) or somatosensory (bubble curtains) cues (Noatch and 
Suski, 2012). Switching to green coloured lights, which 
exclude short-wavelength red light that may affect cellular 
mechanisms associated with orientation, has reduced colli-
sions between birds and ships and oilrigs by allowing birds to 
maintain migratory trajectory (Wiltschko et al., 1993; Poot 
et al., 2008). Moreover, ultraviolet lights might increase per-
ceptibility of aircraft for the Canada goose (Branta canaden-
sis) and reduce bird strike (Blackwell et al., 2012). In the 
future, there are further opportunities for lighting to be 
adapted for guiding migrants away from dangerous areas 
(e.g. turbines, blasting).

Disappearance of stopover habitat results in energetic 
depletion, competition for limited resources and disease trans-
mission among migrants concentrated at a few high-quality 
sites. The exposure of an animal to an earlier, often spatially 
distinct site may influence reproductive success months later 
(e.g. Ceriani et al., 2015), thousands of kilometres away, even 
if the breeding grounds are in pristine condition (known as a 
carry-over effect; Norris and Taylor, 2006; O’Connor et al., 
2014). Unravelling how different stressors influence migra-
tory animals is inherently challenging given the potential for 
these carry-over effects and the vast distances traversed by 
many animals (O’Connor and Cooke, 2015), making it neces-
sary to conserve habitat along an entire migratory corridor. 
Strategically placed artificial stopover sites or areas where 
supplemental feed is deposited for migrants that are matched 
with energetically demanding portions of the migration could 
help to buffer the effects of habitat loss. Amano et al. (2007) 
simulated the use of supplemental feeding areas to reduce con-
flicts between migratory birds and agricultural crops but sug-
gested that they would be unsuccessful unless carried out on a 
large scale. Supplemental feeding of birds and ungulates is 
common in some regions, and engineering feed to suit the 
 nutritional requirements of migrants could provide a short-
term solution for loss of stopover habitat, although in the 

long-term the preservation, remediation or replacement of 
stopover habitat is the only viable solution (Smith et  al., 
2015). Likewise, manipulating water levels in hydroelectric 
damn drawback areas may influence the extent to which 
migratory birds can refuel for their migration, although 
empirical studies of this have not been successful (Wagner 
et al., 2014).

Mistimed migrations have the potential to reduce the fit-
ness of migratory animals by desynchronizing life-history 
events (including migration) and phenological processes 
that support those events, including favourable tempera-
tures, vegetation bloom and insect emergence. It is difficult 
to use physiological knowledge or tools to counteract the 
likely effects of mismatched timing, particularly for animals 
that rely on fixed cues, such as photoperiod (Feder et al., 
2010). The ability for animals to adapt their life history to 
climate change depends on evolutionary responses and phe-
notypic plasticity (Bradshaw and Holzapfel, 2008). 
However, one solution has been suggested as a response to 
climate warming, which is the use of artificial freshets for 
manipulating the timing of river entry for anadromous 
fishes (Huntsman, 1942). Once in the river, fish may find 
microhabitat to buffer high water temperatures; by entering 
earlier in the spring, they can avoid active migration during 
high summer temperatures when cardiorespiratory systems 
become strained to deliver sufficient oxygen (Eliason et al., 
2013). Migrating fish may be less prone to significant mor-
tality en route if their migrations are completed early in the 
season when water temperatures are lower. When migration 
is sufficiently disturbed that animals can no longer move, 
facilitated migration has shown promise for maintaining a 
population of migratory lobster (Green et  al., 2010). 
Although manual transport is not a viable option for most 
species, it may be possible to facilitate migration of some 
species, particularly around physical barriers (e.g. around 
dams using specialized transport trucks; Sigourney et al., 
2015; hydraulic pumps, such as the ‘salmon cannon’; Mesa 
et al., 2013). Moreover, Hartup et al. (2004) suggested that 
captive-rearing of greater sandhill cranes (Grus canadensis) 
and then training them to migrate from Wisconsin to 
Florida using ultralight aircraft was viable on the basis of 
their normal faecal corticosterone profiles during the 
assisted migration. Selective breeding of individuals that are 
adequately adapted to specific changing environmental con-
ditions is a drastic measure that could improve stocks of 
migratory species via enhancement programmes. For exam-
ple, there is evidence that different populations or stock 
complexes of salmon are better equipped for climate change 
as a result of aerobic acclimation to high water tempera-
tures (Eliason et al., 2011). Stock enhancement programmes 
have the unique platform to proliferate these physiological 
phenotypes if extant populations do not sufficiently track 
climate change naturally. Of course, the broader ecological 
consequences of such intervention would have to be criti-
cally addressed before the implementation of such measures 
could be considered (e.g. Ford et al., 2015).
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Conclusions
In an era of substantial human-induced rapid environmental 
change, science is increasingly focused on generating solutions 
to conservation problems (Soulé, 1985). There is imminent 
concern that climate change will affect migratory species 
(Robinson et al., 2009), but it is important to recognize that 
migration is a behaviour that has evolved to cope with 
extreme environmental variability and has persisted and con-
tinued to evolve over millions of years of global change. 
Indeed, it should be anticipated that an era of continued 
change would be met with further evolution and adaptation 
by these migratory species (Visser 2008). As a result, it is 
somewhat tempting to predict that many mobile species will 
be able to compensate for changes in environmental condi-
tions by adjusting their migratory strategies via plasticity or 
microevolution. Already, there are examples of animals adapt-
ing their migratory phenotypes to account for climatic 
changes (Berthold et  al., 1992; Able and Belthoff, 1998; 
Juanes et al., 2004), and models predict further adaptations, 
including smaller size (Clark et al., 2012) and advanced matu-
ration (i.e. without migration; Morita et al., 2014), to cope 
with changing fitness landscapes (Fig.  2). In addition, 
improved conditions for feeding during prolonged temperate 
summers have the potential to decrease the need for migration 
of some species (Brodersen et al., 2008).

In the midst of unprecedented change, a comprehensive 
understanding of how oncoming disturbances will affect ecosys-
tems remains elusive and requires better baseline information 
about animal physiology. Migratory species are an important 
point of conservation emphasis given their ecological and eco-
nomic importance. Madliger et al. (2016) demonstrated that 
conservation physiology is transitioning from a theoretical dis-
cipline to one that is materializing in conservation action, and 
although success stories for migratory species in the published 
literature are not yet common (but see Cooke et al., 2012), we 
anticipate a growing role for this synergy in the conservation of 
migratory species. However, our review has demonstrated that 
there are still key knowledge gaps related to conservation phys-
iology of migrating animals and that there is a disproportionate 
focus on migratory birds and teleost fishes in the conservation 
physiology literature. These challenges are likely to be due in 
large part to difficulties in studying highly mobile animals 
across scales. Tracking, sampling or holding small-bodied 
insects or large-bodied and cryptic whales to gain insight on 
mechanisms of enormous, population-scale movements are 
challenges that must be overcome through the development and 
implementation of new techniques for gaining physiological 
insight (see Jachowski and Singh, 2015). Indeed, the complexity 
of biological systems, the inherent dynamic nature of the envi-
ronment and the scale at which many migrations occur and 
associated multiple threats operate complicate links between 
physiological stressors, stress responses and fitness conse-
quences (Bush and Hayward, 2009). Nonetheless, we submit 
that further integration of basic and applied physiological 
research, tools, knowledge and concepts (Blumstein and 

Berger-Tal 2015; Jachowski and Singh, 2015; Sopinka et al., 
2015) with behavioural ecology and conservation science (see 
Cooke et al., 2014) will be important and necessary for develop-
ing and refining strategies to meet conservation and manage-
ment objectives related to migratory species in a changing world.
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