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ABSTRACT

Intraoperative somatosensory evoked potentials (SEPs) provide dorsal somatosensory system functional
and localizing information, and complement motor evoked potentials. Correct application and interpre-
tation require in-depth knowledge of relevant anatomy, electrophysiology, and techniques. It is advisable
to facilitate cortical SEPs with total intravenous propofol-opioid or similarly favorable anesthesia.
Moreover, SEP optimization is recommended to enhance surgical feedback speed and accuracy by max-
imizing signal-to-noise ratio (SNR); it consists of selecting highest-SNR peripheral and cortical deriva-
tions while omitting low-SNR channels. Confounding factors causing non-surgical SEP reduction
should be excluded before issuing a warning. It is advisable to facilitate their identification with periph-
eral SEP controls and cortical SEP systemic controls whenever possible. Warning criteria should adjust for
baseline drift and reproducibility. The recommended adaptive warning criterion is visually obvious
amplitude reduction from recent pre-change values and clearly exceeding trial-to-trial variability, partic-
ularly when abrupt and focal. Acquisition and interpretation should be done by qualified technical and
professional level personnel. Indications for SEP monitoring include intracranial, posterior fossa, and
spinal neurosurgery, as well as orthopedic spine, cerebrovascular, and descending aortic surgery.
Indications for SEP mapping include sensorimotor cortex and dorsal column midline identification.
Future advances could modify current recommendations.
© 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction precludes formal systematic review. Nevertheless, it is based on

currently available scientific evidence and consensus expert opin-

Somatosensory evoked potentials (SEPs) are an important part ion. It also recognizes that alternative methods exist, that standards

of intraoperative neurophysiologic monitoring (IONM) because of care vary with resources in different regions, and that future
they provide functional and localizing information about the dorsal advances could modify subsequent recommendations. An analysis
somatosensory system and complement motor evoked potentials of evidence for outcome benefit is beyond the scope of this article.

(MEPs). This document reviews relevant anatomy, physiology,
methodology, interpretation and applications and forms recom- 2. Anatomical considerations
mendations of the International Society of Intraoperative Neuro-

physiology for intraoperative SEPs. It is also endorsed by the As somatosensory anatomy and blood supply are important for
International Federation of Clinical Neurophysiology. This is nota  intraoperative SEP interpretation, this section summarizes relevant
clinical practice guideline as defined by the Institute of Medicine  jpformation from several sources (Basbaum and Jessell, 2000;

(2011) because the absence of randomized controlled trials Gardner and Kandel, 2000: Gardner et al., 2000: Pearson and
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Gordon, 2000; Ropper and Adams, 2005a, 2005b; Crossman and
Neary, 2008; Kiernan, 2009a, 2009b). The dorsal somatosensory
system conveys discriminative touch, vibration, and propriocep-
tion, while the anterolateral somatosensory system carries pain,
light touch, and temperature sensation. Practitioners should
understand that SEPs elicited by electrical peripheral nerve stimu-
lation and recorded in <100 ms sweeps selectively test the dorsal
system because its abundant thick peripheral axons have low
thresholds and fast, uniform conduction. These techniques do not
assess the anterolateral system because its thinner axons have
higher thresholds and slower, more variable conduction.

2.1. Dorsal somatosensory pathway

The dorsal system has cutaneous discriminative touch and
vibration receptors as well as muscle spindle and other deep recep-
tors for limb proprioception. The primary afferents travel up
peripheral nerves, plexuses and sensory roots. Cervicothoracic
roots have an approximately horizontal trajectory from their neu-
ral foramen to the cord, while lumbosacral roots ascend the spinal
canal in the cauda equina to reach the cord that ends at the L1-L2
vertebrae. The afferent fibers pass by their pseudo-unipolar cell
bodies in the dorsal root ganglia, reach the dorsal root entry zone
and then bifurcate up and down and rebranch within the spinal
cord (Niu et al., 2013).

Some branches ascend the entire ipsilateral dorsal column, with
leg fibers in the medial gracile fasciculus and arm fibers in the lat-
eral cuneate fasciculus. These long afferents terminate in the gra-
cile and cuneate nuclei of the medulla, from which second-order
axons decussate as the internal arcuate fibers and then ascend
the contralateral medial lemniscus to synapse in the ventral pos-
terolateral thalamic nucleus. Third-order axons ascend the poste-
rior limb of the internal capsule and then fan out in the
thalamocortical radiation to synapse in the primary sensory gyrus
(S1), with arm fibers going to its lateral convexity and leg fibers to
its mesial parasagittal region.

Other branches synapse in spinal cord gray matter. These
include muscle spindle afferent collateral branches that form the
sensory arc of tendon stretch reflexes (Niu et al., 2013). Some
branches terminate in the dorsal horn, from which second-order
axons reenter and ascend the dorsal column. The dorsal columns

tibial nerve SEPs

median nerve SEPs

also contain descending axons involved in sensory modulation,
and propriospinal axons (Fitzgerald, 1992).

2.2. Indirect proprioception pathways

The traditional view that proprioception afferents projecting to
cortex directly ascend the dorsal columns is controversial. One
alternative based on animal evidence proposes that they synapse
in the dorsal horn, with second-order axons ascending the dorso-
lateral funiculus just behind the corticospinal tract (Gilman,
2002). Another proposes that they terminate in Clarke’s column,
with second-order axons ascending the dorsolateral funiculus in
the spinocerebellar tract just superficial to the corticospinal tract
(Landgren et al., 1971; Gilman, 2002; Niu et al., 2013).

The extent of these indirect pathways in humans is uncertain
(Ross et al., 1979; Lockard and Kempe, 1988; Ross, 1991) and the
issue is relevant to SEP interpretation. For example, it is thought
that dorsolateral funiculus conduction generates lower limb spinal
epidural SEP components (Jones et al., 1982; Halonen et al., 1989).
It has also been proposed that dorsolateral funiculus conduction
generates lower limb scalp SEPs (York, 1985). However, recordings
during intramedullary spinal cord tumor surgery indicate dorsal
column conduction (Fig. 1). Consequently, if indirect propriocep-
tive pathways exist then lower limb scalp SEPs could represent
mostly cutaneous afferents. Furthermore, there is unresolved
uncertainty about proprioceptive contributions to mixed-nerve
SEPs in general (Burke et al., 1981; Gandevia et al., 1984;
Halonen et al., 1988; Fukuda et al., 2007). Thus, practitioners
should understand that scalp SEPs involve dorsal column conduc-
tion and cutaneous afferents, but that the contribution of proprio-
ceptive afferents is unclear.

2.3. Nondecussation

Practitioners should also be aware that some rare brainstem
malformations cause dorsal sensory system and corticospinal tract
nondecussation due to absence of the internal arcuate and pyrami-
dal decussations, so that the dorsal columns project to ipsilateral
cortex (MacDonald et al., 2004a; Vulliemoz et al., 2005). Horizontal
gaze palsy and progressive scoliosis is the most relevant of these
conditions for IONM. This autosomal recessive disorder is more
likely in regions with prevalent consanguinity, such as the
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Fig 1. Tibial nerve scalp SEP disappearance after cervical dorsal midline myelotomy for intramedullary spinal cord tumor surgery. This recurring observation suggests dorsal
column conduction of scalp SEPs. Disruption of indirect dorsolateral funiculus sensory pathways is an unlikely explanation for SEP deterioration since the immediately
adjacent corticospinal tracts are unaffected as evidenced by MEP preservation. L, left; R, right; P37 and N20, tibial and median nerve cortical SEPs; AH, abductor hallucis; Th,

thenar.



164 D.B. MacDonald et al./Clinical Neurophysiology 130 (2019) 161-179

Middle-East where it comprised 2.3% of a series of scoliosis surgery
patients (MacDonald et al., 2007). However, it also arises sporadi-
cally in other regions, including North America, Europe, and Japan.
As the anomaly requires reversed-lateralization scalp monitoring
derivations and will be missed unless sought, this document
includes methods to routinely screen for and rarely adapt to non-
decussation, without implying that it is common.

2.4. Blood supply

The anterior cerebral artery supplies the mesial S1 gyrus and
subcortical sensory fibers for the lower limb, while the middle
cerebral artery supplies the lateral S1 gyrus and subcortical sen-
sory fibers for the upper limb. Thus, tibial and median nerve SEPs
are relevant monitors for anterior and middle cerebral artery ische-
mia, respectively.

Lenticulostriate branches of the middle cerebral and anterior
choroidal arteries supply thalamocortical sensory axons. Posterior
cerebral artery branches supply thalamic sensory nuclei. Basilar
and vertebral artery branches supply the medial lemniscus.

The left and right posterior spinal arteries supply the dorsal col-
umns and outer dorsal horns, while the anterior spinal artery sup-
plies the remaining gray matter and inner white matter, including
the anterior horns and corticospinal tracts (Mawad et al., 1990;
Connolly, 1998). These longitudinal arteries also form pial anasto-
moses supplying the outer white matter, and receive collateral
supply from cervical, aortic, and iliac radicular arteries.

Autoregulation adjusts brain and spinal cord blood flow to
metabolic need across a range of blood pressure and persists under
anesthesia. Due to higher metabolic rate, spinal gray matter
receives four times more blood flow than white matter and is more
sensitive to ischemia (Marcus et al., 1977). Consequently, acute
cord ischemia causes rapid muscle MEP disappearance due to
anterior horn cell failure but delayed or no deterioration of SEPs
conducted through the relatively resistant dorsal columns
(MacDonald and Dong, 2008). Thus, very abrupt SEP deterioration
during spinal cord monitoring may suggest another pathophysiol-
ogy, such as compression.

A median nerve SEPs
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3. Electrophysiology

Correct intraoperative SEP interpretation requires knowledge of
the underlying electrophysiology. Peripheral nerve stimulation
triggers a time-locked sequence of travelling action potentials
and stationary postsynaptic potentials along the dorsal somatosen-
sory pathway. Temporo-spatial summation and volume conduc-
tion enable surface SEP recording.

Travelling SEP latencies increase with stimulus-recording dis-
tance and stationary SEP latencies increase with stimulus-generat-
ing structure distance. Near-field SEP amplitudes increase with the
proximity of the recording electrode to the generator, while far-
field SEP amplitudes do not depend on electrode proximity.

Amplitudes increase with stimulus intensity up to a supramax-
imal level that is lower for cortical than peripheral responses,
implying ‘central amplification’ (Fig. 2A) (Eisen et al., 1982;
Gandevia and Burke, 1984). Thus, supramaximal peripheral
response intensity ensures supramaximal cortical SEP monitoring.
Also, peripheral nerve or dorsal column conduction failure has to
involve a substantial proportion of axons before causing an appre-
ciable scalp SEP decrement, which might partly explain lower SEP
than MEP sensitivity for intraoperative spinal cord compromise.

3.1. Peripheral responses

Mixed-nerve sensory and motor axon action potentials propa-
gate up and down from the stimulation point. Ascending sensory
and antidromic motor impulses produce traveling near-field com-
pound peripheral nerve action potentials typically recorded at the
cubital fossa medial to the biceps tendon just above the fossa
crease, Erb’s point 2 cm above the mid-clavicle, and the popliteal
fossa just above the fossa crease.

3.2. Segmental potentials

Spinal cord gray matter postsynaptic potentials in the segments
where the stimulated nerve’s axons enter produce a stationary
near-field SEP that is negative behind and positive in front of the
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Fig 2. Stimulus intensity and frequency. CF and PF, cubital and popliteal fossa; propofol-remifentanil anesthesia. A: Cortical SEPs appear and saturate at lower stimulus
intensity than peripheral responses. B: The inverse relationship between stimulus frequency and cortical SEP amplitude.
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cord (Lee and Seyal, 1998; American Clinical Neurophysiology
Society, 2006). One usually records the upper limb N13 over the
5th cervical spine (C5S) and the lower limb N22 over the 12th tho-
racic spine (T12).

3.3. Dorsal column volley

Ascending dorsal column and possibly dorsolateral funiculus
action potentials generate a polyphasic travelling near-field dorsal
column volley (Hahn et al., 1981; Jones et al., 1982; Halonen et al.,
1989; Lee and Seyal, 1998). It is larger with proximal than distal
nerve stimulation and is readily obtained in spinal subdural, epidu-
ral, or interspinal ligament recordings, but small and inconsistent
at the skin. A few programs monitor these potentials with invasive
spinal electrodes (Forbes et al., 1991; Burke et al., 1992; Sutter
et al., 2007).

3.4. Subcortical potentials

The brainstem dorsal column nuclei and medial lemniscus gen-
erate stationary far-field subcortical SEPs consisting of a positive
peak followed by a negative peak that decays slowly (Desmedt
and Cheron, 1980, 1981a, 1981b; Lee and Seyal, 1998; American
Clinical Neurophysiology Society, 2006). Their broad fields project
about equally over the scalp and with low amplitude at basal ear or
mastoid (M) sites. Consequently, they cancel out in scalp bipolar
derivations, partially cancel in scalp to basal reference channels,
and have greatest amplitude in scalp to noncephalic reference
derivations.

The upper limb P14 and N18 are usually recorded from cen-
troparietal scalp ipsilateral to the stimulated nerve to separate
them from contralateral cortical SEPs (Desmedt and Cheron,
1981b; American Clinical Neurophysiology Society, 2006). With
nondecussation they would be recorded from contralateral scalp
instead. The lower limb P31 and N34 are usually recorded from
the forehead midline to separate them from centroparietal cortical
responses.

3.5. Cortical responses

The S1 gyrus generates stationary near-field early cortical SEPs
exhibiting dipolar fields (Desmedt and Cheron, 1981b; Lee and
Seyal, 1998; American Clinical Neurophysiology Society, 2006).
Bipolar scalp derivations separate them from subcortical potentials
and display largest signal amplitude when inputs 1 and 2 are at the
field’s opposite maxima.

Upper limb direct cortical SEP recordings from subdural elec-
trodes reveal a tangential response dipole from the anterior bank
of S1 that shows a ‘phase reversal’, being negative (N20) behind
and positive (P20) in front of the central sulcus; there may also
be a radial positive response (P25) on the S1 crest (Wood et al.,
1988; Allison et al., 1989, 1991; Nuwer et al., 1992; Cakmur
et al., 1997; Romstdck et al., 2002). The dipole projects to the scalp
as a centroparietal N20 contralateral to the stimulated nerve and a
bifrontal P22. With nondecussation the N20 is ipsilateral instead.

Lower limb direct cortical SEP recordings disclose a mesial P37
generated by the S1 crest with no consistent central sulcus phase
reversal (Allison et al., 1996). The P37 most often projects maxi-
mally to the centroparietal midline and its field paradoxically
spreads over the scalp ipsilateral to the stimulated nerve because
of its mesial source (Rossini et al., 1981; Cruse et al., 1982;
Lesser et al., 1987). However, it may be maximal at the vertex, pari-
etal midline, or ipsilateral scalp (MacDonald, 2001; Miura et al.,
2003; MacDonald et al., 2004b, 2005). An N37 pole usually projects
to the contralateral scalp but may be unapparent or at the parietal

midline when the P37 is maximal at the vertex. Nondecussation
reverses P37 and N37 lateralization.

4. Electrodes
4.1. Surface electrodes

Some programs prefer surface electrodes that are safe and effec-
tive for stimulation and recording and have <2 kQ impedance with
proper skin preparation. Attaching them before the operating room
shortens intraoperative setup and enables early postinduction SEP
recording and optimization.

Standard ECG or other adhesive electrodes self-secure on
smooth skin. Rigid bar stimulating electrodes are inadvisable for
IONM because they risk pressure necrosis (Stecker et al., 2006;
Netherton et al., 2007; MacDonald and Deletis, 2008). Reusable
EEG cup electrodes filled with conductive paste or gel firmly secure
to the scalp with collodion. They are cleaned and disinfected after
use; flammable collodion and acetone for its removal must not be
in open use during electrosurgery.

4.2. Needle electrodes

Programs doing postinduction setups often choose needle elec-
trodes for quickness. These electrodes are also effective and have
<5 kQ impedance, but risk needle-stick and other infections, sub-
cutaneous or intramuscular hemorrhages, pneumothorax with
excessively deep insertion, and intraoperative burns because their
small surface area generates high current density when electro-
surgery current accidentally passes through them (Stecker et al.,
2006; Netherton et al., 2007; Patterson et al., 2007; MacDonald
and Deletis, 2008).

Tape secures straight needles at smooth skin and corkscrew
needles self-secure in the scalp. Special caution is advisable for
infants and patients with ventriculo-peritoneal shunts in order to
avoid piercing open fontanels or damaging shunt systems. It is
important to handle needles by their stems and discard them into
a sharps box after use; flammable antiseptics must be dry before
draping.

4.3. Invasive electrodes

Invasive subdural or epidural electrodes for cortical or spinal
cord recording carry a small but potentially serious risk of infec-
tion, hemorrhage, or trauma. Consequently, they are generally
reserved for special indications and are strictly single use.

5. Stimulation
5.1. Sites

For median nerve stimulation, the anode is between the flexor
carpi radialis and palmaris longus tendons at the wrist crease
and the cathode is 3 cm proximal. The ulnar nerve may be pre-
ferred or added for low cervical procedures because its cutaneous
afferents enter lower spinal cord segments (C8-T1) than median
nerve cutaneous afferents (C6-C7).

For posterior tibial nerve stimulation, the cathode is between
the medial malleolus and Achilles tendon and the anode is 3 cm
distal. Alternative lower limb stimulation sites for peripheral neu-
ropathy or other distal obstacles include the peroneal nerve at the
fibular head and the tibial nerve in the popliteal fossa; SEP laten-
cies are shorter with these sites.
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5.2. Parameters
The stimuli are rectangular 0.2-0.3 ms constant-current pulses.

Supramaximal intensity can be determined from single-sweep
peripheral responses, or estimated as 3 times sensory or 2 times

A: low frequency filter settings

motor threshold. These levels are safe for distal nerves and are rec-
ommended to avoid spurious amplitude changes due to fluctuating
stimulus efficacy. However, supramaximal intensity is inadvisable
for proximal nerves at the knee because strong tibialis anterior
muscle contractions could cause anterior tibial compartment

B: high frequency filter settings

cortical 1 Hz 30Hz cortical (N=2048) spectrum (3000 Hz)
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| 0.2
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Fig 3. Filter settings. Propofol and remifentanil anesthesia; N, number of averaged sweeps. A: A 30 Hz low frequency filter enhances scalp (cortical and subcortical) SEP
reproducibility but distorts peripheral (popliteal fossa) potentials that show better stimulus artifact separation with an open 0.2 Hz filter. Note the large N needed for
subcortical SEPs. B: Spectra of grand average (N = 2048) SEPs recorded with a 3000 Hz high frequency filter (gray traces) show nearly all frequency content below 300 Hz for
scalp and below 1000 Hz for peripheral (cubital fossa) potentials. Thus, 300 and 1000 Hz scalp and peripheral high frequency filters smooth signals with negligible latency

shift (black traces).

Table 1

Reproducibility classification and detectable pathological decrements.
Reproducibility Amplitude variation Waveform superimposition Detectable decrement
High <20% nearly exact >=~30%
Medium 20-30% approximate >~40%
Low 30-50% loose >~50%
Non-reproducible >50% divergent disappearance

cortical CP¢—CP,

superimposition AV N
divergent

non-RP 61 1

loose

low RP 45 4

approximate

medium RP 24 13

nearly exact

high RP 13 50

25 pVv /50 ms

subcortical CPj—EP¢

superimposition AV N
divergent

79 200

loose
45 520

approximate
25 785

nearly exact

13 1500

. .
5uV /50 ms

Fig 4. Reproducibility (RP) classification exemplified by median nerve SEPs during propofol and remifentanil anesthesia (30-300 Hz bandwidth). AV, trial-to-trail signal
amplitude variation (%); N, number of averaged sweeps. Note much lower N for cortical than subcortical SEPs to reach comparable reproducibility.
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syndrome (Weston, 2002); neuromuscular blockade or motor
threshold intensity would be safer. There is no evidence that repet-
itive stimulation wears down or damages nerves.

Stimulus frequency must not divide evenly into 50 or 60 to
avoid time-locked artifacts at power line frequency. Faster stimu-
lation speeds acquisition but decreases cortical SEP amplitude
(Fig. 2B). Around 4.7 or 5.1 Hz is generally a satisfactory balance
but adjustments may help optimize results (Nuwer and
Packwood, 2008).

5.3. Interleaving

One should interleave stimuli to speed acquisition. Left-right
interleaving halves acquisition time by enabling concurrent bilat-
eral recording. Four-limb interleaving also halves but may not fur-
ther speed acquisition because frequency must be reduced to
accommodate four sweeps. Nevertheless, this technique enhances
cortical SEP amplitudes due to slower stimuli and enables concur-
rent four-limb recording. Simultaneous bilateral tibial nerve stim-
ulation to boost scalp SEP amplitude is inadvisable because it could
mask unilateral decrements.

6. Recording
6.1. Technical aspects

Low impedance and tight lead braiding are essential to reduce
extraneous electromagnetic interference. Notch filters are off to
avoid ‘ringing’ that could distort or simulate SEPs. Suitable low-
high filter settings are 30-300 Hz for scalp and 0.2-1000 Hz for
cubital and popliteal fossa SEPs (Fig. 3) (Nuwer and Dawson,
1984; Nuwer and Packwood, 2008). The sampling rate must be
more than twice the high frequency filter to prevent aliasing and
16-bit 3-4 kHz sampling is adequate with the above settings.

Amplifier gains and rejection levels are set to utilize dynamic
range without clipping biologic signals and exclude sweeps with
higher amplitude artifacts while avoiding excessive rejections.
Upper and lower limb recording sweeps of 50 and 100 ms are
appropriate; pathologically delayed responses occasionally need
longer sweeps and peripheral sweeps may be shorter.

6.2. Reproducibility

Averaged SEPs are estimates distorted by residual noise. One
assesses their accuracy with reproducibility classified by visual

N to medium reproducibility
1000k .

800+

600+

400+

200

-30 -20 =10 0 10 20 30 40
SNR (dB)

inspection as high, medium, low or non-reproducible according
to trial-to-trial amplitude variation and trace superimposability
(Table 1, Fig. 4) (MacDonald et al., 2009). It is advisable to average
to medium-high reproducibility rather than to a fixed sweep num-
ber that may be smaller (inaccurate) or larger (delayed feedback)
than needed. It is also advisable to record sequential self-
contained averages to detect abrupt decrements that running aver-
ages could mask.

6.3. Signal-to-noise ratio

The signal-to-noise ratio (SNR) in decibels determines how
quickly an SEP reproduces. Where SP and NP are signal and
noise power and rmsSA and rmsNA are root mean square signal and

noise amplitude, SNRy; = 10log (SP/NP) = 10log (rmsSA2 /rmsNAz).
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Fig 6. Inhalational anesthetic effects. L, left; R, right; N20, median nerve cortical
SEP; Des, desflurane (vol. %); Pr, propofol (mg/kg/h); Temp, temperature (C).
Remifentanil was constant at 0.2 pg/kg/min. Adding low-dose 1.9% desflurane (0.3
minimal alveolar concentration) depressed N20 amplitude and increased latency
despite reduced propofol, so it was discontinued. Its concentration and effects took
an hour to dissipate.
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Fig 5. Signal-to-noise ratio (SNR) and number averaged sweeps (N) to reproducibility. Intraoperative data from 16 derivations in 35 patients. The row of points at the top are
potentials that failed to reproduce by 1024 sweeps and are excluded from regression. The thick and thin curves are the mean and 90% confidence interval. Derivations with
>-10 dB SNR consistently reach medium to high reproducibility within 1-200 sweeps, while lower SNR derivations risk dramatically slower or non-reproducibility. Modified

from MacDonald et al. (2009), with permission.



168 D.B. MacDonald et al./Clinical Neurophysiology 130 (2019) 161-179

Rapid 1-200 sweep reproducibility occurs with SNR > —10dB,
while sweep number increases dramatically toward lower SNRs

(Fig. 5).
6.4. Rapid surgical feedback

By closely tracking surgical events, rapid feedback clarifies the
likely cause of a pathologic decrement and therefore guides appro-
priate intervention. It also affords time to react, which may
enhance the likelihood of success. Thus, rapid acquisition is critical

to monitoring efficacy. Although external events such as electro-
surgery cause monitoring interruptions, averaging consumes most
of the time between updates. Therefore, high-SNR (>—10 dB) SEP
derivations are advisable to enhance efficacy.

6.5. Anesthesia

This section limits itself to major points since it is beyond its
scope to detail the complex field of anesthesia. Comprehensive
reviews are available elsewhere (Sloan, 1998, 2010; Sloan and

Table 2
Traditional SEP monitoring derivations.
Decussation Peripheral Segmental Subcortical Cortical
Upper limb Assumed EPi-EPc or EPi-Fz C5S-EPc or C5S-Fz CPi-EPc CPc-Fz, CPc-Fpz, or CPc-CPi
Lower limb Assumed PF T12-IC Fpz-C5S CPz-Fpz, CPz-Fz, or CPi-CPc

EP, Erb’s point; PF, popliteal fossa; i and c, ipsilateral and contralateral to the stimulated nerve; C5S and T12, 5th cervical and 12th thoracic spine; IC, iliac crest.

Table 3
Optimal SEP monitoring derivations.

Decussation Peripheral Cortical - highest SNR of (bold, most frequent):
Upper limb Normal CF CPc-CPz, CPc-CPi, or CPc-Fz
Nondecussation CF CPi-CPz, CPi-CPc, or CPi-Fz
Lower limb Normal PF CPz-CPc, Cz-CPc, Pz-CPc, iCPi-CPc, CPi-CPc, or Cz-Pz
Nondecussation PF CPz-CPi, Cz-CPi, Pz-CPi, iCPc-CPi, CPc-CPi, or Cz-Pz

CF and PF, cubital and popliteal fossa; trailing i and c, ipsilateral and contralateral to the stimulated nerve; iCP, intermediate centroparietal (CP1 or CP2).
Optional: upper limb EPi-M (mastoid), C55-M.
Fallback subcortical (normally omitted): upper limb CPi-M (CPc-M for nondecussation), lower limb Fpz-M.
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Fig 7. Biological noise in SEP derivations (30-300 Hz bandwidth, propofol-opioid anesthesia). NP, noise power (uV?). Channels with a scalp electrode contain frontal
dominant EEG noise that is least in CPc-CPz and larger in children (patient 3). Derivations with Erb’s point (EP), cervical (C5S), or mastoid (M) electrodes contain ECG and
sometimes EMG (patient 3) noise. Subcortical, cervical and EP derivations have less noise with a mastoid than other references. The cubital fossa (CF) and popliteal fossa have
very low noise. Selecting lowest-noise derivations (e.g., CF, CPc-CPz) is important for maximizing signal-to-noise ratios.
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Heyer, 2002). Polysynaptic cortical SEPs exhibit dose-dependent
suppression with inhalational anesthetics including nitrous oxide
that are therefore suboptimal (Sloan and Koht, 1985; Bernard
et al., 1996; Porkkala et al., 1997a, 1997b). Instead, propofol and
opioid total intravenous anesthesia (TIVA) is recommended
because of less depression and higher SNR (Kalkman et al., 1991;
Taniguchi et al., 1992; Langeron et al., 1999; Chen, 2004). This rec-
ommendation does not exclude other favorable protocols. For
example, ketamine, etomidate or benzodiazepines may be suitable
intravenous alternatives (Koht et al., 1988; Sloan et al., 1988;
Schubert et al., 1990). More controversially, <0.5 minimal alveolar
concentration halogenated gas with reduced propofol may some-
times be satisfactory (Sloan et al., 2015), but sometimes not (Fig. 6).

cubital fossa

0.2—1000 Hz
unaveraged sweeps

unstrap 12:25
shoulder 5.7

Oligosynaptic subcortical SEPs are relatively resistant to inhala-
tional anesthesia (Sebel et al., 1987; Wolfe and Drummond, 1988;
Pathak et al., 1989), but this advantage is less important with opti-
mal anesthesia for cortical SEPs. Segmental and non-synaptic dor-
sal column volleys and peripheral SEPs are relatively immune to
anesthesia.

6.6. Traditional derivations

Table 2 summarizes traditional monitoring derivations that
were naturally adopted from the diagnostic laboratory. However,
most of them have suboptimal intraoperative SNRs (MacDonald
et al., 2005, 2009). Consequently, traditional methods generally
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Fig 8. Cubital fossa (CF) recording and utility. A: Electrode location and single-sweep reproducibility due to very high SNR. B: Left CF disappearance during anterior cervical
discectomy indicated distal conduction failure causing cortical N20 SEP loss and thenar (Th) MEP deterioration. Signal restoration after shoulder release corroborated
suspected arm ischemia due to thoracic outlet vascular compression from downward shoulder strapping. There was no surgical alarm or deficit. Conversely, peripheral SEP
preservation excludes distal conduction failure. Modified from MacDonald et al. (2009), with permission.
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Fig 9. Median nerve subcortical (top row), cervical (C5S, middle row), and Erb’s point (EP, bottom row) derivations. Propofol and remifentanil anesthesia; N, number of
averaged sweeps; i and c, ipsilateral and contralateral to the stimulated nerve. These potentials reproduce in fewer sweeps with -M (mastoid) than noisier traditional -Fz or -
EPc references. Even so, CPi-M still requires excessive N and optimization therefore normally omits subcortical SEPs. C55-M and EPi-M may reproduce in <200 sweeps, but

are optional.
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accept >200 sweep averaging and/or low reproducibility. In addi-
tion, they assume decussation and fail to detect nondecussation.
Furthermore, non-cephalic reference channels may require neuro-
muscular blockade to eliminate EMG interference, but this conflicts
with MEP/EMG monitoring and partial relaxation is a controversial
compromise.

6.7. Optimal derivations

Table 3 summarizes optimal derivations. They are based on SEP
optimization that was developed through a series of investigations
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Fpz—M | S Fp,—M o~
1 P37 N P37,
C,—M /ﬁ\l/\/ C,—M
P;M p————— P,—M k%w
oYY S/ Y] iy —
4 N37 contralateral E | ! ipsilateral
| P37 field
CPy-M p—- AN cPyM ! i
1 o 1 7
CP,—M \ ):S CP,—M M@\Nﬁ
10 oL
| |
CP1—M ; [ CP1—M LW&%
! !ipsilateral
| 1p37field I
CP3—M jfo—tn /" T~————— CP3-M 7
M
1 b N37 contralateral
RPF RPF LJL
LPF H\ﬁ———i LPF
7 UV /100 ms 7 UV /100 ms
B ,
Fpz—M Fpz—M fecoeon ™ e
Cz;—M C;—M W
Pz—M P,—M Lmvw\/\v—-w
CP4—M CP4—M e/ N
— N37 ipsilateral
CPy—M CPy—M N

CP,—M CP,—M

I
I
I
P37
CP1-M CP1-M \we—a/\v\q‘w
! ! contralateral
i 1 P37 field
CP3—M CP3—M ! ‘
M
RPF RPF M,W»m
LPF LPF
4V /100 ms 4V /100 ms

D.B. MacDonald et al./Clinical Neurophysiology 130 (2019) 161-179

including prospective study (MacDonald, 2001; MacDonald and
Janusz, 2002; MacDonald et al., 2003, 2004a, 2004b, 2005, 2007,
2009). Optimization minimizes surgical feedback time by selecting
highest-SNR derivations while omitting low-SNR channels to gain
1-200 sweep medium-high reproducibility, and includes decussa-
tion assessment. It also permits omitting neuromuscular blockade
since optimal derivations contain no EMG with adequate anesthe-
sia. It is important to appreciate that biological EEG, ECG and EMG
noise is the major obstacle to high SNR (Fig. 7). This is why opti-
mization emphasizes low-noise peripheral and bipolar centropari-

etal derivations.
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Fig 10. Tibial nerve cortical SEP optimization. M, mastoid; LPF and RPF, left and right popliteal fossa. A: Ipsilateral P37 fields and contralateral N37 potentials confirm
decussation. On each side, the P37 is maximal at Cz and Cz-CPc (bold) is optimal. B: Contralateral P37 fields and ipsilateral N37 potentials disclose nondecussation. The left
and right P37 maxima are at Pz and CP1, and the optimal derivations are Pz-CP3 and CP1-CP4 (bold). Normally the bipolar centroparietal derivation with largest signal yields
greatest SNR, while noisier -Fpz derivations are suboptimal. Thus, recording the top six bipolar derivations along with CPi-M and CPc-M should be sufficient for optimization
and decussation screening. Partial optimization could be done with a subset of electrodes.
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Of course, practitioners may choose more familiar albeit slower
or less reproducible traditional methods, but optimization is
encouraged and further explained below.

6.8. Peripheral SEP controls

6.8.1. Cubital and popliteal fossa

Upper and lower limb SEP optimization includes cubital and
popliteal fossa recordings to control for stimulus failure or distal
nerve conduction failure due to limb ischemia or pressure
(Fig. 8). These potentials normally have high or very high SNRs
and reproduce in few or single sweeps, although peripheral neu-
ropathy can degrade them and the popliteal fossa response is occa-
sionally too small to see in unaveraged sweeps.

6.8.2. Erb’s point

Erb’s point recording may additionally control for brachial
plexus conduction failure due to shoulder malpositioning. How-
ever, this can be deduced without Erb’s point by noticing gradual
median nerve cortical SEP deterioration out of the surgical context,
cubital fossa response preservation, and shoulder malposition;
repositioning usually restores the cortical response. In addition,
Erb’s point alone cannot distinguish between brachial plexus and
distal nerve conduction failure. Furthermore, it needs more averag-
ing than the cubital fossa. Consequently, optimization normally
omits Erb’s point but considers it optional if it does not delay feed-
back. If recorded, EPi-M is advisable due to higher SNR and faster
reproducibility than traditional Erb’s point derivations (Fig. 9).

6.9. Cortical SEP monitors

Scalp cortical SEPs are widely applicable noninvasive monitors.
Proper scalp measurement and expanded international 10-10 sys-
tem (Nuwer et al., 1998) centroparietal (CP) recording sites mid-
way between C and P coordinates are advisable for accuracy and
consistency. One specifies CP3 and CP4 ipsilateral or contralateral
to the stimulated nerve with CPi and CPc; intermediate CP1 and
CP2 sites are iCPi or iCPc.

6.9.1. Lower limb

Traditional lower limb CPz-Fpz or Fz derivations suffer from
frontal EEG noise that reduces SNR. CPz-Fz also suffers from ante-
rior spread of the P37 field causing partial signal cancellation that
further reduces SNR.

Fig. 10 illustrates 42-channel tibial nerve SEP optimization with
decussation screening. With decussation confirmed by ipsilateral
P37 fields and contralateral N37potentials, CPz-CPc is optimal for
40% of tibial nerves and would be advisable were a single routine
derivation desired. However, any of the six normal decussation
candidates in Table 3 may be optimal, so the best approach is to
compare them and choose the one with highest SNR. Since they
have similarly low noise, the one with largest signal is usually opti-
mal and reproduces in substantially fewer sweeps (median 128)
than CPz-Fpz (median 512). The technique could be simplified to
16 or 8 channels by recording each side’s six candidates with
CPc-M and CPi-M to check decussation. Rarely, contralateral P37
fields and ipsilateral N37 potentials disclose nondecussation and
then one reverses candidate derivation lateralization as in Table 3.

Occasionally a gradual unilateral change of an optimal deriva-
tion causes asymmetric amplitude reduction, but rarely enough
to risk a false positive (MacDonald, 2001). One could monitor addi-
tional derivations to guard against this, but they might not include
the newly optimal one. Reoptimization after gradual asymmetric
amplitude reduction out of the surgical context is a more flexible
approach, but is rarely necessary.
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Fig 11. Median nerve SEPs with nondecussation. M, mastoid; L CF and R CF, left and
right cubital fossa. The cortical N20 is abnormally ipsilateral. Traditional CPc-frontal
derivations assume decussation and would cause the inverted frontal P22 to be
mistaken for a small N20, resulting in suboptimal and inaccurate monitoring.
Optimization routinely assesses decussation to ensure correct derivations for this
rare anomaly.

6.9.2. Upper limb

Of traditional upper limb cortical SEP derivations, CPc-Fz has
largest signal because the inverted P22 maximal at Fz adds to the
N20, but this advantage is usually overwhelmed by even greater
frontal EEG noise that reduces SNR. Routine CPc-frontal deriva-
tions also miss nondecussation because the inverted frontal P22
mimics a small N20 (Fig. 11).

If not already done with tibial nerve optimization, CPc-M and
CPi-M recording checks decussation. With confirmed decussation,
the optimal derivation for 75% of median nerves is CPc-CPz, which
has —9 dB mean SNR and substantially faster reproducibility than
traditional median nerve derivations (Fig. 12). Either CPc-CPi or
CPc-Fz is optimal for the remainder. Thus, one can use CPc-CPz
routinely and check the other two if it seems possibly suboptimal,
or initially compare the three and select the fastest reproducing
one. Nondecussation candidates are the same, but with reversed
lateralization.

6.9.3. Sitting position

Sitting position posterior fossa surgery is an exception because
intracranial air over the hemispheric convexities after dural open-
ing can reduce centroparietal SEPs (Watanabe et al., 1989;
MacDonald, 2001; Acioly et al., 2011). The effect may be quick or
delayed by up to an hour (Wiedemayer et al., 2002). Plain skull
x-ray shows the air.

Because midline sites are usually spared due to bridging veins
between the cortex and sagittal sinus, the optimal lower limb
SEP derivation is CPz-Fpz that is usually unaffected. For the upper
limb, recording from CP5/CP6 or T3/T4 instead of CP3/CP4 may
avoid the effect of intracranial air (Watanabe et al, 1989;
Wiedemayer et al., 2003).

6.10. Other potentials
Other SEPs could be controls or monitors depending on the sur-

gical site, but are not essential because peripheral and cortical SEPs
already serve these functions.
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Fig 12. Optimal and traditional median nerve SEP derivations. N, number of
averaged sweeps; propofol and remifentanil anesthesia. Optimal cubital fossa (CF)
and CPc-CPz cortical derivations reproduced in only 50 sweeps due to high SNRs. A
traditional CPc-Fz scalp derivation had a larger signal than CPc-CPz, but needed
200 sweeps for comparable reproducibility because even larger EEG noise from Fz
reduced its SNR. The other traditional derivations required much more averaging
because of very low SNRs.

6.10.1. Subcortical SEPs

Inhalational anesthetic resistance is the main reason for tradi-
tionally including subcortical SEPs, but this is less relevant with
TIVA. Furthermore, due to very low SNRs these potentials fre-
quently require 500-1000 sweep averaging, and then may still lack
reproducibility (Figs. 3, 4, 9 and 12). This is true even with neuro-
muscular blockade that may modestly facilitate their recording.

Consequently, optimization normally omits subcortical SEPs
and instead reserves them as fallback potentials for spinal cord
monitoring in the case of poor cortical SEPs due to excessive
inhalational anesthetics, suboptimal derivations, or antecedent
brain pathology. Of course, some practitioners may still choose to
routinely include them but would generally attain slower and/or
less reproducible feedback.

When recorded, lower limb Fpz-M and upper limb CPi-M (CPc-
M for nondecussation) are advisable because of somewhat better
SNR and reproducibility than traditional non-cephalic reference
channels due to modestly lower biological noise (Figs. 7 and 9).

6.10.2. Segmental SEPs

Optimization normally omits segmental SEPs, but the upper
limb N13 could be optionally included if it does not delay feedback.
Were this done, C55-M would be advisable because of higher SNR
and faster reproducibility than traditional derivations (Fig. 9). The
lower limb N22 generally has low SNR and is usually omitted.

6.11. Optimization benefits

The principal benefit of SEP optimization is fastest possible sur-
gical feedback. This commonly means about one minute between
four-limb SEP/MEP sets when there are no external interruptions,
and such rapid updates enable quick diagnosis and intervention
that likely enhances efficacy (Fig. 13).

Of course, sometimes even optimized SNRs are lower and feed-
back is slower than desired. This is more likely in young children
whose high amplitude EEG noise reduces SNR (e.g., patient 3,
Fig. 7) and in patients with pathologically reduced SEPs due to
peripheral nerve, spinal cord or brain diseases that become more
prevalent with aging. Occasionally one may omit very slow SEPs
to speed MEP updates. External interruptions also deter rapid feed-
back, but optimization still makes best use of available acquisition
time.

7. Warning criteria and interpretation
7.1. Confounding factors

Confounding factors are nonsurgical causes of SEP deterioration
that one must exclude before issuing a warning. To facilitate their
identification, peripheral and rostral or contralateral cortical SEPs
are advisable as limb and systemic controls.

Generalized factors cause generalized central SEP deterioration
including systemic controls. Deepening anesthesia or boluses are
common causes of cortical SEP reduction. Mean arterial pressure
below the lower limit of autoregulation may cause central nervous
system ischemia and SEP deterioration. However, an increase of
anesthesia that reduces both cortical SEPs and blood pressure
should be ruled out. Scalp edema from massive fluid administra-
tion may reduce scalp SEPs. Mild to moderate hypothermia mainly
prolongs latency while deep hypothermia also reduces scalp SEP
amplitude (Markand et al., 1990).

Focal factors cause localized deterioration affecting one or two
limbs. Peripheral SEPs readily detect stimulus failure or distal con-
duction failure due to limb pressure or ischemia. Brachial plexus
conduction failure due to shoulder malpositioning may be deduced
with or without Erb’s point recording. Focal antecedent brain or
spinal cord pathology can impair autoregulation and lead to local-
ized ischemia and SEP deterioration with modest blood pressure
reduction.

Correcting confounding factors by reestablishing stimulation,
relieving limb disturbances, adjusting anesthesia, or raising blood
pressure can restore SEPs. It may be appropriate to notify surgeons
about some of these conditions while specifying that they are not
directly related to the surgery.

7.2. Traditional warning criteria pitfalls

Traditional SEP warning criteria developed in the 1970s consist
of >50% amplitude reduction or >10% latency prolongation from
baseline. Unfortunately, they overemphasize latency and fail to
consider baseline drift or reproducibility. To explain, intraoperative
pathology causes acute neuronal or axonal failure that mainly
reduces SEP amplitude with less effect on latency. Demyelination
mainly increases SEP latency with less effect on amplitude but is
a subacute-chronic process that does not develop during surgery.
Thus, amplitude is the primary monitoring consideration.

In addition, benign systemic influences manifest various pat-
terns of gradual and generalized baseline amplitude drift
(MacDonald and Janusz, 2002; MacDonald et al., 2003, 2007). Thus,
it is an error to fix an earlier baseline no longer representing the
current systemic state. For example, downward drift falls below
50% of initial baseline in up to 20% of scoliosis surgeries
(MacDonald et al., 2003, 2007). Conversely, with rising drift an
obvious decrement may not fall below 50% of initially lower base-
line amplitude. Thus, traditional criteria taken literally risk techni-
cal false positives or negatives that do not arise when possible
decrements are compared to recent pre-change amplitudes
instead.
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Fig 13. SEP optimization benefits. L and R, left and right; CF and PF, cubital and popliteal fossa; N20 and P37, median and tibial nerve cortical SEPs; Th, TA and AH, thenar,
tibialis anterior and abductor hallucis MEPs; propofol-remifentanil anesthesia. A: Typical rapid high-quality feedback with about one minute between evoked potential sets.
B: Quick diagnosis and intervention. One minute after sublaminar hook insertion, an abrupt ~30% L P37 decrement (arrow) made evident by high reproducibility and
corroborated by L TA MEP disappearance suggested cord compression. Restoration followed immediate hook removal, with no deficit.

Furthermore, the magnitude of reduction needed to be clearly
non-random varies with established reproducibility (Table 1).
Thus, while >50% is appropriate for low reproducibility, it risks
false negatives with smaller decrements made obvious by greater
reproducibility, or false positives with non-reproducible signals
that have to disappear.

In fact, experienced practitioners do adjust for baseline drift and
reproducibility. Of course, one may choose to continue with tradi-
tional criteria in name (while actually adjusting for the above
caveats). However, it seems more reasonable to replace them with
a logically adaptive criterion matching actual practice and
complexity.

7.3. Recommended adaptive warning criterion

The recommended adaptive criterion is visually obvious ampli-
tude reduction from recent pre-change values and clearly exceed-
ing variability, particularly when abrupt and focal. This approach
may reduce the likelihood of technical false results, based on com-

parisons to traditional criteria (MacDonald et al., 2003, 2007). Fur-
ther warning criteria research would be welcome and could modify
this recommendation.

Table 1 provides a rough guide for judging possible decrements
relative to established reproducibility. Obviously, warnings based
on smaller than 50% reduction must be justified by true medium-
high reproducibility to avoid excessive sensitivity. An emphasis
on abrupt and focal is pertinent because pathological decrements
typically appear in one or a few trials and affect one or two limbs
(e.g., Fig. 13B). An initially borderline decrement may be corrobo-
rated by concordant MEP loss or more definite SEP deterioration
in subsequent trials. Fig. 14 illustrates these principles.

There are exceptions to typical patterns of systemic and patho-
logic change, such as gradually evolving pathologic deterioration or
abrupt anesthetic changes. In addition, bilateral pathologic deteri-
oration may appear generalized when rostral systemic controls are
unavailable due to the surgical site (e.g., posterior fossa, cervical).
These can be identified by considering the surgical and systemic
contexts.
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Fig 14. Interpretive principles illustrated by normalized cortical SEP amplitude plots with polynomial trendlines. L and R, left and right; N20 and P37, median and tibial nerve
cortical SEPs. The plots exemplify assessment of gradual generalized baseline drift, reproducibility, and pathological abrupt focal decrements (arrows) from recent pre-change
amplitudes and exceeding variability. A: High reproducibility and downward drift to <20% of early amplitudes with no alarm or deficit. B: Medium reproducibility and
downward drift to <50% of initial amplitudes with RN20 decrements restored after intervention, with no deficit. C: Rising-falling-rising drift with a bilateral 20-30% P37
decrement made evident by high reproducibility; MEPs were unaltered. Despite spontaneous restoration, bilateral leg sensory disturbance lasted weeks (possible dorsal
column contusion). D: Rising-falling-rising drift and a 40% LP37 decrement made evident by high reproducibility; MEPs were unaltered. Restoration followed intervention
with no deficit. E: Rising-falling drift and 40-50% LP37 decrement made borderline by low reproducibility but corroborated by MEP loss (not shown) and further SEP
reduction. Gradual restoration followed intervention with no deficit. F: Downward drift and a 40-50% RP37 decrement made borderline by low reproducibility but
corroborated by MEP loss (not shown) and further SEP reduction. Irreversibility despite intervention predicted Brown-Sequard cord injury.

The risk of a clinical deficit with a pathologic decrement varies
with its reversibility. Quickly reversible (<30-40 min) decrements
usually, but not always predict the absence of new postoperative
deficits that become more likely with protracted (>40-60 min)
and especially irreversible decrements (Holdefer et al., 2015).

7.4. Interpretation

Interpretation is the action of explaining meaning and for IONM
also extends to recommending action when appropriate. Thus, it is
not enough to simply issue a warning. Instead, the neurophysiolo-
gist tries to determine and convey the most likely cause of SEP
deterioration, considering all relevant factors including anesthesi-
ologist and surgeon input. When the determination implicates a
confounding factor, the neurophysiologist negotiates toward possi-
ble correction. When it implicates surgical neurological compro-

mise, the neurophysiologist gives a warning and negotiates
toward possible intervention.

In some cases, because of deeper understanding of the surgery,
the surgeon primarily decides whether or not and how to inter-
vene. In other cases, because of better physiologic understanding,
the neurophysiologist recommends an intervention (e.g., rod
release) and the primary team surgeon then decides on its execu-
tion, considering all relevant issues. In any case, the warning man-
dates a decision. Consequently, neurophysiologists are clinically
responsible for their interpretation and its impact on surgical
decisions.

8. Personnel

Monitoring personnel should have relevant training, experi-
ence, and qualification (Isley and Pearlman, 2006; Sutter et al.,
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2007). In accordance with section 7.4, SEP interpretation requires
an IONM-competent professional level individual able to assume
clinical responsibility. Consequently, some jurisdictions define it
as a physician activity. For example, the American Medical Associ-
ation (2008) asserts that “supervision and interpretation of intra-
operative neurophysiologic monitoring constitutes the practice of
medicine”. However, other jurisdictions may also recognize
IONM-competent PhDs if appropriately licensed, credentialed and
privileged. Technical aspects can be delegated to qualified technol-
ogists working under professional supervision.

9. Safety

Monitoring devices must comply with national safety standards
and should undergo biomedical inspection every 6-12 months and
after any malfunction. Personnel should be well versed in electrical
safety, be aware of electrode and stimulation safety issues (sec-
tions 4 and 5) and follow infection control procedures
(MacDonald and Deletis, 2008). Decades of experience have proven
SEP monitoring to be safe for clinical use in expert hands using
appropriate precautions.

10. Indications

SEP monitoring is indicated for any surgery tangibly risking dor-
sal somatosensory system injury and complements MEP monitor-
ing of surgeries mainly risking motor injury. The two modalities
are frequently combined. The following sections describe some
applications, presented in anatomical order from the brain down.

10.1. Peri-Rolandic brain surgery

Cortical SEP mapping with subdural electrodes can localize S1
and by deduction suggest the primary motor gyrus (M1) during
peri-Rolandic surgery (Wood et al., 1988; Allison et al., 1989;
Nuwer et al., 1992; Cedzich et al., 1996; Cakmur et al., 1997;
Romstock et al., 2002; Kumabe et al., 2005; Jahangiri et al., 2011;
Simon, 2013). Its success under general anesthesia and in children

are advantages over traditional 50-60 Hz direct cortical stimula-
tion that works best during awake craniotomy and may fail in chil-
dren (Alvarez and Jayakar, 1990; Duchowny and Jayakar, 1993;
Berger, 1995; Riviello et al., 2001).

Mapping is usually done with median nerve SEPs recorded from
subdural strip or grid arrays laid across the putative central sulcus
hand area and referenced to the scalp or mastoid. Alternative bipo-
lar recordings require careful interpretation (Kombos, 2008). Local-
ization criteria include the central sulcus N20/P20 phase reversal,
sometimes a P25 over S1, and largest response amplitudes at the
hand area; M1 should be nearest the pre-central P20 electrode
(Fig. 15, patient 1). Ambiguity may arise at a distance from hand
cortex or with an electrode directly over the central sulcus; sam-
pling different electrode positions may find the expected pattern.
The SEP results appear to be correct in >90% of cases (Romstock
et al., 2002). Nevertheless, when M1 localization is critical it is
advisable to follow with direct cortical stimulation MEP mapping
because of occasional discrepancies (Fig. 15, patient 2).

Less frequently done tibial or trigeminal nerve cortical SEP
mapping relies mainly on maximal response amplitude for localiz-
ing leg or face S1 areas (McCarthy et al., 1993; Allison et al., 1996),
although phase reversal has also been reported with lip stimula-
tion (Kumabe et al., 2005).

10.2. Cerebrovascular surgery

Cortical SEPs are very sensitive to sensory cortex ischemia, and
are therefore useful for monitoring intracranial aneurysm or arte-
riovenous malformation surgery and endarterectomy (Lopéz
et al.,, 1999; Florence et al., 2004; Lopez, 2009; Alcantara et al.,
2014; Sahaya et al.,, 2014; Malcharek et al., 2015; Nwachuku
et al., 2015). Median and tibial nerve SEPs for detecting middle
and anterior cerebral artery ischemia show close correlation
between cortical SEP amplitude and cerebral blood flow. Interven-
tions such as clip removal or repositioning, retractor adjustment,
raising blood pressure, or shunting often reverse SEP deterioration.
However, ischemia and infarction outside of sensory cortex may go
undetected (Szelényi et al., 2003).
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Fig 15. Median nerve cortical SEP mapping. CS, central sulcus; S1 and M1, sensory and motor gyri; Th, thenar; Br, brachioradialis. Patient 1 showed an N20/P20 phase reversal
between electrodes 3 and 4 and a P25 at electrode 3. Lowest MEP threshold (*) with direct cortical pulse train stimulation confirmed M1 under electrode 4. Patient 2 showed a
phase reversal between electrodes 4 and 5 and P25 at electrode 4, suggesting electrode 5 should be nearest M1. However, the lowest MEP threshold (*) was at electrode 4 and
probe stimulation confirmed M1 under this electrode. Thus, it is inadvisable to rely solely on SEP mapping when M1 localization is critical.
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For intracranial aneurysm surgery, the duration and extent of
recovery of SEP deterioration with temporary clipping correlates
with postoperative outcome, and recirculation within 9-10 min
after SEP change may minimize deficit likelihood (Mizoi and
Yoshimoto, 1993; Schick et al., 2005). However, there is no gen-
uinely safe occlusion time as ischemic tolerance varies between
patients. In addition, SEPs may be less reliable outcome predictors
during ruptured aneurysm surgery (Wicks et al., 2012).

10.3. Posterior fossa surgery

Posterior fossa operations may risk brainstem injury and SEPs
are useful for monitoring medial lemniscus integrity as one of sev-
eral other monitoring modalities (Neuloh et al., 2008). Upper limb
SEPs may be sufficient because lemniscus arm and leg fibers are
close together. Reversible injury mechanisms such as compression,
traction, or ischemia may cause reversible SEP deterioration. Irre-
versible injuries, such as hemorrhage or trauma may cause irre-
versible deterioration. Motor and other brainstem injuries
sparing the medial lemniscus can occur without deterioration of
SEPs that cover <20% of brainstem area (Fahlbusch and Strauss,
1991; Neuloh et al., 2009; Kodama et al., 2014; Slotty et al., 2017).

10.4. Orthopedic spine surgery

Orthopedic spine surgery is the oldest and most common indi-
cation for SEP monitoring even though motor deficits are the main
concern. The original rationale was based on motor and sensory
pathway proximity: cord compromise might affect both, thereby
causing SEP deterioration and prompting intervention. Indeed,
SEP monitoring alone halves the risk of motor injury (Nuwer
et al., 1995). However, motor deficit without SEP warning or vice
versa can occur because small lesions may damage only one or
the other pathway (Lesser et al., 1986; Ben-David et al., 1987;
Chatrian et al., 1988; Dawson et al,, 1991; Nuwer et al., 1995;
Minahan et al., 2001; Jones et al., 2003). Today, SEP monitoring
mainly provides selective dorsal column assessment to comple-
ment MEPs. However, it may still be the major modality when
MEPs are omitted, unobtainable, or too intermittent.

Three patterns of evoked potential deterioration due to spinal
cord compromise have been reported (MacDonald et al., 2007;
Tomé-Bermejo et al., 2014): MEP-only, indicating a unilateral or
bilateral anterior cord syndrome; MEP and simultaneous or
delayed SEP change, indicating a Brown-Sequard or transverse cord
syndrome (e.g., Fig. 13B); and least often, SEP-only, indicating a
unilateral or bilateral dorsal column syndrome (e.g., Fig. 14 C and
D). Furthermore, unilateral upper limb SEP reduction with or with-
out subsequent MEP deterioration detects peripheral nerve or bra-
chial plexus conduction failure in 2-3% of scoliosis surgeries (e.g.,
Fig. 8). Thus, combined SEP/MEP monitoring is advisable.

Compression, traction or ischemia are the main spinal cord
pathophysiologies of these surgeries and often resolve after inter-
vening before time-dependent damage occurs. Thus, evoked poten-
tial deterioration is commonly reversible. Irreversible deterioration
may still occur if intervention is delayed or the injury is
irreversible.

10.5. Spinal neurosurgery

For intramedullary spinal cord tumor surgery, there are impor-
tant but limited roles for SEPs. Surgeons use dorsal midline myelo-
tomy to enter the cord with minimal trauma, but the tumor often
obscures the anatomy. Consequently, mapping to find the midline
may be advisable to reduce the likelihood of injury. This can be
done by mapping dorsal column volleys with a small transverse
8-contact electrode if available, or by dorsal column stimulation

with scalp SEP or peripheral nerve recording (Quinones-Hinojosa
et al., 2002; Yanni et al., 2010; Mehta et al., 2012; Simon et al.,
2012; Nair et al., 2014). While SEP monitoring is also relevant,
scalp responses often deteriorate or disappear after myelotomy
(Fig. 1), which should not stop surgery at this early stage because
it would cause an unsatisfactory oncological result. If SEPs remain
stable, they may still be useful dorsal column monitors, but D-
wave and muscle MEPs are the critical decision-making modalities
(Kothbauer, 2002; Sala et al., 2006).

With extramedullary tumor and other spinal neurosurgeries
above the conus, there is no myelotomy or intramedullary dissec-
tion. Consequently, SEP and MEP monitoring is similar to orthope-
dic spine surgery.

With tethered cord or cauda equina surgery, SEPs are an appro-
priate monitor of dorsal column integrity when surgery risks cord
injury. However, many of these surgeries mainly risk L2-S5 root
injuries, for which tibial nerve SEPs have a limited role because
they are generated by only a few sensory roots, whereas multiple
motor roots and sacral reflexes are of primary concern. Thus, trig-
gered EMG mapping, sacral reflexes, and possibly MEPs are more
important (Sala et al., 2013). One may consider omitting SEPs for
infants or young children having impractically slow
reproducibility.

10.6. Descending aortic procedures

Descending aortic procedures include open aneurysm or coarc-
tation repair, and endovascular stenting or angioplasty. They risk
spinal cord infarction and paraplegia by temporarily or perma-
nently interrupting spinal cord blood flow. The goal of monitoring
is to quickly detect cord ischemia and restore perfusion before
infarction sets in MacDonald and Dong (2008). Efforts to do this
with SEP monitoring may have benefitted some individual
patients, but SEPs do not reduce the overall infarction risk. This
is because spinal cord ischemia and infarction are centered in
and sometimes limited to lumbosacral gray matter, especially the
anterior horns. Consequently, SEPs conducted through dorsal
white matter may be unaffected or show delayed deterioration.
Furthermore, even when affected, subsequent SEP restoration does
not exclude gray matter infarction. In contrast, MEPs conducted
through lumbosacral anterior horn cells reliably detect cord ische-
mia that is frequently reversible through various interventions and
there is evidence that MEP monitoring reduces infarction risk.

Nevertheless, SEPs facilitate MEP interpretation. Cubital or
popliteal fossa response deterioration detects confounding limb
ischemia that occurs frequently with open aneurysm repairs. Cor-
tical SEPs can reveal systemic confounding factors or cerebral
ischemia, and sometimes more severe transverse spinal cord ische-
mia. Thus, while a few programs have dispensed with SEPs, it may
be advisable to include them.

11. Conclusion

Intraoperative SEPs provide valuable dorsal somatosensory sys-
tem functional and localizing information, and complement MEP
results. Application and interpretation require knowledge of rele-
vant anatomy, blood supply, electrophysiology, and basic tech-
niques. Recommended monitoring methodologies enhance
efficacy by achieving fastest possible surgical feedback. They
include TIVA or similarly favorable anesthesia to facilitate cortical
responses and SEP optimization that employs highest-SNR deriva-
tions to enhance reproducibility and minimize averaging. Con-
founding factors must be excluded before issuing a warning. To
adjust for baseline drift and reproducibility, the recommended
adaptive warning criterion is visually obvious amplitude reduction
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from recent pre-change values and clearly exceeding variability,
particularly when abrupt and focal. Acquisition and interpretation
require qualified personnel. Established indications include peri-
Rolandic, posterior fossa, and spinal neurosurgery, as well as ortho-
pedic spine, cerebrovascular, and descending aortic surgery. Future
advances could modify subsequent recommendations.
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