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Abstract—A novel fiber optic bend sensor is implemented by
using a re-grown tilted fiber Bragg grating (TFBG) written in a
small core single mode fiber with UV overexposure. The spectrum
of the re-grown TFBG contrasts with that of normal TFBG by
exhibiting large differences in the amplitude between neighboring
symmetric (LPy,,) and asymmetric (LP;,,) cladding mode
resonances, moreover each asymmetric cladding mode resonance
splits into two peaks (corresponding to two orthogonal polar-
ization states). The differential response of the three individual
resonances of such group provides quantitative information about
the magnitude and directions of bends in the TFBG. Numerical
simulations indicate that the changes in the cladding-mode pro-
files in a bent fiber are responsible for this behavior through their
impact on coupling coefficients. A bend sensitivity of 0.4 dB. m
(for the 18th order group of cladding modes) is experimentally
demonstrated within a range of 0-10.6 m—1.

Index Terms—Bend sensor, birefringence, cladding mode, op-
tical fiber sensors, tilted fiber Bragg grating.

I. INTRODUCTION

IBER grating sensors have been successfully demon-
F strated for the detection of physical parameters, such
as strain, pressure or bending [1]-[3]. However, one of the
practical challenges encountered in real-world applications
such as structural health monitoring is the determination of
the direction of the applied force or of the bending plane. For
example, in ship hull shape sensing applications, it is necessary
to determine both the amplitude and orientation of applied
bend at the same time (so-called directional or vector sensing)
[4]-[8]. Long period gratings (LPGs) have been with some
success for these purposes because bending causes shifts in the
resonance wavelength or a separation of the resonances when
mode splitting occurs, and these changes can be vectorial in
nature because of the relative orientation of the bend plane with
that of the field profiles of the cladding modes involved [4]-[6].
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The issue with LPG sensors is two-fold: the resonances are very
broad and separated by large wavelength distances (meaning
that only a few cladding mode resonances can be observed in a
measurement window); and they are also very sensitive to other
parameters, including temperature, axial strain and external
refractive index. As a result, it is difficult to construct a LPG
sensor that will specifically measure bending magnitude and
direction over a large range of values without contamination of
the data by other effects. Fiber Bragg gratings (FBG) do not
suffer from these problems but they are naturally insensitive
to bending since the core lies on the neutral stress axis of the
bent fiber. Therefore, special schemes have been needed to
use FBGs for bend sensing. Flockhart ef al. have reported a
two axis curvature measurement by fabricating FBGs in three
separate cores of a multicore fiber [7]. Alternatively, another
multi-dimensional bend sensor has been demonstrated by mon-
itoring the amplitude variation and wavelength shift of Bragg
resonance with one surface-relief FBG in a D-shaped fiber [8].
However, the use of special fibers in these cases introduces
additional complexity in systems and can present splicing
problems. In general, the strategy for achieving directional
bend sensitivity in both LPG and FBG based solutions is to
employ fibers with asymmetrical core or cladding geometries,
or introduce an asymmetrical index perturbation in the cross
section of fiber by use of CO» or femtosecond lasers.

Tilted fiber Bragg gratings (TFBG) present an attractive
compromise between the inherent advantages and constraints
of FBG and LPG sensors: they can be used to excite a large
number of cladding modes in a much narrower spectral band-
width than LPGs and they have thermal and strain cross
sensitivities as low as those of FBGs. For these reasons, TFBGs
have been investigated intensively for sensing applications
[9]-[16]. In particular for bending, Baek et al. have reported a
macro-bending sensor by monitoring the shift of a group of low
order cladding mode resonances (this group is usually referred
to as the “ghost” mode) in TFBGs [9]: the key here is that the
tilt plane of the grating breaks the cylindrical symmetry of the
fiber and defines a pair of orthogonal directions along which
the response of the grating upon bending will be different.
This is what makes it possible to determine both of bending
amplitude and direction simultaneously, as long as the spectral
changes can be quantitatively correlated with these parameters.
Unfortunately, the “ghost” mode resonance of TFBG is not
ideal because it consists of a superposition of several low-order
cladding modes that each reacts differently to bending magni-
tude and direction: the resulting spectral changes are extremely
complex and it becomes difficult to extract meaningful data
[10]. Finally, we recently proposed and demonstrated a vector
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inclinometer made up of a non-adiabatic abrupt taper cascaded
with a TFBG [11]. In that device, the direction and magnitude
of a bend can be determined by the relative power levels of
the core mode and a group of higher order cladding modes
re-coupled through the bent taper. While this last device works
well, it requires very careful packaging to make sure the taper
does not break.

The purpose of the present paper is to propose and demon-
strate an even simpler configuration that does not require an
additional core-cladding coupling element in addition to the
TFBG. This configuration stems from the understanding that
the modal strength spectroscopy (relative amplitudes of the
cladding mode resonances in a TFBG spectrum) depends
strongly on the fiber characteristics [12]. For small radius and
high refractive index core fibers, we have found that TFBG
transmission spectrum of a type IA-like re-grown grating (the
coupling strength of TFBG decreases to zero then re-grown
with continuous UV-exposure just like type IA FBG, but the
Bragg wavelength only has a red shift of several hundreds of
picometers while that of type IA FBG shifts tens of nanometers
to longer wavelength) [13], includes pairs of resonances that
react strongly and in opposite directions when the fiber is
bent, and further that the spectral changes observed depend
relatively simply on the orientation of the bend. Numerical
simulations suggest that this phenomenon is partially due to
changes in the cladding-mode profiles of the bent fiber, changes
that impact the coupling of those modes to the incident core
mode. Experimental results show that the bending magnitude
and direction can be determined by monitoring a well chosen
set of neighboring symmetrical and asymmetrical modes of the
same mode order.

II. FABRICATION OF TFBGS

Corning Flexcore fiber with a core radius of 2.625 pm
is used for this work. For comparison, TFBGs fabricated in
standard telecommunications fiber (Corning SMF-28) will also
be shown. All the fibers were hydrogenated in a hydrogen
chamber for 12 days at 2500 psi and room temperature (25°C)
to improve their photosensitivity. All gratings considered here
are 1-cm-long with a tilt angle of 4° (internal tilt angle) and
they were written in hydrogen-loaded fibers by using a 193
nm pulsed ArF excimer laser and the phase mask technique.
The repetition rate and energy density of UV laser pulse are
100 Hz and 80 mJ/cm?, respectively. The spectra of TFBGs
are recorded with an unpolarized broadband source (BBS) and
an optical spectrum analyzer (OSA) with a resolution of 0.01
nm. Fig. 1(a) shows the measured transmission spectrum of a
TFBG in Corning Flexcore fiber in the Type I regime (normal
grating growth in increasing fluence); in this case the max-
imum reflectivity of the core mode reached 45 dB after only
3 seconds of irradiation. A similar grating was written up to a
maximum coupling strength (over —50 dB in transmission at
the Bragg resonance, we cannot measure the exact transmission
because of the limitation of OSA’s dynamic range), obtained
after 60 seconds of irradiation, and then the irradiation was
continued to saturate the grating and re-grow it (corresponding
to the Type IA regime) until the core mode reflectivity reached
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99%. To distinguish from Type IA and regenerated grating by
temperature, it is named as re-grown TFBG (R-TFBG). The
resulting spectrum after a total irradiation time of 150 seconds
is shown in Fig. 1(b). Finally, Fig. 1(c) illustrates a similar Type
1 4° TFBG in SMF-28 fiber. It is clear that the envelope of the
cladding mode spectra are quite different for the three cases,
reflecting changes in the coupling coefficients between the core
mode and the various cladding modes. It is worth noting that
the cladding modes of all three cases should be very similar
as they all correspond to a 125 pm diameter pure silica rod in
air. The most notable difference between the spectra of Fig. 1
is the absence of the “ghost” mode resonance in the Flexcore
fiber and, to a lesser extent, a more uniform (flatter) envelope of
cladding mode resonances. The ghost mode resonance is well
known for TFBGs in standard SMF fibers and corresponds to a
group of overlapping low order cladding modes that builds up to
a very strong resonance immediately adjacent to the core mode
reflection resonance. Of greater interest here, the insets of Fig. 1
show for each grating a set of neighboring LPg,, and LP;,
cladding mode resonances located at the wavelength from 1542
nm to 1543 nm. We can see from the insets of Fig. 1(a) and
Fig. 1(c) (Type I TFBGs in two kinds of fibers) that LP,, and
LP1,, mode resonances have comparable coupling strength.
But there is an obvious difference between two groups of
modes and the LP;,, mode split into two in R-TFBG written
in the Flexcore fiber, which may related to coupling to a pair of
x- and y-polarized asymmetric LP;,,. The R-TFBG is of most
interests and employed for the latter bending experiments.

III. MODES OF A BENT FIBER

In [9], Baek has claimed the directional bending responses of
a TFBG is caused by the change of effective tilt angle in a bent
TFBG. This explanation is very straightforward but maybe too
simple and not complete. In fact, the diameter of fiber cladding
(125 pm) is quite small compared to the radius (10 cm) of a
moderate bend (curvature equals to 10 m™!). So the effect of
tilt angle changes of TFBG should be tiny. We demonstrate that
instead, the coupling strength of cladding mode resonances in
TFBG is partially induced by the changes in the symmetry of
the modes themselves. Marcuse showed that the modes of bent
fibers tend to shift to the outer portion as they propagate around
a bend [14]. Thus, the effective indexes of the cladding modes
and of core mode also change accordingly [15].

Fig. 2(a) is the schematic diagram of geometry of a bent fiber.
The bending on a straight fiber induces a longitudinal strain e
oriented parallel to the optical axis, where ¢ = Cz (C is cur-
vature of the bend and equal to the inverse of the bending ra-
dius R). Taking the photoelastic effect, this strain introduces
an refractive index change An in the fiber cross section, where
An = —(n*/2)[(1=v)p12—vp11]Cxz, v s the Poisson ratio, p11
and p1, are photoelastic constants, and n is the refractive index
[15]. Fig. 2(b) shows the relation between the position at x axis
and longitudinal strain induced refractive index change. For a
silica fiber at the wavelength of C-band, the slope rate of the
linear curve is around —0.31C'". That means a modified refrac-
tive index profile across the fiber cross section with a decrease
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Fig. 1. Spectra of (a) Type I TFBG (b) R-TFBG with UV overexposure in Corning Flexcore fiber (c) Type I TFBG in SMF-28 fiber. The insets of (a) (b) and
(c) show the enlarged spectrum of two neighboring LPg,,, and LP1,, cladding mode resonances around the wavelength from 1542 nm to 1543 nm, respectively.
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Fig. 2. (a) Geometry of bent fiber; (b) longitudinal strain induced refractive
index change along x axis in the bent fiber.

for the outer half stretched portion of fiber and an increase for
the inner half compressed portion.

The modes of a bent fiber can be determined through an
equivalent straight waveguide (ESW) in terms of a three-layer
cylindrical structure of fiber core, cladding, and surrounding
medium Here, we have used a commercial available software
(Mode Solutions 4.0 from Lumerical Solutions, Inc.) to inves-
tigate the interaction between core and cladding modes in a
bent fiber [16]. The parameters for Corning Flexcore fiber are
as follows: core and cladding radius are 2.625 pm and 62.5
pm. And at A = 1.55um, the refractive index of fiber core and
cladding are 1.452 and 1.444, while that of the surrounding
medium is 1.0 (Air).

Using the software, we determined the first 100 modes (in-
cluding all degenerate states) with field profiles on a grid of
256 x 256 points in a range of 64 pm from fiber axis in both
dimensions. The LPy; core mode has a much weaker depen-
dence on the curvature of fiber because the diameter of fiber
core is much smaller than that of fiber cladding. In order to ob-
serve the evolution of mode profiles clearly, we only selected
several representative low-order cladding modes, whose inten-
sity distributions are presented in Table I. The even LP{,, and
odd LP?,, modes are defined as those are x-polarized and y-po-
larized and with lobes oriented above and below the x = 0
and y = 0 plane, respectively. According to the coupled mode
theory, we should note that the coupling strength of cladding
mode resonance is partially dependant on the field overlap inte-
gral in core region between core mode and cladding mode [17].
So the profiles at C' = 0 indicate why the coupling strengths
of LPy,, cladding mode resonances is stronger than those of
LP1,, modes in a straight TFBG. We can see that L.P,,, modes
have a local maximum intensity in the fiber core which results
in a higher mode overlap with the LP o; core mode. But the
LP;,, modes have very low intensity in the fiber core, and thus
the overlap with the core mode is also lower. As the fiber is
bent (increasing curvature C'), the intensity of Py and LPg5
shift towards the outer portion of fiber. This shift introduces a
decrease of the relative power residing within the fiber center
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TABLE 1
INTENSITY PROFILES OF SELECTED MODES AT DIFFERENT FIBER CURVATURES

LP; LS,

LPS, LP;, LPys

C=0

)

C=28m"

C=55m"

and consequently a reduction of overlap integral with the core
mode. And as expected in the above-mentioned physical geom-
etry of bent fiber, the intensity profile shift is accompanied with
the changes in effective refractive index (LLPy5; mode: 1.4390
to 1.4388 at the curvature increasing from 0 m1to55m 1),
which will lead to a blue shift in the resonance wavelength of
a bent TFBG. On the other hand, the LP?{, modes continue to
have relatively low overlap with the core mode with increasing
curvature. However, the LP{,, modes undergo more obvious
variations (see Table I). The mode lobes shift along the x axis
and bring some power in the fiber core region, which results
in an increase of mode overlap with the core mode and thus
strengthens the corresponding LP{,, cladding mode resonances
in TFBG. We do not have quantitative calculation for the values
of wavelength shift and resonance strength of TFBG because
the effective tilted angle also varies with the bending curvature.
But this study is quite a supportive explanation to the following
experimental bending responses with R-TFBG. The differences
among LP] ,LP7, and LPg,, cladding mode resonances pro-
vide a measure for determining the magnitude and direction of
a bend simultaneously.

IV. BEND RESPONSE OF THE R-TFBG

The experimental investigation on the bend response of
R-TFBG was carried out by using a similar setup with our
previous work as reported in [17]. The R-TFBG was inserted
into a polymer capillary and then bonded to a steel beam which
laid on two movable supports and bent with a micrometer driver
in the middle. The capillary can ensure the whole fiber adhere
to the beam and avoid unwanted axial strain on the grating.
The applied curvature of bending can be measured through the
central displacement d of the R-TFBG by C' = 2d/(d? + L?),
where L is half of the distance of two supports. The ends of
fiber were clamped by two rotatable fiber holders, which were
employed to adjust the orientation of fiber and thus the direction
of bend. The original direction is defined as 0° with respect to
the tilted grating plane.

Fig. 3 shows the transmission spectra evolutions and ampli-
tude changes of the selected resonances in R-TFBG against the
applied curvature at the direction of 0°. As expected, the wave-
length and amplitude of cladding mode resonances vary against
the curvature. But here only the amplitude is of our interests
and enough for determine both the direction and magnitude of
bend. We can see the coupling strength of LP;g decreases but
the even LP;g increases with the increasing applied curvature
(see Fig. 3(a)). As the wavelength shift, the LP{;¢ and LP7;¢
cladding mode resonances overlapped with each other and only
one resonance can be seen in the spectrum when the curvature
reached to 8.1 m~!. The L.LP(;3 mode split into two peaks by
the bending induced birefringence in the bent fiber. The lower
(13th) order cladding modes have similar responses at the be-
ginning (see Fig. 3(b)), but it saturated soon as the curvature
increased. Meanwhile, the Bragg mode resonance is very stable
at all curvatures (see Fig. 3(c)) because the curvature rarely af-
fects the field profile of core LLPy; mode. The cladding mode and
Bragg mode has a similar temperature sensitivity of 10 pm/°C,
so the Bragg wavelength also can be used as an inherent ther-
mometer for temperature compensation [19]. Fig. 3(d) shows
the amplitude changes of the represented resonances. Among
them, the 18th order cladding mode has the maximum curvature
sensitivity but the higher order mode (23rd) has a better linear
response. At a certain direction of bend, we may employ the dif-
ferential amplitude change between LP,, and LP;,,, mode to
eliminate the power fluctuation from the fiber line or light source
and enhance the curvature sensitivity (0.4 dB. m for 18th order
mode). The resolution of the curvature measurement is 0.025
m~! if the relative power measurement accuracy is 0.01 dB.
These properties make this system ideal for the measurement
of large structures such as bridges, buildings and other built de-
vices. Fig. 4(a) and (b) indicate the spectra evolutions of 18th
order mode resonance in the R-TFBG at another two directions
of 45° and 90°. If we focus on the responses of LP11s mode,
we may find the amplitude of LP{;5 and LP{5 cladding mode
resonances decrease with similar curvature sensitivity for 45°.
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Fig. 3. Transmission spectra evolutions of R-TFBG at selected resonances against the applied curvature: (a) 18th and (b) 13th order cladding mode; (c) core Bragg
mode. And (d) amplitude changes of the represented resonances against the applied curvature.

But the amplitude of LP{;4 cladding mode has a higher sensi-
tivity than that of LP{,¢ cladding mode at 90° (see Fig. 4(b)).
Contrarily, the amplitude of LP{,5 cladding mode decreases
more drastically than that of LP{;5 cladding mode at 0° (see
Fig. 3(a)). By monitoring the amplitude difference changes be-
tween LP{, and LP7,4 cladding modes, we can determine the
direction of the applied curvature. Fig. 4(c) demonstrates ampli-
tude difference changes of odd and even LLP;;3 modes (A, and
A, are the amplitudes of LP{;5 and LP{,3 mode resonances,
respectively). Noting that the two modes overlapped as the ap-
plied curvature increases up to 8.1 m~!, the measurable curva-
ture range with recognition of direction is limited by this effect.
The dynamic range is not so high but is sufficient for most ap-
plications such as the structural health monitoring of bridges,
buildings or other large structures (the TFBG sensor can also
be attached to another mechanical actuator to increase the dy-
namic range if needed). As the direction of the bend is deter-
mined, the differential amplitude change between LP;;5 and
LPg13 cladding mode resonances can be calibrated. Thus, the
direction and magnitude of a bend are measured by monitoring
the amplitudes of a selected set of neighboring LP115 and LP ;5

cladding mode. We may add that there are also small resonance
wavelength changes associated with bending (Figs. 3(a), 4(a),
and (b)), of the order of a few tens of pm, but it is our experi-
ence that it is easier to measure amplitude changes (especially
relative amplitude changes) than wavelength ones for changes
of this magnitude. Furthermore the relative amplitude measure-
ments are independent of the absolute power levels in the fiber.
Finally, if interrogation cost is an issue, the relative amplitude
measurement can be carried out with two band pass filters and
photodetectors instead of an Optical Spectrum Analyzer.

V. CONCLUSION

We have written a re-grown TFBG in a small-core single
mode fiber (Corning Flexcore) with UV overexposure. The fab-
ricated R-TFBG shows a unique spectrum compared to those of
normal TFBG (Type I) in SMF-28 fiber. There is a large differ-
ence in the amplitude between neighboring symmetric (L.Pgy,)
and asymmetric (LLPy,,) cladding mode resonances and each
asymmetric cladding mode resonance splits into two peaks (re-
lated to two orthogonal polarization states). The amplitudes of
symmetric and asymmetric cladding mode resonances change in
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opposite direction if the TFBG is bent. Numerical simulations
show that the directional bend response is partially caused by
the changes of coupling strength from fundamental core mode to
both symmetric and asymmetric cladding modes. Experimental
results prove that the magnitude and direction can be determined
simultaneously by monitoring the amplitude difference changes
among three selected neighboring resonances of the same order
For this purpose the 18th order cladding mode resonance of the
R-TFBG in the Flexcore fiber is the most suitable because it has
the maximum curvature sensitivity and its lower linearity can
be compensated by nonlinear calibration of its response. The
proposed device is simple and easy to fabricate so that it has a
promising perspective in practical application for shape sensing
or vector bending measurement.

ACKNOWLEDGMENT

The authors will also thank Lumerical Solutions for providing
a trial version of Mode Solutions 4.0.

REFERENCES

[1] Y.J.Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8,
no. 4, pp. 355-375, Apr. 1997.

[2] H.-J. Sheng, W.-F. Liu, K.-R. Lin, S.-S. Bor, and M.-Y. Fu, “High-
sensitivity temperature-independent differential pressure sensor using
fiber Bragg gratings,” Opt. Exp., vol. 16, no. 20, pp. 16013-16018, Sep.
2008.

[3] L. Jin, Z. Wang, Q. Fang, Y. G. Liu, B. Liu, G. Y. Kai, and X. Y.
Dong, “Spectral characteristics and bend response of Bragg gratings
inscribed in all-solid bandgap fibers,” Opt. Exp., vol. 15, no. 23, pp.
15555-15565, Nov. 2007.

[4] D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N.
MacPherson, J. S. Barton, and J. D. C. Jones, “Bend sensors with di-
rection recognition based on long-period gratings written in D-shaped
fiber,” Appl. Opt., vol. 43, no. 29, pp. 5425-5428, Oct. 2004.

[5] T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J.
Webb, and I. Bennion, “Bending characteristics of fiber long-period
gratings with cladding index modified by femtosecond laser,” J.
Lightw. Technol., vol. 24, no. 8, pp. 3147-3154, Aug. 2006.

[6] Z.H. He, Y. N. Zhu, and H. Du, “Effect of macro-bending on resonant
wavelength and intensity of long-period gratings in photonic crystal
fiber,” Opt. Exp., vol. 15, no. 4, pp. 1804-1810, Feb. 2007.

[7]1 G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L.
Zhang, and I. Bennion, “Two axis bend measurement with Bragg grat-
ings in multicore optical fiber,” Opt. Lett., vol. 28, no. 6, pp. 387-389,
Mar. 2003.



SHAO et al.: DIRECTIONAL BEND SENSOR

[8] K.H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge,
and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing ap-
plications,” Appl. Opt., vol. 45, no. 8, pp. 1669-1675, Mar. 2006.

S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed

fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt., vol.

41, no. 4, pp. 631-636, Feb. 2002.

[10] T. Guo, L. Y. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted
fiber grating accelerometer incorporating an abrupt biconical taper
for cladding to core recoupling,” Opt. Exp., vol. 17, no. 23, pp.
20651-20660, Oct. 2009.

[11] L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,”
Opt. Lett., vol. 35, no. 7, pp. 1034-1036, Mar. 2010.

[12] K.S.Lee and T. Erdogan, “Fiber mode coupling in transmissive and re-
flective tilted fiber gratings,” Appl. Opt., vol. 39, no. 9, pp. 1394-1404,
Mar. 2000.

[13] A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Forma-
tion of type IA fibre Bragg gratings in germanosilicate optical fibre,”
Electron. Lett., vol. 40, no. 3, pp. 163-164, Feb. 2004.

[14] D.Marcuse, “Field deformation and loss caused by curvature of optical
fibers,” J. Opt. Soc. Amer., vol. 66, no. 4, pp. 311-320, Apr. 1976.

[15] U. L. Block, M. J. F. Digonnet, M. M. Fejer, and V. Dangui,

“Bending-induced birefringence of optical fiber cladding modes,” J.

Lightw. Technol., vol. 24, no. 6, pp. 2336-2339, Jun. 2006.

[Online]. Available: http://www.lumerical.com/mode_solver_descrip-

tion.php#mode_overview

[17] T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc.
Amer. A, vol. 13, no. 2, pp. 296-313, Feb. 1996.

[18] L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and
J. Albert, “Highly sensitive bend sensor with hybrid long-period
and tilted fiber Bragg grating,” Opt. Commun., vol. 283, no. 13, pp.
2690-2694, Jul. 2010.

[19] L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sen-
sitivity of tilted fiber Bragg grating based surface plasmon resonance
sensors,” Opt. Exp., vol. 18, no. 11, pp. 11464-11471, May 2010.

[9

—

[16]

Li-Yang Shao received the B.Sc. degree in 2001 and the Ph.D. in 2008 in optical
engineering, both from Zhejiang University, China.

From 2001 to 2002 he was with O-NET Communications Ltd. in China, as a
research engineer working on passive optical components for DWDM system.
From 2006 to 2009, he was with The Hong Kong Polytechnic University, first
as a Research Assistant, then as a Research Associate working on fiber grating
devices and sensors. Currently, he is a Post Doctoral Fellow at the Department of
Electronics at Carleton University in Canada. His current research interests are
fiber gratings, fiber lasers and sensors, fiber-optic SPR sensors. He has authored/
coauthored over 30 papers in the refereed international journals/conferences. He
has also been the Technical Program Committee of the International Conference
on Advance Infocomm Technology (ICAIT) since 2008.

2687

Lingyun Xiong received the B.Sc. degree in 2001 and the M.Sc. degree in 2004
in Optics from Nankai University, China, as well as the M.A.Sc. degree in elec-
tronics engineering from Carleton University, Canada, in 2007, where he is cur-
rently working toward the Ph.D. degree in Department of Electronics.

His research interests include Bragg gratings in advanced doping glass fibers,
and their application in fiber lasers.

Chengkun Chen, photograph and biography not available at time of
publication.

Albane Laronche, photograph and biography not available at time of
publication.

Jacques Albert received the degrees in physics from Université de Montréal
(1978) and Laval University (1980), and the Ph.D. degree in electrical engi-
neering from McGill University, Canada, in 1988.

He has held the Canada Research Chair in Advanced Photonics Components
at Carleton University since 2004. Prior to his appointment at Carleton, he had
R&D positions with Alcatel Optronics Canada and with the Communications
Research Center of Canada. He is coauthor of over 180 publications in journals
and conference proceedings and is co-inventor on three patents (and several
patent applications). He has been on the Technical Committee of the Optical
Society of America Topical Meeting on Bragg Gratings, Photosensitivity and
Poling since 1997 and was General Co-chair of the last two meetings in Sydney
(Australia), in 2005 and Quebec City in 2007.

Dr. Albert is currently Associate Editor of Optics Express and co-chair of
the upcoming Symposium on novel optical fibers at the 2010 Conference on
Lasers and Electro-Optics (CLEO) as well as Program co-Chair of Optical Fiber
Sensors (OFS-21) for 2011.



