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Abstract: Soy consumption has been associated with many potential health benefits in reducing
chronic diseases such as obesity, cardiovascular disease, insulin-resistance/type II diabetes, certain
type of cancers, and immune disorders. These physiological functions have been attributed to soy
proteins either as intact soy protein or more commonly as functional or bioactive peptides derived
from soybean processing. These findings have led to the approval of a health claim in the USA
regarding the ability of soy proteins in reducing the risk for coronary heart disease and the acceptance
of a health claim in Canada that soy protein can help lower cholesterol levels. Using different
approaches, many soy bioactive peptides that have a variety of physiological functions such as
hypolipidemic, anti-hypertensive, and anti-cancer properties, and anti-inflammatory, antioxidant, and
immunomodulatory effects have been identified. Some soy peptides like lunasin and soymorphins
possess more than one of these properties and play a role in the prevention of multiple chronic
diseases. Overall, progress has been made in understanding the functional and bioactive components
of soy. However, more studies are required to further identify their target organs, and elucidate
their biological mechanisms of action in order to be potentially used as functional foods or even
therapeutics for the prevention or treatment of chronic diseases.
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1. Introduction

Soybean (Glycine max) was cultivated in Asia for nearly 5000 years, first in China, then in Japan.
It was introduced to Europe in the 18th century and then to the United States in the 19th century [1–3].
Soybean has been an important economic crop in the United States since the 1940s. Currently the
United States is the leading soy producer and accounts for over 30% of the world’s production [3,4].
The popularity of soy foods or products has been rising in North America over the last decades,
particularly after the U.S. Food and Drug Administration (FDA) approved the food health claim
linking soy protein to the reduction of the risk for coronary heart disease in 1999 [4–7]. Soybean is a
rich source of high-quality proteins containing all the essential amino acids found in animal proteins
without cholesterol and with less saturated fat.

Epidemiological studies have associated soy consumption with potential benefits in reducing the
risk for chronic diseases such as obesity, cardiovascular disease, insulin-resistance/type II diabetes,
certain type of cancers, and immune disorders [3,5,6,8–11]. Soy proteins and their associated
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phytochemicals, mainly isoflavones, are believed to be responsible for these health benefits. However,
the specific functional or bioactive component(s) in soy have not been identified nor their mechanism
of action well understood. In recent years, research has focused more on biologically active or
“bioactive” peptides derived from soybeans from processes mimicking gastrointestinal digestion.
This paper summarizes the current knowledge about the soybean bioactive peptides and their roles in
the modulation of physiological functions or prevention of chronic diseases.

2. Soy Composition and Major Bioactives

Soybeans are generally composed of ~35–40% protein, ~20% lipids, ~9% dietary fiber, and ~8.5%
moisture based on the dry weight of mature raw seeds [3]. Their compositions vary with the variety and
with the location and climate of the planting. The major soy components that have been shown to have
biological activity include proteins or peptides, isoflavones, saponins, and protease inhibitors [8,12].

2.1. Soy Proteins and Subunits

The two major storage proteins, β-conglycinin (βCG, 7S) and glycinin (11S), comprise 80–90% of
the total protein in soybean [5,6,13,14]. βCG is composed of α’, α, and β subunits, whereas glycinin is
composed of acidic (A) and basic (B) subunits: A1aB2, A1bB1b, A2B1a, A3B4, and A5A4B3 [6,12]. Minor
proteins in soybean include 2S, 9S, and 15S storage proteins; lectin; and Kunitz and Bowman–Birk
(BBI) protease inhibitors [14]. Soy proteins with different ratios of βCG and glycinin are believed
to have different nutritional and physiological effects [15,16]. Soy proteins with varying subunit
compositions have also been shown to have significantly different functional properties in relation
to quality, yield, and texture in tofu production [17]. Bioactive peptides are inactive when they are
part of the parent protein sequence, but become activated upon release by enzymatic processing,
gastrointestinal digestion, food processing, or fermentation [9,10,16]. They are usually 2 to 20 amino
acids in length and are absorbed by the intestines into the blood circulation to exert systemic or
local physiological effects in target tissues [9,11,16]. Maebuchi et al. has demonstrated that human
intestinal absorption of 11S peptides resulted in significantly greater increase in venous blood amino
acid concentrations than did 11S globulin or amino acid mixture when administered as a beverage [18].
This difference was particularly notable for aromatic and branched-chain amino acids, suggesting that
hydrolyzed soy protein is faster and more efficiently absorbed in humans [18].

2.2. Soy Isoflavones

The other major bioactive compounds in soybeans are the isoflavones, which are associated with the
soy proteins. Isoflavones are phytochemicals, often referred to as phytoestrogens because they structurally
resemble 17β-estradiol, and can bind both estrogen receptors α and β (ERα/β), but have a higher affinity
for ERβ [19–22]. They possess both estrogenic and anti-estrogenic properties as shown in cell culture and
clinical studies. Most of the isoflavones are naturally present in soybeans as glycosides, genistin, diadzin,
and glycetin. However, upon digestion or fermentation by β-glucosidases they are converted to the
bioactive form, aglycones: genistein, diadzein, and glycetein [6,8]. Soy isoflavones have been linked with
beneficial effects in preventing heart disease, diabetes, menopausal symptoms, osteoporosis, and prostate
and breast cancers [23–26] in humans because of their hormonal and antioxidant properties [23,27]. The
large variation in abundance of each isoflavone in soybeans and soy foods and their bioavailability
results in inconsistent physiological functions found among different studies [3,8,23,25,26].

2.3. Soy Saponins

A minor bioactive component in soybeans are the saponins which are amphiphilic oleanane
triterpenoid glycosides with polar sugar chains conjugated to a nonpolar pentacyclic ring [28]. It is
suggested that saponins have anti-inflammatory, anti-carcinogenic, antimicrobial, and hepato- and
cardio-protective effects [28]. The effect of saponins is not further discussed in this review, which
mainly focuses on bioactive soy peptides.
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3. Methods of Bioactive Peptide Production

Soy bioactive peptides are small protein fragments produced by enzymatic hydrolysis,
fermentation, food processing, and gastrointestinal digestion of larger soybean proteins [11,29] and
are associated with a multitude of beneficial metabolic effects [16]. The peptide production and
composition by different methods are affected by the enzymes (in vitro enzymatic hydrolysis) or
bacteria (in fermentation) used and also related to the type of soy proteins.

3.1. Gastrointestinal Digestion

In its simplest form, soy bioactive peptides are released upon ingestion and digestion of soybeans
by acid and digestive enzymes from the stomach, small intestine, and pancreas such as pepsin, trypsin,
chymotrypsin, and pancreatin. These small peptides are absorbed through the walls of the small
intestine into the bloodstream where they can have systemic effects or target specific tissues [30–32].

3.2. In Vitro Enzymatic Hydrolysis

In vitro enzymatic hydrolysis is applied commercially in larger volumes, which can have better
quality control and are more effective and stable in obtaining peptides with specific molecular weight
and peptide profiles [16]. In vitro enzymatic hydrolysis can also utilize a combination of specific and
nonspecific proteases such as pepsin, trypsin, chymotrypsin, papain, and peptidase to obtain peptides
from digestion of soy proteins under their optimal pH and temperature conditions.

3.3. Food Processing

Bioactive peptides can be formed during food processing because of structural or chemical
alterations. For example, pH modifications or chemical treatments may lead to the modification of
amino acids, altering functional properties [33]. Improved functionality can lead to improvements
in digestibility, protein or peptide enrichment, or reduction of trypsin inhibitor activity, which
can arise from acylation, glycosylation, phosphorylation, reductive alkylation, succinylation, or
lipophilization [33]. Common food processing techniques include heat treatment, pH modification,
protein separation, ultra-high-pressure processing, and storage conditions [33,34].

3.4. Bacterial Fermentation

Traditionally, Asian countries like Korea, China, and Japan have been consuming fermented
soybean foods such as soy sauce, soy paste, natto, tempeh, and miso for a long time [3]. Fermentation
is an efficient and cost-effective method for generating bioactive peptides and food-grade hydrolyzed
proteins through microbial activity or microbial enzymatic activity [16,34]. A large group of bacteria
known as lactic acid bacteria found in the upper gastrointestinal tract are frequently used in
fermentation to produce bioactive peptides [16]. However, fermentation may not fully hydrolyze
soybean proteins with post-translational modification and complex tertiary structures. It is necessary
to supply additional enzymes such as pronase, trypsin, and plasma proteases to produce smaller
peptides with better bioactivity [16,34,35]. In addition, fermentation plays an important role in texture
and flavor development [16].

4. Soy Bioactive Peptides and Their Properties

Over the last decade or so, the focus of soy research has shifted to the identification and
characterization of bioactive peptides and their corresponding physiological functions. Numerous soy
peptides with widespread beneficial physiological effects have been identified as shown in Table 1.
These include lipid lowering (hypocholesterolemic, hypotriglyceridemic, anti-obesity) to anti-diabetic,
anti-cancer, hypotensive, anti-inflammatory, and antioxidant in a variety of experimental models.
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Table 1. Soy bioactive peptides and their properties.

Soy Protein
Source Bioactive Peptide Properties Tested Model Reference

βCG

YVVNPDNDEN
Hypocholesterolemic HepG2 human liver cells [36,37]

YVVNPDNNEN

LAIPVNKP
ACE inhibition In vitro ACE inhibitory activity assay [12,38]

LPHF

βCG
(α’-subunit)

Soymetide-13:
MITLAIPVNKPGR

Immunostimulating
Male ICR mice and fMLP receptor binding assay;
Phagocytosis assay;
Anti-alopecia in neonatal rat model

[12,34,39]

Soymetide-9:
MITLAIPVN [34,39–41]

Soymetide-4: MITL

KNPQLR;
EITPEKNPQLR;

RKQEEDEDEEQQRE
FAS inhibitor FAS inhibition studies; 3T3-L1mouse adipocyte [16,42]

βCG
(β-subunit)

Soymorphin-5: YPFVV Anti-diabetic
Triglyceride-lowering
Immunostimulating

Suppress feeding and
intestinal transit

Guinea pig ileum assay opioid activity;
Diabetic KKAy mice

[39,43–45]Soymorphin-6:
YPFVVN Elevated Plus-Maze Test in Male ddY Mice

Soymorphin-7:
YPFVVNA Male BALB/c and ddY mice

VRIRLLQRFNKRS Appetite suppressant Male BALB/c and ddY mice;
Male Sprague-Dawley rat; Mouse intestinal STC-1 cells [9,39,46–48]

Glycinin

IAVPGEVA
Hypocholesterolemic

Anti-diabetic
HMGR activity assay;
HepG2 human liver cells; DPP-IV activity assay

[9,36,49,50]

IAVPTGVA [36,50–52]

LPYP [36,37,39,49,53]

VLIVP

ACE inhibition ACE inhibitory assay [12]SPYP

WL

SFGVAE Hypocholesterolemic HMGR activity [49]

HCQRPR Phagocytosis
stimulatory peptide

Macrophages;
Human polymorphonuclear leukocytes;
C3H/He mouse

[16,39,54]
QRPR

Glycinin
(A4 and A5)

LPYPR Hypocholesterolemic Mice at dose of 50 mg/kg for 2 days;
HMGR activity assay; [9,16,34,39,53]

NWGPLV ACE inhibition Spontaneously Hypertensive model rats [9,12,55]

Lunasin
SKWQHQQDSCRKQKQ
GVNLTPCEKHIMEKIQ
GRGDDDDDDDDD

Antioxidative
Anti-inflammatory

Anti-cancer
Hypocholesterolemic

Suppression of skin papilloma development in
SENCAR mice by acting as an antimitotic agent;
Synergistically works with cytokines (IL-12 or IL-2) to
improve the tumoricidal activity of natural killer cells
in in vitro and in vivo tumor models;
TEN-mediated apoptosis of MCF-7 breast cancer cells;
Inhibits production of HMGR and increases
LDLR expression;
Antioxidant in Caco-2 cells;
Inhibit ROS generation in HepG2 cells;
Inhibit proinflammatory cascades in
THP-1 macrophages

[11,12,16,29,56]

Bowman-Birk
Inhibitor

Anti-cancer
Proteinase inhibition

Chemoprevention

50% reduction in the frequency of chromosomal
abnormalities and sister chromatid exchange in blood
syndrome patients; Shrink precancerous lesions in the
mouth that lead to oral cancer called leukoplakia in
humans in Phase I and II clinical trials;
Reduction in the level of serum PSA in males with
benign prostatic hyperplasia;
Blocks the generation of ROS in prostate cancer cells
(BRF-55T, 267B1/Ki-ras, LNCaP, and PC-3 cells);
protected Balb c/3T3 cells (clones A 31) exposed to
UVC irradiation and reduced transformation;

[57–65]

Vglycin Anti-diabetic Normalize fasting glucose and restore pancreatic
function in Type 2 diabetic Wistar rats [66]
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Table 1. Cont.

Soy Protein
Source Bioactive Peptide Properties Tested Model Reference

Glycinin,
βCG-α,
βCG-α’,
βCG-β,
Trypsin

Inhibitor &
Lipoxygenase

KA

Triglyceride-lowering
HepG2 cells;
Male Otsuka Long-Evans Tokushima fatty rats;
Male Wistar rats

[67,68]Glycinin,
Trypsin

Inhibitor &
Lipoxygenase

VK

Glycinin,
βCG-α,
βCG-α’,
βCG-β &

Lipoxygenase

SY

Defatted soy
protein X-MLPSYSPY Anti-cancer Arrest P388D1 mouse monocyte macrophages at G2/M

phase to block cell cycle progression

[16,34,69]

Soy protein

YVVFK;
IPPGVPYWT;
PNNKPFQ;
NWGPLV;

TPRVF

Hypotensive Spontaneously hypertensive rats

Anti-inflammatory Postmenopausal women; ApoE knockout mice [70–74]

WGAPSL; VAWWMY;
FVVNATSN Hypocholesterolemic Rats; HepG2 cells [12,16,39]

Soybean PGTAVFK Hypotensive IC50 = 26.5 µM [16,34]

IVF; LLF; LNF; LSW;
LEF ACE inhibition ACE inhibitory activity assay and UPLC-MS/MS [75]

Flavouzyme®-
treated soy

protein isolate
ILL; LLL; VHVV Lipolysis 3T3-L1 mouse adipocytes [76]

Chymotrypsin
Korean

fermented
soybean paste

HHL Hypotensive Spontaneously hypertensive rats [77]

Genetically
modified
soybean
protein

LLPHH; RPLKPW Antioxidative;
Antihypertensive [34]

Black soybean
protein IQN Adipogenesis

inhibition 3T3-L1 mouse adipocytes [16,78]

Soymilk RQRK; VIK Anti-inflammatory RAW 264.7 mouse macrophages [79]

Protease
(PROTIN
SD-NY10)

treated
soy milk

FFYY; WHP; FVP;
LHPGDAQR; IAV;

VNP; LEPP; WNPR

ACE inhibition

ACE inhibitory activity assay [39,80]

Fermented
soybean,

Bacillus natto
or subtilis

VAHINVGK
ACE inhibitory activity assay and simulated
gastrointestinal digestion [81]

YVWK

Fermented
soybean

seasoning

SY
GY Spontaneously hypertensive rats [82,83]

4.1. Hypolipidemic

The best studied bioactivity of soy peptides is their hypolipidemic property. Many soy peptides
have been identified to lower cholesterol and triglycerides, and to suppress fat synthesis and storage in
different experimental systems. LPYPR from the glycinin subunit of the soybean was one of the initial
hypocholesterolemic peptides discovered by Yoshikawa et al. (2000). Administration of this peptide
at a dose of 50 mg/kg of body weight without isoflavones for 2 days reduced both serum total and
low-density lipoprotein (LDL) cholesterol in rats by ~25% [53]. Subsequent studies further showed
that, more specifically, LPYP was hypocholesterolemic [84] and acting as a competitive inhibitor of
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3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the major rate-limiting enzyme in cholesterol
biosynthesis [49]. This peptide increased LDL uptake in cultured liver cells through activating the LDL
receptor (LDLR)–sterol regulatory element-binding protein 2 (SREBP2) pathway [36].

Two other cholesterol-lowering peptides derived from glycinin are IAVPGEVA and
IAVPTGVA [50,51]. Similar to LPYP, these peptides were shown to inhibit HMGR activity in cultured
HepG2 cells and promote LDL uptake via the LDLR–SREBP2 pathway [36,49]. Lammi et al. uncovered
two hypocholesterolemic peptides—YVVNPDNDEN and YVVNPDNNEN—derived from soy βCG,
which also modulate cholesterol by an identical mechanism [37]. Some other hypocholesterolemic soy
peptides include lunasin (2S) peptides [29], SFGVAE [49], WGAPSL [12,16], LLPHH [34], RPLKPW [34],
VAWWMY [85–87], and FVVNATSN [88].

Moreover, several hypotriglyceridemic di-peptides have been identified from soybean
components. These are KA (from glycinin, βCG, trypsin inhibitor, and lipoxygenase), VK (from
glycinin, trypsin inhibitor, and lipoxygenase), and SY (from glycinin, βCG, and lipoxygenase) [67].
βCG was shown to inhibit fatty acid synthesis in the liver leading to a reduction in serum triglycerides
in rats [68]. Further studies have identified that the peptides KNPQLR, EITPEKNPQLR, and
RKQEEDEDEEQQRE in this protein were able to suppress fatty acid synthase (FAS) activity [16,42].
βCG subunits demonstrated a better ability to reduce lipid levels in mouse 3T3-L1 adipocytes by
embedding more active peptides in the cells than glycinin subunits [89], and to suppress lipid
accumulation by downregulating lipoprotein lipase and FAS [90]. Peptides ILL, LLL, and VHVV
derived from Flavourzyme®-treated soy protein isolate showed lipolysis-stimulating activity in 3T3-L1
mouse adipocytes [76,91].

4.2. Anti-Diabetic

Obesity and hyperlipidemia are often associated with insulin resistance and type II diabetes
leading to the metabolic disease phenotype. Interestingly, many soy peptides with hypolipidemic
function also possess anti-diabetic activity in different experimental models. For example, the
hypocholesterolemic soy peptides LPYP, IAVPGEVA, and IAVPTGVA also improved glucose
metabolism by increasing glucose uptake in cultured hepatic cells via glucose transporters (GLUT)
1 and 4 [36,92]. Further in vitro and in silico studies demonstrated that peptide IAVPTGVA
was an efficient inhibitor of dipeptidyl peptidase IV (DPP-IV), a serine exopeptidase. DPP-IV
is responsible for the hydrolysis of glucagon-like peptide and glucose-dependent insulinotropic
polypeptide which are critical for maintaining glucose homeostasis [52]. Although the peptides
YVVNPDNDEN and YVVNPDNNEN had similar hypocholesterolemic activity as IAVPTGVA, they
were ineffective at inhibiting DPP-IV due to their longer peptide sequence and lack of Pro as the fourth
N-terminal residue [52].

Both soy protein and isoflavones have been linked with improvements in diabetic rodent
models [93–95] such as lowered serum glucose levels, increased insulin secretion, and reduced
fasting plasma glucose. However, fermented soybean products containing soy peptides like natto
and chungkookjang may be even better in the prevention of the onset of type II diabetes in
human and mouse models [10,96–98]. Consumption of a diet containing soy protein (35% animal
protein, 35% soy protein, and 30% other plant proteins) for 6 weeks by women aged 18–40 years
(at week 24–28 of gestation) with gestational diabetes mellitus (n = 34) was associated with
significant improvements in fasting plasma glucose, serum insulin levels, homeostasis model of
assessment—insulin resistance, and quantitative insulin sensitivity check index compared with the
control diet group consisting of 70% animal and 30% plant proteins (n = 34) [99]. Studies by Oliva et al.
demonstrated that dyslipidemic insulin-resistant Wistar rats fed a sucrose-rich diet supplemented
with soy protein had decreased hepatic triglyceride and cholesterol storage and steatosis, functional
muscle glucose transporter GLUT4, and normalized glucose-6-phosphate and glycogen levels [100].
In spontaneously diabetic Goto-Kakikazi rats, consumption of βCG specifically improved muscle
glucose uptake with higher plasma adiponectin, increased GLUT4 translocation, and phosphorylated
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adenosine monophosphate-activated protein kinase (AMPK) [101]. Similarly, soymorphin-5 (YPFVV),
a soy-derived µ-opioid peptide derived from the β-subunit of the βCG lowered glucose and triglyceride
levels in diabetic KKAy mice through activation of adiponectin and peroxisome proliferator-activated
receptor α (PPARα) [43]. Roblet et al. utilized electrodialysis with an ultrafiltration membrane to
isolate low-molecular-weight (300–500 Da) soy peptides from a complex soy mixture [102]. This
peptide fraction improved glucose uptake in cultured rat muscle cells through activation of AMPK
by phosphorylation [102]. Another study showed that the soybean peptide, Vglycin, is resistant to
digestive enzymes and has anti-diabetic function in type II diabetic Wistar rats [66]. Vglycin comprises
37 amino acids with 6 half-cysteines that are part of 3 pairs of disulfide bonds. When administered to
diabetic Wistar rats for 4 weeks, it normalized fasting glucose levels, increased insulin sensitivity, and
restored insulin signaling and pancreatic function [66].

4.3. Anti-Hypertensive

High blood pressure or hypertension is another risk factor for coronary heart disease. Interestingly,
antihypertensive peptides are the most commonly occurring and best studied bioactive peptides
in foods [11,16]. Antihypertensive peptides function by blocking angiotensin-converting enzyme
(ACE), which modulates the rennin–angiotensin system, thereby regulating blood pressure [11,34].
The dipeptidyl carboxypeptidase activity of ACE converts the decapeptide angiotensin I into the
vasoconstricting octapeptide angiotensin II, resulting in increased blood pressure [11]. Traditional
Asian fermented soybean foods such as soybean paste [77], soy sauce [103], natto [104], and
tempeh [105] are rich in ACE inhibitory peptides [81,106]. Korean fermented soybean paste treated
with chymotrypsin contains the hypotensive tripeptide, HHL [12,16], while soybean fermented with
Bacillus natto or Bacillus subtilis was shown to contain two ACE inhibitor peptides, VAHINVGZK
and YVWK [16,34]. Fermented soybean seasoning was shown to have a higher ACE inhibitory
activity compared with soy sauce [82] and this was attributed to the peptides SY and GY, which
decreased hypertension in salt-sensitive Dahl rats by suppressing the renin–angiotensin system
and lowering serum aldosterone levels [83]. Okara, a soy pulp extract that is a by-product of tofu
production, has been shown to have ACE inhibitory activity due to the presence of some small
antihypertensive peptides [107].

The other antihypertensive soy peptides include PGTAVFK, IVF, LLF, LNF, LSW, LEF, YVVFK,
IPPGVPYWT, PNNKPFQ, NWGPLV, and TPRVF [16,34]. Treatment of soy milk with the industrial
protease PROTIN SD-NY10 produced FFYY, WHP, FVP, LHPGDAQR, IAV, VNP, LEPP, and WNPR
peptides that had enhanced ACE inhibitory activity compared with regular soy milk [80]. In soy
βCG, LAIPVNKP and LPHF were demonstrated to have ACE inhibitory activity, while glycinin was
found to contain the ACE inhibitory peptides VLIVP, SPYP, and WL, and more specifically, the A4
and A5 subunits of glycinin comprised the antihypertensive peptide sequence of NWGPLV [9,12].
It has been revealed that some structural similarities exist among the bioactive peptides with blood
pressure lowering properties. The presence of Pro or hydroxyl-Pro at the C-terminus made the peptides
generally resistant to degradation by digestive enzymes, while Pro, Lys, or Arg were preferred at the
C-terminus for ACE inhibitory potency [9,34]. It was also observed that dipeptides with a C-terminal
Tyr had higher antihypertension effect than dipeptides with C-terminal Phe [9].

4.4. Anti-Cancer

Soy isoflavones have drawn much scrutiny over the years in terms of their role in cancer from
both a promotion and prevention standpoint [3,6]. However, soy peptides have also been identified in
different experimental systems to have anti-cancer properties [11,12,16,29,56]. Back in 2000, Kim et al.
purified the hydrophobic peptide X-MLPSYSPY from defatted soy protein that arrested the cell cycle
progression of murine lymphoma cells (P388D1) at G2/M phase [69]. Further studies have shown that
most of the anti-cancer soy peptides belong to the minor 2S fraction of soybean proteins: lunasin and
BBI [12,16,29,56–58]. The BBI is a low-molecular-weight protein, can inhibit trypsin and chymotrypsin
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activity, and has been considered as an anti-nutrient for a long time [57,108]. It has demonstrated
anti-carcinogenicity in different species including humans and tissue types including colon, liver,
esophagus, breast, prostrate, and was considered as an FDA Investigational Drug in 1992 [57,108].
In both Phases I and II human trials, the BBI promised to be a safe cancer chemopreventive agent
that prevents and suppresses malignant transformation and carcinogenesis at doses from 800 to
2000 chymotrypsin inhibitor units [108,109]. The mechanism by which BBI exerts its anti-cancer
activity involves apoptosis through reactive-oxygen-species-induced mitochondrial damage after
proteasomal inhibition and anti-angiogenesis [110–113].

Lunasin (SKWQHQQDSCRKQKQGVNLTPCEKHIMEKIQGRGDDDDDDDDD) is another
chemopreventive peptide that is closely associated with the BBI. It is 43 residues long with a C-terminal
of 9 aspartic acid residues and cell adhesion motif, RGD that enables binding to non-acetylated H3
and H4 histones to prevent their acetylation, providing its anti-carcinogenic activity [16,34]. Park et al.
showed that the BBI has a function of protecting lunasin from gastrointestinal degradation when soy
protein is consumed orally [58]. Lunasin decreased skin tumor incidence in the SENCAR mice skin
cancer model by ~70% when topically applied at a dose of 250 µg, and promoted colony suppression of
mammalian cells induced by carcinogens and viral oncogenes E1A and RAS by 30–43% [11,12,114–117].
However, its effects on human breast cancer cell line MCF-7 appear to be inconsistent. Lunasin did not
inhibit the growth rate of MCF-7 and mouse fibroblase NIH 3T3 cancer cells in vitro [117], whereas
more recent study showed that lunasin induced apoptosis in MCF-7 cells by upregulation of tumor
suppressor PTEN similar to the soy isoflavone genistein [56]. Lunasin is also able to inactivate the
tumor suppressor proteins, Rb, p53, and pp32, and competes with the histone acetyltransferases in
binding to the core deacetylated histones H3 and H4, and switching off the transcription, leading to
arrest of the G1/S phase and causing apoptosis [29].

4.5. Antioxidant and Anti-Inflammatory

Carcinogenesis and cancer development depend in part on pro-inflammatory, pro-oxidant, and
immunosuppressive mechanisms that lead to abnormal growth of tissue. Consequently, proteins
and peptides with anti-cancer properties often also exhibit anti-inflammatory and antioxidant
effects [29,70]. Soy protein with or without isoflavones was shown to reduce oxidative stress and have
anti-inflammatory properties by inhibiting nuclear factor-kappa B (NF-κB) and blocking the secretion
of pro-inflammatory cytokines in an oxidative-stress–inducible rat model, a hyperlipidemic mouse
model, humans with end-stage renal disease, and healthy women over 70 years of age [70]. Soy milk
digested with pepsin and pancreatin produced the bioactive peptides RQRK and VIK, which inhibited
lipopolysaccharide-induced inflammation in murine macrophages. These hydrolysates inhibited the
production of nitric oxide, interleukin (IL)-1β, nitric oxide synthase, and cyclooxygenase-2 [79].

Lunasin’s anti-cancer potential arises from its dual anti-oxidative and anti-inflammatory
capacity [29]. As an anti-oxidant, lunasin was shown to inhibit 2,20-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) diammonium salt radical scavenger, reactive oxygen species production, and the
secretion of pro-inflammatory cytokines (Tumor Necrosis Factor-α and IL-6) in mouse RAW 264.7
macrophages [29,118]. It acts as a potent peroxyl and superoxide scavenger, and can prevent glutathione
peroxidase and catalase activities [119]. The RGD motif of lunasin was responsible for blocking
inflammation in human macrophages by interacting with αVβ3 integrin through an Akt-mediating
NF-κB pathway [120]. A trial in healthy men demonstrated that ingestion of 50 g of soy protein resulted
in the absorption rate of ~4.5% of the total lunasin ingested [121].
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4.6. Immunomodulatory

Closely associated with anti-cancer, anti-oxidant, and anti-inflammatory peptides are
immunomodulatory peptides. Immunomodulatory peptides boost immune cell functions; for example,
natural killer cell activity or cytokine regulation [16]. These peptides have been found in soy protein
hydrolysates that are enzymatically digested [34]. The hydrolysates prepared from insoluble soy
protein with alcalase had the greatest murine splenic lymphocyte proliferation and phagocytosis
capability in peritoneal macrophages [16,122]. The peptides HCGAPA and GAPA from the glycinin
component of soy protein hydrolysate stimulated phagocytosis [39,54]. The trypsin digests of
soy proteins revealed that the sequence MITLAIPVNKPGR was able to stimulate phagocytosis in
leukocytes [34,39]. This peptide is derived from the α’-subunit of βCG and was named soymetide
and later soymetide-13 since Met at its N-terminus was essential for its activity [34,39]. Some of the
C-terminus residues of soymetide-13 could be removed to form soymetide-9 (MITLAIPVN) which
had the highest activity. Soymetide-4 (MITL) was the minimal sequence required for its activity [39].
In general, the soymetides had an affinity for the N-formyl-methionyl-leucyl-phenylalanine receptor
despite not being formylated at the N-terminus Met [39,40].

4.7. Neuromodulatory

The β-subunit of βCG contains the sequence for human β-casophormin-4 (YPFV), an opioid
peptide that has morphine-like activity. This has resulted in the discovery of three peptides
with anxiolytic activities: soymorphin-5 (YPFVV), soymorphin-6 (YPFVVN), and soymorphin-7
(YPFVVNA) [44]. These peptides were selective for the µ opioid receptor and were shown to suppress
food intake and small intestinal transit due to the coupling of the receptor to neurotransmitters in
mice [45]. In addition, soymorphin-5 was shown to improve glucose and triglyceride levels in a KKAy
diabetic mouse model by activating adiponectin and PPARα, and promoting β-oxidation and energy
expenditure [43]. These peptides may not need to be absorbed into the blood circulation for their
anxiolytic effects. The β-subunit of βCG also contains the peptide VRIRLLQRFNKRS (fragment 51–63)
which suppressed food intake and gastric emptying in rats by stimulating a mediator of satiety, plasma
cholecystokinin, through an extracellular calcium-sensing receptor [46–48].

5. Conclusions

Soybean is a promising source of peptides that have a wide range of biological activities
such as hypolipidemic, anti-diabetic, anti-hypertensive, anti-cancer, antioxidant, anti-inflammatory,
immunostimulatory, and neuromodulatory properties demonstrated in different models. Further
studies are warranted for better understanding of their absorption, metabolism, and target tissues,
as well as for elucidating their mechanisms of actions. A high quality of human trials will help
in this regard as well as address the bioavailability of the peptides. Certain functions of the soy
peptides such as the anxiolytic effects of soymorphins may not require their absorption into the blood
circulation. However, anti-cancer or hypolipidemic peptides need to be bioavailable to pass through
the small intestines into the bloodstream to reach their target tissues. More studies are needed to
identify the quantity of the active soybean peptides released by different methods (for example, in vivo
or in vitro digestions), and the impact of gender and age on the action or production of bioactive
soybean peptides.
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Abbreviations

ACE angiotensin-converting enzyme
Akt protein kinase B
AMPK adenosine monophosphate-activated protein kinase
ApoE apolipoprotein E
BBI Bowman–Birk inhibitor
DPP-IV dipeptidyl peptidase IV
ER estrogen receptor
FAS fatty acid synthase
fMLP N-formylmethionyl-leucyl-phenylalanine
FDA Food and Drug Administration
ICR Institute of Cancer Research
IL Interleukin
GLUT glucose transporters
HMGR 3-hydroxy-3-methylglutaryl-CoA reductase
LDL low-density lipoprotein
LDLR LDL receptor
NF-κB nuclear factor kappa B
PPARα peroxisome proliferator-activated receptor α
PSA Prostate specific antigen
ROS Reactive oxygen species
SREBP2 sterol regulatory element-binding protein 2
UPLC-MS/MS Ultra performance liquid chromatography-tandem mass spectrometry
UVC Ultraviolet C
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