JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Normalizing Spontaneous Reports into MedDRA:
some Experiments with MagiCoder

Carlo Combi, Margherita Zorzi, Gabriele Pozzani, Elena Arzenton, and Ugo Moretti

Abstract—Text normalization into medical dictionaries is use-
ful to support clinical task. A typical setting is Pharmacovigilance
(PV). The manual detection of suspected adverse drug reactions
(ADRs) in narrative reports is time consuming and Natural Lan-
guage Processing (NLP) provides a concrete help to PV experts.
In this paper we carry on experiments for testing performances
of MagiCoder, an NLP application designed to extract MedDRA
terms from narrative clinical text. Given a narrative description,
MagiCoder proposes an automatic encoding. The pharmacologist
reviews, (possibly) corrects, and then validates the solution. This
drastically reduces the time needed for the validation of reports
with respect to a completely manual encoding. In previous work
we mainly tested MagiCoder performances on Italian written
spontaneous reports. In this paper, we include some new features,
change the experiment design, and carry on more tests about
MagiCoder. Moreover, we do a change of language, moving to
English documents. In particular, we tested MagiCoder on the
CADEC dataset, a corpus of manually annotated posts about
ADRs collected from social media.

Index Terms—Natural language processing, Healthcare in-
formatics, Pharmacovigilance, Adverse drug reactions, Term
identification

I. INTRODUCTION

ATURAL Language Processing plays a central role in

healthcare informatics. Narrative descriptions of medical
situations, e.g., clinical records, spontaneous reports and (in
the last years) social media, are an irreplaceable source of
information, as pointed out in [1]. This holds in particular
for pharmacovigilance (PV), where the prompt detection of
suspected adverse drug reactions (ADRs) is one of the main
activities. Since premarketing studies about drug consumption
effects are inconclusive (they are time bounded and cover only
some categories of patients), data about suspected ADRs have
to be collected once drugs are effectively marketed and used
by citizens.

To improve the quality of data and simplify both reporting
activities and the work of people responsible for PV, inter-
national authorities encourage the use of web-based formats
and tools to report and manage ADRs (Directive 2010/84/EU,
2010; EU Regulation 1235/2010, 2010).

In most cases, European countries (e.g., Great Britain) offer
to reporters a structured form to describe ADRs , typically
a drop down menu or an autocompletion field. The reporter
chooses, among the entries of the given clinical dictionary (in
Italy, the MedDRA dictionary [2]), the most suitable (in her

C. Combi and M. Zorzi are with the Dept. of Computer Science, University
of Verona, Italy (e-mail: carlo.combi@univr.it; margherita.zorzi @univr.it).

G. Pozzani, E. Arzenton, and U. Moretti are with the Dept. of
Diagnostics and Public Health, University of Verona, Italy (e-mail:
gabriele.pozzani @univr.it; elena.arzenton @univr.it; ugo.moretti @univr.it).

opinion) expression/locution for describing the disease she is
reporting. This apparently good practice reveals at least two
problems: (i) the description of an ADR by means of one of
the thousand medical terms is a complex task, and (ii) the
choice of the suitable term(s) from a given list or from an
autocompletion field can influence the reporter and limit her
expressiveness. For example, in MedDRA several terms about
migraine (in Italian, “emicrania”) exist (e.g., “migraine with
aura”, “basilar migraine”, “vestibular migraine”) and it may
be confusing for a patient to choose among them.

As a consequence, the quality of the description would be
also in this case undermined. Thus, describing ADRs by means
of natural language sentences is simpler and preferable. In
this way, for example, the patient has only to describe the
characteristics of her migraine, without caring about what is
the right medical term to use.

Once narrative data have been collected, the fext nor-
malization (or, equivalently, text encoding) problem occurs.
Free text have to be mapped into medical dictionaries. Well-
known examples of clinical dictionaries are MedDRA (Medical
Dictionary for Regulatory Activities), a medical terminology
used to encode adverse drug reaction information, ICD!, the
International Statistical Classification of Diseases and Re-
lated Health Problems, and the SNOMED-CT? (Systematized
Nomenclature of Medicine - Clinical Terms), a multilingual
clinical healthcare terminology used in clinical documentation
and reporting.

Mapping text snippets to terms in a medical dictionary
is time consuming. Moreover, in the last years spontaneous
reports (mainly collected through the web) have grown ex-
ponentially?, making the encoding task difficult and often
unbearable for people responsible for PV. To support PV ex-
perts’ normalization task we designed and implemented Magi-
Coder, an NLP software that, given a narrative description,
automatically extracts codes from the MedDRA terminology.
MagiCoder has been proposed in [3] and further developed and
tested in [4]. In [5] we then proposed a modular, automatic
evaluation of MagiCoder, testing some incremental versions of
the software obtained by adding features to the basic version
of the software.

With respect to [5], in this work we extensively describe
some original extensions and discuss new experimental work.
More precisely:

Thttps://www.cde.gov/nchs/icd/

Zhttp://www.snomed.org/snomed-ct

3In Ttaly, the number of ADR reports passed from approximately 6000 in
2006 to more than 50000 in 2016 [3].

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

1) We further extend MagiCoder. We add to the features
defined in [5] a new module called Ph — PhraseSplitting
(Section III-A) to improve the performances.

2) We design some new experiments, evaluating the be-
haviour of single features on a basic version of the
software. Features are added and tested individually. This
is different from what we did in our prior work [5], where
we observed the improvement of performance metrics
along “incremental” versions of the software.

3) We test MagiCoder on the CADEC (CSIRO Adverse Drug
Event Corpus) dataset, a corpus of annotated English
ADRs posts from social media. Thus, we move from
Italian to English narrative documents. Posts are com-
pletely different from spontaneous reports, and represent
an interesting setting, since clinical information extraction
from social media is one of the most intriguing trends in
health NLP [6].

The paper is organised as follows: in Section II some
background notions are reported about the MedDRA dictionary;
in Section III we describe MagiCoder main features and the
different extensions of the software. Section IV describes the
performances of MagiCoder on a dataset of Italian spontaneous
reports, while in Section V we report the performances of
MagiCoder on the CADEC dataset. In Section VI we discuss
related work. Finally, Section VII sketches some concluding
remarks and future work.

II. BACKGROUND

We now quickly consider the medical terminology we
specifically used in this work. MedDRA is a medical ter-
minology used to encode adverse event information associ-
ated with the use of biopharmaceuticals and other medical
products [2]. MedDRA terms are organized into a hierarchy.
The SOC (System Organ Classes) level includes the most
general terms. The LLT (Low Level Terms) level includes more
specific terminologies. Between SOC and LLT there are three
intermediate levels (HLGT, HLT, and PT). Preferred Terms
(PTs) are LLTs chosen to be the representative of a group of
semantically equivalent terms. An example of the hierarchy is:
the reaction Itch (LLT), described starting from Skin disorders
(SOC), through Epidermal conditions (HLGT), Pruritus NEC
(HLT), and Pruritus (PT).

III. THE SOFTWARE MAGICODER: BASIC FEATURES AND
MODULAR EXTENSIONS

MagiCoder is an NLP tool developed for Italian pharma-
covigilance, to support the detection and the classification
of free text descriptions of adverse drug reactions. MagiCo-
der normalizes narrative descriptions about ADRs into the
MedDRA dictionary and offers to the PV experts a possible
encoding. The responsible experts can accept the encoding as
it is or modify the automatic solution.

MagiCoder is not based on Part-of-Speech (PoS) tagging
methods, as the majority of NLP software tools. MagiCoder
exploits a simpler idea. A single scan of the original descrip-
tion is enough to retrieve information. From an abstract point
of view, we try to recognize, in the narrative description, single
words (tokens) belonging to LLT terms, where recognised

words do not necessarily occupy consecutive positions in the
text. In this way, we try to “rebuild” MedDRA terms, taking
into account the fact that in a description the reporter can
permute or omit words. We call tokens in the text and in LLTs
involved in the perfect matching voters and voted, respectively.
This terminology comes from the fact that, in some sense,
MagiCoder uses a “voting” procedure. Tokens “vote” (i.e.,
recognize) LLTs matching their words. Voters and voted tokens
do not necessarily occupy consecutive positions in the text or
in the LLT, and their order does not matter. After the linear scan
of the text, each MedDRA term including at least a token in the
description (voted terms) is marked with additional informa-
tion, such as how many of its tokens have been recognized in
the report. Thus, voted terms are ordered by some criteria, and
only the subset of them that passes some given thresholds are
finally proposed as the automatic solution. MagiCoder does not
involve computationally expensive tasks, such as subroutines
for permutations and combinations of words. We quickly
summarize here the main ideas of MagiCoder [3].

1) Preprocessing of the original text. We perform standard
operations such as tokenization, elimination of irrelevant
words (stop-words), stemming.

2) Word-by-word linear scan of the description and “voting
task”. A word ‘“votes” LLT terms it belongs to. For
each term voted by one or more words, we store some
information about the retrieved syntactical matching, such
as relative position of voters in the text and in the voted
LLT.

3) Weights calculation. Recognised terms (terms voted by
at least one word of the text) are weighted according to
information about the syntactical matching. Main weights
(ordered by priority) are: coverage, i.e., the estimation
of the percentage of the LLT recognised in the narrative
description; kind of coverage, i.e., the recognition of a
word in its non stemmed form receives a better evalua-
tion; density, i.e., the “quality” of the coverage.

4) Sorting of voted terms. Voted LLTs are (multi-valued)
sorted by their weights.

5) Winning terms release. A solution, a set of winning terms,
is released. The main idea is that the procedure scans
the list of ordered terms and try to “cover”, as best as
possible, the textual description.

Fig. 1 summarizes MagiCoder main steps.

The use of suitable data structures such as hash tables
is central for MagiCoder efficiency. The MagiCoder abstract
computational complexity is O(mk) + O(nm) time units,
where n is the input size (in terms of tokens), m is the size
of the dictionary (the number of terms), and & is the length
(in terms of tokens) of the longest term in the dictionary. In
particular, the setting up phase (required only once when the
tool starts, in order to build auxiliary hash tables storing words
of MedDRA) requires O(mk) time units (this is mandatory for
testing perfect matching with words in the text). O(nm) time
units is the complexity of each encoding phase.

Thus, MagiCoder computational complexity is strongly re-
lated to the size of the considered dictionary.

Such worst-case complexity bounds are strongly pes-
simistic. Focusing on effective time performances of the pro-

3

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

2. Token-by-token matching
text vs MedDRA LLTs

1. Preprocessing of

dictionary and text: LLT,
tokcnizati‘on, st(l)p words > LLT, “Voted”
removal NTw terms
[IT — removal of irrilevant » LLT,

terms |
[Ph — phrase splitting]

[St — stemmer]
[Syn — synonyms]
[D — digits management]

Fig. 1. High-level description of MagiCoder procedure

cedure, it is easy to observe that, during the computation,
MagiCoder works on progressively smaller subsets of terms.
This drastically reduces computation time of (theoretically)
expensive subroutines. It is easy to prove that, working with
the MedDRA dictionary, the effective complexity can be rewrit-
ten as O(n) + O(n'm’). n’ € O(n) represents the number
of voters, it is n in the worst case, but it is drastically
less than n in real computations (for example, n’ ~ 1
in the dataset we considered in Section IV). m’ € O(m)
represents the number of voted terms, it is m in worst case,
but, as suggested by our experiments, it is very small in
real applications. In [5] further details are provided. We
report some statistics about MagiCoder execution time. Tests
have been performed implementing MagiCoder in Ruby 2.3.0
(without a multi-processor/multi-thread support) on a desktop
PC equipped with a CPU IntelCore i5-4570 @ 3.2 GHz and
running Ubuntu Linux 14.04.5. On average, on the dataset of
narrative descriptions described in Section IV-A, MagiCoder
required 2.77ms for encoding the reports of length up to
20 characters, 5.61ms for reports of length from 21 to 40
characters, 12.43ms for reports of length from 41 to 100
characters, 25.72ms for reports of length from 101 to 255
characters, and 37.57ms for reports longer than 255 characters,
respectively.

A. MagiCoder Extensions

We describe now the modules of MagiCoder we designed
and developed. We also provide some examples illustrating
each feature. Modules can be added to MagiCoder “skeleton”
(Fig. 1) one-by-one, simultaneously or incrementally. We call
“configuration” a particular combination of features.

In [5] we considered the MagiCoder skeleton as basic
version. Here we consider as the basic version a particular
configuration of the software including some default modules.
We first describe modules we included in the basic version.

Maximality criterion (M). This is a module implementing
a heuristic criterion, based on the idea that the best solution is
the more detailed one. Roughly speaking, we remove from the
solution each term that can be considered “subset” of another
one (i.e., there exists another term, which extends it with
further words). For example, hepatitis fulminant specializes
and refines the ADR hepatitis, and then MagiCoder chooses
the first one.

Relative position criterion (RP). Module RP introduces
the order of words in the narrative description as a selection
discriminating factor. From the set of selected LLTs, it removes

3. Calculation of weights
> of Voted LLTs v

5. Selection and releasing
of “winning terms”
4. Multi-sorting by weights
of Voted LLTs

—>

[M — maximality]
[RP — relative position]
[P —parent]

those terms where voters (i.e., tokens in the original free text)
appear in the ADR description in a relative order different
from that of the corresponding voted tokens in the LLT. The
criterion is applied only to LLTs which voters have voted
also for other terms. For example, consider the description
“erythema and abdominal pain”. MagiCoder returns abdominal
pain and erythema but does not return abdominal erythema.

Parent criterion (P). During the release of the solutions,
this criterion removes an LLT from the list of the winning
terms if another term with the same PT already belongs to
the solution. For example, only one term among “fever” and
“pyrexia” will be returned.

Digits management (D). Digits (e.g., codes and numeral
adjective) frequently occur in ADR descriptions. We try to
improve MagiCoder behavior by adding the capability to deal
with digits (digits are treated as irrelevant information by
default). This feature has been used, for example, in conjunc-
tion with synonyms (see later in this section) for detecting
hyperpyrexia described as “fever over 40”. In this case the
reported number is crucial because, conversely, “fever of 39”
has to be encoded as “pyrexia”. Similar examples are available
for several other lab tests that may be encoded in a different
MedDRA term, depending on the reported result.

The extensions described above are included in MagiCoder
basic version, hereinafter named B.

We now describe modules we will focus on in the exper-
iments, adding them to version B and observing their effects
on performances.

Exclusion of irrelevant dictionary terms (IT). Some LLTs
are irrelevant for the purpose of identifying ADRs (e.g.,
LLTs describing social conditions). Experts of the domain
suggested a list of uninformative terms. This module instructs
MagiCoder to disregard all these terms. Examples of irrelevant
terms are those related to the patient’s social conditions and
circumstances (e.g., “stress at work”, “alcoholic relative™),
which may help physicians to understand the patient but do
not represent drug reactions. Similarly, also terms representing
lab test (e.g., “Citric acid urine”) have to be disregarded.

Stemmer (St). This extension introduces two different
versions of stemming procedure both for Italian and English.
For both languages the first stemmer (called pSt) is based on
Porter’s algorithm [7]. Based on a list of predefined suffixes,
it removes the last part of words. For example, the Porter’s
stem of “psychiatric” is “psychiatr”. The second stemmer
(called ISt) for Italian language is based on the algorithm
described in [8]. It can be considered as a “light” stemmer

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

because it breaks off only the last characters of the last
syllable. This induces a conservative approach and a uniform
processing of the whole set of MedDRA words. This should
be unsatisfactory for a general problem of text processing,
but it is fruitful in our setting. For example, the light stem
of “psichiatrico” (in English, psychiatric) is “psichiatric”.
On the other hand, for English language ISt is based on
the Lancaster algorithm*. Lancaster procedure is definitively
more aggressive than Porter’s method and returns very short
stems. For example, the Lancaster’s stem of “psychiatric” is
“psychy”.

Addition of synonyms (Syn). This module equips MagiCo-
der with synonyms of some LLTs, i.e., locutions semantically
equivalent to the official ones.

For Italian reports, we considered about 4500 synonyms.
The additional lexicon has been generated in different ways. A
subset of terms has been automatically generated by consider-
ing words that frequently occur in MedDRA, either as nouns or
as adjectival forms. New LLTs have been created by replacing
nouns (resp., adjectives) with the corresponding adjective
(resp., noun). For example, from “acido folico aumentato”
(in English, folic acid increased) we obtained “aumento acido
folico” (in English, increase folic acid). Other terms can be
easily obtained by replacing words in LLTs with frequently
used abbreviations or acronyms or vice versa. For example,
from “cataratta destra” (in English, right cataract) the synonym
“cataratta dx” is generated. Another set of synonyms has been
automatically generated with statistical methods for linguistics
from a corpus of about 250,000 narrative ADR reports [9].
This set has been successively validated by an expert of the
domain, and finally added to the lexicon. The same methods
have been also applied for generating synonyms from the
English corpus. We will further discuss it in Section V. We
note here that all synonyms have been validated by domain
experts, together with the methods used to generate them.

Phrase Splitting (Ph). We try to introduce some hypotheses
about the structure of the text, exploiting punctuation marks
(dots, semicolons, colons, commas) and brackets. We aim at
managing long texts, breaking them into shorter descriptions.
In the next sections, we discuss some tests, in particular
observing the effects of treating comma in different ways. In a
first setting, called Ph w/o comma, we ignore commas and we
break phrases only according to other marks. In other settings,
dubbed as Ph comma k, we treat comma as a “soft” connective.
If two words are separated by a comma, we consider them as
being k (a parameter) tokens apart. Since nearness of words to
each other is used for the terms selection, this has an impact
on MagiCoder solution release. We consider both £ = 1 and
k = 2. Finally, we treat commas as other punctuaction marks,
and we break text according to the presence of a comma (we
dub it as Ph comma inf, since it is equivalent to set k to infinite).

Consider for example the ADR description “fever, bron-
chitis chronic”. Without taking into account the comma, the
adjective “chronic” would be associated both to “fever” and
“bronchitis”. On the other hand, with Ph comma inf the

“https://github.com/words/lancaster-stemmer

description is broken in two distinct phrases and “chronic”
will be associated only to “bronchitis”.

These last four features may be independently added to the
basic version of MagiCoder.

In the following sections we measure the increase (or
decrease) of some standard metrics adding modules IT, St,
Syn, and Ph one-by-one to the basic version B, that includes,
as previously specified, M, RP, PT, and D.

Differently from experiments performed in [5], tests in
Section IV and V do not reproduce the evolution of the
software along different versions, where a feature is added to a
“stack” of previously tested modules in order to incrementally
improve performances. Instead, here we observe the effects
related to “turning on” a single module on the basic version
B. This allows us to study the impact and importance of any
single feature on the MagiCoder performances. Moreover, after
testing modules one-by-one, we provide an “overall experi-
ment”, testing the best combination of all modules. Where
different options are available, as in the case of stemmer, we
will choose the best one in terms of performances.

In Section IV and V we we discuss the tests we performed
on MagiCoder on Italian and English texts, respectively.

IV. EXPERIMENTS ON ITALIAN NARRATIVE REPORTS

Performances of MagiCoder are measured by two well-
known metrics, namely precision (P, also called positive pre-
dictive value) and recall (R, also called sensitivity). Both are
defined in terms of false positive (FP) and false negative (FN)
errors, the two main kinds of error in binary classification [10].
In our case, an FP error corresponds to the retrieval of a
“wrong” LLT, i.e., a term that does not correctly encode the
textual description. An FN error corresponds to the failure in
the recognition of a “good” LLT, i.e., a term that effectively
encodes (a part of) the narrative description and that would be
selected by a human expert. As dual notions of false positive
and false negative, one can define correct results, i.e., true
positives (TP), i.e., correctly returned LLTs and frue negative
(TN), i.e., LLTs which, correctly, are not proposed as a solution.
The evaluation of the false positive and the false negative rates,
and in particular of the impact of relevant solutions among
the whole set of retrieved solutions, are crucial measures

in order to estimate the quality of the automatic encoding.
TP

Precision and recall are formally defined as P = 757 and
R= TP:Z_%, respectively.

Informally, precision measures the portion of the returned
results (i.e., LLTs) that is actually correct, while recall measures
the portion of correct results (w.r.t. the gold reference standard)
that is actually returned. Precision and recall will be used both
for experiments on Italian texts and English texts (Section V).

A. Experiment Design

To test MagiCoder on Italian, we exploited a corpus of
formerly manually revised and annotated ADR reports.

The dataset includes 4500 ADR reports concerning Regione
Veneto (Italy) from the data warehouse Vigisegn [11], devel-
oped for the Italian pharmacovigilance activities. We divided
reports in five classes according to their length. TABLE I

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

summarizes, for each class, the range of lengths considered
and the number of reports. Classes have been selected to reflect
in the dataset the actual distribution of text lengths in the whole
database.

Reports have been manually annotated by PV experts.
These manual revisions represent our reference standard. To
evaluate MagiCoder performances, we automatically compared
(by a benchmark) the output provided by each MagiCoder
version with the manual encoding of the ADR reports from the
dataset. For each report, the test verifies which terms belong
to both or only one of manual and automatic solutions, and
then calculates errors and performance measures. Results are
discussed in Section IV-B. It is worth noting that this test is
quantitative. It simply estimates how much, for each report,
MagiCoder behavior is similar to the manual one. Conversely,
it is not able to fairly test redundancy errors. Huoman experts
make some encoding choices in order to avoid repetitions. A
term returned by MagiCoder that has not been selected by the
expert because redundant should not be a false positive result.
For example, consider the following Vigisegn report (here
translated in English): “anaphylactic shock (hypotension) 1
hour after taking the drug.”. Since “hypotension” is considered
a well-known symptom of “anaphylactic shock”, a PV expert
should avoid the encoding of “hypotension”, releasing only the
main pathology “anaphylactic shock”. Instead, MagiCoder re-
turns both terms, and this solution is clearly correct. This sug-
gests that we are underestimating MagiCoder performances,.
as also shown in [4]. This kind of semantic information could
be extracted from suitable MedDRA ontologies. We plan to
equip MagiCoder with further knowledge bases and this is an
interesting future work.

In [5] we performed a careful analysis of the recall and pre-
cision trends w.r.t. different versions of MagiCoder. We started
by testing the skeleton version in Fig. 1 (MagiCoder without
any heuristic or knowledge base) and then we progressively
and cumulatively added modules described in Section III-A,
with the exception of Ph. In the present study we choose a
different perspective. We test each module at a time, measuring
its improvement of the performances w.r.t. the basic version.
We finally also test a “best configuration” of MagiCoder, that
includes all features with their best setting.

In the following sections, P and R are always calculated
report by report. When we detail metrics concerning a specific
class, we average P and R values of reports in that class, re-
spectively. On the other hand, the overall performances, which
do not take into account description lengths, are computed by
averaging P and R of all documents in the dataset.

B. Results

We computed results considering terms at PT level, both for
the human and the automatic encoding. By moving to PT level,
instead of using the MedDRA LLT level, we group together
terms that represent the same medical concept (i.e., the same
adverse reaction, as for example “fever” and “pyrexia”). In
this way, we try to not consider as an error a case in which
MagiCoder and the human expert use two different LLTs for
representing the same adverse event. The use of the LLT
level for reporting purposes and the PT level for analysis is
suggested also by MedDRA [2].

TABLE I
BASIC VERSION B: DETAILED PERFORMANCES ON VIGISEGN DATASET
Class Length (chars) No of reports | avg PTs R | avg PTs P
0 from 0 to 20 459 87.00% 89.70%
1 from 21 to 40 1012 70.22% 75.55%
2 from 41 to 100 1998 60.04% 63.57%
3 from 101 to 255 1020 57.30% 53.80%

4 more than 255 11 50.74% 48.33%
Overall 4500 64.01% 66.15%
TABLE II
MAGICODER EXTENSIONS: OVERALL PERFORMANCES ON VIGISEGN
DATASET

Module avg PTsR | avg PTs P | R var. wrt. B | P var. wrt. B
B 64.01% 66.15%

IT 65.66% 71.36% 1.65% 5.20%

Syn 66.22% 66.85% 2.22% 0.70%

pSt 65.77% 63.54 % 1.76% -2.61%

1St 65.68% 64.76% 1.67% -1.39%

Ph w/o comma 63.94% 66.27% -0.08% 0.11%
Ph comma 1 63.91% 66.31% -0.09% 0.16%

Ph comma 2 63.96% 66.40% -0.05% 0.25%

Ph comma inf 63.94% 66.42% -0.07% 0.27%

TABLE I summarizes performances for the basic version B
on the Vigisegn dataset. In this case we also detail recall and
precision of each class and the overall performances without
taking into account descriptions length.

TABLE II depicts the trends of recall and precision when we
turn on, one-by-one, each MagiCoder extension. Even though
the table shows only the overall performances, we discuss
here some further details about the performances on specific
classes (not shown in the table). Module IT clearly increases
precision. Focusing on interesting classes 2 and 4, we have
an improvement of 4.94% and 10.19%, respectively. The most
evident effect of the addition of synonyms (globally increasing
R of 2.22%) is again for class 4, where the improvement of
R reaches 6.96%. Stemming algorithms clearly affect recall,
inducing at the same time a natural worsening on P. It is
evident that Porter’s algorithm globally behaves worse, since
precision decreases of 2.61% (versus the 1.39% of the light
stemmer). Thus, light stemmer is preferable in our setting.
Module Ph, which implements the division of sentences in
smaller ones, has little effect on recall and precision. Once
again, quite interesting results come from longer descriptions.
On class 4, we have an increase in precision of 0.56% both
for Ph comma 2 and Ph comma inf. This also suggests that
it is better to break phrases according to commas. This is
reasonably related to how reports are written.

Finally, TABLE III offers, detailing each class of length,
results for the “best” configuration of MagiCoder, i.e., in this
case, the configuration obtained by adding to B all modules,
choosing ISt as stemmer algorithm and Ph comma 2 as division
criterion. Overall increasing of recall and precision w.r.t. B are
4.84% and 3.41%, respectively. Focusing on long reports, the
enhancement is more evident, with an improvement of 6.56%
of recall and 12.43% of precision. Globally, in this experiment
recall reaches 68.85% and precision reaches 69.96%. On
reports up to 100 character (a reasonable bound to propose to

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

TABLE 11T
BEST CONFIGURATION: PERFORMANCES ON VIGISEGN DATASET

Class PTs R PTs P R var. wr.t B P var. wrt B

0 88.61% | 90.22% 1.61% 0.52%

1 74.79% | 77.21% 4.47% 1.66%

2 64.44% | 66.65% 4.40% 3.08%

3 63.68% | 61.13% 6.38% 7.33%

4 57.30% | 60.76% 6.56% 12.43%
Overall | 68.85% | 69.96% 4.84% 3.81%

reporter), we measure 76% for recall and 78% for precision.

V. EXPERIMENTS ON THE CADEC CORPUS

MagiCoder has been developed to be robust w.r.t. the change
of the language and the dictionary. First, we had some initial
evidence about the fact that MagiCoder well performs also
on English descriptions. To this regard, we processed a small
subset of summaries of product characteristics and compared
the automatic solution with the encoding of a PV expert. Here,
we discuss more in-depth experiments.

A. Experiment Design

In this experiment we exploit CADEC (CSIRO Adverse
Drug Event Corpus) [12]. CADEC is an annotated corpus of
medical forum posts on patient-reported ADRs. The corpus is
sourced from posts from social media, and contains text that is
largely written in colloquial language. CADEC jargon is inter-
esting, since it often deviates from formal English grammar.
Authors annotated descriptions linking concepts such as drugs,
adverse effects, symptoms, to their corresponding concepts in
SNOMED-CT and MedDRA vocabularies.

The corpus includes 1099 reports, divided according to
their lengths as described in TABLE IV. In CADEC, length
distribution is radically different w.r.t. the Italian dataset. In
this case long reports cover the larger part of the dataset. This
is interesting for our experiment, since it permits us to test
MagiCoder on very long descriptions.

On the CADEC corpus, we perform the same runs of
MagiCoder described in the previous section. We start from
B and we turn on each module one-by-one. Clearly, we
change stemming procedure. In this case we adopt the Porter’s
stemmer for English (pSt) and the Lancaster algorithm (ISt).
Moreover, we also change the set of synonyms, according to
the language change. Notice that the set of irrelevant terms
(module IT) is the same for all languages, since it depends on
MedDRA dictionary.

For this experiment we created a set of ad hoc synonyms
for the CADEC corpus. The protocol, that involves a PV
expert, is semi-automatic and is described in [9]. We quickly
recall here the main ideas. Computational linguistics research
proved that statistics plays a major role in the problem of /ex-
icon generation [13]. In particular, co-occurrence based tech-
niques perform well in the tricky task of generating techni-
cal/scientific terminology. Roughly speaking, a co-occurrence
represents a pair of words that frequently appear together in
the same documents of a given dataset. Statistical methods
for linguistics tell us that (semantically) related words often
co-occur. As a consequence, a co-occurrence pair with a high

TABLE IV

BASIC VERSION B: PERFORMANCES ON THE CADEC DATASET
Class Length (chars) No of posts | avg PTs R | avg PTs P

0 from 0 to 150 170 64.44% 70.10%

1 from 151 to 300 226 57.67% 61.10%

2 from 301 to 450 224 53.57% 55.95%

3 from 451 to 700 224 54.65% 53.68%

4 more than 700 255 53.36% 44.86%

Overall 1099 56.14% 55.91%

frequency has a great probability to represent a meaningful
association. In our setting, after a suitable choice of the
dataset and of the statistical scores, we tried to automatically
generate new locutions equivalent to official LLTs. As a second
step, a PV expert checked and eventually approved the new
terminology, and finally linked it to its official synonym. For
example, the computation of co-occurrence pair done for our
test yields, among the results, the pair (cramps, hunger).
A PV expert checked the pair and linked it to the official
English LLT “abdominal cramps”. Notice that the completely
manual generation of synonyms during the everyday encoding
work is a good modus operandi, but it is not trivial and it
requires a huge amount of work by an expert of the domain.
Moreover, for human experts it is more difficult to analyze and
filter locutions by frequency (a meaningful medical synonym
is useless if, de facto, it is rarely used in free-text reporting).
Statistical techniques drastically reduce the time and generates
only significant synonyms.

In the present work we computed co-occurrences, i.e.,
candidate synonyms, using the CADEC dataset. After the PV
expert validation (a work that lasted about two hours), we
generated 90 English locutions equivalent to MedDRA LLTs.

B. Results

TABLE IV summarizes performances for the basic version
B on CADEC dataset. As for the Vigisegn dataset, we also
detail results about each class.

It is worth nothing that CADEC is a very challenging
dataset, since it includes, as previously said, very long and
colloquially written description. Thus, it is not surprising that,
on B, performances seem to be worse than for Italian. It is
important to say that a direct comparison does not make sense,
and not only for the difference in length distributions. CADEC
is a set of posts, i.e., documents completely different from
spontaneous reports in Vigisegn. Anyway, it is interesting to
observe that, on CADEC corpus, modular features plugged in
the basic version have a more evident (positive) impact on
performances. Average results about MagiCoder performances
according to modular extensions are reported in TABLE V.
As for Table II, we only report overall results but we discuss,
when interesting, also performances on specific classes. As for
Italian language, module IT improves precision, with an overall
speedup of 9.64%. In particular, for very long descriptions in
class 4 we observe an improving of 12.46%. The addition
of synonyms increases recall of 2.17%. Considering that we
added “only” 90 synonyms, this is a good result. This con-
siderable effect against a relatively poor synonym knowledge
base is due to the ad hoc generation of co-occurrence pairs

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

TABLE V
MAGICODER EXTENSIONS: OVERALL PERFORMANCES ON CADEC
DATASET
Module avg PTsR | avg PTs P | R var. writ. B | P var. wrt. B
B 56.14% 55.90%
IT 56.93% 65.54% 0.79% 9.64%
Syn 58.31% 56.03% 2.17% 0.12%
pSt 65.50% 53.11% 9.36% -2.80%
1St 66.03% 51.00% 9.89% -4.90%
Ph w/o comma 56.24% 56.59% 0.10% 0.69%
Ph comma 1 56.06% 56.80% -0.07% 0.90%
Ph comma 2 55.83% 57.16% -0.3% 1.25%
Ph comma inf 55.90% 57.61% -0.24% 1.71%
TABLE VI

BEST CONFIGURATION: PERFORMANCES ON CADEC DATASET

Class PTs R PTs P R var. wrt B P var. wrt B
0 78.83% 78.63% 14.39% 8.52%
1 68.99% 67.10% 11.32% 6.00%
2 65.15% 58.83% 11.58% 2.88%
3 66.17% 59.92% 11.52% 5.24%
4 63.11% 51.19% 9.75% 6.33%
Overall 67.70% 61.90% 11.56% 6.00%

described above. Focusing on stemming algorithms, Lancaster
algorithm behaves worse, since precision decreases of 4.90%,
versus the 2.80% of Porter’s stemmer. The latter is thus
preferable. For Ph module and its versions, considerations
done for the Italian experiment still remain valid. On the
CADEC dataset the effect on precision is definitively more
visible. This is due to the fact that the average length of
CADEC posts is longer than the average length of Vigisegn
reports. Globally, the best solution is again to consider comma
as an effective division (configurations Ph comma 2 and Ph
comma inf).

In TABLE VI we report results for the best configuration
of MagiCoder, i.e., for the CADEC case, the configuration
obtained by adding to B all modules, choosing pSt as stemmer
algorithm and Ph comma inf as division criterion. Overall
increasing of recall and precision w.r.t. B are 11.56% and
6.00% respectively. Globally, in this experiment MagiCoder
recall reaches 67.70% and precision reaches 61.90%. On posts
up to 100 characters, we measure 70.99% for recall and
68.19% for precision.

VI. RELATED WORK

Automatic detection of ADRs from text (e.g., electronic
health records, spontaneous reports, social media posts) has
received an increasing interest in pharmacovigilance research.
Wang et al. [14] conduct an experiment by collecting narrative
discharge summaries from the Clinical Information System
at New York Presbyterian Hospital through the NLP sys-
tem MedLEE [15]. The authors identify clinical events and
pathologies, which could be potential adverse drug events,
reaching an overall recall and precision of 75% and 31%
(for known ADRs), respectively. Coffman et al. [16] develop
an algorithm in order to help coders in the subtle task of
auto-assigning International Code of Disease (ICD-9 codes)
to clinical narrative descriptions. ICD-9 is also used as con-
trolled vocabulary by Ribeiro et al. [17], who evaluate the

retrieval performance of a tool (based on information retrieval
techniques without the need of supervision and of training
data) that automatically categorises medical documents. Per-
formances are evaluated on a data set of about 20k documents,
and authors reveal the algorithm attains levels of average
precision around the 70-80% range. Shultz et al. [18] introduce
MEDSYNDIKATE, a natural language processor that couples
grammatical knowledge, semantic knowledge, and conceptual
(ontological) knowledge, and automatically acquires medical
information from pathology-oriented clinical reports.

Healtcare social media represent an emerging reality in
bio NLP. Yang et al. [19] propose to use association min-
ing and proportional reporting ratio (PRR, a well-known
pharmacovigilance statistical index) to mine the associations
between drugs and adverse reactions from the user-contributed
content in social media. Social media are also central in the
work by Metke-Jimenez and Karimi, where authors use the
CADEC dataset (the same we used Section V) to compare
different algorithms for ADRs extraction in medical social
media [20], [21]. The global task is divided into two sub-
problems, i.e., concept identification followed by normaliza-
tion into controlled vocabularies. Singular sub-tasks are first
tested separately and then globally evaluated. Authors consider
MetaMap® as baseline and evaluate both dictionary- and
machine learning-based approaches. They obtain the best per-
formances by using Conditional Random Fields (CRF) [22].
In particular, with CRF, they measured a precision of 64.4%
and a recall of 56.5% for the concept identification task.
They measured also an effectiveness (a measure based both on
binary classification and ontological information) of 37.76%
for the normalization task (CRF is in this case used in a
mixed approach together with the semantic knowledge base
Ontoserver®). Finally, CRF gained a precision of 77.1% and a
recall of 37.6% for the full task.

Also machine learning based approaches are widely ex-
ploited in ADRs extraction. Several tools analyzed in [20]
fall in this category and they are indubitably powerful. Since
our work follows a radically different approach, we only
recall here the method developed by Attardi et al [23],
particulary relevant in our setting since it is oriented to Italian
language. They use machine learning techniques to address
knowledge extraction (e.g., relevant entities such as symptoms,
diseases, and treatments) from clinical records written by
Italian physicians. Experiments are performed extending semi-
automatically generated corpora and defining ad hoc new sets
of annotated documents. We refer the reader to literature for
other bioNLP tools based on machine learning (in particular
[24], [25] that address ADRs extraction from social media).

Other contributions about pharmacovigilance and the role
of NLP in clinical decision support are [1], [26]-[32].

VII. DISCUSSION AND CONCLUSIONS

In this paper we carried on some experiments about Magi-
Coder, an NLP software developed to help PV experts in
encoding narrative text into MedDRA terms. Everyday practice

Shttps://metamap.nlm.nih.gov/
Shttp://ontoserver.csiro.au:8080/

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

confirms that MagiCoder effectively supports experts’ work,
reducing time and improving the accuracy of the encoding.

Results of Section IV and V show that MagiCoder is
efficient, also considering that the automatic comparison be-
tween automatic and human solutions we conducted underrates
performances. Results on English language (CADEC dataset)
are encouraging also by considering the recent results dis-
cussed in [20], [21] with respect to ADRs extraction from
medical forums. Notwithstanding, MagiCoder’s efficiency can
be further improved, by refining heuristics and enriching the
knowledge bases of the algorithm.

Since MagiCoder’s performances are considered satisfactory
by Italian PV experts using the software in their daily tasks,
from now on we plan to develop the tool and test mainly
focusing on the English language and on the CADEC corpus
we used in this work. CADEC is particularly interesting for
at least two reasons. It offers a tricky jargon and CADEC
documents are based on posts from social media, which
analysis is one of the most intriguing trends in biomedical
NLP we aim to address as a short time goal. The experiments
proposed in this paper can be extended in several ways. In
particular, we aim to create a more refined experiment involv-
ing PV experts, to overcome limits induced by the automatic
comparison between algorithmic and human solution, to obtain
a more fair measure of performances. Moreover, we plan to
further develop knowledge bases for English language. Co-
occurrence based techniques [9] used for English dataset in
Section V offer further possible improvements. These methods
perform better on very large number of documents. We aim to
generate synonyms for the CADEC corpus taking into account
other significant external datasets. Moreover, differently from
languages as Italian, the Unified Medical Language System
(UMLS)’ should represent another fruitful source for addi-
tional ADR lexicon.

REFERENCES

[1] S. Meystre and P. J. Haug, “Natural language processing to extract
medical problems from electronic clinical documents: Performance
evaluation,” J Biomed Inform, vol. 39, no. 6, pp. 589 — 599, 2006.

[2] ICH, “MedDRA data retrieval and presentation: points to consider,”
2017.

[3] M. Zorzi, C. Combi, R. Lora, M. Pagliarini, and U. Moretti, “Au-
tomagically encoding adverse drug reactions in MedDRA,” in IEEE Int.
Conference on Healthcare Informatics, ICHI 2015, 2015, pp. 90-99.

[4] C. Combi, M. Zorzi, G. Pozzani, U. Moretti, and E. Arzenton, “From
narrative descriptions to MedDRA: automagically encoding adverse drug
reactions,” Journal of Biomedical Informatics, 2018, in press.

[5] M. Zorzi, C. Combi, G. Pozzani, and U. Moretti, “Mapping free text
into MedDRA by natural language processing: A modular approach in
designing and evaluating software extensions,” in Proceedings of the
8th ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics, BCB 2017, Boston, MA, USA, August
20-23, 2017, 2017, pp. 27-35.

[6] A. Sarker and et al., “Utilizing social media data for pharmacovigilance:
A review,” Journal of Biomedical Informatics, vol. 54, 2015.

[71 M. E. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130-137, 1980.

[8] J. Savoy, “Report on CLEF-2001 experiments,” Université de Neuchatel,
Switzerland, Tech. Rep., 2001.

[91 M. Zorzi, C. Combi, G. Pozzani, E. Arzenton, and U. Moretti, “A co-
occurrence based MedDRA terminology generation: Some preliminary
results,” in Proceedings of the 16th Conference on Artificial Intelligence

in Medicine, AIME 2017, ser. Lecture Notes in Computer Science, vol.
10259. Vienna, Austria: Springer, June 21-24 2017, pp. 215-220.

7https://www.nlm.nih.gov/research/umls/

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Informa-
tion Retrieval. New York, USA: Cambridge University Press, 2008.
R. Lora, A. Sabaini, C. Combi, and U. Moretti, “Designing the rec-
onciled schema for a pharmacovigilance data warehouse through a
temporally-enhanced ER model,” in 2012 Int. Workshop on Smart Health
and Wellbeing, ser. SHB 2012. ACM, 2012, pp. 17-24.

S. Karimi, A. Metke-Jimenez, M. Kemp, and C. Wang, “CADEC:
A corpus of adverse drug event annotations,” Journal of Biomedical
Informatics, vol. 55, pp. 73-81, 2015.

M. Baroni and S. Bisi, “Using cooccurrence statistics and the web to
discover synonyms in a technical language,” in Proc. of LREC, 2004.
X. Wang, G. Hripcsak, M. Markatou, and C. Friedman, “Active comput-
erized pharmacovigilance using natural language processing, statistics,
and electronic health records: A feasibility study,” J Am Med Inform
Assoc., vol. 16, no. 3, pp. 328-337, 2009.

C. Friedman, “Discovering novel adverse drug events using natural
language processing and mining of the electronic health record,” in
12th Conference on Artificial Intelligence in Medicine, AIME 2009, ser.
LNCS, vol. 5651. Springer, 2009, pp. 1-5.

A. Coffman and N. Wharton, “Clinical natural language process-
ing: Auto-assigning ICD-9 codes,” in Overview of the Computational
Medicine Center’s 2007 Medical Natural Language Processing Chal-
lenge, 2007.

B. Ribeiro-Neto, A. H. Laender, and L. R. de Lima, “An experimental
study in automatically categorizing medical documents,” Journal of the
American Society for Information Science and Technology, vol. 52, no. 5,
pp. 391401, 2001.

U. Hahn, M. Romacker, and S. Schulz, “MEDSYNDIKATE natural
language system for the extraction of medical information from findings
reports,” International Journal of Medical Informatics, vol. 67, no. 1,
pp. 63 — 74, 2002.

C. C. Yang, H. Yang, L. Jiang, and M. Zhang, “Social media mining for
drug safety signal detection,” in 2012 Int. Workshop on Smart Health
and Wellbeing, SHB 2012. ACM, 2012, pp. 33-40.

A. Metke-Jimenez and S. Karimi, “Concept extraction to identify
adverse drug reactions in medical forums: A comparison of
algorithms,” CoRR, vol. abs/1504.06936, 2015. [Online]. Available:
http://arxiv.org/abs/1504.06936

——, “Concept identification and normalisation for adverse drug event
discovery in medical forums,” in Proceedings of the First International
Workshop on Biomedical Data Integration and Discovery (BMDID
2016), Kobe, Japan, October 2016.

C. Sutton and A. McCallum, “An introduction to conditional random
fields,” Found. Trends Mach. Learn., vol. 4, no. 4, pp. 267-373, 2012.
G. Attardi, V. Cozza, and D. Sartiano, “Annotation and extraction of
relations from italian medical records,” in Proceedings of the 6th Italian
Information Retrieval Workshop, Cagliari, Italy, May 25-26., 2015.

H. Gurulingappa, A. Mateen-Rajput, and L. Toldo, “Extraction of
potential adverse drug events from medical case reports,” J Biomed
Semantics, vol. 3, no. 15, pp. 1-10, 2012.

A. Sarker and G. Gonzalez, “Portable automatic text classification for
adverse drug reaction detection via multi-corpus training,” J Biomed
Inform, vol. 53, pp. 196-207, 2015.

R. Harpaz, H. S. Chase, and C. Friedman, “Mining multi-item drug
adverse effect associations in spontaneous reporting systems,” BMC
Bioinformatics, vol. 11, no. S-9, 2010.

N. Nissim and et al., “An active learning framework for efficient
condition severity classification,” in Artificial Intelligence in Medicine
(AIME’15), ser. LNCS. Springer, 2015, vol. 9105, pp. 13-24.

A. Perez, K. Gojenola, A. Casillas, M. Oronoz, and A. D. de Ilarraza,
“Computer aided classification of diagnostic terms in spanish,” Expert
Systems with Applications, vol. 42, no. 6, pp. 2949 — 2958, 2015.

B. P. Ramesh, S. Belknap, Z. Li, N. Frid, D. West, and H. Yu,
“Automatically recognizing medication and adverse event information
from food and drug administration’s adverse event reporting system
narratives,” JMIR Medical Informatics, vol. 2(1), 2014.

L. Liu, N. Shorstein, L. Amsden, and L. Herrinton, “Natural language
processing to ascertain two key variables from operative reports in
ophthalmology.” Drug Safety, vol. 26(4), pp. 378-385, 2014.

D. D. Fushman, W. W. Chapman, and C. J. McDonald, “What can
natural language processing do for clinical decision support?” Journal
of Biomedical Informatics, vol. 42, no. 5, pp. 760 — 772, 2009.

J. van der Zwaan, E. Tjong Kim Sang, and M. de Rijke, An Experiment
in Automatic Classification of Pathological Reports. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 207-216.

