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Abstract. In the present paper we derive the existence and uniqueness of the

solution for the optimal control problem governed by the stochastic FitzHugh-
Nagumo equation with recovery variable. Since the drift coefficient is charac-

terized by a cubic non-linearity, standard techniques cannot be applied, instead

we exploit the Ekeland’s variational principle.

1. Introduction. The mathematical formulation of the signal propagation in a
neural cell has been firstly introduced by A. L. Hodgkin, and A. F. Huxley in [27],
where the authors proposed a mathematical model based on a system of four non-
linear, coupled differential equations describing how action potentials in neurons are
initiated and propagated. In particular, the above mentioned system describes the
evolution in time of four state variables. Due to the high complexity of the above
model, several attempts have been tried in order to simplifies the Hodgkin–Huxley
model. The most succesfull one is perhaps the celebrated FitzHugh-Nagumo model
(FHN), see [26, 30], where the system is reduced to two equations describing the
evolution in time of the (neuronal) voltage variable and of the so called recovery
variable. It is worth to mention that the previous description, as noted by the
authors in their seminal papers, is an example of relaxation oscillator. In fact,
FitzHugh referred to his model as the BonhoefferVan der Pol oscillator.

During recent years, the mathematical study of the FHN model has gained great
attention, particularly to consider the influence of random perturbations of the
original deterministic description, see, e.g., [1, 10, 29] In fact, from the experimen-
tal point of view, many neuronal activities can be better understood allowing for
random components which affect the transmission of signals, as well as the inaccu-
racy of laboratory measures and the lack of a complete knowledge of the particular
cerebral activity under study.
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Aiming at considering such a generalized, random framework, we will analyze
the following stochastic system


∂tv(t, ξ) = (∆ξ − Iion) v(t, ξ)− w(t, ξ)− f(ξ)v(t, ξ) + ∂tβ1(t) , in [0, T ]×O ,
∂tw(t, ξ) = γv(t, ξ)− δw(t, ξ) + ∂tβ2(t) , in [0, T ]×O ,
∂νv(t, ξ) = 0 , on [0, T ]× ∂O ,
v(0, ξ) = v0(ξ), w(0, ξ) = w0(ξ) , in [0, T ]×O .

,

(1)
where, as mentioned above, the variable v represents the voltage quantity, w

denotes the recovery variable and β1 and β2 are two independent Brownian mo-
tions; all components appearing in equation (1) will be specified in a while. For the
moment, let us note that the function Iion is a polynomial of degree 3, then stan-
dard existence and uniqueness results do not hold for eq. (1), since the non-linear
term Iion fails to be Lipschitz continuous. Latter problem is often overcome taking
into account some additional regularity properties of the infinitesimal generator,
namely the Laplacian ∆ appearing in eq. (1), such as the so-called m−dissipativity
assumption, see, e.g., [2, 3, 21] and references therein, for details.

In the present paper we will consider a controlled version of equation (1) where
the control variable u appear in the drift of the stochastic PDE (SPED) (1). In
particular we focus our attention on the existence and uniqueness of the optimal
control for above stochastic system. We would like to underline that in [6], the
existence and uniqueness of an optimal control has been proven for a similar equa-
tion, but without the recovery variable w. It is worth to mentiont that deriving
the existence of an optimal control in the stochastic case is a rather delicate point,
mainly because technical problems arise when one tries to pass to the limit in the
weak topology, fact that implies the use of non trivial results. In particular the
main result of the present work is based, following [6], on the Ekelands’s variational
principle.

The present work is so structured, in section 2 we introduce the main notation
and assumptions used throughout the work, also stating the existence and unique-
ness result for the main equation of interest. Then, in section 3, we derive the
main result, namely we prove the existence and uniqueness solution of the optimal
control problem associated to the FH-N model with recover variable, exploiting the
Ekelands’s variational principle

2. The abstract setting. Let us consider the following controlled stochastic FitzHugh-
Nagumo system of equations

∂tv(t, ξ) =
(
∆ξ − Iion

)
v(t, ξ)− w(t, ξ)− f(ξ)v(t, ξ) +BOu(t, ξ) + ∂tβ1(t) , in [0, T ]×O ,

∂tw(t, ξ) = γv(t, ξ)− δw(t, ξ) + ∂tβ2(t) , in [0, T ]×O ,
∂νv(t, ξ) = 0 , on [0, T ]× ∂O ,
v(0, ξ) = v0(ξ), w(0, ξ) = w0(ξ) , in [0, T ]×O .

,

(2)

where v = v(t, ξ) represents the transmembrane electrical potential, w = w(t, ξ)
is a recovery variable, also known as gating variable and which can be used to
describe the potassium conductance, O ⊂ Rd, d = 2, 3, is a bounded and open
set with smooth boundary ∂O. Furthermore ∆ξ is the Laplacian operator with
respect to the spatial variable ξ, while γ and δ are positive constants representing
phenomenological coefficients, ν is the outer unit normal direction to the boundary
∂O and ∂ν denotes the derivative in the direction ν, f(ξ) is a given external forcing
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term, Iion represents the Ionic current assumed to be as in the FitzHugh-Nagumo
model, namely it is taken as a cubic non-linearity of the following form Iion(v) =
v(v − a)(v − 1), v0, w0 ∈ L2(O). and β1 and β2 two independent Qi-Brownian
motions, i = 1, 2, Qi being positive trace class commuting operators. In particular
we assume that

βi ∈ C
(
[0, T ];L2

(
Ω, L2 (O)

))
, i = 1, 2 ,

with

βi(t, ·) ∼ N
(

0, t
√
Qi

)
, i = 1, 2 .

Eventually we assume that the two operators Q1 and Q2 diagonalize on the
same basis {ek}k≥1, namely we assume that there exists a sequence of positive real
numbers {λik}k≥1, i = 1, 2 such that

Qi ek = λik ek , i = 1, 2 , k ≥ 1 .

In order to rewrite (2) in a more compact form as an infinite dimensional sto-
chastic evolution equation, let us define the Hilbert space H := L2(O) × L2(O)
endowed with the inner product

〈(v1, w1), (v2, w2)〉H = γ〈v1, v2〉2 + 〈w1, w2〉2 , (3)

where 〈·, ·〉2 denotes the usual scalar product in L2(O), and the corresponding norm
will be indicated by | · |2; also 〈·, ·〉H , resp. | · |H will indicate the scalar product,
resp. the norm, in H. Let us further introduce the space V := H1(O)×L2(O) with
the norm

|X|2V = γ|v|2H1 + |w|22 , X = (v, w) ∈ V .
We then define the operator A : D(A) ⊂ H → H as follows

A =

(
−A0 + f I
−γ δ

)
, A0 = ∆ξ ,

with domain given by

D(A) := D(A0)× L2(O) ,

D(A0) := {u ∈ H2(O) : ∂νu(ξ) = 0 on ∂O}.

In particular, we have that A generates a C0−semigroup satisfying

‖e−tA‖ ≤ e−ωt , ω > 0 ,

see, e.g. [11].
We further define the non-linear operator

F : D(F ) := L6(O)× L2(O)→ H ,

as

F

(
v
w

)
=

(
fv + Iion(v)

0

)
=

(
fv + v(v − a)(v − 1)

0

)
.

In what follows we will assume that it holds

3f̄ − (a2 − a+ 1) ≥ 0 , (4)

where we have denoted by f̄ := minξ∈O f(ξ) > 0.
Notice that the above condition implies that choosing ā := 1

3

(
a2 − a+ 1

)
we

have that A+ F is accreative in H ×H, for f̄ ≥ ā, that is

〈(A+ F )X − (A+ F )X̄,X − X̄〉H ≥ 0 , ∀X , X̄ ∈ D(A) ∩D(F ) .
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Moreover we have that

〈AX,FX〉 ≥ 0 , ∀X ∈ D(A) ∩D(F ) ,

and this implies (see, e.g., [4, Pag. 44]) that A+ F is m−accreative.

Let us thus consider the filtered probability space
(

Ω,F , (Ft)t∈[0,T ] ,P
)

, such

that the two independent Wiener processes β1 and β2 are adapted to the filtration
Ft, ∀ t ≥ 0, and we define W (t) = (β1(t), β2(t)) a cylindrical Wiener process on H
and by Q the operator

Q =

(
Q1 0
0 Q2

)
,

being clearlyQ a nuclear operator fromH to itself. Exploiting previously introduced
notation, equation (2), in the uncontrolled case, can be rewritten as follows{

dX(t) + [AX(t) + F (X(t))]dt =
√
QdW (t),

X(0) = x0 ∈ H , t ∈ [0, T ] ,
. (5)

In what follows we will employ the subsequent notation. We denote by CW ([0, T ];H)
the space of allH–valued (Ft)–adapted processes such thatX ∈ C

(
[0, T ];L2 (Ω;H)

)
.

Similarly we will denote by L2
W ([0, T ];V ) the space of all V –valued (Ft)–adapted

processes such that X ∈ L2
(
[0, T ];L2 (Ω;V )

)
; here V = H1(O)× L2(O).

Definition 2.1. We say that the function X ∈ CW ([0, T ];H) ∩ L2
W ([0, T ];V ) is

called a strong solution to (5) if X(t) : [0, T ]→ H is continuous P−a.s., ∀ t ∈ [0, T ]
and it satisfies the stochastic integral equation

X(t) = x−
∫ t

0

(AX(s) + F (s)) ds+

∫ t

0

√
QdW (s), ∀ t ∈ [0, T ] .

The we have the following existence and uniqueness result concerning equation
(5).

Theorem 2.2. For any x ∈ V , there exists a unique solution X to (5) which
satisfies

X ∈ L2
W (Ω;C ([0.T ];H)) ∩ L2

W

(
Ω;L2 ([0.T ];V )

)
.

Proof. Consider the approximating equation{
dXλ(t) + [AXλ(t) + Fλ(Xλ(t))]dt =

√
QdW (t),

Xλ(0) = x0 ∈ H , t ∈ [0, T ] ,
, (6)

where

Fλ :=
1

λ

(
Id− (Id+ λF )

−1
)
,

is the Yosida approximation of F (see, e.g. [2]), being Id is the identity operator
on H.

Since Fλ is Lipschitz, equation (6) has a unique solution

Xλ ∈ L2
W (Ω;C ([0.T ];H)) ∩ L2

W (Ω× [0.T ];V ) .

Let jλ be defined by

∇jλ (x) = Fλ (x) , ∀x ∈ H .
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By Itô’s formula it follows that∫
O
jλ (Xλ(t)) dξ +

∫ t

0

|Xλ(s)|2V ds ≤
∫
O
jλ (x) dξ+

+ C

∫ t

0

∫
O
|Fλ (Xλ(s)) |2Hdξds+

∫ t

0

∫
O
〈
√
QdW (s), j′λ(Xλ(s)〉dξ .

This yield

E sup
t∈[0,T ]

∫
O
jλ (Xλ(t)) dξ + E

∫ t

0

|Xλ(s)|2V ds ≤

≤ EC
∫ t

0

∫
O
|f (Xλ(s)) |2Hdsdξ ≤ C .

Using the Burkholder-Davis-Gundy inequality we have that

E sup
t∈[0,T ]

{|Xλ(t)−Xε(t)|2H} ≤ C(ε+ λ) ,

which implies that letting λ→ 0, we have that

X = lim
λ→0

Xλ ,

with X ∈ L2(Ω, C([0, T ];H)) from which the continuity of X follows.

3. The optimal control problem. Let us now consider a controlled version of
equation (5). Let U be a Hilbert space equipped with the scalar product 〈·, ·〉U ,
we have that u : [0, T ] → U denotes the control and BO ∈ L(U,L2(O)). Let
B ∈ L (U ;H) defined as

Bu =

(
BOu

0

)
, BO ∈ L(U ;L2(O)) .

We shall denote by U the space of all (Ft)t≥0−adapted processes u : [0, T ] → U

s.t. E
[∫ T

0
|u(t)|2Udt

]
< ∞. The space U is a Hilbert space with the norm |u|U =(

E
[∫ T

0
|u(t)|2Udt

]) 1
2

and scalar product

〈u, v〉U = E

[∫ T

0

〈u(t), v(t)〉Udt

]
, ∀u, v ∈ U ,

where 〈·, ·〉U is the scalar product of U .
Consider the functions g, g0 : R→ R and h : U → R̄ :=]−∞,∞], which satisfy

the following conditions

(i): g, g0 ∈ C1 (H) and Dg, Dg0 ∈ Lip (H;H), where D stands for the Fréchet
differential

(ii): h is convex, lower semi–continuous and (∂h)
−1 ∈ Lip(U) where ∂h : U → U

is the subdifferential of h, see, e.g., [8, p. 82], and Lip(U) is the space of Lip-
schitz function from U to itself equipped with the standard norm. Moreover
we assume that ∃ α1 > 0 and α2 ∈ R s.t. h(u) ≥ α1|u|2U + α2, ∀ u ∈ U , and
we set L = ‖(∂h)−1‖Lip(U).



6 FRANCESCO CORDONI AND LUCA DI PERSIO

We consider the following optimal control problem

MinimizeE

[∫ T

0

(g(X(t)) + h(u(t))) dt

]
+ E [g0(X(T ))] , (P)

subject to u ∈ U and to state equation{
dX(t) + [AX(t) + F (X(t))]dt = Bu(t)dt+

√
QdW (t) ,

X(0) = x0 ∈ H , t ∈ [0, T ] ,
. (7)

Existence and uniqueness of a solution, in the sense of Definition 2.1, follows
with similar argument mentioned above. As regard existence in P we have.

Theorem 3.1. Let x ∈ D(A). Then there exists C∗ > 0 independent of x such
that for LT + ‖Dg0‖Lip < C∗ there is a unique solution (u∗, X∗) to problem (P).

Proof. The argument is similar to the one used in [6], (see also [7]).
Let us consider the function Ψ : U → R̄ defined by

Ψ(u) = E

[∫ T

0

(g(Xu(t)) + h(u(t))) dt

]
+ E [g0(Xu(T ))] ,

where Xu is the solution to (7). Recall that Ψ is lower semi–continuous and convex,
see, e.g. [8].

By Ekeland’s variational principle, see [23], there is a sequence (uε) ⊂ U such
that

Ψ(uε) ≤ inf{Ψ(u) ;u ∈ U}+ ε ,

Ψ(uε) ≤ Ψ(u) +
√
ε |uε − u|U , ∀u ∈ U .

(8)

In other words,

uε = arg min
u∈U
{Ψ(u) +

√
ε |uε − u|U} .

Hence (Xuε , uε) is a solution to the optimal control problem

min

{
E

[∫ T

0

(g(Xu(t) + h(u(t))) dt

]
+ E [g0 (Xu(T ))] +

+
√
ε

(
E

[∫ T

0

|u(t)− uε(t)|2U dt

]) 1
2

;u ∈ U

 .

(9)

From the optimality of uε, it follows by equation (9) that for any v ∈ U and any
λ > 0 we have

E

[∫ T

0

(
g(Xuε+λv(t) + h((uε + λv)(t))

)
dt

]
+ E

[
g0(Xuε+λv(T ))

]
+

+ λ
√
ε

(
E

[∫ T

0

|v(t)|2U dt

]) 1
2

≥

≥ E

[∫ T

0

(g(Xε(t)) + h(uε(t))) dt

]
+ E [g0(Xε(T ))] .

(10)
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Dividing equation (10) by λ and taking the limit as λ→ 0 we get

E

[∫ T

0

〈Dg(Xε(t)), Z
v(t)〉2 dt

]
+ E

[∫ T

0

h′(uε(t), v(t))dt

]
+

+ E [〈Dg0(Xε(T )), Zv(T )〉2] +
√
ε

(
E

[∫ T

0

|v(t)|2Udt

]) 1
2

≥ 0 , ∀ v ∈ U ,

(11)

where Zv solves the system in variations associated with (7), that is{
∂
∂tZ

v(t) +AZv(t) +DF (Xε(t))Z
v(t) = Bv(t) , t ∈ [0, T ] ,

Zv(0) = 0 ,
(12)

and h′ : U × U → R is the directional derivatives of h, see, e.g., [8, p.81], namely

h′(uε, v) = lim
λ↓0

h(uε + λv)− h(uε)

λ
, ∀ v ∈ U .

We thus associate with (9) the dual stochastic backward equation, see, e.g. [7],{
dpε(t) = [Apε(t)dt+DF (Xε)pε(t) +Dg(Xε(t))] dt+ κε(t)

√
QdW (t) , t ∈ [0, T ] ,

pε(T ) = −Dg0(Xε(T )) ,
.

(13)
It is well-known that equation (13) has a unique solution (pε, κε) satisfying

pε ∈ L∞W ([0, T ];H) ∩ L2
W ([0, T ];V ) ,

kε ∈ L2
W ([0, T ];H) ,

(See, e.g., [25, Prop. 4.2] or [32]). By Itô’s formula we have from (12) and (13) that

d 〈pε, Zv〉H = 〈dpε, Zv〉H + 〈pε, dZv〉H ,

and this yields

E

[∫ T

0

〈Dg(Xε(t)), Z
v(t)〉H dt

]
+E [〈Dg0(Xε(T )), Zv(T )〉H ] = E

[∫ T

0

〈Bv(t), pε(t)〉H dt

]
,

which substituted in (11) yields that ∀ v ∈ U , the following inequality holds

E

[∫ T

0

h′(uε(t), v(t))dt

]
+
√
ε

(
E

[∫ T

0

|v(t)|2Udt

]) 1
2

+

+ E

[∫ T

0

〈B∗pε(t), v(t)〉U dt

]
≥ 0 .

(14)

Let G(u) := E
[∫ T

0
h(u(t))dt

]
, the sub-differential ∂G : U → U in uε is given by

∂G(uε) =

{
v∗ ∈ U : 〈v, v∗〉U ≤ E

[∫ T

0

h′(uε(t), v(t))dt

]
, ∀ v ∈ U

}
.

(See, e.g., [8, p.81]). Then we infer from equation (14), where v(t) = −uε(t) + v̄,
that it holds

uε(t) = (∂h)−1
(
B∗pε(t) +

√
εθ̃ε

)
, t ∈ [0, T ] , P− a.s. ,

where θ̃ε ∈ U and |θ̃ε|U ≤ 1, ∀ ε > 0.



8 FRANCESCO CORDONI AND LUCA DI PERSIO

Therefore, we have shown that

uε = (∂h)−1 (B∗pε + θε) , ‖θε‖L2([0,T ]×Ω;U) ≤
√
ε ,

dpε(t) = [Apε(t)dt+DF (Xε)pε(t) +Dg(Xε(t))] dt+ κε(t)
√
QdW (t) , t ∈ [0, T ] ,

pε(T ) = −Dg0(Xε(T )) ,

.

(15)

Using the Itô formula applied to |X|22, we have that ∀ ε > 0 it holds

|Xε(t)|2H = |x|2H − 2

∫ t

0

〈AXε(s) + F (Xε(s))−Buε(s), Xε(s)〉H ds+

+ TrQt+ 2

∫ t

0

〈
Xε(s),

√
QdW (s)

〉
H

;

(16)

notice that above the application of Itô formula is only formal, nevertheless the
following bounds can be made rigorous by a truncation argument, see, e.g. [10, 11].

(Here and everywhere in the following we shall denote by C several positive
constants independent of ε.)

From the fact that
∫ t

0

〈
Xε(s),

√
QdW (s)

〉
H

is a square integrable martingale, [18,

Th. 3.14, Th. 4.12], we have that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
Xε(s),

√
QdW (s)

〉
H

∣∣∣∣
]
≤ CTr(Q)E

[∫ T

0

|Xε(t)|2H dt

]
.

We have ∫ t

0

〈AXε(s), Xε(s)〉H ds ≥ C1

∫ t

0

|Xε(s)|2V ds .

We also have that it holds,∫ t

0

〈F (Xε(s)), Xε(s)〉H ds ≥ C|Xε(t)|2H ,

see, e.g. [2, 11] for details. Eventually from assumption (ii) we have∫ t

0

〈Bu(s), Xε(s)〉H ds ≤ L
−1

∫ T

0

|uε(t)|2Udt .

Taking then the expectation on both side of (16) yields, via Burkholder-Davis-
Gundy inequality

E

[
sup
t∈[0,T ]

|Xε(t)|2H

]
+ E

[∫ T

0

|Xε(t)|2V dt

]
≤ C1 + C2

∫ T

0

E

[
sup
s∈[0,t]

|Xε(s)|2H dt

]
and applying Gronwall’s lemma it follows eventually that

E

[
sup
t∈[0,T ]

|Xε(t)|2H

]
+ E

[∫ T

0

|Xε(t)|2V dt

]
≤ C(1 + |x|2H) . (17)

In an analogous manner, applying Itô formula to |pε|2H by (15) we obtain that

1

2
d|pε(t)|2H = 〈Apε(t) +DF (Xε(t))pε(t) +Dg(Xε(t)), pε(t)〉H +

=
1

2
〈κε(t), κε(t)〉H dt+

〈
pε(t), κε(t)

√
QdW (t)

〉
H
.
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which yields after applying arguments similar to the ones above

E

[
sup
t∈[0,T ]

|pε(t)|2H

]
+ E

[∫ T

0

|pε(t)|2V dt

]
+ E

[∫ T

0

|κε(t)|2Hdt

]
≤

≤ C + E
[
|Xε(T )|2H

]
≤ C , ∀ ε > 0 .

(18)

Denoting by Xλ the solution with control uλ, we have that

∂

∂t
(Xε(t)−Xλ(t)) +A (Xε(t)−Xλ(t)) + (F (Xε(t))− F (Xλ(t))) =

= BB∗(pε(t)− pλ(t)) +B(θε(t)− θλ(t)) .
(19)

In virtue of (18) this yields

1

2
|Xε(t)−Xλ(t)|2H +

∫ t

0

|Xε(s)−Xλ(s)|2V ds+

+

∫ t

0

〈F (Xε(s))− F (Xλ(s)) , Xε(s)−Xλ(s)〉H ds ≤

≤ L
∫ t

0

|pε(s)− pλ(s)|H |Xε(s)−Xλ(s)|Hds

+ C

∫ t

0

|θε(s)− θλ(s)|U |Xε(s)−Xλ(s)|Hds , ∀ t ∈ [0, T ] ,

where L = ‖(∂h)−1‖Lip.
From the definition of F , we further have that,

〈F (Xε)− F (Xλ), Xε −Xλ〉H ≥ −C |Xε −Xλ|2H ,

which yields, for t ∈ [0, T ], applying Young inequality,

|Xε(t)−Xλ(t)|22 +

∫ t

0

|Xε(s)−Xλ(s)|2V ds ≤

≤ C
(
L

∫ t

0

|pε(s)− pλ(s)|22ds+

∫ t

0

|Xε(s)−Xλ(s)|2Hds+ ε+ λ

)
.

(20)

Applying Gronwall’s lemma in (20), we have

|Xε(t)−Xλ(t)|22 +

∫ t

0

|Xε(s)−Xλ(s)|2V ds ≤

≤ C

(
L

∫ T

0

|pε(s)− pλ(s)|22ds+ ε+ λ

)
, ∀ ε , λ > 0 , t ∈ [0, T ] .

(21)
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Similarly we get by the Itô formula

|pε(t)− pλ(t)|2H +

∫ T

t

|pε(s)− pλ(s)|2V ds+
1

2

∫ T

t

|κε(s)− κλ(s)|2Hds =

= |Dg0(Xε(T ))−Dg0(Xλ(T ))|2H+

+

∫ T

t

〈DF (Xε(s))pε(s)−DF (Xλ(s))pλ(s), pε(s)− pλ(s)〉H ds+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
H
≤

=

∫ T

t

〈DF (Xε(s))(pε(s)− pλ(s)), pε(s)− pλ(s)〉 ds+

+

∫ T

t

〈pλ(s)(DF (Xε(s))−DF (Xλ(s))), pε(s)− pλ(s)〉H ds+

+

∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
H

+

+ |Dg0 (Xε(T ))−Dg0 (Xλ(T )) |2H ≤

≤ C

(∫ T

t

(|Xε(s)|2H + 1)|pε(s)− pλ(s)|2H ds

)
+

+ C

(∫ T

t

(
1 + |Xε(s)|2 + |Xλ(s)|2

)
|Xε(s)−Xλ(s)|H |pε(s)− pλ(s)|H |pε(s)|H ds

)
+

+

∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
H

+

+ ‖Dg0‖Lip|Xε(T )−Xλ(T )|2H , t ∈ [0, T ] ,P− a.s. .
(22)

Exploiting again Young’s inequality, and denoting for short

Tε,λ := (1 + |Xε|2H + |Xλ|2H)|pε|H ,

we get,

(|Xε(s)−Xλ(s)|H |pε(s)− pλ(s)|H)Tε,λ ≤

≤ C
(
|Xε −Xλ|2H + |pε − pλ|2H

)
Tε,λ .

(23)
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Substituting now (23) into (20), (22), we obtain P−a.s.

|Xε(t)−Xλ(t)|2H + |pε(t)− pλ(t)|2H +

∫ t

0

|Xε(s)−Xλ(s)|2V ds+

+

∫ T

t

|pε(s)− pλ(s)|2V ds+

∫ T

t

|κε(s)− κλ(s)|2Hds ≤

≤ C
(
L

∫ t

0

|pε(s)− pλ(s)|2H ds+ ε+ λ

)
+ C

∫ T

t

|pε(s)− pλ(s)|22 |Xε(s)|2Hds+

+ ‖Dg0‖Lip|Xε(T )−Xλ(T )|22+

+ C

∫ T

t

(
|Xε(s)−Xλ(s)|2H + |pε(s)− pλ(s)|2H

)
Tε,λ(s)ds+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
H
, ∀ t ∈ [0, T ] .

(24)

Exploiting thus the fact that the process

r 7→
∫ r

t

〈
(κε − κλ)

√
QdW (s), Xε(s)−Xλ(s)

〉
2
,

is a local martingale on [t, T ], hence again by the Burkholder-Davis-Gundy inequal-
ity, see, e.g., [20, p.58], we have for all r ∈ [t, T ]

E

[
sup
r∈[t,T ]

∣∣∣∣∫ r

t

〈
(κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
H

∣∣∣∣
]
≤

≤ C
(
E
[∫ r

0

|κε(s)− κλ(s)|2H |Xε(s)−Xλ(s)|2Hds
]) 1

2

≤

≤ CE

[
sup
s∈[t,r]

|Xε(s)−Xλ(s)|2H

]
+ CE

[∫ r

t

|κε(s)− κλ(s)|2Hds
]
.

(25)

Taking then the expectation in and by (24), and using (25) we get

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|2H + |pε(s)− pλ(s)|2H

)]

+ E

[∫ T

0

|Xε(s)−Xλ(s)|2V ds+

∫ T

t

|pε(s)− pλ(s)|2Hds

]

+ E

[∫ T

t

|κε(s)− κλ(s)|2Hds

]
≤

≤ ‖Dg0‖E
[
|Xε(T )−Xλ(T )|2H

]
+ C

(
LE

[∫ T

0

|pε(s)− pλ(s)|2H ds

]
+ ε+ λ

)

+ CE

[
sup
s∈[t,T ]

|Xε(s)−Xλ(s)|2H

]

+ CE

[∫ T

t

(
|pε(s)− pλ(s)|2H + |Xε(s)−Xλ(s)|2H

) (
|Xε(s)|2H + Tε,λ(s)

)
ds

]
.

(26)
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Taking into account estimates (21) and (22), from (26) we have

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|2H + |pε(s)− pλ(s)|2H

)]

+ E

[∫ T

0

|Xε(s)−Xλ(s)|2V ds+

∫ T

t

|pε(s)− pλ(s)|2Hds

]

+ E

[∫ T

t

|κε(s)− κλ(s)|2Hds

]
≤

≤ C̃

(
LE

[∫ T

0

|pε(s)− pλ(s)|2H ds

])

+ C̃

(
E

[∫ T

t

|pε(s)− pλ(s)|2H
(
|Xε(s)|3H + Tε,λ(s)

)
ds

])
+ C̃‖Dg0‖LipE

[
|Xε(T )−Xλ(T )|2H

]
+ C̃(ε+ λ) .

(27)

where C̃ is a positive constant independent of ε and λ. It follows that if C̃(LT +
‖Dg0‖Lip) < 1, then, for any t ∈ [0, T ],

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|2H + |pε(s)− pλ(s)|2H

)]

+ E

[∫ T

0

|Xε(s)−Xλ(s)|2V ds+

∫ T

t

|pε(s)− pλ(s)|2Hds

]

+ E

[∫ T

t

|κε(s)− κλ(s)|2Hds

]
≤

≤ CE

[∫ T

t

|pε(s)− pλ(s)|2H
(
|Xε(s)|2H + Tε,λ(s)

)
ds

]
+ C(ε+ λ) .

(28)

Let us define for j ∈ N

Ωj :=

{
ω ∈ Ω : sup

ε
sup
t∈[0,T ]

(
|Xε(t)|2H + |Xε(t)|2V + |pε(t)|2H

)
dt ≤ j

}
,

then estimates (17)–(18) implies that

P (Ωj) ≥ 1− C

j
, ∀ j ∈ N ,

for some constant C independent of ε.
If we set Xj

ε := 1ΩjXε, p
j
ε := 1Ωjpε and κjε := 1Ωjκε, then such quantities satisfy

the system (15), with 1Ωj

√
QdW . The latter means that estimate (28) still holds

in this context, so that we have
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E

[
sup
s∈[t,T ]

|Xj
ε (s)−Xj

λ(s)|2H + sup
s∈[t,T ]

|pjε(t)− p
j
λ(t)|2H

]

+ E

[∫ T

t

|pjε(s)− p
j
λ(s)|2V ds

]
+ E

[∫ T

t

|(κε(s)− κλ(s))χj |2Hds

]
≤

≤ Cj
∫ T

t

E
[
|pjε(s)− p

j
λ(s)|2H

]
ds+ C (ε+ λ) , j ∈ N .

(29)

By Gronwall’s lemma we get, for any t ∈ [0, T ]

E

[
sup
s∈[t,T ]

|Xj
ε (s)−Xj

λ(s)|2H + sup
s∈[t,T ]

|pjε(s)− p
j
λ(s)|2H

]
≤ C(ε+ λ)eCjT , (30)

hence, for ε→ 0 and all j ∈ N and all t ∈ [0, T ], we obtain

Xj
ε → Xj in L2

(
Ωj ;L

2([0, T ]×O)× L2([0, T ]×O)
)
,

pjε → pj in L2
(
Ωj ;L

2([0, T ]×O)× L2([0, T ]×O)
)
.

(31)

Therefore for each ω ∈ Ω, we have that {Xε(t, ω), pε(t, ω)} are Cauchy sequences
in L2 ([0, T ]×O), with respect to ε and by estimates (17) and (18) it follows that
taking related subsequences, still denoted by ε, we have

Xε ⇀ X∗ in L2 ([0, T ]× Ω;V ) ,

pε ⇀ p∗ in L2 ([0, T ]× Ω×O ×O) ,

pε ⇀ p∗ in L2 ([0, T ]× Ω;V ) ,

uε ⇀ u∗ in L∞
(
[0, T ];L2 (Ω× U)

)
,

(32)

where ⇀ means weak (respectively, weak-star) convergence, so we have for ε→ 0

Xε → X∗ , pε → p∗ , a.e. in [0, T ]× Ω×O ×O . (33)

We also have, since {Iion (vε)} is bounded in L
4
3 ([0, T ]× Ω×O), then it is weakly

compact in L1 ([0, T ]× Ω×O) and by (33) we have that for a subsequence {ε} → 0,

Iion (vε)→ Iion(v∗) , a.e. in [0, T ]× Ω×O ,
which implies that

Iion (vε)→ Iion(v∗) in L1 ([0, T ]× Ω×O) . (34)

Then, letting ε→ 0 we obtain{
dX∗(t) +AX∗(t)dt+ F (X∗(t))dt+

√
QdW (t) = Bu∗(t)dt , t ∈ [0, T ] ,

X∗(0) = x ,
.

Taking into account that Ψ is weakly lower semi–continuous in U we infer by (8)
that

Ψ(u∗) = inf {Ψ(u);u ∈ U} ,
therefore (X∗, u∗) is optimal for the problem (P) and the proof of existence is
therefore complete.

Concerning the uniqueness for the optimal pair (X∗, u∗) given by Th. 3.1, we
have that it follows by the same argument via the maximum principle result for
problem (P), namely one has the following result.
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Theorem 3.2. Let (X∗, u∗) be optimal in problem (P), then

u∗ = (∂h)−1(B∗p) , a.e. t ∈ [0, T ] , (35)

where p is the solution to the backward stochastic equation (13).

Proof. If (X∗, u∗) is optimal for the problem (P), then by the same argument used
to prove Th. 3.1, see (11), we have

E

[∫ T

0

〈Dg(X∗(t)), Zv(t)〉2 dt

]
+ E

[∫ T

0

h′(u∗(t), v(t))dt

]
+ E [〈Dg0(X∗(T )), Zv(T )〉2] ≤ 0 , ∀ v ∈ U ,

(36)

where Zv is solution to equation (12) with Xε replaced by X∗. This implies as
above that (35) holds.

The uniqueness in (P). If (X∗, u∗) is optimal in (P) then it satisfies systems (5),
(35) and (36), so that arguing as in the proof of Th. 3.1, the same set of estimates
implies that the previous system has at most one solution if LT + ‖Dg0‖Lip < C∗,
where C∗ is sufficiently small.

Remark 1. Let us apply the change of variable Y := X −
√
QW to equation (5),

so that we obtain the following random PDE{
Y (t) +AY + F

(
Y +

√
QW

)
= −A

√
QW ,

Y (0) = x0 ;
(37)

Setting

FHY := AY + F
(
Y +

√
QW

)
,

which is a continuous and monotone function from V → V ′; then equation (37) has
a unique solution (for each ω ∈ Ω) with y ∈ C ([0, T ];H) ∩ L2 ([0, T ];V ), d

dtY (t) ∈
L2 ([0, T ];V ′), see, e.g. [4, Th. 4.17]. We also have that

E
∫ T

0

‖Y (t)‖2V dt <∞ .

Moreover the optimal control problem (P) can be treated in terms of the random
PDE (37).

4. Conclusions. In the present work we have derived the existence and uniqueness
of the solution to the control problem associated to a FH-N system of equations
perturbed by a Gaussian noise and in presence of a recovery variable. We would like
to underline that the aforementioned result has potential applications in medicine,
particularly from the point of view of neuronal diseases care. Indeed, the scheme of
equations we have studied is linked to the Bonhoeffervan der Pol oscillator, namely
a nonlinear damping governed by a second-order differential equation we are able to
treat in presence of random (Gaussian) noise. The latter aspect is of great relevance
in desincronized abnormal electrical activities that happen under the influence of
pathology as the Parkinson’s one, or during epileptic attacks. Possible generaliza-
tions of the proposed analysis will concern the study of the full Hodgkin-Huxley
model, when a random source of noise has to be taken into consideration, as well as
the study of the aforementioned models over networks of interconnected neurons,
mainly following the approach derived in [15, 16]. Such topics are the subjects of
our ongoing research.
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