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Abstract We describe how to perform the backward error analysis for the
approximation of exp(A)v by p(s−1A)sv, for any given polynomial p(x). The
result of this analysis is an optimal choice of the scaling parameter s which
assures a bound on the backward error, i.e. the equivalence of the approxi-
mation with the exponential of a slightly perturbed matrix. Thanks to the
SageMath package expbea we have developed, one can optimize the perfor-
mance of the given polynomial approximation. On the other hand, we employ
the package for the analysis of polynomials interpolating the exponential func-
tion at so called Leja–Hermite points. The resulting method for the action of
the matrix exponential can be considered an extension of both Taylor series
approximation and Leja point interpolation. We illustrate the behavior of the
new approximation with several numerical examples.

Keywords backward error analysis · action of matrix exponential · Leja–
Hermite interpolation · Taylor series
Mathematics Subject Classification (2000) 65D05 · 65F30 · 65F60

1 Introduction

We are interested in approximating the action of the matrix exponential to
a vector, i.e. exp(A)v, where A ∈ C

n×n and v ∈ C
n×1. When A is sparse
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and of large scale it is not favorable to compute exp(A) and then multiply by
v, since the matrix exponential is, in general, full. It is instead preferable to
approximate the exponential function directly by a polynomial. Ideally this
should only require matrix-vector products. This allows the computation of
exp(A)V , for a matrix V ∈ C

n×n0 with 1 ≤ n0 ≪ n, by the same method.
Moreover, the process is easily parallelizable, since it does not require solving
linear systems (see [19]).

The starting point of our analysis is the consideration that for every polyno-
mial p(x) of degree m such that p(0) = 1, there exist a positive integer s and a
value θm ≥ 0 such that p(s−1A)sv is sufficiently close to exp(A)v if s−1 ‖A‖ ≤
θm. In section 2 we extend the backward error analysis introduced in [2] for
truncated Taylor series to any given polynomial p(x) = 1+ a1x+ . . .+ amxm.
This allows us to determine an appropriate value for s (if it exists) that guar-
antees a priori a satisfying approximation. This general result can be used
for existing polynomial approximations whose parameters are currently deter-
mined only in a heuristic or a posteriori ways. Moreover, any new polynomial
interpolation will benefit from the analysis carried out here.

Then in section 3 we analyse the important case of interpolation polynomi-
als. In particular, we show how to compute in a stable way the divided differ-
ences needed for the polynomial interpolation in Newton form (best suited for
computing the action of the matrix exponential), how to perform interpolation
at complex points in real arithmetic for real input matrices, and how to sort the
interpolation points in order to facilitate the triggering of an early termination
criterion. In section 4 we introduce and perform the backward error analysis
of newly defined approximation polynomials for exp(A)v. They are based on
polynomials which interpolate the exponential function at the so called Leja–
Hermite points (see [5]) and extend both Taylor series approximation and Leja
point interpolation [7]. In particular, they allow us to select the scaling pa-

rameter s by considering not only ‖A‖, but also the values ‖Aq‖1/q ≤ ‖A‖,
q ≥ 1, in order to reduce the risk of over-scaling the input matrix. The main
advantage of interpolation at Leja–Hermite points with respect to existing
polynomial methods is its flexibility. In fact, it can be adapted to matrices
with (nearly) real or purely imaginary spectra, to matrices with different be-

haviors of the sequence {‖Aq‖1/q}q, and to different requirements by the user,
such as best expected performance or best worst case scenario.

In section 4, moreover, we briefly describe the SageMath code expbea we
have developed in order to perform the backward error analysis for arbitrary
polynomials and tolerances. Finally in section 5 we perform several numerical
experiments and compare different approximation or interpolation polynomials
in the task of approximating exp(A)v and draw some conclusions in section 6.

2 Backward error analysis

We consider a polynomial

p(x) = a0 + a1x+ . . .+ amxm, a0 = 1 (2.1)
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of degree m. In this section we show how to compute the value θm. To a
first approximation, this value represents the maximal norm that a matrix A
can have so that its exponential can be accurately approximated by the given
polynomial. If p(x) allows for θm > 0, then any matrix A with norm larger
than θm has to be scaled down by a positive integer s, so that s−1‖A‖ ≤ θm.
Consequently, the approximation v(s) of exp(A)v is computed by the iterative
scheme

v(l+1) = p(s−1A)v(l), l = 0, 1, . . . , s− 1, v(0) = v. (2.2)

This recursion can be carried out with only two auxiliary vectors, as it is illus-
trated by the SageMath code1 reported in Algorithm 1. The main cost of such

Algorithm 1 Evaluation of scheme (2.2).

for l in [0 .. s - 1]:
pA = a[0] * v
for i in [1 .. m]:

v = (A * v) / s
pA = pA + a[i] * v

v = pA

an algorithm is the number of performed matrix-vector products. Therefore,
for given scaling parameter s and degree of approximation m, the cost is s ·m.
For a specific vector v it might not be necessary to perform m iterations of the
inner loop to achieve a given tolerance tol. For instance, if v is the zero vector,
it is enough to perform only the initial assignment. To detect such cases an
early termination criterion is employed. Common (heuristic) early termination
criteria (see [2,7]) allow to break the inner loop at step k < m whenever the
following estimate of the norm of the tail

∥
∥
∥ak−1(s

−1A)k−1v(l)
∥
∥
∥
∞

+
∥
∥
∥ak(s

−1A)kv(l)
∥
∥
∥
∞

is smaller than

tol ·
∥
∥
∥
∥
∥

k∑

i=0

ai(s
−1A)iv(l)

∥
∥
∥
∥
∥
∞

.

We note that such an early termination, during the construction of the ap-
proximation polynomial, is not available if Horner’s scheme is used for the
evaluation of the polynomial.

In order to reduce the risk of over-scaling, the parameter s should not be
chosen too large (see [1,2]). We refer to [1, § 1] for an explicit 2× 2 matrix A
for which choosing s too large deteriorates the approximation of exp(A). We
therefore follow the backward error analysis of Al-Mohy and Higham [1]. The

1 The excerpts of code reported here do work in SageMath. Furthermore, we feel they are
short, easy to understand, and can be regarded as pseudo-codes.
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main idea is to assume that the interpolation polynomial p provides the exact
solution to a slightly perturbed matrix, i.e.

p(s−1A)s = exp(A+∆A).

We consider ourselves satisfied whenever the relative backward error does not
exceed the prescribed tolerance tol, i.e.

‖∆A‖ ≤ tol · ‖A‖ . (2.3)

In order to achieve this we represent ∆A as a function of A by exploiting the
relation

exp(A+∆A) = p(s−1A)s = exp(A) exp(−A)p(s−1A)s =

= exp
(
A+ s log

(
exp

(
−s−1A

)
p(s−1A)

))

and by setting

h(s−1A) := log(exp
(
−s−1A

)
p(s−1A)) = s−1∆A.

Let us now investigate the relation between A and ∆A in more depth: for
every matrix X in the set

Ω = {X ∈ C
n×n : ρ(exp(−X)p(X)− I) < 1},

where ρ denotes the spectral radius, the function h(X) has the power series
expansion

h(X) =

∞∑

k=ℓ+1

ckX
k, (2.4)

where ℓ ≥ 0 is the largest integer such that

djp

dxj
(0) = e0 = 1, j = 0, 1, . . . , ℓ.

This means that the coefficients of the polynomial p(x) satisfy

aj =
1

j!
, j = 0, 1, . . . , ℓ. (2.5)

Hence, for those values of s such that s−1A ∈ Ω, we obtain the inequality

s−1 ‖∆A‖ =
∥
∥h(s−1A)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

k=ℓ+1

ck(s
−1A)k

∥
∥
∥
∥
∥
≤

≤
∞∑

k=ℓ+1

|ck|
∥
∥(s−1A)k

∥
∥ ≤

∞∑

k=ℓ+1

|ck|
∥
∥s−1A

∥
∥
k
= h̃(s−1 ‖A‖).

(2.6)

Therefore, inequality (2.3) holds true if

h̃(s−1 ‖A‖) ≤ tol · s−1 ‖A‖ .
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In order to verify this inequality for a given polynomial, we solve for the non-
negative real root of the scalar equation

h̃(θ) =

∞∑

k=ℓ+1

|ck| θk = tol · θ (2.7)

and define the largest real solution as θm. The equation above has at least the
trivial solution θ = 0. We observe that h̃(θ)/θ is a strictly increasing function
in θ. If ℓ > 0, then there exists one additional positive solution θm. If instead
ℓ = 0, this property holds provided that |c1| < tol. Moreover, h̃(θ) ≤ tol · θ
for 0 ≤ θ ≤ θm. Therefore, it is possible to find the integer scaling parameter
s ≥ 1 such that

‖∆A‖ ≤ tol · ‖A‖ , if s−1 ‖A‖ ≤ θm. (2.8)

A possible weakness of this approach is that the powers
∥
∥s−1A

∥
∥
k
might be

much larger than
∥
∥(s−1A)k

∥
∥ in inequality (2.6). This could lead to a huge over-

estimate of
∥
∥h(s−1A)

∥
∥ and consequently to an over-estimate of the scaling

parameter s. In order to tackle this issue, following [1, Thm. 4.2(a)], it is
possible to derive the inequality

‖h(X)‖ ≤
∞∑

k=ℓ+1

|ck|αq(X)k = h̃(αq(X)), if q(q − 1) ≤ ℓ+ 1, q ≥ 1

valid for X ∈ Ω and

αq(X) = max
(

‖Xq‖
1
q ,

∥
∥Xq+1

∥
∥

1
q+1

)

.

Clearly, we have
αq(X) ≤ α1(X) = ‖X‖ , q ≥ 1.

The constraint q(q − 1) ≤ ℓ+ 1 can be rewritten as

q ≤ qℓ =

⌊

1 +
√

1 + 4(ℓ+ 1)

2

⌋

. (2.9)

Therefore, in order to assure inequality (2.3) for q ≤ qℓ it is enough to verify

h̃
(
s−1αq(A)

)
≤ tol · s−1 ‖A‖ .

This is certainly true if

h̃
(
s−1αq(A)

)
≤ tol · s−1αq(A).

As result we get

‖∆A‖ ≤ tol · ‖A‖ if s−1αq(A) ≤ θm and q ≤ qℓ. (2.10)

Since αq(A) ≤ ‖A‖, the condition for s required in (2.10) is usually less restric-
tive than in (2.8). Hence s is less likely over-estimated. Since the evaluation
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of (2.2) requires s ·m matrix-vector products, the minimum cost for a given
m corresponds to

min
1≤q≤qℓ

{m ·max{⌈αq(A)/θm⌉, 1}} .

As α2(A) ≤ α1(A), the smallest value for q can be assumed to be 2, if ℓ ≥ 1.
We note, that we did not take the cost of evaluating or approximating αq(A)
into account. Hence, it is not mandatory to minimize up to qℓ.

Remark 2.1 In order to further reduce s, it may be convenient to work with a
shifted matrix B = A−µI, µ ∈ C. This is certainly true if the values αq(B) are
smaller then the corresponding values αq(A). In [2] it was empirically found
that the shift µ = trace(A)/n often produces smaller values αq(B).

A sufficient condition on the shift µ in order to preserve the backward error
anaylysis discussed above is that ‖B‖ ≤ ‖A‖. In fact, if the scaling parameter
s is chosen in order to guarantee

p(s−1B)s = exp(B +∆B), with ‖∆B‖ ≤ tol · ‖B‖,

then the approximation of exp(A) is recovered by

{(
eµ/sp(s−1B)

)s
, if ℜ(µ) < 0

eµ
(
p(s−1B)

)s
, if ℜ(µ) ≥ 0.

The first expression has to be preferred in order to avoid p(s−1B)s to overflow
(see [13, sect. 10.7.3]). In exact arithmetic, both expressions coincide with

eµ exp(B +∆B) = exp(A+∆B)

and
‖∆B‖ ≤ tol · ‖B‖ ≤ tol · ‖A‖ ,

as desired.

2.1 Power expansion of the function h

In order to find the positive root solving (2.7), we first need to compute the
coefficients ck of the power series expansion of h in (2.4). First of all, we
consider the truncated polynomial of degree M of the series, for a suitable
choice of M > m, and denote it by h(x)|M . We found that M = 3m is a
reasonable choice. We have

h(x)|M = log(e−xp(x))|M =





∞∑

j=1

(−1)j−1

j
(e−xp(x)− 1)j





∣
∣
∣
∣
∣
M

=

=
∞∑

j=1

(−1)j−1

j
(e−xp(x)− 1)j

∣
∣
M

=
∞∑

j=1

(−1)j−1

j
((e−xp(x))|M − 1)j

∣
∣
M
.
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Since the polynomial (e−xp(x))|M−1 starts from degree ℓ+1, its ⌈M/(ℓ+1)⌉-th
power has no monomials of degree less than or equal to M . Therefore,

h(x)|M =

⌊M/(ℓ+1)⌋
∑

j=1

(−1)j−1

j
((e−xp(x))|M − 1)j

∣
∣
M

=
M∑

k=ℓ+1

ckx
k.

The coefficients of the polynomial

(e−xp(x))|M = (e−x|Mp(x))|M
can be obtained by the convolution of the sequences ((−1)j/j!)Mj=0 and (aj)

m
j=0.

By convolving (e−xp(x))|M − 1 and the coefficients of the (j − 1)-th power of
(e−xp(x))|M − 1 the coefficients of the j-th power of (e−xp(x))|M − 1 can be
computed iteratively. Finally, with the help of the leading coefficients |ck| of
the power series of h̃ we can approximate the positive zero of h̃(θ)|M − tol · θ.
This allows us to obtain our bound θm. In the next sections we compute the
bounds θm for various approximation polynomials up to degree m = 55.

2.2 Example: truncated Taylor series approximation

As example to illustrate the backward error analysis outlined above we recall
the results for the truncated Taylor series presented in [2]. The polynomial
p(x) of degree m is

p(x) =

m∑

i=0

1

i!
xi,

that is the Taylor series expansion of the exponential function about 0. Since
all the coefficients ai of p(x) are exactly 1/i!, the value ℓ in (2.4) is precisely m.
Therefore, we get p(s−1A)s = exp(A+∆A) with

‖∆A‖ ≤ tol · ‖A‖ if s−1αq(A) ≤ θm and q ≤ qm,

where

qm =

⌊

1 +
√

1 + 4(m+ 1)

2

⌋

.

In Table 2.1 we report some values of θm up to m = 55 for double precision
tolerance (tol = 2−53) and the corresponding value qm. The smallest maximum

cost, i.e. no early termination criterion in place, is

min
1≤m≤55

1≤q≤q̄≤qm

{m ·max{⌈αq(A)/θm⌉, 1}} , (2.11)

where we took into consideration that only the values of αq(A) for 1 ≤ q ≤ q̄
might be available, for a user defined q̄ (because, for instance, it is considered
too expensive to compute or approximate them up to qm). We finally remark
that the shift strategy described in Remark 2.1 corresponds to a Taylor ex-
pansion about the complex point µ.
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Table 2.1 Values of θm and qm for truncated Taylor series approximation.

m 5 10 15 20 25 30 35 40 45 50 55
θm 2.4e-3 1.4e-1 6.4e-1 1.4 2.4 3.5 4.7 6.0 7.2 8.5 9.9
qm 3 3 4 5 5 6 6 6 7 7 8

3 Hermite polynomial interpolation of the exponential function

Although interpolation can be considered a special case of approximation, we
reserve it a proper treatment. The above mentioned truncated Taylor series
approximation can be interpreted as a special case of Hermite interpolation,
where all interpolation points coincide with x0 = 0 and the polynomial p(x)
satisfies the following conditions

djp

dxj
(0) = 1, j = 0, 1, . . . ,m.

Moreover, the matrix exponential exp(A) itself can be represented through
the polynomial that interpolates the exponential function at the eigenvalues
{λi}n−1

i=0 of A (see [13]). In Newton form it writes as

exp(A) =

n−1∑

i=0

exp[λ0, λ1, . . . , λi]

i−1∏

j=0

(A− λjI), (3.1)

where exp[λ0, λ1, . . . , λi] denotes the divided difference of order i of the func-
tion exp on the set {λj}ij=0. Of course one is interested in a polynomial of
degree m much smaller than n − 1, which still gives a sufficiently accurate
approximation of exp(A).

In the general case, we consider a finite set of distinct complex interpo-
lation points P = {x0, x1, . . . , xk}, with x0 = 0. Then there exists a unique
polynomial of degree m as in (2.1), called Hermite interpolation polynomial,
satisfying

djp

dxj
(xi) = exi ,

for any choice of the indexes i = 0, 1, . . . , k and j = 0, 1, . . . ,mi such that the
degree condition

m = k +m0 +m1 + . . .+mk

holds true. Here mi+1 corresponds to the number of copies of xi used for the
interpolation. The equivalence of the leading coefficients with the inverse of
the factorials (2.5) now depends on the multiplicity m0+1 of the interpolation
point x0 = 0, which we therefore also denote by ℓ+ 1.

With confluent or nearly confluent points the computation of the coef-
ficients of p(x) through the Vandermonde matrix or the evaluation of the
elementary Lagrange polynomials are highly unstable ways to evaluate the
polynomial (see [4, § 2.]). The barycentric formula should also be discarded
since, in the matrix case, it requires the solution of linear systems (see [4, end
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of § 3.]). Hence we consider the Newton form, which is also an elegant way for
considering information on derivatives (see, again, [4, end of § 3.]). For any
permutation (z0, z1, . . . , zm) of the elements of the vector

(0, . . . , 0
︸ ︷︷ ︸

ℓ+1

, x1, . . . , x1
︸ ︷︷ ︸

m1+1

, . . . , xk, . . . , xk
︸ ︷︷ ︸

mk+1

)

the polynomial p(x) can be written in terms of the Newton basis as

p(x) =

m∑

i=0

exp[z0, z1, . . . , zi]
︸ ︷︷ ︸

di

i−1∏

j=0

(x− zj)

where the coefficient di denotes the divided difference of order i. When the
points {zj}ij=0 are ordered such that equal points are adjacent (see [17]), there
are simple recursive formulas for the explicit computation of the divided differ-
ences. Otherwise, the Genocchi–Hermite formula can be used (see [13, § B.16]).
But there is another representation of divided differences, which turns out to
be extremely important for the approximation of the matrix exponential.

Theorem 3.1 (Opitz’s divided differences [20,24]) Let f be a function

for which
djf

dxj
(xi), i = 0, 1, . . . , k, j = 0, 1, . . . ,mi

exist and let (z0, z1, . . . , zm) be as above. Let fi,j, j ≤ i be the divided difference

of order i− j for the function f on the set {zj , zj+1, . . . , zi} and let finally

Z =










z0
1 z1

1 z2
. . .

. . .

1 zm










.

Then 






f0,0
f1,0 f1,1
...

...
. . .

fm,0 fm,1 . . . fm,m







= f(Z).

In particular, the vector (d0, d1, . . . , dm)T is the first column of exp(Z). Due to
the special structure of Z there is an efficient and accurate implementation of
Taylor series approximation for the matrix exponential, see algorithm TS(II)
in [21]. In fact, classical formulas for the computation of the divided differ-
ences suffer from severe cancellation errors and are not suitable for matrix
interpolation, see [6]. Furthermore, it is not enough to approximate exp(Z)
by standard Padé formulas [1] or directly exp(Z)e1 by the truncated Taylor
series method [2], since these algorithms only bound the norm of the back-
ward error, while here each coefficient di is required to have a relative error of
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the order of machine precision. In fact, if we use the function expm in Matlab
R2017a to compute exp(Z) for the case z0 = z1 = . . . = zm = 0 and extract
the first column, we see in Table 3.1 that for m = 30 the result dm is four or-
ders of magnitude different from the exact value 1/30!. Finally, the algorithm

Table 3.1 Computation of divided differences of the exponential function at the points
z0 = z1 = . . . = zm = 0 with algorithm TS(II) and expm in Matlab R2017a.

m dm with TS(II) dm with expm

0 1.000000000000000e0 1.000000000000000e0
1 1.000000000000000e0 1.000000000000000e0
5 8.333333333333333e-3 8.333333333333337e-3
10 2.755731922398589e-7 2.755731922398613e-7
15 7.647163731819816e-13 7.647163731820674e-13
20 4.110317623312165e-19 4.112008416252581e-19
25 6.446950284384474e-26 4.001414947655047e-25
30 3.769987628815906e-33 1.372830672184864e-29

described in [21] works for any permutation of the sequence of interpolation
points.

Once the divided differences are accurately computed, the matrix polyno-
mial p(s−1A)sv is computed by a simple two-term recurrence which is sketched
in Algorithm 2. As in the case of polynomial approximation, we can break the

Algorithm 2 Evaluation of scheme (2.2), for p(x) in Newton form.

for l in [0 .. s - 1]:
pA = d[0] * v
for i in [1 .. m]:

v = (A * v) / s - z[i - 1] * v
pA = pA + d[i] * v

v = pA

inner loop at step k < m if
∥
∥
∥
∥
∥
∥

dk−1

k−2∏

j=0

(s−1A− zjI)v
(l)

∥
∥
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
∥
∥

dk

k−1∏

j=0

(s−1A− zjI)v
(l)

∥
∥
∥
∥
∥
∥
∞

is smaller than

tol ·

∥
∥
∥
∥
∥
∥

k∑

i=0

di

i−1∏

j=0

(s−1A− zjI)v
(l)

∥
∥
∥
∥
∥
∥
∞

.

A suitable choice for the scaling parameter s is made by means of the backward
error analysis framework introduced above. In order to do so, the coefficients
{ai}mi=0 of the polynomial p(x) in the monomial basis have to be recovered.
This is possible using Stetekluh’s algorithm [27] written in Algorithm 3. We
remark that the computation of the coefficients {ai}mi=0 is only meant for the
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Algorithm 3 Stetekluh’s algorithm.
for j in [0 .. m]:

for i in [m - 1 .. j, step = -1]:
d[i] = d[i] - z[i - j] * d[i + 1]

a = d

backward error analysis which should be performed a priori and once and for
all. In fact, if the early termination at step k is triggered, the monomial form

k∑

i=0

aix
i

does not interpolate the exponential function at the set {z0, z1, . . . , zk}, in
general, whereas the Newton form

k∑

i=0

di

i−1∏

j=0

(x− zj)

does.

3.1 Real interpolation at complex points

When A and v are real, so is exp(A)v. In such a case we would like to employ
real arithmetic only. This is, in general, not possible when the interpolation
points are complex. On the other hand, if for each complex interpolation point
zj the conjugate zj point is also among the interpolation points, it is possible
to rewrite Newton interpolation in real arithmetic (see [28]). In order to do
that it is necessary to reorder the points in such a way that every complex
point is followed by its complex conjugate. If we consider the sequence

(z0, z1, . . . , zr, zr+1, . . . , zm) ∈ C
m+1

ordered in such a way that the first r+1 points are real, r and m with the same
parity, and the next satisfy zr+j+1 = zr+j , for j = 1, 3, 5, . . . ,m− 1− r, then
the Newton interpolation can again be written as a two-term recurrence in real
arithmetic, see Algorithm 4. We note that the divided differences {di}ri=0 are

real, and so are {dr+2i}(m−r)/2
i=1 . Moreover, from the updating of the polynomial

in the second last line, it is clear that an early termination criterion similar
to that described above is available. For the above sequences of points, this
evaluation scheme coincides with the classical form of the Newton interpolation
in exact arithmetic, even if A or v are complex. It turns out to be faster when
A and v are real, since it does not use complex arithmetic. Moreover, it reduces
roundoff errors in the imaginary parts when A or v are complex. Therefore,
this scheme is our default choice when dealing with such interpolation points.
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Algorithm 4 Evaluation of scheme (2.2), for p(x) in real Newton form.

for l in [0 .. s - 1]:
pA = d[0] * v
for i in [1 .. r]:

v = (A * v) / s - z[i - 1] * v
pA = pA + d[i] * v

v = (A * v) / s - z[r] * v
w = (A * v) / s - real (z[r + 1]) * v
pA = pA + real (d[r + 1]) * v + d[r + 2] * w
for i in [r + 2 .. m - 2, step = 2]:

v = (A * w) / s - real (z[i - 1]) * w + imag (z[i - 1]) ˆ 2 * v
w = (A * v) / s - real (z[i + 1]) * v
pA = pA + real (d[i + 1]) * v + d[i + 2] * w

v = pA

3.2 Ordering of the interpolation points

Even though we can accurately compute divided differences for any permu-
tation of the interpolation points, a good order of the points in the sequence
(z0, z1, . . . , zm) is a crucial requirement for triggering an early termination cri-
terion in the above scheme. In [25] Reichel suggests the following ordering,
called Leja ordering, of the points of P = {x0, x1, . . . , xk}: for fixed initial
point y0 ∈ P , yi+1 is recursively chosen as

yi+1 ∈ argmax
x∈P

i∏

j=0

|x− yj |mj+1
, i = 0, 1, . . . , k − 1,

and the sequence of interpolation points is given by

(z0, z1, . . . , zm) = (y0, . . . , y0
︸ ︷︷ ︸

m0+1

, y1, . . . , y1
︸ ︷︷ ︸

m1+1

, . . . , yk, . . . , yk
︸ ︷︷ ︸

mk+1

).

Since the interpolation error ex − p(x) for p(x) of degree i is proportional to
πi(x) = (x− z0)(x− z1) · . . . · (x− zi), when z0, z1, . . . , zi are all distinct, the
procedure above selects a point zi+1 which maximizes |πi(x)| among the points
in P . This should greedily reduce the interpolation error. For repeated points
the above procedure diverges from this idea, that we would like to pursue in
the following. Hence, fixing the first point z0 ∈ P = {x0, x1, . . . , xk}, zi+1 is
recursively picked from the set

zi+1 ∈ argmax
x∈P

i∏

j=0

|x− zj | = argmax
x∈P

|πi(x)| , i = 0, 1, . . . , k − 1.

Of course, when i equals k then

max
x∈P

|πk(x)| = 0,
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since all the points in P have been already selected once. In order to complete
the sequence of interpolation points up to m, let us suppose that we can look
for the next point in a perturbed set P + ν, ν ∈ C, that is

zνk+1 ∈ arg max
x∈P+ν

|πk(x)| = argmax
x∈P

|πk(x+ ν)|+ ν.

We can express πk(x+ ν) by means of Taylor’s formula

πk(x+ ν) = πk(x) + π′
k(x)ν + o(ν),

and therefore

argmax
x∈P

|πk(x) + π′
k(x)ν + o(ν)|+ ν = argmax

x∈P

|π′
k(x)ν + o(ν)|

ν
+ ν.

Finally, letting ν tend to 0, our suggested choice for zk+1 is therefore

zk+1 ∈ argmax
x∈P

|π′
k(x)| .

Now, let P1 ⊆ P be the set of points with multiplicity at least two and k1 its
cardinality. Then, we can define

zk+j ∈ arg max
x∈P1

∣
∣π′

k+j−1(x)
∣
∣ , j = 1, 2, . . . , k1.

If for k + k1 < m it is
max
x∈P1

∣
∣π′

k+k1
(x)

∣
∣ = 0

following the reasoning above, we select

zk+k1+j ∈ arg max
x∈P2

∣
∣π′′

k+k1+j−1(x)
∣
∣ , j = 1, 2, . . . , k2,

where P2 ⊆ P1 is the set of points with multiplicity at least three and k2
is its cardinality. We iterate this reasoning until we complete the sequence
(z0, z1, . . . , zm). In case of complex conjugate pairs of points, such an ordering
algorithm has to be slightly adjusted in order to keep them contiguous.

4 Examples of sets of interpolation points

In this section we consider some sets of interpolation points suited for the
approximation of the matrix exponential through a polynomial interpolation.
In particular, we extend some sets already used in the literature and analyse
their properties. From formula (3.1) above, it is clear that it is desirable that
the interpolation points {zj}mj=0 lie in a neighbourhood of the convex hull of
the spectrum σ(A). If we shift the matrix A by µ = trace(A)/n, then the
eigenvalues of the matrix B = A − µI have arithmetic average 0. Another
possible shift which requires some information about the field of values of
A is used in [7], with the purpose to have the field of values of B inscribed
into a rectangle symmetric with respect to the origin of the complex plane.
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Therefore, without loss of generality, we may assume that the interpolation
points {zj}mj=0 are distributed around the origin. Since we would like to work
in real arithmetic whenever the input matrix A is real, we consider only sets
of real interpolation points or sets with real and complex conjugate pairs of
interpolation points.

We start with interpolation at real Leja points, already used and analysed
in [7]. Because of the shift strategy described above, it is not restrictive to
consider a real interval [−c, c] symmetric with respect to the origin. A sequence
of Leja points for the real interval [−c, c] is defined by z0 = 0 and

zi+1 ∈ arg max
x∈[−c,c]

i∏

j=0

|x− zj | , i = 0, 1, . . . ,m− 1.

We select the first three points as z1 = c, z2 = −c, and z3 = c/
√
3. The

next points are univocally determined. The related unique polynomial p(x) of
degree m satisfying

p(zi) = ezi , i = 0, 1, . . . ,m

is called Leja interpolation polynomial. Differently from the truncated Taylor
series method, here there is the interpolation interval as a free parameter to
be chosen. Therefore, for given m and c it is possible to compute, by means
of the backward error analysis, the corresponding value θm,c. For each m, the
curve c 7→ θm,c has been drawn for m up to 100 in [7]. For some values of m
up to 55, we report in Table 4.1, the value

θm = max
0≤c≤c̄m

θm,c, c̄m = min{γ : γ = θm,γ}, (4.1)

computed by taking the maximum of θm,c over 200 values of c between 0 and
c̄m

2. It is an approximation of the maximum of the curve c 7→ θm,c before
its first intersection with the curve c 7→ c. Additionally, we obtain the in-
terpolation interval [−cm, cm] corresponding to the maximum θm. Since c is

Table 4.1 Values of cm, θm, ℓm, and qℓm for the Leja interpolation.

m 5 10 15 20 25 30 35 40 45 50 55
cm 0.0 0.0 0.0 0.0 7.4e-1 1.4 2.1 2.5 3.1 4.2 4.8
θm 2.4e-3 1.4e-1 6.4e-1 1.4 2.5 3.6 4.8 6.1 7.4 8.8 1.0e1
ℓm 5 10 15 20 0 0 0 0 0 0 0
qℓm 3 3 4 5 1 1 1 1 1 1 1

allowed to range from 0 (in which case Leja interpolation does coincide with
the truncated Taylor approximation) to c̄m, for each degree m the value found
for θm is never smaller than the corresponding value for the truncated Taylor
approximation. It turns out that for degree m up to 16 and degrees 19 and

2 In [7], θm was selected equal to c̄m and therefore the values reported in Table 4.1 are
larger than those in [7, Table 1].
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20, the maximum in (4.1) is in fact attained at cm = 0. Therefore, Leja inter-
polation does coincide with Taylor approximation and it is in fact a Hermite
interpolation. For these degrees m the interpolation points are ℓm+1 = m+1
copies of 0 and the value

qℓm =

⌊

1 +
√

1 + 4(ℓm + 1)

2

⌋

is greater than 1. For the degrees larger than 20, the value θm is larger than the
corresponding value in the Taylor method. For instance, for degree m = 50,
it is about 8.78 versus 8.55. Therefore, if p(x) is the polynomial of degree m
which interpolates the exponential function at the Leja points of [−cm, cm],
then p(s−1B)s = exp(B +∆B) with

‖∆B‖ ≤ tol · ‖B‖ if s−1αq(B) ≤ θm and q ≤ qℓm .

The Leja points in the intervals [−cm, cm] (for any degree m) as well as the
corresponding divided differences can be computed once and for all and stored
for an actual implementation of the method. Therefore, the method has no
extra cost with respect to a standard two-terms recurrence algorithm, such as
Taylor approximation.

Despite the slightly improved boundaries θm presented by this method,
there exists a drawback given by the fact that the interpolation point z0 = 0
has in general multiplicity 1 (i.e. ℓ = 0). Therefore, it is not possible to employ
the values of αq(B) for q different from 1. Nevertheless, this interpolation
method can be effective whenever the matrix B has a thin spectrum distributed
along the real axis. This property has been already exploited in [7].

In order to combine all the interesting properties of the truncated Taylor
series and the Leja interpolation method it appears logical to literally mix
them. This is done in our second example, the so called Leja–Hermite points.
In fact, we consider sets of points P obtained as Leja extension of a core set
composed by ℓ+1 points at the origin (see [5]). Namely, we take the sequence
of points (z0, z1, . . . , zℓ) = (0, 0, . . . , 0) and choose

zi+1 ∈ arg max
x∈[−c,c]

i∏

j=0

|x− zj | , i = ℓ, ℓ+ 1, . . . ,m− 1.

We note that it is possible to extend any set of ℓ+ 1 given points in a similar
fashion. For the case of interest, we select zℓ+1 = c, zℓ+2 = −c, and zℓ+3 =
c
√

(ℓ+ 1)/(ℓ+ 3). Consequently, the polynomial interpolating the exponential
function at such a sequence of Leja–Hermite points satisfies







djp

dxj
(0) = 1 j = 0, 1, . . . , ℓ,

p(zi) = ezi i = ℓ+ 1, ℓ+ 2, . . . ,m.

That gives us the possibility to employ the values αq(B) for some suitable
q ≥ 1 together with new boundaries θm. Now, for each degree of interpolation
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m, there are two free parameters, namely the multiplicity ℓ + 1 of 0, ℓ ≤ m
and the interpolation interval [−c, c]. Therefore, it is possible to compute the
boundaries θm,ℓ,c for each ℓ and each c. A possible choice for the determination
of a unique interpolation polynomial of a given degree m is the following. We
first consider

qm =

⌊

1 +
√

1 + 4(m+ 1)

2

⌋

(see formula (2.9)) and select θm as

θm = max
0≤c≤c̄m,ℓ

θm,ℓ,c, c̄m,ℓ = min{γ : γ = θm,ℓ,γ}, (4.2)

requiring
ℓ+ 1 = qm(qm − 1).

This choice allows us to use the values αq(B), while keeping m − ℓ points
distributed in the interval [−cm, cm]. In our experience this is beneficial if
an early termination criterion is used. Moreover, we obtain values for θm not
smaller than the corresponding value for the truncated Taylor series. For in-
stance, for degree m = 50, the corresponding value θm is about 8.64. We note
that in some circumstances the above maximum is attained for cm = 0. In
these cases, the number of zeros among the interpolation points is exactly
ℓm+1 = m+1 ≥ qm(qm− 1). In Table 4.2 we report some values cm, θm, and
qm for degree m up to 55.

Another possible choice in order to associate a unique interpolation poly-
nomial to a given degree m is the one which maximizes the value θm, namely

θm = max
0≤ℓ≤m

0≤c≤c̄m,ℓ

θm,ℓ,c. (4.3)

For instance, for degree m = 50 the value θm is about 8.84 obtained with an
interpolation set with ℓm = 37. In Table 4.3 we report some values cm, θm,
and qm for degree m up to 55. This choice is particularly appealing when the
early termination is not necessary and the information about the values αq(B)
for q ≥ 2 is not available. In this case, in formula (2.10) qℓ has to be replaced
by q1. These features can be useful for some exponential integrators (see [16,
18]), which may require the evaluation in parallel of large matrix exponentials.

Table 4.2 Values of cm, θm, ℓm, and qℓm for the Leja–Hermite interpolation, with θm
defined as in (4.2).

m 5 10 15 20 25 30 35 40 45 50 55
cm 0.0 0.0 0.0 0.0 9.2e-1 0.0 3.0 4.0 6.1 6.3 0.0
θm 2.4e-3 1.4e-1 6.4e-1 1.4 2.4 3.5 4.8 6.1 7.4 8.6 9.9
ℓm 5 10 15 20 19 30 29 29 41 41 55
qℓm 3 3 4 5 5 6 6 6 7 7 8
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Table 4.3 Values of cm, θm, ℓm, and qℓm for the Leja–Hermite interpolation, with θm
defined as in (4.3).

m 5 10 15 20 25 30 35 40 45 50 55
cm 0.0 0.0 0.0 7.5e-1 1.4 2.3 3.5 3.7 4.8 5.9 5.0
θm 2.4e-3 1.4e-1 6.4e-1 1.5 2.5 3.6 4.9 6.1 7.5 8.8 1.0e1
ℓm 5 10 15 15 20 25 30 27 32 37 2
qℓm 3 3 4 4 5 5 6 5 6 6 2

As a final example, we analyse an extension of the sequence of complex
conjugate Leja points introduced in [5,7,8] with a single initial point z0 = 0.
Given the initial sequence (z0, z1, . . . , zℓ) = (0, 0, . . . , 0) we define them in the
complex interval i[−c, c] as

zi+1 ∈ arg max
x∈i[−c,c]

i∏

j=0

|x− zi| , zi+2 = zi+1, for i = ℓ, ℓ+ 2, . . . ,m− 1.

The first four points after the initial sequence are zℓ+1 = ic, zℓ+2 = −ic, zℓ+3 =
ic
√

(ℓ+ 1)/(ℓ+ 3), and zℓ+4 = −ic
√

(ℓ+ 1)/(ℓ+ 3). This set of interpolation
points is beneficial for those matrices B with eigenvalues whose convex hull is
well described by a vertical skinny rectangle. In order to use a set containing
an even number of points, the value ℓ has to be taken odd. Therefore, in order
to allow the use of the largest number of values αq(B), we select the number
of repeated initial zeros as

ℓm + 1 =

{

qm(qm − 1) if m is odd

qm(qm − 1) + 1 otherwise.
(4.4)

In [7] it was observed that the maximum of the curve c 7→ θm,0,c (which
corresponds to ℓ = 0) is attained at c = 0. This fact now turns out to be true
for any number of repeated initial zeros in the sequence. We moreover observed
the same phenomenon with pure complex Leja–Hermite points, without any
artificial conjugation. Therefore, a maximization like (4.2) produces nothing
else than the truncated Taylor series of degree m. However, as previously
observed, the presence of some point in the interpolation interval generally
helps to trigger the early termination criterion. Therefore, unless ℓm turns out
to be equal to m from formula (4.4) and all the interpolation points concide
with zero, we follow the path traced in [7] by taking

θm = c̄m,ℓm , c̄m,ℓm = min{γ : γ = θm,ℓm,γ}. (4.5)

The values of ℓm, θm (obtained by a fixed point iteration of the equation
γ = θm,ℓm,γ), and qℓm are reported in Table 4.4. For m = 50 we get θm about
8.17.

For comparison, we also computed the values θm, which correspond to sets
of complex conjugate Leja points with the smallest number of repeated zeros
ℓm + 1 (one or two), see Table 4.5.
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Table 4.4 Values of θm, ℓm, and qℓm for the Leja–Hermite interpolation at complex con-
jugate points, with θm defined as in (4.5). In this table cm = θm, unless ℓm = m, in which
case cm = 0.

m 5 10 15 20 25 30 35 40 45 50 55
θm 2.4e-3 1.3e-1 5.9e-1 1.4 2.3 3.5 4.5 5.6 7.1 8.2 9.9
ℓm 5 6 11 20 19 30 29 30 41 42 55
qℓm 3 3 4 5 5 6 6 6 7 7 8

Table 4.5 Values of θm, ℓm, and qℓm for Leja–Hermite interpolation at complex conjugate
points, with the smallest number of repeated zeros. In this table cm = θm.

m 5 10 15 20 25 30 35 40 45 50 55
θm 1.9e-3 1.2e-1 5.2e-1 1.2 2.0 3.0 4.0 5.1 6.1 7.3 8.4
ℓm 1 0 1 0 1 0 1 0 1 0 1
qℓm 2 1 2 1 2 1 2 1 2 1 2

4.1 SageMath code for the backward error analysis

All the previous tables were obtained with the help of the SageMath code
mentioned above and described in this section. The code is a very flexible and
powerful tool for the analysis of interpolation polynomials for the exponential
function. In the following we will highlight some of its main features as well
as some possible applications. We will mainly do this by showing how the θm
values in the above tables can be computed with the help of the code.

The package is essentially comprised of two functions, namely expbea.sage,
which performs the backward error analysis for a polynomial and intpol.sage

which computes the coefficients of the polynomial which interpolates the expo-
nential at certain given points. Moreover, we prepared a list containing Leja–
Hermite points (lejaptslist.sage) up to degree 109 with any number of
leading zeros and the corresponding symmetric version (lejasymptslist.sage)
suitable for interpolation at complex points. Finally, the function leja.sage

has to be invoked in order to select the proper set of points and scale them to
the wanted interval.

In order to get started with the package the above mentioned functions
need to loaded into SageMath by:

load (”expbea.sage”)
load (”intpol.sage”)
load (”lejaptslist.sage”)
load (”lejasymptslist.sage”)
load (”leja.sage”)

Now the function

expbea (poly, tol, digits)

is available. The three arguments are the polynomial (2.1), the desired toler-
ance tol in (2.7), and the binary digits used for evaluation. The result, if it
exists, is the largest real solution θm fulfilling (2.7). As a possible application,
not yet mentioned, suppose you have a problem where you are interested in
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obtaining a result for a certain tolerance, e.g. quadruple or specifically 2−10.
Currently the Taylor as well as Leja method do support the precisions half,
single, and double. In addition to the early termination you can obtain the
best performance for your example by using the function expbea to compute
the required parameters θm tailored to your tolerance. These values can easily
be computed and used for your problem.

To illustrate the functionality of expbea, as well as the other methods,
we recompute the value θ50 for Taylor, Leja, Leja–Hermite, and complex con-
jugate Leja–Hermite interpolation in several different ways. Furthermore, we
also show how parameters for other popular approximation methods can be
computed with our code.

For the truncated Taylor method the value θ50 (compare with Table 2.1)
can be computed by

expbea (intpol (leja (51, 50, 0, lejapts), 165), 2 ˆ (-53), 165)

resulting in

8.546902045684933253595836581620611939411332215655

The function leja selects the set of 51 Leja–Hermite points with ℓ = 50
from the list lejapts (therefore, a set containing 51 repetitions of zero). The
coefficients of the interpolation polynomials and the backward error analysis
were performed with 165 binary digits. The tolerance 2−53 corresponds to
double precision. The computational time for the above computation (obtained
by the timeit functions) is 351 ms on a standard laptop. For such an example,
a simpler way to reach the same result is to directly give the coefficient of
Taylor series expansion for the exponential function, i.e.

expbea ([1 / factorial (i) for i in [0 .. 50]], 2 ˆ (-53), 165)

with has a computational time of 42.9 ms and provides the same result as
before. Now suppose we are interested in quadruple precision, invoking

expbea ([1 / factorial (i) for i in [0 .. 50]], 2 ˆ (-113), 165)

computes the value θ50 for tol = 2−113, i.e.

4.063015975075497005259133550997831602060074466426

with a computational time of 69.8 ms.

Now let us extend this example to the Leja interpolation. For this method
we need to include a interpolation interval and obtain the necessary polyno-
mial. Again we recompute the value θ50 found in Table 4.1 and therefore the
interpolation interval [−4.2, 4.2] is used. By calling

expbea (intpol (leja (51, 0, 42 / 10, lejapts),165), 2 ˆ (-53), 165)

we compute the Leja polynomial of degree 50 with ℓ = 0 in the interval
[−4.2, 4.2] as input for expbea and obtain

8.773372324142648390974599300196828845892837073024

with a computational time of 1.97 s. Again we used 165 binary digits and
the unite roundoff for double. To obtain the same coefficient θ50 for the Leja–
Hermite interpolation in the interval [−6.3, 6.3] (compare with Table 4.2), we
invoke
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expbea (intpol (leja (51, 41, 63 / 10, lejapts), 165), 2 ˆ (-53), 165)

and obtain

8.642710070503132351899676020863358052966697141513

Finally, the value θ50 for the Leja–Hermite interpolation at complex conjugate
points in the interval i · [−8.2, 8.2] (compare with Table 4.4) is computed by,

expbea (intpol (leja (51, 42, I * 82 / 10, lejasympts), 165), 2 ˆ (-53), 165)

and results in

8.172837810334057223553959774976711911401660234870.

Other direct polynomial methods are used in the literature for the matrix
exponential approximation, see, for instance, [3,11,22,23,26]. We briefly look
at Chebyshev approximation in the interval [−c, c] and show how expbea can
be used here. The truncated Chebyshev series approximation can be written
as

ex = I0(c) + 2
∞∑

i=1

Ii(c)Ti(x/c)

where Ii is the modified Bessel function of the first kind of order i and Ti the
Chebyshev polynomial of the fist kind of degree i. The truncated polynomial
of degree m has the representation

p(x) = I0(c) + 2

m∑

i=1

Ii(c)Ti(x/c)

and does not fulfill the property p(0) = 1. Therefore, the above analysis cannot
directly be applied. Nevertheless, it is possible to consider the polynomial

p̃(x) = p(x)− p(0) + 1

which trivially fulfills the required property. In SageMath it is possible to
perform the backward error analysis in the following way:

c = 42 / 10
m = 50
p = bessel I (0, c) * chebyshev T (0, x / c)+\
2 * sum ([bessel I (i, c) * chebyshev T (i, x / c) for i in [1 .. m]])
ptilde = p - p(x = 0) + 1
expbea (p.list(), 2 ˆ (-53), 165)

The result

8.777192038645274619076146787259326379345848575125

is very similar to that of the Leja interpolation in the same interval.
With the framework compiled in expbea.sage it is also possible to compute

the value θm for other approximations, such as the rational Padé approxima-
tion. For instance, starting from

r3 = (-x ˆ 3 - 12 * x ˆ 2 - 60 * x - 120) / (x ˆ 3 - 12 * x ˆ 2 + 60 * x - 120)

which is the Padé approximant of order [3/3] to the exponential, we get

expbea (r3.taylor (x, 0, 14).list(), 2 ˆ (-53), 165)
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0.01495585217958291517276980271088981628732005301897

which corresponds up to 16 digits with the corresponding value used in the
Matlab R2017a function expm. The relation between the order of the Padé
approximant and the order of the Talyor expansion used for the computation
(14 in this example) is not further investigated here.

This little demonstration outlines the main features of or SageMath code.
The whole code for the backward error analysis is available at the web page
https://bitbucket.org/expleja/expbea.

5 Numerical experiments

In this section we report on several numerical experiments. For all experi-
ments we use Matlab R2017a. Furthermore, we denote the truncated Taylor
series method by “T”, the interpolation at Leja–Hermite points by “L–H”,
and the Leja–Hermite method with the reordering of the points as suggested
at the end of section 3.2 by “L–H reord.”. If complex conjugate Leja–Hermite
points are used we indicate this by adding “cplx”, in this case choice (4.5) is
used. Furthermore, A denotes the original matrix and B = A − trace(A)/n.
For each of the following experiments, we report the scaling parameter s, the
degree m, the interval endpoint cm, the value θm, and the number ℓm of repeti-
tions of zero among interpolation points. Here m corresponds to the maximum
number of iterations for each scaling parameter, selected by the optimization
strategy (2.11). Moreover, the total maximum number of iterations (which
corresponds to s · m), the actual number of iterations (if the early termina-
tion criterion is enabled), and the relative error in the 1-norm, with respect
to the solution computed by expm(A)*v, are reported. The global accuracy of
expm(A)*v is not known. On the other hand, for Hermitian, skew-Hermitian,
or real and essentially nonnegative matrices the Taylor method approximates
the action of the matrix exponential in a forward stable way [12] and the ampli-
fication of rounding errors is governed by the condition number of the exp(A)v
problem (which can be estimated as described in [14] or in [10], for large and
sparse matrices). Not all of the matrices used in our experiments have the
above properties. Nevertheless, we decided to report in parenthesis the error
of Leja–Hermite interpolation with respect to the Taylor approximation. We
also note that the computational cost of evaluating the sequence {αq(B)}q̄q=1

through the estimation algorithm described in [15], which is 4q̄(q̄+3) matrix-
vector products (see [2]), is not reported in the tables below. In all experiments
tol is set to 2−53 (which corresponds to the double unit roundoff) if required.

We group the experiments, depending on the behavior of the sequence
{αq(B)}q.

5.1 Matrices with non-decreasing αq values

In the following we are going to present several experiments where the sequence
{αq(B)}q is constant. On the one hand, it means that it is not necessary to

https://bitbucket.org/expleja/expbea
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waste matrix-vector products to estimate the sequence. On the other hand,
applying [1, Thm. 4.2(a)] to the estimation of s provides no additional savings.

5.1.1 Advection-diffusion matrices

We consider the method of lines applied to the partial differential equation







∂u

∂t
(t, x, y) + b

(
∂u

∂x
(t, x, y) +

∂u

∂y
(t, x, y)

)

= d

(
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y)

)

,

u(0, x, y) = u0(x, y) = 16x(1− x)y(1− y),

equipped with homogeneous Dirichlet boundary conditions in the spatial do-
main [0, 1]2. The parameters are chosen as d = 1/100, b non-negative, and
we discretise in space by standard central second-order finite differences. The
space step size h is chosen equal to 1/50. The grid Péclet number is thus

Pe =
hb

2d
= b.

The resulting matrix A has size n×n = 2401× 2401 (we used a discretization
with inner nodes). We are interested in the solution at time t = 1, where v
is the space discretization of u0. After applying the shift µ = trace(A)/n, the
equality ‖B‖1 = αq(B) = 4d/h2 = 100 holds for any value of q ≤ 8 and non-
negative b. For b = 0 the matrix is symmetric and all the eigenvalues are real
and distributed in the interval [−100, 100]. The results for this experiment are
collected in Table 5.1. For such an example, interpolation at pure Leja points,
without repeated zeros, outperforms Taylor method, since the interpolation
points are well spread in the convex hull of the matrix of interest and Taylor
method cannot take advantage of the values αq(B).

Table 5.1 Results for the diffusion case (b = 0).

Method s m cm θm ℓm max. its. act. its. rel. err.
T 11 53 — 9.3 53 583 495 3.0e-14
L–H 10 55 4.8e0 1.0e1 0 550 460 3.3e-14 (6.6e-15)

For the case b = 0.5, results are reported in Table 5.2. In this case the con-
vex hull of the spectrum resembles an ellipse inscribed in the skinny rectangle
[−100, 100] + i[−15, 15] (see [9]). The results are comparable to the previous
case. Finally, for b = 1 the matrix B is lower triangular with zero in the

Table 5.2 Results for the advection-diffusion case (b = 0.5).

Method s m cm θm ℓm max. its. act. its. rel. err.
T 11 53 — 9.3e0 53 583 495 2.7e-14
L–H 10 55 4.8e0 1.0e1 0 550 456 2.1e-14 (6.5e-15)



Backward error analysis for computing the action of the matrix exponential 23

diagonal and the results are reported in Table 5.3. In this case, the set of
Leja–Hermite points was chosen in order to maximize θm according to (4.3),
independently of the number of repeated zeros (since the sequence {αq(B)}q
does not decrease). As a result, it was selected a smaller s with respect to
Taylor method and the number of iterations is smaller. The reordering of the
points slightly improves the result.

Table 5.3 Results for the advection-diffusion case (b = 1).

Method s m cm θm ℓm max. its. act. its. rel. err.
T 11 53 — 9.3e0 53 583 474 4.4e-15
L–H 10 55 5.0e0 1.0e1 2 550 422 1.3e-14 (1.1e-14)
L–H reord. 10 55 5.0e0 1.0e1 2 550 420 1.2e-14 (1.0e-14)

5.1.2 Advection matrices

We consider the discretization of the one-dimensional advection operator ∂x
in the space domain [0, 1] with periodic boundary conditions. We consider the
first order upwind and the second order central schemes

1

h
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−1 1

. . .
. . .

−1 1







∈ R

n×n,
1

2h









0 1 −1

−1 0
. . .

. . .
. . . 1

1 −1 0









∈ R
n×n,

with h = 1/70 (n = 70). Both matrices are normal, the second is skew-
symmetric. After applying the standard shift, the values for αq(B) are constant
and equal to 1/h = 70, for q ≤ 8. For k = 0, 1, . . . , n − 1 the eigenvalues
are λk = e2πikh/h and λk = i · sin(2πkh)/h, respectively. The initial vector

has the components vi = e−10(ih−1/2)2/2. For the upwind scheme, we can
see in Table 5.4 that interpolation at Leja–Hermite points outperforms Taylor
method, thanks again to the possibility to select a smaller scaling parameter s.
For the central scheme, we tested complex conjugate Leja points. Due to the

Table 5.4 Results for the advection case with upwind finite differences.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 8 51 — 8.8e0 51 408 361 4.0e-13
L–H 7 55 5.0e0 1.0e1 2 385 326 4.1e-13 (1.8e-13)
L–H reord. 7 55 5.0e0 1.0e1 2 385 324 5.6e-13 (2.0e-13)

distribution of the eigenvalues on the complex interval i · [−70, 70], one can
observe in Table 5.5 that real interpolation at complex conjugate points needs
the fewer number of iterations.
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Table 5.5 Results for the advection case with central finite differences.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 8 51 — 8.8e0 51 408 368 5.6e-15
L–H cplx 9 53 8.0e0 8.0e0 1 477 297 6.2e-15 (1.7e-15)

5.1.3 Schrödinger matrix

We finally consider the discretization of the free Schrödinger equation







∂u

∂t
(t, x) = i

∂2u

∂x2
(t, x),

u(0, x) = e−10x2

,

equipped with homogeneous Dirichlet boundary conditions in the spatial do-
main [−1, 1]. The space step size h is 1/35. The resulting matrix A has size
n×n = 69×69 and is skew-symmetric. After the usual shift, the matrix B has
αq(B) = 2/h2 = 2450 for any value of q ≤ 8 and the eigenvalues are distributed
in the complex interval i[−2450, 2450]. As initial vector v the discretization of
u(0, x) is used. We compute the solution at time t = 1. Once again, interpo-
lation at complex conjugate Leja points gives the smallest number of actual
iterations. We note that this outcome could not be predicted by the maximum
number of iterations given after the initial parameter computation. Moreover,
the relative error with respect to the reference solution is two orders of magni-
tude smaller, see Table 5.6. Due to the large difference of the computed errors
with respect to the expm(A)*v solution, we decided to compute the reference
solution in two other different ways. In the first, we explicitely computed the
eigenvectors {vj}nj=1 and the eigenvalues {λj}nj=1 of the matrix A, i.e. without

using eig, and built the reference solution as V exp(Λ)V T . Then, we used the
variable precision arithmetic in Matlab R2017a and computed the reference
solution by expm with 32 decimal digits. In both cases, we found an error
of 7.3e-11 for the Taylor approximation and of 3.0e-13 for the complex Leja–
Hermite interpolation. A larger error in the Taylor approximation with respect
to the interpolation at complex Leja points for a diagonal matrix with pure
imaginary eigenvalues was already observed in [7, Section 4.3].

Table 5.6 Results for the Schrödinger matrix.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 249 55 — 9.9e0 55 13695 13197 7.3e-11
L–H cplx 292 55 8.4e0 8.4e0 1 16060 10220 2.7e-13 (7.2e-11)
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5.2 Matrices with decreasing αq values

In the following we are going to present several experiments where the sequence
αq(B) is decreasing. In particular this means applying [1, Thm. 4.2(a)] can be
used to reduce the over-estimation of s.

5.2.1 lesp matrix

We consider the tridiagonal matrix A of size n×n = 20×20, with (−2k−3)20k=1

on the main diagonal, (1/k)20k=2 on the lower diagonal, and (k)20k=2 on the upper
diagonal, multiplied by 100. It can be obtained by the MATLAB command
100*gallery(’lesp’,20). After the standard shift, the values of αq(B) range
from ‖B‖1 = α1(B) = 3900 to α8(B) ≈ 3383. The eigenvalues of B lie in
the real interval [−2000, 2000]. The initial vector has components vj = j,
j = 1, 2, . . . , n. The results are collected in Table 5.7, and 5.8. In this example,

Table 5.7 Results for the lesp matrix.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 343 55 — 9.9e0 55 18865 12355 6.9e-14
L–H 348 54 6.6e0 9.9e0 41 18792 12533 2.0e-13 (2.7e-13)
L–H reord. 348 54 6.6e0 9.9e0 41 18792 10458 2.3e-13 (3.0e-13)

the best performance is reached by interpolation at reordered Leja–Hemite
points selected as in (4.2), since the very efficient early termination criterion
takes place.

Now we consider the same matrix scaled by 1/25. The scaling parameter
and the maximum number of iterations roughly scale accordingly. After the
standard shift, we have α1(B) = 156 and α2(B) ≈ 152.9. One may think it
is not worth to compute further values in the αq sequence, since they seem
to decrease too slowly to give a clear advantage and cost hundreds of matrix-
vector products. So, we force the methods to use only these two values. In
such a situation, a large number of zeros among interpolation points would
probably not help and the choice like (4.3) would at least minimize the max-
imum number of iterations. This is confirmed as it can be seen in Table 5.8.
Both methods optimize their performance with the value α2(B) and interpo-
lation at Leja–Hermite points allows smaller maximum and actual numbers of
iterations.

Table 5.8 Results for the lesp /25 matrix, with 1 ≤ q ≤ q̄ = 2.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 16 54 — 9.6e0 54 864 548 1.2e-15
L–H 15 55 5.0e0 1.0e1 2 825 437 1.3e-16 (1.3e-15)
L–H reord. 15 55 5.0e0 1.0e1 2 825 425 4.6e-15 (3.4e-15)
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5.2.2 i·lesp matrix

Additionally, we consider the previous matrix multiplied by the complex iden-
tity i. In this case, the optimization stratery (2.11) selects degree m = 55
which, for the interpolation at complex Leja–Hermite points according to (4.4),
means 56 repeated zeros. Therefore, the method coincides with truncated Tay-
lor series. Among all our numerical experiments, in this one we obtained the
largest errors with respect to the reference solution. On the other hand, the
condition condition number of the exp(A)v problem, computed as in [2, (4.2)],
is very large and takes value 1.0e10.

For this example, we report in Table 5.9 also the result (denoted by “L
cplx”) obtained with interpolation at complex conjugate Leja points as in-
troduced in [7]. As it can be seen, interpolation at pure complex Leja points
performs very bad. In fact, the eigenvalues of B/s are in the complex inter-
val i[−4.4, 4.4], while the interpolation points are spread in i[−8.1, 8.1], since
‖B/s‖1 ≈ 8.1 and it is not possible to take advantage of αq(B/s) for q > 1.

Table 5.9 Results for the i·lesp matrix.

Method s m cm θm ℓm max. its. act. its. rel. err.
T, L–H cplx 343 55 — 9.9e0 55 18865 12775 1.1e-09
L cplx 479 54 8.1e0 8.1e0 0 25866 16568 1.1e-09 (4.9e-10)

5.2.3 triw matrix

Our last example consists of the matrix A of size n×n = 20×20 with −1 on the
main diagonal and −4 on the remaining upper triangular part (see [2, Exper-
iment 6]). It corresponds to the MATLAB matrix -gallery(’triw’,20,4).
The non-normality of the matrix, measured as

κ1(B) =
‖BB∗ −B∗B‖1

‖B‖21
after applying the standard shift, is about 0.5. This is in fact not much different
from κ1(B) for the shifted matrix B from section 5.1.1, with b = 1. However,
the sequence of αq(B) strongly decays, ranging from ‖B‖1 = α1(B) = 76
to α8(B) ≈ 16.29. The initial vector has components vj = cos j, for j =

Table 5.10 Results for the triw matrix.

Method s m cm θm ℓm max. its. act. its. rel. err.
T 2 54 — 9.6e0 54 108 42 3.2e-14
L–H 2 53 6.7e0 9.6e0 41 106 42 4.2e-14 (2.1e-14)
L–H cplx 2 55 9.9e0 9.9e0 55 110 42 3.2e-14 (0)
L cplx 10 52 7.7e0 7.7e0 0 520 344 4.5e-15 (3.2e-14)
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1, 2, . . . , n. The matrix B is nilpotent and therefore it is preferable to have
enough zeros among the interpolation points and keep them in the leading
positions. The results can be found in Table 5.10. Taylor truncated series
and interpolation at Leja–Hermite points (both real and complex) give the
same number of actual iterations, which is the minimum required by the exit
criterion in order do discover the nilpotency of the matrix. Also in this case,
interpolation at pure complex conjugate Leja points as in [7] would lead to a
very bad result, as indicated in the last row of Table 5.10.

6 Discussion and conclusions

In this paper we aim to create a common framework for all those researchers
who are approaching the problem of approximating the action of the matrix
exponential exp(A)v through a polynomial. In fact, the effort spent to gener-
alise and to make the backward error analysis tool so elastic and customisable
can be particularly useful to people working on the matrix exponential. To
this purpose, we developed a SageMath package called expbea which is pub-
licly available at https://bitbucket.org/expleja/expbea. This code can
be used for the analysis of interpolation polynomials for the exponential func-
tion, the computation of additional θm values for other tolerances or help tailor
existing methods to a specific example for best performance.

In this work we consider classical Taylor approximation and several exam-
ples of polynomial interpolation. Besides the already known Leja points, we
present Leja–Hermite points. They combine key features of both Taylor and
Leja approximation. In addition, we describe a new way to extend the Leja
ordering for repeated interpolation points. In particular, the Leja–Hermite in-
terpolation has never been used before for matrix exponential approximation.
In the following we summarize the results from the presented examples.

1. Interpolation at real Leja–Hermite points allows to fully use the values
αq(B). Moreover, the estimated cost is not larger than the cost predicted
by Taylor approximation (compare Table 2.1 with Tables 4.2 and 4.3). For
complex conjugate Leja–Hermite points, however, it is not possible to im-
prove the boundaries θm of the Taylor approximation. Anyway, choice (4.5)
allows to use the values αq(B). Furthermore, it can outperform Taylor ap-
proximation, both in terms of total number of iterations and global accu-
racy. This is true whenever the spectrum of B has a vertical skinny shape
and ‖B‖1 is a good estimate of the spectral radius (see Tables 5.5 and 5.6).

2. The effectiveness of sets of interpolation points containing some zeros de-
pends more on the behavior of the sequence of values αq(B), than on the
normality of the matrix B.
– If the sequence {αq(B)}q is flat, then the sets of Leja and Leja–Hermite

points with reordering (both real and complex conjugate) lead in gen-
eral to less iterations, thanks to the possibility of early termination. In
fact, see Tables 5.1, 5.4, 5.5, and 5.6 (normal matrices), and Tables 5.2

https://bitbucket.org/expleja/expbea
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and 5.3 (non-normal matrices), respectively. Of course, the choice be-
tween real or complex interpolation points should be based on some
information about the spectrum of B. If not available from theory, it
can be recovered in a cheap way by Gershgorin disks (see [7]).

– If the sequence {αq(B)}q strongly decreases, Taylor series approxima-
tion or interpolation at Leja–Hermite points lead to the best results
(see Table 5.10). In this case the use of pure Leja points results in a
much larger number of iterations.

– In the intermediate cases, real Leja–Hermite reordered point interpola-
tion pays off (see Table 5.7). Concerning complex points, Leja–Hermite
point interpolation avoids a quite huge amount of wasted iteration with
respect to the use of pure complex conjugate Leja points (see Table 5.9).
If the sequence of {αq(B)}q values is considered too slowly decreasing,
the choice (4.3) of Leja–Hermite points which maximizes the value θm
allows to reduce the maximum number of iterations and, in our exam-
ple, also the actual number (see Table 5.8).

We therefore conclude that interpolation at Leja–Hermite points, being an
extension of both Taylor truncated series and Leja point interpolation, can be
considered a reliable, powerful and flexible method for the approximation of
the matrix exponential applied to a vector. In fact, it has an a priori backward
error estimate, a cost proportional to the degree of approximation without
requiring the solution of linear systems, and the possibility to select proper
sets of interpolation depending on some readly available information on the
matrix.
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of unsymmetric matrices. Appl. Numer. Math. 44, 201–224 (2003)

24. Opitz, V.G.: Steigungsmatrizen. Z. Angew. Math. Mech. 44, T52–T54 (1964)
25. Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)
26. Schaefer, M.J.: A polynomial based iterative method for linear parabolic equations. J.

Comput. Appl. Math. 29, 35–50 (1990)
27. Stetekluh, J.: URL http://stetekluh.com/NewtonPoly.html

28. Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat.
Comput. 12(3), 648–667 (1991)

http://stetekluh.com/NewtonPoly.html

	Introduction
	Backward error analysis
	Hermite polynomial interpolation of the exponential function
	Examples of sets of interpolation points
	Numerical experiments
	Discussion and conclusions

