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List of abbreviations 

V’O2max = maximum oxygen uptake 

RE = running economy 

FM = full marathon  

HM = half marathon  

V’O2 = oxygen consumption 

% V’O2max = percentage of V’O2max 

vV’O2max= velocity at V’O2max 

O2 = oxygen 

COPD = chronic obstructive pulmonary disease 

Q’ = cardiac output 

SDH = succinate dehydrogenase 

SV = stroke volume 

EMG =  

GRF = ground reaction force 

HIT = high intensity training 

SSC = stretch shortening cycle 

NO3- = nitrate 

NO2- = nitrite 

LT = lactate threshold 

CP = critical power 

% V’O2max = percentage of V’O2max 

1RM = 1 repetition maximum 

FST = flywheel strength training 

LIT = low intensity training 

VT = ventilatory threshold 

vVT1 = velocity at VT1 

vVT2 = velocity at VT2 

RV = reference velocity 

TRIMP = training impulse 

TID = training intensity distribution 

MLSS = maximal lactate steady state 
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RCT = rate of compensation  

POL = polarized 

FOC = focused  

SD = standard deviation 

PET = polarized endurance training 

FET = focalized endurance training 

RPE = rate perceived effort  

ATP = adenosine triphosphate 

ADP= adenosine biphosphate 
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Overview  
 

 

Recreational athletes represent the largest proportion of participants in several 

endurance sport events such as marathons, cycling races, triathlons and cross-

country ski marathons; and their number continues to grow year after year. However, 

running seems to be the most suitable activity for people of any age, sex, experience 

and technical ability; it does not require too much time, equipment or a particular 

environment. Most of these athletes approach the practice of running just for health 

maintenance and then transforming this practice into a challenge with themselves. 

At that point they begin to train for the improvement of performance, often 

improvising their training programs. 

Studies on running have dealt with the determinants of performance and training 

strategies to improve the performance of elite and well-trained athletes; but there is 

still little knowledge about the performance and training of recreational athletes. If 

determining factors are the same for any level of performance, the training 

strategies usually used by elite and well-trained athletes are not suitable for 

recreational athletes because they require a lot of time, structures and technical 

skills that they do not have. 

     The aim of this project was to define optimal training strategies for 

recreational runners to: 

1) improve running economy (RE), the most important determinant in long 

distance running performance; 

2) optimize the training time/performance ratio (time dedicated to practice is a 

limitation for recreational athletes); 
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Chapter 1  
Introduction 

 

Over the past decades, a steady increase in the number of participants in long 

distance running events such as full marathons (FM) and half marathons (HM) has 

been reported both in the USA and Europe (www.runningusa.org/statistics; 

www.maximaratona.it). In the United States, there were 30,400 running events in 

2016, from 5Km runs to ultramarathons; 17,000,000 crossed the finish line. Five-

point-three percent of the population participated in races. In Italy, the number of 

participants in marathons has doubled in the last ten years with a positive year-by-

year trend, whereas in Germany the number of full marathoners steadily increased 

up to 2006 with a slow decline thereafter (www.marathonbestenliste.de). In recent 

years, half-marathon (HF) running enjoyed greater popularity than full marathon 

(FM) running according to participation trends of long-distance runners in the USA 

(www.runningusa.org/statistics). A continuous increase in the number of half 

marathoners since 1990 has been recorded in the USA. The highest number was 

reached in 2011 with a total of 1,600,000 starters corresponding to an increase of 

16.2% in runners compared to the previous years. This increase was less than the 

historic ones -24% in both 2008 and 2009 - but still higher than in 2010 with an 

increase of 6.4%. In the past years, the number of full marathoners in the USA 

increased only slightly, in contrast with the rising numbers of half marathoners. 

When there was an increase of 9.9% and 8.9% in 2009 and 2010, respectively, the 

number of full marathoners only rose by 2.2% from 2010 to 2011. In Switzerland, 

the number of half marathon runners increased remarkably from 12,497 in 2000 to 

48,061 in 2014. No similar data are available to date for half marathoners in Italy. 

These increased levels of participation have led to an increased range of abilities in 

participating runners, from amateur to elite levels (Ogueta-Alday and García-

López, 2016). Consequently, the interest of the scientific community in studying 

different factors that affect performance (i.e., anthropometry, training methods, 

physiology and biomechanic components) has grown (Ogueta-Alday and García-

López, 2016). 

A change in participation trends was reported in one of the most popular city 

http://www.runningusa.org/statistics
http://www.maximaratona.it/
http://www.marathonbestenliste.de)/
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marathons - the one in New York City. In 2011, more than one third of the full 

marathoners in the USA were older than 40 years; in half marathons this age group 

rose to 40% (www.runningusa.org/statistics). The increase in full and half 

marathoners in the USA is most probably due to an higher number of runners older 

than 40 years and an increase in female runners (www.runningusa.org/statistics). 

Similarly, in Germany, the number of male and female full marathoners in age 

group 50-59 years was almost 10% higher than in age group 20-29 years. In 2016, 

about 75% of men and 67.5% of women marathoners in Italy were over 40 years of 

age, and 73% of total FM runners were 40-60 years old. This analysis showed that 

running is very popular among middle-aged people. It is well known that aerobic 

activity is one of the most important prevention tools for the most common diseases 

(obesity, hypertension, cardiovascular disease and metabolic problems). Aerobic 

activity has shown great potential in terms of health, psychological and sociological 

aspects and consequently of one’s quality of life (Lee et al., 2014) 

The definition of an adequate and optimal preparation for an endurance event in 

recreational runners is therefore crucial and realized not yet. It must tent to avoid 

sport failure and injuries, requiring a time commitment that allows people to train 

and compete regularly, following a detailed and structured training program 

compatible with their numerous job and family commitments belonging to a non-

professional athlete. 

Several studies on training strategies for long distance running have been done on 

elite or well-trained athletes. These strategies avoid errors or a waste of time in 

training programs if a trainer understands the specific importance of different 

performance determinants in a recreational athlete. Specific research in this area 

allows trainers to focus on their strategies to maximize improvement and reduce the 

number of unsatisfied athlete drop-outs.  

An in-depth analysis of the physiological and functional determinants of endurance 

performance and the studies on their improvement strategies (training) has been 

carried out. 
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Chapter 2  

The Determinants of Endurance Performance 

 

In exercise, performance can be evaluated by the amount of time required to 

complete a given amount of work (power) or by the length of time that a given work 

rate can be maintained (capacity). The relationship between work load and work 

capacity is affected, however, by a complicated interaction of several factors, 

internal as well as external, which must be taken into consideration.  

 

Figure 1 - Factors affecting physical performance. From Textbook of Work Physiology, Astrand 

 

The ability to perform physical work basically depends on the capacity of the 

muscle cells to transform the chemically bound energy of food to mechanical 

energy for muscular work, that is, into the energy-yielding processes in muscle cells. 

This in turn depends on the capacity of the service functions that deliver fuel and 

oxygen to the working muscle fiber; for instance, it depends on nutritional 

properties, nature and quality of food ingested, frequency of meals, oxygen uptake 

including pulmonary ventilation, cardiac output and oxygen extraction, and the 
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nervous and hormonal mechanisms that regulate these functions. Many of these 

functions depend on somatic factors, which may be partially genetically endowed 

such as sex, age, and body dimensions. In addition, we should remember the role 

of psychological factors such as motivation, attitude toward work, and the will to 

mobilize one’s resources in order to accomplish the task requirement. As shown in 

Figure 1, physical performance may also, directly or indirectly, be greatly 

influenced by factors in the external environment such as pollution, cold and heat, 

as well as by the type of work. 

Focusing our attention on running bioenergetics, in order to maintain a specific 

work rate or running velocity over a long distance, ATP must be supplied to the 

cross bridge as fast as it is used. In other words, we can say that the rate at which 

oxygen is used during prolonged submaximal exercise is a measure of the rate at 

which ATP is generated. Over the years, a lot of criticism has been directed at this 

physiological model, but in light of several studies, the model has been confirmed 

as being able to explain endurance performance (Bassett & Howley, 1997).  

 Figure 2 shows that oxygen consumption (V’O2) maintained during an endurance 

run, called “performance V’O2” by Coyle (Coyle, 1995),  is equal to the product of 

the runner’s V’O2max and the percentage of V’O2max that can be maintained during 

the run.  

 

Figure 2 - Simplified diagram of the linkage between maximal aerobic power (V˙O2max), the percentage of 

maximal aerobic power (% V˙O2max) and running economy as they relate to distance running performance. 

From Basset DR et al 2000 
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The percentage of V’O2max is related to the V’O2 measured at the lactate threshold 

(LT), so in endurance events, metabolic performance is closely linked to the V’O2 

at LT. V’O2max is limited primarily by cardiovascular factors (central), whereas the 

percentage of V’O2max that can be maintained is linked primarily to adaptations in 

muscles (peripheral) resulting from prolonged training (Holloszy & Coyle, 1984). 

The actual running speed obtained by the rate of oxidative ATP generation (V’O2 

performance) is determined by the individual’s ability to convert energy (e.g., 

running economy) into performance (Coyle, 1995; Daniels, 1985). One of the best 

descriptions of how V’O2max and running economy interact to affect running 

velocity was provided by Daniels (J. T. Daniels, 1985) in his description of 

“velocity at V’O2max” (vV’O2max). 

  

Figure 3 - Comparison of male and female runners of equal V’O2max. The males are significantly favored in 

economy and vV’O2max (P < 0.05). 

 

Figure 3 shows the relationship between V’O2 and running velocity for  male and 

female runners - equal in terms of V’O2max, but different in terms of running 

economy (J. Daniels & Daniels, 1992). A line was drawn through the series of 

points used to construct an economy-of-running line, and was extrapolated to the 

subject’s V’O2max. A perpendicular line was then drawn from the V’O2max value to 

the x-axis to estimate the velocity that that subject would have achieved at V’O2max 

(vV’O2max). This is an estimation of the maximal speed that can be maintained by 

oxidative phosphorylation. In this example, the difference in running economy 
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produced a clear difference in the speed that could be achieved if that race were run 

at V’O2max. In like manner, Figure 4 shows the impact of different V’O2max in 

vV’O2max in groups with similar running economy values. The 14% difference in 

V’O2max resulted in a 14% difference in the vV’O2max. Consequently, it is clear that 

V’O2max and running economy interact to set the upper limit of running speed that 

can be maintained by oxidative phosphorylation. However, if the distance races are 

not run at vV’O2max, the ability of the athlete to run at a high percentage of V’O2max 

has a significant impact on running performance (Costill, Thomason, & Roberts, 

1973).  

 

Figure 4 - Comparison of male and female runners of equal V’O2max. The males are significantly favored in 

economy and in vV’O2max (P < 0.05). 
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Chapter 3  

Maximum Oxygen Uptake (V’O2max) 

 

Maximum oxygen uptake (V’O2max) is defined as the highest rate at which oxygen 

can be taken and utilized by the body during strenuous exercise. It is one of the 

main variables in the field of exercise physiology, and it is frequently used to 

indicate the cardiorespiratory fitness of an athlete.  

As previously shown in endurance running, performance is positively correlated 

with maximal oxygen consumption (V’O2max)(Costill, Branam, Eddy, & Sparks, 

1971). Costill et al.’s data were presented to show an inverse correlation (r 0.91) 

between V’O2max and time in a 10-mile run. These investigators used subjects with 

a wide range of V’O2max values (54.8 to 81.6 mL kg-1 min-1) to study this 

relationship. This was an appropriate research design to see whether a correlation 

existed between these two variables in that such a relationship must be evaluated 

over an appropriate range of values. When the range of V’O2max is narrow, as in 

highly trained athletes, the correlation between V’O2max and performance is not as 

satisfactory as one would like it to be. Indeed, Conley and Krahenbuehl (D L Conley 

& Krahenbuhl, 1980) found only a poor correlation (r = -0.12) between V’O2max 

and running time in a group of 12 first-class 10Km runners. This state of affairs can 

be easily understood by considering, for small intersubject differences in V’O2max, 

other factors like running economy, or the fraction of V’O2max exploited throughout 

the race, which may become crucial (D L Conley & Krahenbuhl, 1980; Costill et 

al., 1971, 1973; Maughan & Leiper, 1983). V’O2max is directly linked to the rate of 

ATP generated and maintained during a distance race, even though distance races 

are not run at 100% V’O2max. The rate of ATP generation depends on the V’O2 (mL 

kg-1 min-1) that can be maintained during the run, which is determined by the 

subject’s V’O2max and the percentage of V’O2max at which the subject can perform 

(Fig. 10). For example, to complete a 2h and 15’ marathon, a V’O2max of about 60 

mL kg-1 min-1 must be maintained throughout the race. Consequently, in a 

theoretical marathon run at 100% V’O2max, the runner would need a V’O2max of 60 

mL kg-1 min-1. However, a marathon is typically run at about 80–85% of V’O2max - 

the V’O2max values needed for that performance; in this case that would be 70.5–75 
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mL kg-1 min-1. This way V’O2max sets the upper limit for energy production in 

endurance events but does not determine final performance. As claimed by Bassett 

et al. (Bassett & Howley, 1997), there is no question that runners vary in running 

economy (RE) as well as in the percentage of V’O2max maintained in a run; both 

have a dramatic impact on the speed that can be maintained in an endurance race. 

 

     The O2 pathway from the atmosphere to the mitochondria contains a series of 

steps, each of which could represent a potential impediment to O2 delivery: 

1) pulmonary diffusing capacity; 

2) maximal cardiac output; 

3) oxygen carrying capacity of the blood; 

4) skeletal muscle characteristics.  

The first three factors can be classified as “central” factors; the fourth is termed a 

“peripheral” factor. 

The pulmonary system 

Modern researchers have verified that the pulmonary system may limit V’O2max in 

certain circumstances. Dempsey et al. (Dempsey, Hanson, & Henderson, 1984), for 

example, showed that elite athletes are more likely to undergo arterial O2 

desaturation during maximal work compared with normal individuals. Trained 

individuals have a much higher maximal cardiac output than untrained individuals 

(40 vs 25 L min-1). This leads to a decreased transit time of the red blood cells in 

the pulmonary capillary. Consequently, there may not be enough time to saturate 

the blood with O2 before it exits the pulmonary capillary. This pulmonary limitation 

in highly trained athletes can be overcome with O2-enriched air. Powers et al. 

(Powers, Lawler, Dempsey, Dodd, & Landry, 1989) performed two V’O2max tests 

(Fig. 5) on highly and normally trained subjects. In one case the subjects breathed 

room air and in the second they breathed a 26% O2 gas mixture. With hyperoxic 

gas, the highly trained group had an increase in V’O2max from 70.1 to 74.7 mL kg-1 

min-1  and an increase in arterial O2 saturation (SaO2) from 90.6% to 95.9% during 

maximal work. 
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Figure 5 - Effects of hyperoxia on maximum oxygen uptake (V ̇ O2max) in normal and highly trained 

individuals. The highly trained subjects had an increase in V ̇ O2max when breathing oxygen-enriched air, 

showing the presence of a pulmonary limitation in these subjects under normoxic conditions. From Powers, S. 

K., J. Lawler, J. A. Dempsey, S. Dodd, and G. Landry. Effects of incomplete pulmonary gas exchange on 

V ̇O2max.  

None of these changes were observed in normal subjects (V’O2max 56.5 mL kg-1 

min-1). Pulmonary limitations are evident in people who exercise at moderately high 

altitudes (3,000–5,000 m) (J. Daniels & Oldridge, 1970; Faulkner, A, & Kollias, 

1968). Individuals with asthma and other types of chronic obstructive pulmonary 

disease (COPD) suffer from a similar problem (a reduction in arterial PO2). Under 

these conditions, the ability to exercise can be increased with supplemental O2, 

which increases the “driving force” for O2 diffusion into the bloodstream 

(Davidson, Leach, George, & Geddes, 1988; Rooyackers, Dekhuijzen, Van 

Herwaarden, & Folgering, 1997). The ability to increase exercise capacity in this 

manner shows the presence of a pulmonary limitation.  

Hill et al. (Hill & Lupton, 1923) suggested that maximal cardiac output was the 

primary factor that explains individual differences in V’O2max. This was a major 

insight given the state of knowledge in 1923. Einthoven had only discovered 

electrocardiography a decade earlier. Hill used this new technique to measure 

maximal heart rates of around 180 beats min-1. However, it was not until around 

1930 that trained subjects were shown to have a lower heart rate at a fixed, 

submaximal work rate, providing evidence of increased stroke volumes. Other 
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methods of cardiac imaging for endurance athletes (x-rays and ultrasound) were not 

available until 1940–1950. Given the level of technology in 1923, it is incredible 

that Hill et al. (Hill & Lupton, 1923) were able to deduce that endurance athletes 

have hearts with superior pumping capacities. In 1915, Lindhard measured the 20 

l/min of average cardiac output in subjects during exercise and demonstrated the 

strong, linear relationship between cardiac output and V’O2. Hill and Lupton (Hill 

& Lupton, 1923) speculated that maximal cardiac output values of 30-40 L min-1 

were possible in trained athletes. These speculations were based on knowledge of 

Fick’s equation and assumed values for V’O2max, arterial oxygen content, and mixed 

venous oxygen content. Today, we know that the normal range of V’O2max values 

(L min-1) observed in sedentary and trained men and women of the same age is 

principally due to variation in maximal stroke volume, given that a considerably 

less variation exists in maximal HR and systemic oxygen extraction. During 

maximum exercise, almost all of the available oxygen is extracted from blood that 

perfuses the active muscles. The oxygen content of arterial blood is approximately 

200 mL O2 L-1; in venous blood draining maximally working muscles, it falls to 

about 20–30 mL O2 L-1. This shows that there is low oxygen concentration in blood 

that has not yet been extracted from the circulatory system during heavy exercise. 

Hence, the dominant mechanism to increase V’O2max with training must be an 

increase in blood flow (and O2 delivery). It is estimated that 70–85% of the 

limitation of V’O2max is linked to maximal cardiac output (Cerretelli & Di 

Prampero, 1971). Longitudinal studies have shown that a training-induced increase 

in V’O2max results primarily from an increase in maximal cardiac output rather than 

from a broadening of the systemic a-v O2 difference (Fig. 6). 

Saltin et al. (B Saltin et al., 1968) examined V’O2max in sedentary individuals after 

20 days of bed rest and after 50 days of training. The difference in V’O2max between 

the deconditioned and trained states resulted mostly from a difference in cardiac 

output. In a similar study, Ekblom et al. found that 16 weeks of physical training 

increased V’O2max from 3.15 to 3.68 L min-1. This improvement in V’O2max showed 

an 8.0% increase in cardiac output (from 22.4 to 24.2 L min-1) and a 3.6% increase 

in a-v O2 difference (from 138 to 143 mL L-1). 
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Figure 6 - Summary of changes that occur in maximum oxygen up-take (V ̇O2max) following bed rest and 

physical training. The higher V ̇ O2max under sedentary conditions compared with that under bed rest results 

from an increased maximal cardiac output. The further increase after training results from an increase in cardiac 

output and, to a lesser extent, an increase in the a-v O2 difference. From Åstrand, P.-O. and K. Rodahl. Textbook 

of Work Physiology. New York: McGraw-Hill, 1970. Used with permission. Data from reference 71. Saltin, B., 

B. Blomquist, J. H. Mitchell, R. L. Johnson, K. Wildenthal, and C. B. Chapman. Response to submaximal and 

maximal exercise after bed rest and after training.  

One way to greatly decrease cardiac output is with beta-blockade. Tesch (Tesch, 

1985) wrote an authoritative review of 24 studies detailing the cardiovascular 

responses to beta blockade. Beta-blockers can decrease maximal heart rate (HR) by 

25–30%. In these studies, maximal cardiac output decreased by 15–20%, while 

stroke volume increased slightly. The reduced cardiac output was partially 

compensated by an increased a-v O2 difference, with consequent V’O2max declining 

by 5–15%. Tesch (Tesch, 1985) concluded that the decline in V’O2max seen with 

cardio-selective beta-blockade was caused by diminished blood flow and oxygen 

delivery.  

 Another method of altering O2 transport to working muscles is by changing the 

hemoglobin (Hb) content of the blood (Ekblom, 1976). Blood doping is the practice 

of artificially increasing a person’s volume of total red blood cells through removal, 

storage, and subsequent reinfusion. Gledhill (Gledhill, 1982, 1985) completed 
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comprehensive reviews of 15–20 studies that examined the effects of blood doping. 

Reinfusion of 900–1,350 mL blood elevates the oxygen carrying capacity of the 

blood. This procedure has shown a 4–9% increase in V’O2max in well designed, 

double-blind studies (Gledhill, 1982, 1985). No improvement was observed in 

sham-treated individuals infused with a small volume of saline solution (Buick, 

Gledhill, Froese, Spriet, & Meyers, 1980). Once again, these studies provide 

evidence of a cause-and-effect link between O2 delivery and V’O2max. The evidence 

that V’O2max is limited by cardiac output, the oxygen carrying capacity, and in some 

cases by the pulmonary system is undeniable. This statement pertains to healthy 

subjects performing whole-body, dynamic exercise.  

Honig et al. (Honig, Connett, & Gayeski, 1992) presented evidence of a peripheral 

O2 diffusion limitation in red canine muscle. According to their experiments and a 

mathematical model, the principal site of resistance to O2 diffusion occurs between 

the surface of red blood cells and the sarcolemma. They reported a large drop in 

PO2 over this short distance. Honig et al. (Honig et al., 1992) concluded that O2 

delivery per se is not the limiting factor. They found that a low cell PO2 relative to 

blood PO2 is needed to maintain the driving force for diffusion and thus to enhance 

O2 conductance.  

 The experimental model of Honig et al. (Honig et al., 1992) is quite different from 

human exercise. Simply increasing blood flow into an isolated muscle is not 

sufficient to cause an increase in V’O2. The isolated muscle must also undergo 

contractions so that the mitochondria consume O2 (drawing down the intracellular 

PO2). Without a peripheral diffusion gradient, oxygen uptake will not increase. 

Their overall conclusion was that V’O2max is a distributed property, dependent on 

the interaction of O2 transport and mitochondrial O2 uptake (Honig et al., 1992). 

However, this model did not determine which of these two factors limits V’O2max 

in the intact human performing maximal exertion.  

The mitochondria in muscle fibers are the sites where O2 is consumed in the final 

step of the electron transport chain. In theory, doubling the number of mitochondria 

should double the number of sites for O2 uptake in muscle. However, human studies 

show that there is only a modest increase in V’O2max (20–40%) despite a 2.2-fold 
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increase in mitochondrial enzymes (Bengt Saltin, Henriksson, Nygaard, Andersen, 

& Jansson, 1977). This is consistent with the view that V’O2max, measured during 

whole-body dynamic exercise, is limited by oxygen delivery (not muscle 

mitochondria). Holloszy and Coyle (Holloszy & Coyle, 1984) suggested that, as a 

consequence of the increase in size and number of the mitochondria content of 

skeletal muscle, exercise at the same work rate elicits smaller disturbances in 

homeostasis in trained muscles. Two metabolic effects of an increase in 

mitochondrial enzymes are i) muscles adapted to endurance exercise will oxidize 

fat at a higher rate (thus sparing muscle glycogen and blood glucose), and ii) there 

is less lactate produced during exercise. These muscle adaptations are important to 

explain the improvement in endurance performance that occurs with training. The 

main effect of increased mitochondrial enzymes is improved endurance 

performance rather than increased V’O2max. Holloszy and Coyle (Holloszy, 1973; 

Holloszy & Coyle, 1984) noted that even in individuals with nearly identical 

V’O2max values, there can be a two-fold range in mitochondrial enzymes. 

Furthermore, low-intensity training may elicit small changes in mitochondrial 

enzymes without any changes in V’O2max, and vice versa  (Henriksson & Reitman, 

1977; Klausen, Andersen, & Pelle, 1981; Orlander, Kiessling, Karlsson, & Ekblom, 

1977). On the other hand, there is some evidence that the increase in mitochondria 

density plays a permissive role in allowing V’O2max to increase. Holloszy and Coyle 

(Holloszy & Coyle, 1984) noted that the lowest value for succinate dehydrogenase 

(SDH) activity in elite runners studied by Costill (Costill, Fink, & Pollock, 1976) 

was still 2.5-fold greater than that found for untrained individuals in the same study. 

The increase in muscle mitochondria content (number, size and enzymes) may 

allow a slightly greater extraction of O2 from the blood in working muscles, thus 

contributing in a minor way to higher V’O2max (Holloszy & Coyle, 1984).  

 In 1977 Andersen and Henriksson (Andersen & Henriksson, 1977) showed that 

capillary density increases with training. Other studies reported a strong 

relationship between the number of capillaries per fiber in the vastus lateralis and 

V’O2max (mL kg-1 min-1) measured during a cycle ergometery test (Bengt Saltin et 

al., 1977). The main significance of increased capillary density induced by training 

is not to accommodate blood flow but rather to maintain or extend the mean transit 
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time (B Saltin, 1985). This enhances oxygen delivery by maintaining oxygen 

extraction (a-v O2 difference) even at high rates of muscle blood flow. The ability 

of skeletal muscle to adapt to training in this way is far greater than observed in the 

lung (Dempsey, 1986). 

Longitudinal changes in V’O2max in well-trained runners, reported in the literature, 

have mostly been small or no change occurred at all (Berg, Latin, & Hendricks, 

1995; Ekblom, 1968; A. M. Jones, 1998; D. E. Martin, Vroon, May, & Pilbeam, 

1986). No significant changes in V’O2max occurred in three well-trained runners 

during 5 years of training, or in seven university track and cross-country runners 

during 1 year of training (Berg et al., 1995) . Experimentally, it is difficult to 

ascertain whether a runner has reached his or her trainable limit for V’O2max 

enhancement. Laursen and Jenkins (Paul B Laursen & Jenkins, 2002b) suggested 

that all cardiorespiratory adaptations that could be elicited by submaximal training 

have probably already occurred in distance runners competing at a relatively high 

level. It is possible that sufficient volumes of high intensity training are not included 

in the training programs of many well-trained runners in order for them to reach 

their trainable limit for V’O2max enhancement. Basset et al. (Basset, Chouinard, & 

Boulay, 2003) reported that the well-trained long-distance runners used in their 

study invariably trained at running speeds below vV’O2max (the minimal running 

velocity that elicits V’O2max during incremental running to volitional exhaustion) 

(V. Billat, Renoux, Pinoteau, Petit, & Koralsztein, 1994). Robinson et al. 

(Robinson, Robinson, Hume, & Hopkins, 1991) reported that 17 nationally ranked 

distance runners performed <4% of high-intensity interval training during their 

training sessions, with one-third doing no interval training. Average training 

intensity was 64% V’O2max. A retrospective study by Hewson and Hopkins 

(Hewson & Hopkins, 1995) found that most of the 123 distance-running coaches 

surveyed favored long slow-distance training, with limited time allocated to either 

‘hard’ continuous training or high-intensity interval training. Favoring training 

duration over intensity is also reflected in the long weekly training distances 

reported for well-trained distance runners (V. Billat, Demarle, Paiva, & Koralsztein, 

2002; V. L. Billat, Demarle, Slawinski, Paiva, & Koralsztein, 2001; Boileau, 

Mayhew, Riner, & Lussier, 1982). Studies reporting changes in the V’O2max of elite 
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and well-trained runners in response to high-intensity training (Table I) suggest that 

the V’O2max values of these runners had not reached a plateau and were responsive 

to high-intensity training, even during relatively short training periods. However, 

valid inferences cannot be made from these studies due to several methodological 

limitations. Only one of these studies reported statistically significant increases in 

V’O2max (V. Billat et al., 2002). Other studies demonstrated meaningful but 

statistically insignificant increases in V’O2max of 2–5% (V. L. Billat, Flechet, Petit, 

Muriaux, & Koralsztein, 1999; Laffite, Mille-Hamard, Koralsztein, & Billat, 2003; 

Mikesell & Dudley, 1984; T. Smith, Coombes, & Geraghty, 2003). The small 

sample sizes used in these studies and the associated statistical power of <30% 

(Power and Precision, Biostat, NJ, USA) in all but one of these studies was probably 

a major cause of the statistical insignificance (Cohen, 1992). Several studies (V. L. 

Billat et al., 1999; Laffite et al., 2003; T. Smith et al., 2003; T. P. Smith, 

McNaughton, & Marshall, 1999a) reported changes in relative V’O2max but did not 

report whether any changes in body mass occurred. It is therefore not possible to 

quantify how much of the increase in relative V’O2max was due to changes in 

cardiorespiratory fitness or how much was due to any changes in body mass.  

 

 

Training strategies to improve V’O2max 

 

Characterizing the physiological response to increased exercise intensity and how 

this response may elicit physiological adaptations that are associated with the 

enhancement of V’O2max may provide a physiological rationale for recommending 

a particular training intensity to enhance the V’O2max in distance runners.  

Training-induced increases in cardiac output (Q’max) are due to increased maximal 

stroke volume (SVmax), because maximal heart rate either decreases or remains the 

same (B Saltin et al., 1968). The main stimulus for myocardium morphological 

adaptation associated with SVmax enhancement is mechanical overload imposed by 

a volume overload-induced increase in ventricular diastolic stretch and increased 
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resistance to ventricular emptying due to greater afterload (Clausen, 1977; Cooper, 

1997). Neuroendocrine factors such as thyroxine, testosterone, angiotensin II, and 

catecholamines stimulate myocardial growth (Cooper, 1997; George, Wolfe, & 

Burggraf, 1991). Threshold intensities exist for the release of these hormones, and 

once surpassed, their rate of release increases curvilinearly with the increasing 

intensity of exercise (Hartley et al., 1972; Kotchen et al., 1971). Although training 

intensities above the anaerobic threshold appear obligatory to benefit from their 

potentiating effects, exercise intensity and duration interactions relating to hormone 

release and effects on physiological myocardial hypertrophy require further 

empirical research. Several study demonstated the effect of high intensity training 

on SVmax and accordingly VO2max in a period of 5 to 12 weeks in both untrained 

and active people(T. A. Astorino et al., 2017; Todd A Astorino et al., 2018; Bacon, 

Carter, Ogle, & Joyner, 2013; Daussin et al., 2007).   

Plasma volume, erythrocyte mass and blood volume increase in response to 

endurance training (B Saltin et al., 1968; D. E. R. Warburton et al., 2004). Sawka 

et al. (Sawka, Convertino, Eichner, Schnieder, & Young, 2000), following a review 

of 18 studies, underscored that plasma volume expansion plateaus increased after 

approximately 15 days of training and that total erythrocyte mass increased after 

approximately 30 days. Consequently, under normal physiological conditions, 

significant changes in blood volume occur only in poorly conditioned individuals, 

with little change in the already well-trained (Oscai, Williams, & Hertig, 1968). 

Even if a particular training strategy could increase blood volume in trained runners, 

it is unlikely to enhance SVmax to any significant extent. The SVmax of nine elite 

cyclists increased very little in response to an experimental 547mL increase in 

blood volume (D. E. R. Warburton et al., 2004), probably because trained 

endurance athletes are at or near their diastolic reserve capacity (Hopper, Coggan, 

& Coyle, 1988; D. E. Warburton, Gledhill, Jamnik, Krip, & Card, 1999). 

Skeletal muscle capillarization increases in response to endurance training 

(Andersen & Henriksson, 1977; Ingjer, 1979) and has been considered a major 

physiological adaptation in the enhancement of V’O2max (B Saltin & Rowell, 1980). 

The main stimulus for inducing capillarization is increased shear stress, and 
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capillary pressure results from a critical increase in blood flow velocity (Hudlicka, 

Brown, & Egginton, 1992). Since cardiac output and blood flow increase with 

increasing exercise intensity up to V’O2max, there should be an intensity-dependent 

increase in capillary shear stress and stimulus for capillarization up to V’O2max.  

Physiological structures or processes that demonstrate substantial long-term 

plasticity should be the target of training-induced adaptations for the longitudinal 

enhancement of a distance runner’s V’O2max. Myocardial morphological 

adaptations that increase SVmax would appear most important. Other important 

adaptations include increased capillarization of skeletal muscle and increased 

oxidative capacity of type II skeletal muscle fibers. The strength of the stimuli that 

elicit adaptations is exercise intensity dependent up to V’O2max, indicating that 

training at or near V’O2max may be the most effective intensity to enhance V’O2max 

in well- trained distance runners. However, Moffatt et al. suggested that as V’O2max 

is approached, the differentiation between stimuli decreases. (Moffatt, Stamford, 

Weltman, & Cuddihee, 1977). 

Research is therefore needed to understand the chronic adaptive effects elicited by 

different training intensities in the range of 90–100% V’O2max. Furthermore, the 

effects of such intensities on recreational athletes remain to be verified. 

 

 
 
 

 

Highlights 

 

• V’O2max is defined as the highest rate at wich oxygen can be taken and utilized by the 

body during strenuous exercise 

• V’O2max is positively correlated with endurance running performance 

• V’O2max is affected by central (Pulmunary Diffusing Capacity, Maximal cardiac output 

and oxygen delivering), and peripheral ( skeletal muscle caratheristics and functionality) 

factor 

• The individual differences between trained/untrained subject and man/woman with same 

age, is principally due to variation in cardiac output 

• To improve, V’O2max in well-trained and SV in recreational athletes, the most effective 

intensity is near V’O2max  
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Chapter 4  
Running Economy 

 

Efficient utilization of available energy facilitates optimum performance in any 

endurance running event. Efficiency refers to the ratio of work done to energy 

expended (J. T. Daniels, 1985). RE is energy expenditure expressed as the 

submaximal V’O2max at a given running speed (Anderson, 1996; D L Conley & 

Krahenbuhl, 1980; Morgan & Craib, 1992). The energy cost of running reflects the 

sum of both aerobic and anaerobic metabolism, and the aerobic demand (measured 

by the V’O2 in L/min) at a given speed does not necessarily account for the total 

energy cost of running, which is measured in joules or kilojoules of work done (J. 

T. Daniels, 1985). Runners with good RE use less oxygen than runners with poor 

RE at the same steady-rate speed, and RE can vary among runners with a similar 

V’O2max by as much as 30% (J. T. Daniels, 1985). Data from Conley and 

Krahenbuhl (D L Conley & Krahenbuhl, 1980) were used to show a relatively 

strong correlation (r 0.82) between running economy and performance in a 10K run 

in a group of runners with similar V’O2max but with a range of 10-km times of 30.5–

33.5 min. When they reduced the evaluation to the four fastest runners (10 km in 

30.5–31 min), there was considerable variability in the economy of running (45–49 

mL kg-1 min-1 at 268 m min-1), which suggests a lack of association between the 

variables. As mentioned for V’O2max, this is an expected result. A correlation 

coefficient will approach zero as the range of values for one of the variables (in this 

case, performance times ranging from 30.5 to 31 min) approaches zero. There is 

little point in looking at a correlation unless the range of values is sufficient to 

determine whether a relationship exists. There is a linear relationship between 

submaximal running velocity and V’O (mL kg-1 min-1) for everyone. However, 

there is considerable variation among individuals regarding how much oxygen it 

takes to run at a given speed, that is, running economy.  

Figure 5 shows a bar graph of the variation in running economy (expressed in mL 

kg-1 min-1) measured at different relative speed among trained and untrained subject 

stratified by performance capability (Morgan et al., 1995a). The group of elite 

runners had better running economy than the other groups of runners, and all 

running groups were better than the group of untrained subjects. However, one of 
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the most revealing aspects of this study was the within-group variation; there was a 

20% difference between the least and most economical runner in any group 

(Morgan et al., 1995a). 

 

Figure 5 – Minimum, mean, and maximum aerobic demand running economy values for elite runners 

(Category 1), subelite runners (Category 2), good runners (Category 3), and untrained subjects (Category 4). 

From  Morgan, D.W., D.R. Bransford, D.L. Costill, 1995 

In support of this data, the study of Daniels et al. showed that RE can vary among 

runners with similar V’O2max by as much as 30% (J. T. Daniels, 1985). In elite or 

near-elite runners with a similar V’O2max, RE is a better predictor of performance 

than V’O2max (Costill et al., 1973; Morgan, Baldini, Martin, & Kohrt, 1989). Weston 

compared the RE and performance of Kenyan and Caucasian distance runners. 

Despite their 13% lower V’O2max, Kenyans had similar 10K race times compared 

with Caucasians thanks to their 5% better RE. The Kenyan runners also completed 

the 10K race at a higher percentage of their V’O2max but with similar blood lactate 

concentration levels compared with Caucasian runners. In their study, Tam et al. 

(Tam et al., 2012) found that top-level Kalenjin marathon runners were 

characterized by high, but not very high, V’O2max (64.9 ± 5.8 vs. 63.9 ± 3.7 ml kg-1 

min-1) compared with Europeans, an extremely high fraction of V’O2max (0.825 ± 

0.050 in KA and 0.836 ± 0.062 in Europeans) and a low cost of running (Cr) (3.64 

± 0.28 vs. 3.63 ± 0.31 J kg-1 m-1). However, the dominance of Kenyan marathon 

runners over Caucasians cannot be explained by differences in the energetics of 

running since the small functional differences highlighted in this study do not fully 

justify the differences in performance.  
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Despite this controversial result, it follows that substantial improvements in RE 

could facilitate improved performance in elite distance runners. 

In summary, the relationship between RE and performance is well documented, 

with many independent reports demonstrating a strong relationship between RE and 

distance running performance (D L Conley & Krahenbuhl, 1980; Costill et al., 

1973; P E Di Prampero et al., 1993). RE is likely to be influenced by several factors 

(training, altitude, heat) (Fig. 6) that can reduce the oxygen cost over a range of 

running speeds and conceivably lead to enhanced performance.   

 

Figure  6 - Factors affecting running economy from Saunders P.U., Pyne D.B. Telford R.D. and Hawley J.A. 

Factors Affecting Running Economy in Trained Distance Runners, Sport Med. 2004; 34 (7); 465-485 

Running involves the conversion of muscular forces translocated through complex 

movement patterns that utilize all the major muscle joints in the body. High 

performance running relies on skill and precise timing in which all movements have 

purpose and function (Anderson, 1996). An intuitive link exists between running 

technique and economy, since performing mechanical patterns with non-productive 

movements and applying forces of appropriate magnitude in the right directions 

with precise timing will result in less energy consumption at a given running speed 

(Anderson, 1996). In this regard several investigators attempted to explain the inter-

individual variations in RE through differences among runners in the biomechanical 

patterns of their running style. The first descriptor of running style that was related 

to the energy requirement of running was stride length. Several studies (P R 
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Cavanagh & Williams, 1982; Hogberg, 1952; Minetti, Ardigò, & Saibene, 1994; 

Powers, Hopkins, & Ragsdale, n.d.) showed that runners self-select the optimal 

stride length for a given speed, and RE tends to increase curvilinearly as stride 

length changes (lengthened or shortened). Cavanagh (P R Cavanagh & Williams, 

1982) reported that there is little need to dictate stride length for well-trained 

athletes since they already tend to display near optimal stride lengths. He suggested 

two mechanisms to explain this phenomenon. Firstly, runners naturally acquire an 

optimal stride length and stride rate over time based on perceived exertion. 

Secondly, runners may adapt physiologically through repeated training at a 

particular stride length/stride frequency combination for a given running speed (P 

R Cavanagh & Williams, 1982).  

Several other discrete kinematic variables have been related to running economy. 

An early study by Cavanagh (Peter R. Cavanagh, Pollock, & Landa, 1977) indicated 

that economic elite runners had less vertical oscillation and were more symmetrical 

compared to less economic athletes. In a study carried out on elite male distance 

runners, Williams (Williams & Cavanagh, 1987) compared 3 groups of runners 

divided according to their RE at 3.6 m·s-1(low, medium and high VO2) and found 

that better RE was associated with a higher shank angle with the vertical at the foot 

strike, less plantarflexion at toe-off and more flexed knee in the mid-support. Less 

amplitude of arm movements was also associated with better economy (Anderson, 

1996; Williams & Cavanagh, 1987). A more recent research study 

(KYR??L??INEN, BELLI, & KOMI, 2001) related RE to several three-

dimensional kinematic and kinetic parameters and EMG activity at different speeds. 

None of the considered kinematical indices (angular displacements between the 

ankle, knee and hip joints, joint angular velocities) was, taken alone, a good 

predictor of RE. Although significant differences and trends have been observed 

between economic and non-economic runners in some kinematical parameters, the 

relationships appear weak and inconsistent among studies. This is due to the 

complex interrelationships among the multitude of discrete mechanical descriptors 

of running technique that globally influence RE as also demostrated by Lussiana et 

al. (Lussiana et al., 2017) that found that different running patterns were associated 

with similar RE. Therefore, definitive conclusions cannot be confirmed on the basis 
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of present data, and further studies using proper statistical analyses to deal with 

multiple variables are necessary.  

Numerous studies have related descriptors of ground reaction forces (GRF) to RE. 

Williams (Williams & Cavanagh, 1987) found that more economical runners 

showed significantly lower first peaks in the vertical component of the GRF and 

tended to have smaller horizontal and vertical peak forces. Based on these results, 

they suggested that differences in kinematics, especially before the foot strike, may 

affect muscular demand and thus RE. Heise (Heise & Martin, 2001) investigated 

the support requirements during foot contact of trained male runners. Higher total 

and net vertical impulses were shown in the less economical athletes, indicating 

wasteful vertical motion. The combined influence of vertical GRF and the time 

course of the force application explained 38% of the inter-individual variability in 

RE. However, other GRF characteristics like medial-lateral or horizontal moments 

were not significantly correlated with RE. Kyrolainen (KYR??L??INEN et al., 

2001) found that the rate of force production increased with increasing running 

speed and that the horizontal (braking) component of the GRF was related to RE. 

They suggested that increasing the pre-landing and braking activity of the leg 

hamstring muscles might prevent unnecessary yielding of the runner during the 

braking phase, with an enhancement of muscular-tendon stiffness, and a resulting 

improvement in RE. In summary, relationships between RE and GRF 

characteristics have been repeatedly shown, although the inherent mechanisms need 

to be more clearly understood. Insights to analyzing the inter-individual variations 

in RE in competitive athletes come from the field of comparative biology. Kram 

(Kram & Taylor, 1990) investigated the aerobic demand of locomotion in several 

animal species. He presented an inverse relationship between RE and contact time, 

indicating that the energy cost of running is determined by the cost of supporting 

the animal’s mass and time course of generating force (Kram & Taylor, 1990). 

Subsequent studies confirmed that the requirement to support body mass, expressed 

by vertical GRF, is the major metabolic cost of running (Chang & Kram, 1999; 

Farley & McMahon, 1992). However, experiments applying impending and 

assisting horizontal forces demonstrated that also the horizontal component of GRF 

significantly affects the metabolic cost of running (Chang & Kram, 1999; Cooke, 
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McDonagh, Nevill, & Davies, 1991). Finally, recent studies carried out on running 

animals and humans have clearly shown that the muscular force required to swing 

the limb also contributes to a significant amount of energy expenditure (Modica & 

Kram, 2005). 

Anthropometric characteristics such as limb dimensions and proportions have been 

addressed as potential influences on RE. Assuming that leg length contributes to 

angular inertia and to the metabolic cost of moving the legs during running 

(Anderson, 1996), it should be an important factor in determining RE. However, 

Williams (Williams & Cavanagh, 1987) found no differences in leg length between 

economic and non-economic male distance runners. As for kinematic parameters, 

it is quite unlikely that a single anthropometric index may discriminate among 

different levels of RE, since RE is complexly affected by a multitude of interacting 

factors, and the effect of a single factor may be hidden by the others.  

 In contrast, there is some evidence that leg mass and leg mass distribution may 

influence RE. In studies where leg angular inertia was altered when weights were 

added to the extremities, it was demonstrated that increasing shoe weight by only 

50 g increased RE by ∼1% (B. H. Jones, Knapik, Daniels, & Toner, 1986; P. E. 

Martin, 1985). Myers (Myers & Steudel, 1985) studied 4 athletes trained to run with 

additional weight on their trunks, upper thighs, upper shanks, and ankles. All limb 

loadings resulted in greater cost of running than when the same masses were 

attached to the waist, with cost increasing as the position of loads became more 

distal. Another study involving ankle and wrist loading revealed that RE was lowest 

in the unloaded condition, followed by ankle loading only, wrist loading only, and 

both wrist and angle loading. This research stream led to a claim that for a given 

body mass and a given speed, smaller and more proximally distributed limb mass 

results in lower kinetic energy required to accelerate and decelerate the limbs and 

thus a lower cost of running.  

Several studies contend that flexibility affects RE (Craib et al., 1996; Gleim, 

Stachenfeld, & Nicholas, 1990; Godges, Macrae, Longdon, Tinberg, & Macrae, 

1989). Godges (Godges et al., 1989) showed in college student athletes that RE 

improved with better hip flexion and extension. This finding reflected the empirical 
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belief that improved flexibility is desirable to increase RE and may be explained by 

an enhanced neuromuscular balance due to greater flexibility, which elicits lower 

V’O2. Contrarily, Gleim (Gleim et al., 1990) found that untrained subjects with the 

lowest flexibility were the most economical. This was explained by inflexibility in 

the transverse and frontal planes of the trunk and hip regions of the body that 

stabilizes the pelvis at foot strike. This may have the effect of reducing both an 

excessive range of motion and metabolically expensive stabilizing muscular 

activity. Craib et al. (Craib et al., 1996) examined the relationship between RE and 

selected trunk and lower limb flexibility in tests on trained male distance runners. 

Inflexibility in the hip and calf was associated with better RE by minimizing the 

need for muscle-stabilizing activity and increasing the storage of elastic energy. 

Another study (A M Jones, 2002) found that lower limb and trunk flexibility was 

negatively related to RE in elite male distance runners. The author interpreted his 

results stating that improved RE may reflect greater stability of the pelvis, reduced 

requirement for additional muscular activity at foot strike, and greater storage and 

return of elastic energy due to inflexibility of the lower body. Kyrolainen 

(KYR??L??INEN et al., 2001) found that stiffer muscles around the ankle and knee 

joints in the braking phase of running increased force expression in the push-off 

phase. Therefore, stiffer and more inflexible muscles in the legs and lower trunk 

could enhance RE via increased energy from elastic storage and return. According 

to a review by Saunders (Philo U. Saunders, Pyne, Telford, & Hawley, 2004), the 

findings of these studies taken together suggest that there is an optimal level of 

flexibility whereby RE can benefit, although a certain degree of muscle stiffness is 

also required to maximize elastic energy storage and return in the trunk and legs.  

Training strategies to improve running economy 

 

To date, a wide range of acute and chronic interventions have been investigated 

with respect to improving economy, including various forms of resistance training, 

endurance training and high-intensity interval training (HIT), altitude exposure, 

stretching, as well as nutritional supplements (Fig. 7). 
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Figure 7 - Diagram of strategies to improve running economy from K.R. Barnes K.R., Kilding A. E; 

Strategies to Improve Running Economy, Sports Medicine, 2014 

Various physiological responses occur during endurance training in runners, and it 

is likely that the characteristics of training influence RE. Endurance training leads 

to increases in the morphology and functionality of skeletal muscle mitochondria 

(Holloszy, Rennie, Hickson, Conlee, & Hagberg, 1977; Philo U. Saunders et al., 

2004). Specifically, an increase in the oxidative muscle capacity allows trained 

runners to use less oxygen per mitochondrial respiratory chain during submaximal 

running (Assumpção, Lima, Oliveira, Greco, & Denadai, 2013). Furthermore, 

adaptations such as improved skeletal muscle buffer capacity (Gore et al., 2001) 

and hematological changes (Burtscher, Nachbauer, Baumgartl, & Philadelphy, 

1996; Levine & Stray-Gundersen, 1997) (i.e., increased red cell mass) have been 

observed following various training modalities. These adaptations could also 

invoke improvements in oxygen delivery and utilization that could improve an 

athlete’s RE. While training has been suggested to elicit a range of central and 

peripheral adaptations that improve the metabolic and cardiorespiratory efficiency 

of a runner (Green, 2000), many of these adaptations are largely governed by the 

training load, which can be manipulated for a given athlete by increasing the volume 

or intensity of running over time. Successful endurance runners typically undergo 

several years of training to enhance the physiological characteristics important to 

determining success in distance running events. Indeed, the number of years of 

running experience and high training volumes have been suggested as being 
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important to RE (Morgan et al., 1995b; R. C. Nelson & Gregor, 1976). 

Unfortunately, the few longitudinal studies that have examined this issue have 

yielded little consensus, with findings indicating no change (J. T. Daniels, 

Yarbrough, & Foster, 1978; Wilcox & Bulbulian, 1984), a slight increase, and 

varying degrees of reductions (1–15 %) in submaximal V’O2 among trained and 

untrained runners engaging in different combinations of years, distance, interval 

and uphill training (Balsom, Seger, Sjödin, & Ekblom, 1992; Douglas L. Conley, 

Krahenbuhl, & Burkett, 1981; Svedenhag & Sjödin, 1984). Midgley et al. (Midgley, 

McNaughton, & Jones, 2007) suggested that the most important factor in improving 

RE may be the cumulative distance a runner has run over years of training and not 

short-term (several weeks to months) bouts of high training volume per se. This 

may be due to continued long-term adaptations in metabolic, biomechanical and 

neuro-muscular efficiency (Midgley et al., 2007; R. C. Nelson & Gregor, 1976). 

Case study data from world-class runners also suggests that RE improves over 

several years of training (Douglas L Conley, Krahenbuhl, Burkett, & Millar, 1984; 

Ingham, Fudge, & Pringle, 2012; A. M. Jones, 1998; Andrew M. Jones, 2009); 

however, the role played by the interaction between training volume and 

consistency of training in such improvements over several years of training remains 

unclear.  

 The influence of training volume on RE is not well discussed in the literature, and 

unfortunately, no training studies to date have examined the implications of 

increased training volume while controlling for potential confounding variables like 

training intensity. However, in a cross-sectional investigation, Pate et al. (Pate, 

Macera, Bailey, Bartoli, & Powell, 1992) reported that training volume was not 

associated with better RE. Nevertheless, the importance of training volume should 

not be downplayed, as high-volume training plays a major role in inducing 

adaptations important to successful distance running (P. B. Laursen, 2010).  

 Studies that incorporated flat overground HIT into the training programs of 

distance runners reported equivocal results in relation to improved RE. Jones and 

Carter (Andrew M. Jones & Carter, 2000) suggested that runners are typically more 

economical at the running speeds at which they habitually train. HIT at 93–120% 
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velocity at V’O2max (vVO2max) and continuous running at velocity at the onset of 

blood lactate accumulation (vOBLA) ] have both been shown to improve RE by 1–

7% (Kyle R Barnes, Hopkins, McGuigan, & Kilding, 2013; V. L. Billat et al., 1999; 

Franch, Madsen, Djurhuus, & Pedersen, 1998; Laffite et al., 2003; Sjödin, Jacobs, 

& Svedenhag, 1982). Other studies using similar training intensities reported no 

significant improvement (Kyle R Barnes et al., 2013; Franch et al., 1998; T. P. 

Smith, McNaughton, & Marshall, 1999b; Yoshida et al., 1990). Morgan et al. 

(Morgan, Martin, & Krahenbuhl, 1989) suggested that the type of training exerts a 

negligible effect on improved RE, based on the observation that several studies 

reported no differences in changes in RE despite the fact that runners engaged in 

different interval training programs. Franch et al. (Franch et al., 1998) compared 

interval training at 94, 106 and 132% vV’O2max and found that RE significantly 

improved in the 94% and 106% groups, but not in the group that trained at 132% 

vV’O2max. This suggests that very high-intensity running is not effective in 

improving RE, possibly because of a loss of running form at very high running 

speeds, or of an inability to complete a sufficient training volume to elicit a training 

effect (Midgley et al., 2007). Biomechanical changes could improve exercise 

efficiency following HIT. However, Lake and Cavanagh (Lake & Cavanagh, 1996) 

investigated the effects of 6 weeks of HIT on various biomechanical variables in a 

group of 15 males moderately trained runners ( and found no relationship between 

changes in performance, vV’O2max, RE and biomechanical variables at 3.36ms-1 on 

a treadmill. The authors concluded that improvements in performance following 

HIT were more likely to be due to physiological rather than biomechanical factors 

because there were no changes in biomechanical descriptors of running style that 

signaled changes in running economy.  

Also, uphill running represents a frequently prescribed form of HIT in periodized 

training programs for distance runners. Moreover, references to its potential 

effectiveness as a movement-specific form of resistance training have appeared in 

several reviews (L. V Billat, 2001; Midgley et al., 2007; Philo U. Saunders et al., 

2004). However, there are only anecdotal reports on and limited research 

investigations into the physiological responses to and potential improvements in 

performance with such training (Kyle R Barnes et al., 2013; Vukovich, 2013). 
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Unlike other modes of resistance training, where a transfer of learning would need 

to occur to improve RE, uphill running is movement specific and the mechanisms 

for improving RE are likely to directly affect one or more of the metabolic, 

biomechanical and neuromuscular systems.  

Various forms of resistance training can be adopted, and several have been shown 

to improve RE in recreational (Taipale et al., 2010; Taipale, Mikkola, Vesterinen, 

Nummela, & Häkkinen, 2013), moderately trained (Albracht & Arampatzis, 2013; 

K. Barnes, 2014; Berryman, Maurel, & Bosquet, 2010; Guglielmo, Greco, & 

Denadai, 2009; Piacentini et al., 2013a; Støren, Helgerud, Støa, Hoff, 2008), and 

highly trained runners (Millet, Jaouen, Borrani, Candau, 2002; Sedano, Marín, 

Cuadrado, Redondo, 2013). Resistance training may improve RE through several 

mechanisms. Kyrolainen et al. (KYR??L??INEN et al., 2001) proposed that 

resistance training may improve RE through improved lower limb coordination and 

co-activation of muscles, thereby increasing leg stiffness and decreasing stance 

phase contact times, allowing a faster transition from the braking to the propulsive 

phase through elastic recoil (Cheng et al., 2012; Häkkinen et al., 2003; 

KYR??L??INEN et al., 2001; L. Paavolainen, Hakkinen, Hamalainen, Nummela, 

& Rusko, 2003; L. Paavolainen, Häkkinen, Hämäläinen, Nummela, & Rusko, 1999; 

Sale, 1988). Heavy resistance training may primarily cause hypertrophy of type IIA 

and IIB (fast twitch) fibers, but also type I (slow twitch) fibers (Staron et al., 1991, 

1994), resulting in less motor unit activation to produce a given force (Moritani & 

deVries, 1979). Unfortunately, increases in body mass are an undesirable side effect 

to increases in muscle strength from resistance training that could be counter-

productive to distance running performance. However, increased muscular strength 

might primarily come from neural adaptations without observable muscle 

hypertrophy since most studies have reported little or no changes in body mass, fat 

free mass, percentage body fat or girth measurements following heavy resistance 

training. Sale (Sale, 1988) reports that heavy resistance training induces changes in 

the nervous system which allow an athlete to increase activation of the working 

muscles, thus producing a greater net force with each stride. An increase in strength 

following heavy resistance training as a result of increased motor unit recruitment 

and motor unit synchronization may improve mechanical efficiency and motor 
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recruitment patterns (Kraemer, Fleck, & Evans, 1996; Sale, 1988). Greater 

muscular strength following heavy or strength-endurance resistance training has 

previously been shown to delay muscular fatigue, resulting in a smaller increase in 

oxygen consumption (decreased RE) at any given speed during sustained endurance 

exercise (Hayes, French, & Thomas, 2011). It is well documented that initial 

performance gains following heavy resistance training are a result of neuromuscular 

adaptations rather than within-muscle adaptations (e.g., hypertrophy) (Kraemer et 

al., 1996; Sale, 1988). Several studies (Guglielmo et al., 2009; Millet et al., 2002; 

STØREN et al., 2008; Taipale et al., 2010) have reported concomitant 

improvements in RE and maximal strength following heavy resistance training, 

indicating positive neuromuscular adaptations. Other studies (Kyle R. Barnes, 

Hopkins, Mcguigan, Northuis, & Kilding, 2013; Berryman et al., 2010; Cheng et 

al., 2012; Piacentini et al., 2013b; Sedano et al., 2013) have demonstrated that the 

combination of strength-endurance resistance training and endurance training 

improves running performance and enhances RE in moderately and highly trained 

runners. Regardless of whether strength gains occur at the muscular level, neural 

level, or both, available evidence suggests that if a more efficient recruitment 

pattern is induced, decreases in oxygen consumption at a given speed are likely to 

occur (Bransford & Howley, 1977; Morgan et al., 1995a); however, more research 

is necessary to support these assertions.  

Improved RE may also be due to increases in strength that cause positive changes 

in mechanical aspects of running style (i.e., improved biomechanical efficiency)  

(E. Johnson, Quinn, Kertzer, & B. Vroman, 1997), thus allowing a runner to do less 

work at a given running speed. A number of biomechanical variables have been 

identified that relate to RE, thereby providing support for the hypothesis that the 

mechanical aspects of running style do have an influence on RE (Anderson, 1996). 

Another possible explanation for improved RE following heavy resistance training 

could involve muscle fiber-type conversion from less efficient fast twitch fibers 

(type IIB) to more efficient oxidative fibers (type IIA and type I), though existing 

data in athletes is conflicting (EDWARD F Coyle, Hemmert, & Coggan, 1986; 

Staron et al., 1990, 1991, 1994). For example, Staron et al. (Staron et al., 1990, 

1991, 1994) found concomitant decreases in submaximal V’O2 and in type IIB 



  38 

fibers, with a simultaneous increase in type IIA fibers following a heavy-resistance, 

low-velocity, lower body resistance training program in untrained men and women. 

Conversely, Coyle et al. (EDWARD F Coyle et al., 1986) reported that V’O2 

remained unchanged for the same absolute submaximal intensity throughout a 

detraining period, despite a large shift from type IIA to IIB fibers when studying 

seven endurance-trained subjects 12, 21, 56 and 84 days after cessation of training, 

which suggested that muscle fiber conversion has little or no impact on RE.  

The concept of movement specificity suggests that the type of resistance training 

used by runners should closely simulate the movement that will be performed 

during training and competition (Jung, 2003). Plyometric and explosive resistance 

training are specific forms of strength training that aim to enhance the ability of 

muscles to generate power by exaggerating the stretch shortening cycle (SSC), 

using explosive exercises such as jumping, hopping and bounding (Turner, AM, 

Owings, M and Schwane, 2003). Plyometric training has the potential to increase 

the stiffness of the muscle-tendon system, which allows the body to store and utilize 

elastic energy more efficiently, resulting in decreased ground contact time and 

reduced energy expenditure (Anderson, 1996; P R Cavanagh & Kram, 1985; 

Mikkola et al., 2011; Spurrs, Murphy, & Watsford, 2003). Paavolainen et al. (L. 

Paavolainen, Häkkinen, et al., 1999) reported that 9 weeks of explosive resistance 

training improved 5K run performance (mean 3.1%) and RE (mean 8.1%) with no 

changes in VO2max in 22 moderately trained male runners. Furthermore, they 

observed significant improvements in velocity over a 20-m sprint (mean 3.4%) 

distance jumped (mean 4.6%) along with a concurrent decrease in stance phase 

contact times (L. Paavolainen et al., 2003). These variables are thought to represent 

indirect measures of the neuromuscular system’s ability to repeatedly produce rapid 

force during intense exercise and its capability to store and utilize elastic energy (L. 

Paavolainen, Häkkinen, et al., 1999; L. M. Paavolainen, Nummela, & Rusko, 1999; 

L. Paavolainen, Nummela, Rusko, & Häkkinen, 1999). The authors suggested that 

improved performance was a result of enhanced neuromuscular characteristics and 

biomechanical efficiency that were transferred into improved muscle power and RE 

(L. Paavolainen, Häkkinen, et al., 1999).  
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The importance of neuromuscular characteristics in determining RE and thereby 

running performance has also been pointed out previously (Dalleau, Belli, Bourdin, 

& Lacour, 1998; Spurrs et al., 2003). Dalleau et al. (Dalleau et al., 1998) showed 

that the energy demand during running is significantly related to the stiffness of the 

propulsive leg. Similarly, Spurrs et al. (Spurrs et al., 2003) demonstrated that 6 

weeks of plyometric training significantly improved RE, muscle-tendon stiffness, 

maximal isometric force, rate of force development, jump height, five-jump 

distance and 3-km time trial performance. Plyometric training consisted of 2–3 

sessions a week of various unloaded jumps, bounds, and hops. Several other studies 

have provided support that simultaneous plyometric or explosive resistance training 

and endurance training improves RE in recreational (Taipale et al., 2010, 2013; 

Turner, AM, Owings, M and Schwane, 2003), moderately trained (Kyle R. Barnes 

et al., 2013; Berryman et al., 2010; Guglielmo et al., 2009; Mikkola, Rusko, 

Nummela, Pollari, & Häkkinen, 2007; L. Paavolainen et al., 2003; Spurrs et al., 

2003), and highly trained runners (Philo U. Saunders et al., 2006). Saunders et al. 

(Philo U. Saunders et al., 2006) examined the effects of 9 weeks of plyometric 

training on RE in highly trained runners using loaded and unloaded exercises 3 

times a week. The subjects were tested for RE at 14, 16 and 18 km h-1 at weeks 5 

and 9; however, significant improvements were only found at week 9 for the km h-

1 test. Other studies showed improvements in RE after 8 weeks of plyometric 

training in moderately trained runners with no change in V’O2max (Berryman et al., 

2010; Mikkola et al., 2007), with the former study showing a (mean) 7% 

improvement in RE and (mean) 5.1% in 3-km run performance. Proposed 

explanations for the improvements include increased lower limb stiffness and 

elastic energy return, enhanced muscle strength and power, or enhanced running 

mechanics. Recent evidence has also suggested RE can be greatly improved (mean 

6.0%) following a series of warm-up strides with a weighted vest; and this was 

consistent with improved lower limb stiffness (K. R. Barnes, Hopkins, McGuigan, 

& Kilding, 2015). Turner et al. (Turner, AM, Owings, M and Schwane, 2003), 

however, reported no changes in four indirect measures of the ability of the muscles 

to store and return elastic energy despite a (mean) 3% improvement in RE following 

6 weeks of plyometric training in recreational runners. These findings suggest that 
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either more direct measures of potential mechanisms that could improve RE need 

to be done in future research or other factors are yet to be elucidated as potential 

mechanisms for enhancing RE following plyometric training.  

Ways to improve RE besides endurance and resistance training are constantly 

sought after by athletes, coaches and sports scientists; however, there is a paucity 

of data regarding environmental strategies. Training at altitude offers one potential 

strategy. Despite altitude exposure being reasonably well-researched over the past 

few decades, there is still limited data in regard to improving RE; other strategies 

such as training in hot, cold or humid environments are yet to be examined. Many 

athletes undertake some form of altitude training to gain small improvements in 

physiology and performance. Results from a recent meta-analysis indicate a  1–4% 

performance enhancement following various protocols using natural and artificial 

altitude exposure in highly and moderately trained athletes (Bonetti & Hopkins, 

2009). Improvements in performance have been primarily attributed to increased 

hematological parameters that lead to an increase in maximal aerobic capacity 

(Levine & Stray-Gundersen, 1997; Robertson et al., 2010; Philo U Saunders, 

Telford, Pyne, Gore, & Hahn, 2009; Stray-gundersen, Chapman, Levine, Chapman, 

& Levine, 2018); however, hypoxia-induced enhancements in muscle buffering 

capacity (Gore et al., 2001) and RE (P. U. Saunders, 2003; P. U. Saunders, Telford, 

Pyne, Hahn, & Gore, 2009) have also been suggested. The literature indicates that 

altitude exposure for runners has no detrimental effects on their RE and that there 

is good evidence to suggest that it may lead to worthwhile improvements in RE at 

sea level. Altitude acclimatization results in both central and peripheral adaptations 

that improve oxygen delivery and utilization and enhance metabolic efficiency - 

mechanisms that could potentially explain the changes in RE. Many of the studies 

that did not find an improvement in RE after altitude exposure were performed close 

to the competition season, which emphasizes the importance of timing and training 

phase on the effectiveness of altitude exposure on RE.  
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Flexibility and Stretching 

There appear to be equivocal results in regard to the effects of stretching or 

flexibility on RE. Some researchers have identified an inverse relationship between 

flexibility and RE; that is, less flexibility is associated with better RE (Craib et al., 

1996; Gleim et al., 1990; A M Jones, 2002; Mikkola et al., 2011; Trehearn & 

Buresh, 2009). Gleim et al. tested 100 male and female subjects over a range of 

speeds from 3 to 12 km h-1 and found that those who exhibited less flexibility in a 

battery of 11 trunk and lower limb flexibility tests were most economical. These 

results suggest that the inflexibility of the lower limbs and trunk musculature as 

well as limited range of motion around the joints of the lower body allow for greater 

elastic energy storage and use in the muscles and tendons during the running gait 

(Gleim et al., 1990; A M Jones, 2002). Specifically, it was suggested that 

inflexibility in the transverse and frontal planes of the trunk and hip regions of the 

body may stabilize the pelvis at the time of foot impact with the ground, reducing 

excessive range of motion and metabolically expensive stabilizing muscular 

activity (Gleim et al., 1990). Furthermore, research has demonstrated that runners 

with tighter or stiffer musculotendinous structures store more elastic energy in their 

lower limbs, resulting in lower V’O2 at submaximal running speeds (Kyle R. 

Barnes, Mcguigan, & Kilding, 2014; Craib et al., 1996; Gleim et al., 1990; A M 

Jones, 2002).  

In contrast, other research fails to support the existence of an inverse relationship, 

countering that flexibility is an essential component of distance running 

performance (Beaudoin & Whatley Blum, 2005; Godges et al., 1989; Godges, 

MacRae, & Engelke, 1993;  a G. Nelson, Kokkonen, Eldredge, Cornwell, & 

Glickman-Weiss, 2001). Godges et al. found improved RE at 40, 60 and 80% 

V’O2max in response to static stretching procedures in seven moderately trained 

male college student athletes when flexibility increased. They reported a reduced 

aerobic demand of running at all speeds when hip flexion and extension were 

increased (Godges et al., 1989). Improved hip flexibility, myofascial balance, and 

pelvic symmetry due to stretching are thought to enhance neuromuscular balance 

and contraction, thus leading to lower submaximal V’O2 and improved RE. These 

results corroborate general beliefs that improved flexibility is desirable for optimal 
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running performance.  

 

Nutritional supplements  

Beyond the typical endurance preparation of an athlete, which includes a lot of 

aerobic training, HIT, resistance and/or plyometric training, and various 

environmental exposures during a periodized season (Stellingwerff, 2013), several 

nutritional supplements have received attention for their effects on reducing oxygen 

demand during exercise, most notably dietary nitrates. Nitric oxide (NO) is an 

important physiological signaling molecule that can modulate skeletal muscle 

function through its role in the regulation of blood flow, muscle contractility, 

glucose and calcium homeostasis, and mitochondrial respiration and biogenesis 

(Andrew M. Jones, Bailey, & Vanhatalo, 2012). It is now known that tissue 

concentrations of nitrate (NO3) and nitrite (NO2) can be increased by dietary means. 

Green leafy vegetables such as lettuce, spinach, rocket, celery and beetroot are 

particularly rich in nitrate. Therefore, dietary nitrate supplementation represents a 

practical way to increase circulating plasma nitrite and thus nitric oxide to lower 

the oxygen demand of submaximal exercise (enhancing metabolic efficiency and 

subsequently RE) and potentially to enhance running performance (Bailey et al., 

2009; Bailey, Fulford, et al., 2010; Bailey, Winyard, et al., 2010; Andrew M. Jones 

et al., 2012; Andrew M. Jones, Vanhatalo, & Bailey, 2013; Filip J. Larsen et al., 

2011). The physiological mechanisms responsible for the reduced oxygen demand 

following nitrate supplementation could result from two different mechanisms. 

First, a lower cost of muscle contraction for the same force production (i.e., 

improved muscle contractile efficiency via sarcoplasmic reticulum calcium 

handling or actin-myosin interaction), or second, lower oxygen consumption for the 

same rate of oxidative ATP resynthesis (i.e., enhanced mitochondrial efficiency via 

improved oxidative phosphorylation) (Andrew M. Jones et al., 2012, 2013). While 

only one study to date has demonstrated improved RE (Lansley et al., 2011) 

following nitrate supplementation, reduced oxygen demand and improved work 

efficiency have been reported for several other types of exercise, including cycling 

(Bailey et al., 2009; F. J. Larsen, Weitzberg, Lundberg, & Ekblom, 2007; Filip J. 

Larsen, Weitzberg, Lundberg, & Ekblom, 2010; A Vanhatalo et al., 2010), walking 
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(Lansley et al., 2011), and knee extension exercises (Fulford et al., 2013; Andrew 

M. Jones et al., 2013). Larsen et al. (F. J. Larsen et al., 2007) reported that 3 days 

of sodium nitrate supplementation increased plasma nitrite and reduced the oxygen 

demand during sub-maximal cycling exercise. These findings were corroborated in 

a study by Bailey et al. (Bailey et al., 2009) in which nitrate was administered in 

the form of beetroot juice. The reduction of V’O2 after nitrate supplementation was 

of the order of 5% in the studies of Larsen et al. (F. J. Larsen et al., 2007) and Bailey 

et al. (Bailey et al., 2009), in which supplementation was continued for 3–6 days. 

A similar reduction of steady-state V’O2 was reported following acute nitrate 

supplementation. Vanhatalo et al. (A Vanhatalo et al., 2010) reported a significant 

reduction of steady-state V’O2 just 2.5 h following beetroot juice ingestion. 

Although dietary nitrate appears to be a promising ergogenic aid, additional 

research is required to determine the scope of its effects on well-trained distance 

runners and across different competition events. Future research should also 

examine the efficacy of other nutritional supplements to enhance RE.  

A variety of training strategies has been adopted in an attempt to improve RE by 

modifying one or more factors that influence metabolic, biomechanical and/or 

neuromuscular efficiency. The most common strategies used are resistance training, 

plyometric training and explosive resistance training. Each of these modes of 

ancillary training have been reported to improve RE in recreational, moderately 

trained, and highly trained runners through primarily neuromuscular mechanisms. 

Results from HIT studies are unclear, but the best results of improved RE appear to 

occur when training at near maximal or supra-maximal intensities on flat or uphill 

terrain. Adaptations to living and training at natural and artificial altitudes have 

been primarily attributed to increased hematological parameters that improve RE. 

There appear to be equivocal results regarding the effects of stretching or flexibility 

on RE. Ingestion of dietary nitrate, especially in the form of beetroot juice, also 

appears to hold promise as a natural means to improve RE. From a practical 

standpoint, it is clear that training and passive interventions affect RE, and 

researchers should concentrate their investigative efforts on more fully 

understanding which training types and mechanisms affect RE and the practicality 

and extent to which RE can be improved outside the laboratory.  
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Highlights 

• RE is the energy expenditure expressed as the submaximal V’O2max at a given running speed  

• RE can vary among runner with similar V’O2max up to 30% and it is considered a better 

predictor of endurance performance 

• RE is likely to be influenced by several factors: training, environment, physiology, 

biomechanics, anthropometry 

• Economic and non-economic runners show significance differences and trend in some 

kinematical parameter, and biomechanical patterns but the relationship appear weak and 

inconsistent among studies.  

• Vertical ground reaction forces and the time course of the force application explained 38% 

of the inter-individual variability in RE, but the mechanism need to be more clearly 

understood. 

• Anthropometric characteristics such as limb dimensions and proportions and leg mass 

distribution, seems able to increase RE 

• An optimal balance between muscle stiffness and flexibility is require to maximize elastic 

energy storage and return in the trunk and legs 

• The performance dominance of Kenyan runners in half and full marathon cannot be 

explained just by the functional bioenergetics differences 

• A wide range of training intervention (including resistance training, endurance and HIT 

training, altitude exposure, stretching and nutritional supplements) have been investigated 

with respect to improving RE 

• The addition of strength training to normal endurance training has received great attention 

and consent in all endurance sport 

• The most common strategies actually used are resistance, plyometric and explosive 

resistance training. Each of these modes of ancillary training have been reported RE 

improvements in recreational, moderately, and highly trained runners through primarily 

neuromuscular mechanisms.  
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Chapter 5  

Percentage of Maximum Oxygen Uptake 

 

Percentage of maximum oxygen uptake is the fraction of V’O2max that can be 

maintained during performance. It is time and fitness related.  Figure 8, from the 

classic Textbook of Work Physiology by Åstrand and Rodahl shows the impact that 

training has on one’s ability to maintain a certain percentage of V’O2max during 

prolonged exercise. Trained individuals performed at 87% and 83% of V’O2max for 

1 and 2 h, respectively, compared with only 50% and 35% of V’O2max for untrained 

subjects. This diagram clearly shows the impact that % V’O2max has on actual 

performance V’O2 that a person can maintain during an endurance performance. 

 

Figure 8 - A graphic illustration based on a few observations showing approximately the percentage of a 

subject’s maximal aerobic power he/she can tax during work of different duration and how this is affected by 

training state. From Textbook of Work Physiology, Astrand 

 

In addition, Figure 9, taken from the same text, shows how V’O2max and % V’O2max 

changed over months of training. V’O2max increased during the first 2 months and 

then leveled off, whereas % V’O2max continued to change over time. Consequently, 

while changes in both V’O2max and % V’O2max impacted changes in the performance 

of an athlete early in a training program, subsequent changes in performance V’O2 

were due to changes in % V’O2max alone. This classic figure was supported by later 

studies showing that V’O2 at Lactate Threshold (%V’O2max at LT) increased much 

more as a result of training than did V’O2max. 
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Figure 9 - Training causes an increase in maximal oxygen uptake. With training, a subject is also able to tax a 

greater percentage of their maximal oxygen uptake during prolonged work.  From Textbook of Work 

Physiology, Astrand. Rodahl 

 

 The model presented earlier in Figure 2 shows how V’O2max and % V’O2max interact 

to determine performance V’O2 and how running economy shapes final 

performance. In this model, V’O2 at LT integrates both V’O2max and % V’O2max. In 

another study, Basset et al. (Bassett & Howley, 1997) used a more detailed model 

to show that running velocity at LT integrates all three variables mentioned earlier 

(V’O2max, % V’O2max, and RE) to predict distance running performance (Fig. 10). 

The speed at which the lactate concentration changes in some way (e.g., to an 

absolute concentration, a break in the curve, a delta amount) is taken as the speed 

at LT and is used as the predictor of endurance performance. Numerous studies 

have shown the various indicators of LT to be good predictors of performance in a 

variety of endurance activities (e.g., running, cycling, race walking) and in both 

trained and untrained populations (Weltman, 1995). In most of these studies, the 

association between LT and endurance performance was evaluated in groups of 

athletes that were heterogeneous in regard to performance. This means that even 

though the speed at LT explains the vast majority of variances in performance in 

distance races (Farrell, Wilmore, Coyle, Billing, & Costill, 1979), other factors can 

still influence final performance. It has been known for some time (Holloszy, 1973; 

Holloszy & Coyle, 1984) that lactate production is related to a number of variables 
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among which the mitochondrial content of muscle, as measured by mitochondrial 

enzyme activity. 

 

 
 

Figure  10 - Summary of the major variables related to V ̇O2max and the maximal velocity that can be 

maintained in distance races. From: Bassett, D. R., Jr. and E. T. Howley. Maximal oxygen uptake: “classical” 

versus “contemporary” viewpoints. Med. Sci. Sports Exerc  

Variations in LT across diverse groups of endurance athletes and improvements in 

LT resulting from training are linked to differences and increases in mitochondrial 

enzyme activity, respectively (E F Coyle, 1995; Weltman, 1995). When muscles 

are working to meet a specific submaximal power output, ATP is converted to ADP 

and Pi and this drives metabolic reactions in the cell to meet the ATP demand 

associated with that work rate. In muscle cells poor in mitochondria, ADP 

concentrations must rise to a high level in order to drive the limited number of 

mitochondria to meet the ATP demand via oxidative phosphorylation. This high 

concentration of ADP also drives other metabolic processes, including glycolysis, 

because of the stimulatory effect of ADP on phosphofructose kinase (PFK). This 

leads to an increase in the use of carbohydrates, an accumulation of pyruvate and 

an increase in lactate production. As mentioned previously, training stimulates a 

large increase (50-100%) in the number and activity of the mitochondria. 

Consequently, with the same oxygen consumption, this leads to a lower 

concentration of ADP, less stimulation of PFK and use of carbohydrates. The result 

is a lower concentration of lactate because the mitochondria can use fats as fuel. 
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(Holloszy & Coyle, 1984; Katz & Sahlin, 1988).  

A further possible explanation for the interaction between LT and % V’O2max was 

provided in a study by Coyle et al. (E F Coyle, Coggan, Hopper, & Walters, 1988). 

They studied 14 trained cyclists (3–12 yr of training), similar in terms of V’O2max 

(thus eliminating that as a variable), to examine the relationship between LT and 

time to fatigue at 88% V’O2max. The subjects were divided into high-LT (mean 

81.5% V’O2max) and low-LT (mean 65.8% V’O2max) groups. A performance test at 

88% V’O2max resulted in large differences in performance (60.8 vs 29.1 min), and 

post-exercise lactate concentrations (7.4 vs 14.7 mM) for the high-LT and low-LT 

groups, respectively. The difference in performance between the groups that had 

the same V’O2max, but differed in % V’O2max at LT, was consistent with the model 

described. On the other hand, the fact that the vastus lateralis of both groups had 

the same mitochondrial enzyme activities suggested a break in the chain of evidence 

linking % V’O2max at LT to mitochondrial activity. This created a rare opportunity 

for the investigators to study two groups with identical V’O2max and the same 

mitochondrial enzyme activity but with substantial differences in performance. The 

investigators examined the metabolic response of the cyclists to a 30-min test at 

79% V’O2max. They found that while the low-LT group used 69% more 

carbohydrate during this exercise bout than the high-LT group, the low-LT group 

reduced its vastus lateralis muscle glycogen concentration 134% more than the 

high-LT group. Consequently, the study by Coyle et al. indicates that the mass of 

muscle involved in the activity (in addition to mitochondrial density) contributes to 

% V’O2max at LT (as well as to performance) in a manner consistent with the above 

model.  

It is noteworthy to point out here a lack in scientific literature regarding specific 

information about limiting factors of % VO2max. The poor applicability of the 

measure in the field does not help to arouse interest.  

Since the fraction is dependent on the duration of the effort, the concept of critical 

power (CP) and speed (CS), which has received great interest, is the closest model 

to the % V’O2max concept. The hyperbolic form of the power-duration relationship 

is rigorous and highly conserved across species, form of exercise and individual 
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muscle/muscle groups. Crucially, CP integrates sentinel physiological, respiratory, 

metabolic and contractile profiles, within a coherent framework that has great 

scientific and practical usefulness. CP is also utilized as a fatigue threshold in the 

sense that it separates exercise intensity domains within which the physiological 

responses to exercise can (<CP), as endurance events require, or cannot (>CP) be 

stabilized (Anni Vanhatalo, Jones, & Burnley, 2011). 

Training strategies to improve percentage of V’O2max  

 

As mentioned previously, the lack of definition of the factors that limit % V’O2max 

consumption does not allow researchers to identify a specific methodology for this 

factor of endurance performance. Actually, the purpose of training is to help athletes 

improve their maximum values of V'O2max, which are sensitive to training according 

to the starting fitness level, as was said above, but also their ability to sustain a high 

percentage of it for the entire effort. In order to achieve this result, the program 

must contain all training exercises that involve all ranges of intensity: HIT, 

continuous endurance training, and strength training that is helpful in improving the 

ability to use less energy for the same intensity (RE).  

 

 

 

 

 

 

 

 

Highlights 

• Percentage of maximum oxygen uptake is the fraction of V’O2max that can be maintained 

during long time performance. It is duration and fitness related. 

• Percentage of maximum oxygen uptake is more sensitive than V’O2max to training. 

• The interaction between LT and % of V’O2max was demonstrated. By the same percentage, 

cyclists with highest LT consume less carbohydrates and sustain this intensity for longer 

time 

• Training program must contain exercise involving all of intensity ranges   
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Chapter 6  

Experimental purpose  

 

Knowing the performance model of a studied discipline is one of the basic steps to 

setting up a training program. These performance models adapt to different 

preparation levels, male and female for both elite or amateur athletes. Their 

different improvement sensitivities of each limiting factors should leads to pay 

more attention in training manage to reach the best performance 

In elite athletes the margins for improvement are lower than in recreational athletes, 

because have achieved maximal development of the capacity of the energy system 

since they were young. To support that statement several studies, as reported 

previously (Berg et al., 1995; Ekblom, 1968; A. M. Jones, 1998; Paul B Laursen & 

Jenkins, 2002a), did not find any significant variations in maximum oxygen 

consumption after training in elite or well-trained athletes.  One study (Carlo 

Capelli, 1999) demonstrated through mathematical models how evolution of the 

different factors, in the same percentage, reflected on performance improvement. 

Basing on possible improvements, estimated through the differences in 

performance over a defined period for an elite athlete, his results showed that a 5% 

improvement in RE led to an overall 4.5% performance improvement regardless of 

the distance involved, while an improvement in performance connected to an 

increase in V'O2max increased in relation to an increase in the distance up to a 

maximum of 5km and then stabilized. It is therefore more convenient to focus on 

possible training strategies to improve RE for long distance running performance 

in elite athlete. 

Anyone begin a training study immediately finds the necessity of having to classify 

the subjects. There are several possibilities, based on the aerobic capacity (V'O2max) 

on the performance (Personal best), on the age, on the volume (number) of weekly 

or professional training sessions (professional / amateur). None of these 

classifications fully describes the subject, nor even his training. In scientific 

literature available is widespread although not clearly defined the term rr. Studies 

that refer to recreational athletes, report an average frequency of training by subjects 

not exceeding 4 times a week, and a maximum consumption of oxygen between 60 



  52 

and 80 percentile of the classification provided by the ACSM normalized for age 

(ACSM’s Guidlines for Exercise Testing and Presctription (8th ed.). Baltimore, 

2010). 

In our opinion, it is very important to personalize an appropriate strategy for 

recreational athletes, even more since they have less ability to control complex 

motor pattern than elite or well-trained athletes. In addition, their musculotendinous 

structures are not able to sustain a training load that some exercises would impose 

on them (for instance plyometric and heavy strength training). Furthermore, unlike 

elite athletes, recreational athletes require training directed towards optimizing the 

time spent on complementary exercises necessary to improve their performance 

(strength and technical skills training) in order to avoid eroding precious time 

available for running training. time out of training. 

On the basis of these considerations we have focused our research on the issues that 

in our opinion could allow the best benefits in terms of performance, time saving 

and injury prevention in the recreational athlete. In particular we have studied two 

aspects, often overlooked or improvised by athletes and coaches, such as the 

eccentric strength training and the distribution of work intensity. 

In our first study, we focused our attention on finding a safe and easy kind of 

strength training able to improve RE and consequently performance. As written in 

the relative chapter, there are many strategies for the improvement of the RE and in 

recent years great importance has been given to the insertion of strength training in 

the disciplines of endurance for elite athletes. Our choice to investigate the 

improvement of RE in recreational athletes using isoinertial training is dictated by 

the fact that it turns out to be a quick way compared to the strength training 

traditionally proposed in the studys referred to recreationale athlete (Millet et al., 

2002; Piacentini et al., 2013b), so it meets the recreational athlete's need to contain 

total time spent in training, and extremely simple to perform even unlike a 

plyometric training.  

Whereas in the second, our purpose was to compare two different training intensity 

distributions in order to obtain an improvement in performance in the least time 
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possible. In this case we evaluated if running training is able to affect the 

performance according to the different duration and intensity of the training stimuli, 

which are differently distributed in the intensity scale commonly used. 
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Chapter 7  

First Study   

Effects of flywheel strength training on the running economy of recreational 

endurance runners 

 

Typically, endurance running events are strongly related to different physiological 

factors such as maximal oxygen uptake (V’O2max), the V’O2max available fraction, 

defined as the intensity sustained for a long period (FV’O2max), and running economy 

(RE), defined as the V’O2 required at a given absolute exercise intensity (Bassett & 

Howley, 2000). RE seems to be a better predictor of endurance performance than 

V’O2max (Noakes, 1988; Philo U. Saunders et al., 2004). Some authors have 

suggested that anaerobic and neuromuscular characteristics together with RE are 

able to affect endurance performance (Nummela et al., 2006; L. Paavolainen, 

Häkkinen, et al., 1999). For this reason, in recent years, strength-training programs 

have been indicated as powerful stimuli to improve mechanical efficiency, muscular 

coordination, motor unit recruitment patterns and lower limb stiffness regulation 

with an overall enhancement in RE (Sale, 1988).  In the past, it was suggested that 

concurrent endurance and strength training might interfere with or inhibit the 

development of strength or rate force development if the periods of concurrent 

training were too long or the training volume or intensity were too high (Häkkinen 

et al., 2003; Hunter, Demment, & Miller, 1987; Jung, 2003). The cause of the 

“interference effect” appears to be related to the divergent responses and 

adaptations when considering also the specificity of the training mode and its 

adaptations in the neuromuscular system within strength training. For example, 

maximal strength training with high loads (such as 70-90% of 1RM) and low 
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repetitions per set generally result in neural adaptations responsible for muscle 

hypertrophy over prolonged training periods. Conversely, explosive resistance 

training with low to medium loads (such as 30-60% of 1RM) but high action 

velocity movements improves neuromuscular characteristics, especially the rapid 

activation of the muscles due to increased motor unit recruitment. Maximal and 

explosive strength training paired with endurance training, as well as plyometric 

training, have been shown to be more effective in improving running economy, 

strength, power and muscle activation in recreational endurance runners compared 

with concurrent circuit and endurance training (Alexander Ferrauti, Matthias 

Bergermann, 2010; Giovanelli, Taboga, Rejc, & Lazzer, 2017; Mikkola et al., 2011; 

Millet et al., 2002; L. Paavolainen, Häkkinen, et al., 1999; Taipale et al., 2010).  

Guglielmo and colleagues (Guglielmo et al., 2009) demonstrated that heavy weight 

training (load 6-RM) was more effective in improving running economy than 

explosive strength training (with intermediate resistance, load 12-RM) over short 

(4 week) training periods in well-trained endurance runners. Moreover, Piacentini 

et al. (Piacentini et al., 2013b) endorsed these results confirming that total body 

maximal strength training (85-90% of 1RM, 4 repetitions, 4 sets) twice a week for 

six weeks improved 1RM by 17%, and RE by 6.1% (p<0.05) in master athletes.  

    Recreational runners represent most participants in marathon events, and their 

number grows year after year.  These athletes train and compete regularly, and 

follow detailed, structured training programs despite having various work and 

family commitments. Adding two extra strength-training workouts a week is not 

feasible for most of them, if not as part of a regular running session.  

Knowing the benefits of adding strength training to endurance training in order to 
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improve neuromuscular performance and sport specific economy, we conducted 

this study to compare RE variations before and after a regular endurance training 

program performed once a week, consisting of specific, short flywheel muscle 

efforts on a Yo-Yo Leg Press versus low- or high-intensity training programs. 

According to our hypothesis, a brief flywheel strength training session in addition 

to endurance training would lead to an improvement in RE and, consequently, in 

the endurance performance of recreational runners. 

 

METHODS 

Experimental approach to the problem 

In this study an 8-week training period was chosen to analyze the effects of flywheel 

strength training on RE, because it was thought that most adaptations in RE would 

occur after 4-6 weeks of strength training and that longer protocols may not add 

further improvements to RE (Turner, AM, Owings, M and Schwane, 2003). A 

parallel, 3-group, matched, longitudinal (pretest-posttest), experimental design was 

used for this study to investigate the possible effects on RE, anthropometric data 

(DEXA), V’O2max, ventilatory thresholds, and 1RM after 3 different training 

programs: flywheel strength training (FST), high intensity training (HIT) and low 

intensity training (LIT).  

Subjects 

Twenty-nine recreational runners were divided into 3 experimental groups of 

similar age, weight, height, and V’O2max. The University Ethical Committee 

approved the protocol and the participants gave their written consent before taking 

part (prot. N°165038, 28/06/2016). In order to avoid the influence of an athlete’s 
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current ability and preparation level, the participants included in this study had to 

fulfill the following criteria: they had to complete a half marathon not more than 

two months after the beginning of the study; and they had to have at least 3 years 

and maximum 10 year of endurance training experience.  

 

Variables  FST (n = 11)   HIT (n = 9)   LIT (n = 9) 

  6 Males and 5 Females   6 Males and 3 Females   6 Males and 3 Females 

Age (yr) 44.2 ± 6.0   42.2 ± 8.6   45.4 ± 8 

Weight (kg) 73.3 ± 9.4  70.9 ± 11.9  66.1 ± 11.7 

Height (cm) 169.0 ± 9.1  171.1 ± 6.8  171.8 ± 9.6 

V'O2max (ml min-1 kg-1) 48.8 ± 5.2   50.3 ± 3.7   50.2 ± 6.8 

Value are mean ± SD      

 

Table 1. Physical characteristics of runners. FST = Flywheel Strength Training; HIT = High Intensity 

Training; LIT = Low Intensity Training 

Procedures 

All subjects, during the week before the start of training (week #0), arrived at the 

laboratory for 3 sessions: aerobic capacity, running economy (T1 and T2 in random 

order) and one-repetition maximum (T3). The sessions were separated by a 48-hour 

resting period, performed at the same time of day (at 19:00±2 hours) in a climate-

controlled laboratory (20-22° C, 55% humidity). The participants did not perform 

any physical activity during the 48-hour resting periods and were requested to 

refrain from using caffeine-containing food or beverages, consuming alcohol, and 

smoking cigarettes, or using any form of nicotine intake during this period. The 

daily diet was requested during the first session and we have asked each subject to 

reproduce it for all experimental conditions. During the first session the body 

composition was measured. 

At the end of first and second sessions, two familiarization trials (F1 and F2) were 



  58 

performed by the yoyo horizontal leg press machine for FST and by the isotonic 

horizontal leg press machine for all groups (see Figure 1). The first trial consisted 

of 4 sets of 7 repetitions at moderate self-selected intensity on each machine while 

the second trial was of 4 sets of 4 repetitions at submaximal self-selected intensity.  

The subjects repeated the same test program during the week just after the end of 

training (week #9). 

 

Fig. 1 – Timeline of research. Week #0 for test PRE, weeks #1-8 for training period and week #9 for test POST. 

Test sessions (T) and familiarization trials (F). 

 

Body composition 

In addition to standing height (measured using standard methods), body mass and 

body composition were measured using DEXA (QDR explorer E, Hologic, MA, 

USA).  

 

Aerobic capacity 

Maximal oxygen uptake (V’O2max) and maximal running speed (vV’O2max) were 

determined by an incremental treadmill running test at the laboratory. The protocol 

test was individualized for each subject in order to control the duration of each test. 

Therefore, the initial speed was determined by the subject’s capacity, and it was 

increased by 0.5 km h-1 every minute until exhaustion. The running surface slope 

was kept at a constant +1% throughout the test (Runrace Technogym, Gambettola, 
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Italy). Heart rate, oxygen consumption and ventilatory parameters were determined 

breath-by-breath using a Cosmed flow meter (Quark PFT, Cosmed, Rome, Italy). 

Before each test, the flow meter was calibrated with a 3-L syringe, and the analyser 

was calibrated with certificated gas mixtures (16% O2 and 5% CO2) and 

environmental air (20.9% O2 and 0.03% CO2). The ventilatory threshold (VT) was 

defined as the intensity at which the ventilatory equivalent of oxygen (VE’/V’O2) 

began to rise without a concurrent rise in the ventilatory equivalent of carbon 

dioxide (VE’/V’CO2) (Gaskill et al., 2001). This method has been shown to be valid 

and reliable (Amann, Subudhi, Walker, et al., 2004; Amann, Subudhi, & Foster, 

2004). Two experienced evaluators performed the threshold determinations 

independently. If there was disagreement between the two independent observers, 

a third was brought in. 

 

One-repetition maximum 

Maximal strength was estimated by a 6RM test on a leg press machine. All subjects 

were positioned on a horizontal leg press (Technogym, Gambettola, Italy) and the 

knee angle (90°) was fixed to maintain the same position in all test occasions. After 

a 5-minute of warm-up and an appropriate rest period, the subject performed the 

first session with a preliminary load of 15 repetitions. Thereafter, the load was 

increased every step by 30% until the athlete could not successively complete a 

6RM repetition (ACSM’s Guidlines for Exercise Testing and Presctription (8th ed.). 

Baltimore, 2010). The 1RM was estimated using a conversion table. The 1RM was 

measured for all subjects after 2 weeks of the familiarization period. 
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Running economy  

After 5 minutes of running warm-up at 60% of the velocity at first ventilatory 

threshold (vVT1), the RE was determined by measuring submaximal steady state 

V’O2 running for 5 minutes at 75% of vVT1. During each test, heart rate and V’ O2 

were monitored and recorded breath by breath with the Cosmed metabolimeter 

(Quark PFT, Cosmed, Rome, Italy), calibrated before each test as described above. 

The RE was defined as the mean V’O2 collected at the last 2 minutes of test.  

Training protocol 

Reference velocity (RV) we defined in order to differentiate training interventions. 

Reference velocity is the mean velocity between the first and second ventilatory 

thresholds (vVT1, vVT2). All groups performed training sessions 3 times a week. 

The endurance program for FST and LIT was characterized by an intensity ranging 

between 70-105% of RV, while the intensity for HIT was at 95-140% of RV. A 

flywheel strength training session was done once a week, before the endurance 

workout. After a standardized warm-up, the runners did four sets of seven 

repetitions at maximum velocity on a Yo-Yo Leg Press (Yo-Yo Technology AB, 

Stockholm, Sweden), a new iso-inertial system that maximizes the eccentric phase 

of muscular contraction. The intensity effort was controlled with RPE after each set. 

If the subject gave a value in the range of 9-10 the effort was considered maximum. 

The rest interval between sets lasted 3 and a half minutes. To compare training the 

total training load (intensity X volume) was balanced using a modified version of 

the training-impulse (TRIMP) approach (Foster et al., 2001).  
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Statistical analyses 

Standard statistical methods were used to calculate the means, standard 

deviation and standard error. Group differences were analyzed using a one-way 

analysis of variance (one-way ANOVA), and within-group differences (group-by-

training interaction) were analyzed using two way ANOVA repeated measures. 

Differences between PRE vs. POST were reported in absolute values, the precision 

of estimates for absolute values was indicated with 90% confidence limits (CL), 

effect size (d) and benchmark for significance was set at p ≤ 0.05.  

RESULTS 

Before the training period, the subjects did not differ in terms of any measured 

variable. After the 8-week program, there were no significant changes in body mass, 

fat free mass (FFM), lower limb fat free mass (lower limb FFM), fat mass, or 

percentage of body fat. The FST group showed a significant 12.9% increase (p ≤ 

0.05) in 1RM after training. In fact, pre-mean and post-mean values were 

144.2±35.8 and 162.5±37.3 Kg respectively; whereas no significant differences 

were observed in the HIT and LIT groups (Figure 2 and 3). 

 

Fig. 2 - Percentage change in Running Economy on the three groups. Average in Bold line, *p≤ 0.05  
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Fig. 3 - Percentage change in 1RM on three groups. Average in Bold line, *p≤0.05 

 

RE improved significantly (p ≤0.05) in the FST group (6.3%) at 75% of VT1. The 

HIT and LIT groups did not show any significant improvements in RE. 

All groups show significance improvement (p ≤ 0.05) on performance +3.7% and 

+ 6.1% for FST, +3.8% and +5.8% for HIT and +2.9% and +2.5% for LIT in average 

velocity on 2 km and 10 km respectively. All results concerning the pre and post 

training variations are summarized in table 2-4. 

 

     

  Pre Training   Post Training   Difference   
Lower 

bound 

Upper 

bound 
  

Effect 

Size 

(d) 

  

Weight (kg) 66.1 ± 11.7  66.2 ± 11.7  0.1  -0.9 0.6  0.0  

Fat mass (%) 21.1% ± 6.7%  20.3% ± 6.7%  0.8%  0.1% 1.5% 
 

-0.1  

V'O2max   (ml min) 3313 ± 765  3400 ± 842  87  -281 107 
 

0.1  

vV'O2max (km h-1) 13.3 ± 2.0  13.6 ± 2.0  0.3  -0.7 0.2 
 

0.2  

VT1 (km h-1) 10.8 ± 1.6  11.5 ± 1.8  0.7  -1.2 -0.2 
 

0.5 * 

VT2 (km h-1) 12.2 ± 1.9  12.9 ± 2.0  0.7  -1.1 -0.3 
 

0.5 ** 

RE@75 (ml m-1 kg-1) 195.6 ± 28.8  197.2 ± 15.3  1.6  -17.6 14.4 
 

0.1  

Strength 
 

 
 

 
 

 
 

 
 

 
    

 

1RM leg press (kg) 136.9 ± 37.4  135.6 ± 39.1  1.4  -2.2 4.9 
 

0.0  

2km avg speed (km h-1) 13.7 ± 2.0  14.1 ± 2.2  0.4  -0.7 -0.2 
 

0.3 ** 

10km avg speed (km h-1) 12.2 ± 2.0   12.5 ± 2.0   0.3   -0.6 -0.0   0.2  * 

Value are mean ± SD. RE@75 measured on treadmill at 75% of vVT1 with 1% inclination. 
  

 

* P value < 0.05 significantly different from preintervention value.     
 

  

** P value < 0.01 significantly different from preintervention value. 
 

 
    

 

 
Table 2. Physiological results in Low Intensity Training (LIT) group (n = 11) 
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 Pre Training  Post Training  Difference  Lower 

bound 

Upper 

bound 
 

Effect 

Size 

(d) 

 

Weight (kg) 70.9 ± 11.8  69.7 ± 11.5  1.2  0.4 2.0  -0.1 * 

Fat mass (%) 19.3% ± 2.5%  18.5% ± 2.6%  0.8%  -0.1% 1.6%  -0.1 

 

V'O2max   (ml min) 3484 ± 739  3558 ± 744  74.1  -217 69  0.1 

 

vV'O2max (km h-1) 13.1 ± 1.3  13.7 ± 1.3  0.6  -0.8 -0.4  0.4 ** 

VT1 (km h-1) 11.1 ± 0.9  11.7 ± 1.1  0.6  -0.9 -0.3  0.5 ** 

VT2 (km h-1) 12.4 ± 1.1  13.1 ± 1.0  0.7  -1.0 -0.4  0.5 ** 

RE@75 (ml m-1 kg-1) 222.8 ± 19.6  215.8 ± 19.8  6.9  -4.5 18.3  -0.3 

 

Strength               
 

1RM leg press (kg) 130.0 ± 19.9  128.9 ± 25.9  1.1  -5.2 7.3  0.0 

 

2km avg speed (km h-1) 14.0 ± 1.1  14.5 ± 1.1  0.5  -0.7 -0.4  0.4 ** 

10km avg speed (km h-1) 12.0 ± 1.6  12.7 ± 1.4  0.8  -1.0 -0.6  0.5 ** 

Value are mean ± SD. RE@75 measured on treadmill at 75% of vVT1 with 1% inclination. 

 

     
* P value < 0.05 significantly different from preintervention value. 

   
 

   
** P value < 0.01 significantly different from preintervention value. 

 

 

     
 
Table 3. Physiological results in Flywheel Strength Training (FST) group (n = 9) 
       

 Pre Training  Post Training  Difference  Lower 

bound 

Upper 

bound 
 

Effect 

Size 

(d) 

 

Weight (kg) 71.3 ± 9.4  70.2 ± 8.9  1.0  0.0 2.0  -0.1  

Fat mass (%) 23.9% ± 5.7%  22.8% ± 6.3%  1.1%  0.2% 2.0%  -0.2  

V'O2max   (ml min) 3502 ± 768  3475 ± 699  27.0  -53 107  0.0  

vV'O2max (km h-1) 12.8 ± 0.9  13.6 ± 1.2  0.8  -1.0 -0.5  0.5 ** 

VT1 (km h-1) 10.7 ± 0.8  11.5 ± 1.0  0.7  -1.0 -0.5  0.6 ** 

VT2 (km h-1) 12.0 ± 1.1  12.6 ± 1.2  0.6  -0.9 -0.4  0.4 ** 

RE@75 (ml m-1 kg-1) 220.1 ± 12.5  206.2 ± 21.0  13.9  3.6 24.3  -0.6 * 

Strength                

1RM leg press (kg) 130.7 ± 28.3  135.9 ± 28.9  5.2  -7.9 -2.5  0.2 ** 

2km avg speed (km h-1) 13.4 ± 1.0  14.0 ± 1.4  0.6  -0.8 -0.3  0.4 ** 

10km avg speed (km h-1) 11.5 ± 1.0  12.2 ± 0.9  0.7  -0.9 -0.4  0.5 ** 

Value are mean ± SD. RE@75 measured on treadmill at 75% of vVT1 with 1% inclination.    

* P value < 0.05 significantly different from preintervention value.        

** P value < 0.01 significantly different from preintervention value.        

 
Table 4. Physiological results in Flywheel Strength Training (FST) group 

DISCUSSION 

The results of this study indicate that recreational runners may obtain 

improvements in RE and neuromuscular adaptation by using the flywheel 

strength training.    
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 In our study, flywheel strength training was performed concurrently with a low 

intensity endurance training program over 8-weeks (FST), and then compared with 

two different equivalent endurance training programs based on high and low 

intensity exercises, respectively. The significant 12.9% increases in maximal 

dynamic strength (1RM) in the FST group is lower than that found in previous 

studies (L. Paavolainen, Häkkinen, et al., 1999; Piacentini et al., 2013b); but in our 

study it was obtained with smaller intervention. The usefulness of increasing the 

maximal muscle force in a runner is a debated topic in the scientific literature. 

Several authors have obtained it with strength exercises in addition to endurance 

training, others through the use of specific plyometric exercises with a strong 

component of eccentric muscle strength (Alkahtani, 2017; Fornasiero et al., 2017; 

Jhonston, R.E., T.J. Quinn, R. Kertzer, 1997; Mikkola et al., 2007; Philo U. 

Saunders, Richard D. Telford, David B. Pyne, Esa M. Peltola, Ross B. Cunningham, 

2006; Sedano et al., 2013; Støren, Helgerud, Støa, & Hoff, 2008). Also, in our data, 

the maximal dynamic force (1RM) increased in FST, contrary to the other two 

groups (HIT and LIT). This result could be justified by the plasticity of muscle 

fibers in accordance with the results obtained by Piacentini (Piacentini et al., 2013b). 

However, regarding anthropometric measurements, we did not measure changes in 

free fat mass in the lower limbs. This means that the gains in terms of strength of 

the FST group are not due to a structural change, but mainly to neural adaptations 

such as increased activation, a more efficient recruitment, motor unit 

synchronization and excitability of the motor neurons or decreased At-Golgi tendon 

organ inhibition (Häkkinen et al., 2003), in agreement with the results obtained by 

Taipale et al. (Taipale et al., 2010) using plyometric training. In other words, 
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flywheel training increases the capacity to store and reuse elastic muscle energy and 

this seems to have a protective effect against muscle damage due to the intense 

activity of races. Consequently, there is a 6.3% decrease in RE in FST, confirming 

the strong relationship between muscle force and RE (10,19,20). This has never 

been demonstrated before and confirms our initial hypothesis that one session a 

week of four sets of seven repetitions at maximum velocity on the Flywheel Leg 

Press (Yo-Yo Technology AB, Stockholm, Sweden) could significantly improve RE 

in recreational runners. 

Both FST and HIT groups showed a significant increase in velocity related to 

V’O2max of 6.0% and 4.7%, respectively. None of the three experimental groups 

showed a significant increase in V’O2max values. A significant increase in velocities, 

correlated with two ventilatory thresholds, was found in all groups. These increases 

were: 6.8% and 5.3% for the FST group, 5.5% and 5.9% for the HIT group and 6.2% 

e 5.9% for the LIS group.  Millet et al. (Millet et al., 2002) obtained the same results 

in their study on 14 triathletes. The protocol consisted of a 14-week regimen based 

on concurrent endurance and strength training programs. The strength training was 

based on intensities near the maximal and low numbers of repetitions (Millet et al., 

2002). Millet’s study showed that it is possible to obtain an improvement in the 

velocity of ventilatory thresholds and V’O2max without improving V’O2max values 

due to adaptations that occur at the muscle level.  This can be partially confirmed 

by analyzing the different intensities of the three training programs. FST and LIS 

training programs were based on the intensity of 100% of RV. The average 112% 

RV intensity is capable of arousing the appearance of V’O2max. Intensities used for 

our study could not improve central physiological adaptations, which are very 
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important for an increase in V’O2max. Although the high intensity intervals were 

achieved approximately at 130% of RV, the HIT group did not obtain any significant 

increase in VO2max values due to a reduced duration of the intervals. (V. L. Billat et 

al., 1999; Midgley, McNaughton, & Wilkinson, 2006).  

    The participants of our study achieved significant improvements in two track 

tests consisting of 2000 and 10,000m runs.  We can correlate the 10km performance 

with the velocity at the second ventilatory threshold. Traditionally, amateur athletes 

running at this intensity achieve the best results at this distance.  This is confirmed 

with the 0.91 correlation between the 10km performance and the value 

corresponding to the value of the second ventilatory threshold determined by 

laboratory testing. This interpretation cannot be verified in the 2000m tests. On the 

contrary, this test should measure results that are easily associable with 

improvement in VO2max. The significant increase in average velocity during field 

test on 2000 m did not bring the same increase in VO2max values. By collecting 

feedback from the athletes at the end of the 2000m run, we found that the trial was 

hard to manage in terms of intensity, distance and duration. Amateur runners are 

not used to maximal efforts mainly because they tend to run races of 10km or more 

and therefore never run at the intensity close to their maximal. Furthermore, this 

type of sport often makes runners fear that they won’t be able to finish the race. 

This fear could prevent athletes from achieving their possible maximum 

performance. 

The results connected to endurance performance demonstrate that FST and HIT 

groups have similar improvements although the subjects of FST group improved 

their RE. The 2k and 10 k performance are mainly connected to the V02max and 
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the running velocity connected to the anaerobic threshold, while RE alters the 

performance lasting more than 1h.  

 

CONCLUSION 

The results of this study indicate in recreational runners a specific sensitivity to 

including muscle strength components in training as in HIT and in particular in FST. 

Flywheel strength training allows to improve functional abilities as RE and 1RM. 

This is attributable to a development in muscle strength, in particular due to the 

eccentric component. It is to be regarded as one of the determining factors of RE in 

endurance performance. The benefits in RE obtained by FST are, as known, 

proportional to effort duration and as found no different to HIT for 2Km, slightly 

better in 10km and probably much better for long distance runs. 

Eight weeks of once-a-week training was an effective stimulus to induce 

adaptations and therefore it should be taken into consideration in the training 

programs of amateur athletes. 

 

PRACTICAL APPLICATION 

The results of this study shown the exercises with eccentric (or combined) 

components as compatible with training programs in recreational runners. They 

have been shown to improve running economy and strength that can enhance 

performance. Therefore, strength-enhancing exercises with eccentric and 

concentric components should be considered by athletic trainers for training 

programs of recreational runner. 
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Chapter 8  

Study Two 

Effects of a Focused Training Model on Recreational Runners 

 

Introduction 

To maximize endurance performance, coaches and scientists can manipulate the 

characteristics of training - intensity, duration and frequency of training session - 

during the entire training process. There is general agreement on the physiological 

factors that limit performance (C Capelli et al., 1998; Edward F Coyle, 2007; Pietro 

Enrico di Prampero, 2003); however, there is still no agreement on how a daily 

training program must be organized to improve physiological factors and 

performance. 

Training intensity distribution (TID) in endurance training programs is determined 

by the percentage of time spent exercising at low (zone 1, typically identified below 

the lactate threshold (LT), or ventilatory threshold (VT); moderate (zone 2, typically 

located between LT and maximal lactate steady state (MLSS) or respiratory-

compensation threshold (RCT); and high (zone 3, typically above MLSS or RCT) 

intensities (Faude, Kindermann, & Meyer, 2009; K. S. Seiler & Kjerland, 2006). 

Endurance athletes and coaches frequently adopt two different exercise TID models 

(K. S. Seiler & Kjerland, 2006). First, a polarized endurance training model (PET) 

that consists of a high percentage of exercise time at low exercise intensity (75-80%) 

with little time at moderate intensity (5-10%) and the remainder spent at high 

intensity (15-20%). In contrast, the second model involves threshold training 

distribution (THR), in which the time distribution is 45% at low, 35% at moderate 

and 20% at high intensity. Several studies have reported the TID of well trained and 

highly trained endurance athletes in different disciplines (Esteve-Lanao, Foster, 

Seiler, & Lucia, 2007; Plews & Laursen, 2017; K. S. Seiler & Kjerland, 2006), and 

there is substantial evidence that PET may optimize adaptation to exercise while 

providing an acceptable level of training stress. Several studies have investigated 

the relationship between adaptations and intensity of training and they affirm that 

LT is positively affected when a high proportion of training is done at low intensity 

(Esteve-Lanao et al., 2007; Esteve-Lanao, San Juan, Earnest, Foster, & Lucia, 2005; 
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Ingham, Stephen A. Carter, Helen Whyte, Gregory P. Doust, 2008). These authors 

suggest that the proportion of time in zone 1 is a key aspect that drives endurance 

adaptations and performance outcomes. However, several other studies observed 

improvements in a 40km time trial when high intensity training (zone 3) is added 

to the schedule of well-trained cyclists (Lindsay et al., 1996; Westgarth-Taylor et 

al., 1997; Weston et al., 1997). Moreover, in a case study on an international 1500m 

runner, the choice to move through a more polarized training model showed that 

maximal oxygen consumption (V’O2max), running economy (RE) and running 

performance all improved. As Seiler stated, regarding highly trained athletes 

training 10 to 25h/week, polarized intensity distribution may allow maximal 

adaptive signaling while minimizing autonomic and hormonal stress responses and 

reducing the risk of overtraining (S. Seiler, Haugen, & Kuffel, 2007). 

Concerning recreational athletes, it is still unknown which intensity distribution is 

optimal and whether the intensity distribution is or is not critical. These athletes 

train 3-5h/week and the density of stimuli allows them to train above LT for a longer 

time compared with elite athletes because overtraining is not likely when training 

is much less frequent. In their study, Munoz et. al (Muñoz et al., 2014) found that 

the polarized training model had a better impact on 10km performance in 

recreational runners compared with the threshold training model after 10 weeks of 

practice (-3.5% for THR and -5% for POL), but they concluded that there was not 

enough evidence in their overall findings to support one approach over the other.  

In an attempt to present evidence in favor of the correct approach, the goal of the 

present study was to compare the effects of a POL training model on condition and 

performance with those of a focused (FET) training model on changes in limiting 

factors. 

 

Methods 

Experimental approach to the problem 

A two-group pretest-posttest design was used. We studied the effects of different 

training programs on performance in 2km runs and through an analysis of the 

changes in the values of limiting factors measured during a test in the laboratory 

before and after the training session. The main difference between the training 
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models was the time spent in zone 2. One group of athletes performed a relatively 

higher percentage of their total training volume in zone 1, below their VT. The 

second group spent 50% of their total training volume in zone 2, between VT and 

RCT, while training less in zones 1 and 3. To compare training types, the total 

training load (intensity X volume) was balanced using a modified version of the 

training-impulse approach (TRIMP) (Foster et al., 2001).  

 

Subjects 

Forty-three recreational runners were recruited to participate in this study. All of 

them had been training consistently for over 4 years and their mean training volume 

before the study was 3.2±0.5h a week. The University Ethics Committee approved 

the protocol (Prot. N. 165038, 28 June 2016) and all participants gave their written 

consent before taking part. 

The recruited runners were randomly assigned to 2 different training groups (each 

n = 19) (see Table 1) for an 8-week period. Dropout rate for the focalized endurance 

training group (FET) was 21% (two subjects were excluded from the analysis due 

to training program adherence <96%; two abandoned the experiment for personal 

reasons). Dropout rate for the polarized endurance training group (PET) was 5% 

(one subject abandoned the study for personal reasons). The groups’ characteristics 

are shown in Table 1. The groups were similar in age, body mass, height, and 

V’O2max (See Table 1). 

Variables Polarized Endurance Training (PET)  Focused Endurance Training (FET)  

N. (m / f) 15/4 16/3 

Age (yr) 43.2±8.4 39.4±8.5 

Weight (kg) 72.0±7.7 70.9±10.1 

Height (cm) 175.2±5.9 172.5±4.3 

V'O2max (ml min-1 kg-1) 52.9±8.1 53.4±8.3 

Table 1 - Physical characteristics of runners included in the study. Data are presented as mean ± 

standard deviation 

 

Training and periodization 

The training programs were designed to achieve a similar score for both total 

TRIMP accumulated over 8 weeks (2492 ± 72 TRIMPs) and mean TRIMP 
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accumulated each week (311 ± 9). We prescribed the training in terms of time goals 

rather than distance to track the relative time in each zone for each athlete and to 

control the training load. The PET program was designed to achieve a total 

percentage distribution in zones 1, 2 and 3, corresponding to 77/3/20 based on HR, 

respectively. The FET plan had a percentage distribution of 40/50/10 in zones 1, 2 

and 3, respectively.  

 

 

Fig. 1: Real cumulative training time: black for zone1; grey for zone 2; white for zone 3. On left 

expressed in hours (A); on right on percentage of total time (B) 

 

The program was divided into two weeks comprised of an introductory period 

identical for all subjects and two 3-week micro-cyles following a 2:1 load structure. 

The relative intensity distribution of the groups was maintained during both the 

loaded and unloaded weeks. The weekly schedule for the PET group included four 

sessions, two of which were hard with intervening or repeated workout sessions at 

high intensities, one at a moderate, average intensity and one easy run. The FET 

group’s training included three sessions, all of which had medium and long 

repetitions at moderate intensity. Moderate and high intensities are essential in a 

training program since they involve large muscle mass and could lead to better 

resistance to fatigue during distance running (Boccia et al., 2017).   

Laboratory testing   

Laboratory and field running tests and muscle function tests were done during week 

0 and week 9. The tests were separated by a 24-hour resting period. All the tests 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

FET PET

h
 t

o
ta

l

0%

20%

40%

60%

80%

100%

FET PET

%
 t

im
e



  73 

were performed at the same time of day ± 2 hours in a climate-controlled laboratory 

(20-22° C, 55% humidity). The participants did not do any physical activity during 

the 24-hour resting periods and were requested not to consume food or beverages 

containing caffeine. All the subjects performed familiarization trials. All tests were 

randomized; however, the same order for everyone was followed in the pretests and 

posttests. 

 

Incremental test to exhaustion 

The three intensity zones were established based on the results of treadmill testing 

performed in the laboratory at week 0. Maximal oxygen uptake (V’O2max) and heart 

rate (HR) were measured and recorded during a treadmill incremental stress test by 

breath-by-breath analysis of oxygen consumption and carbon dioxide production 

(Quark PFT; Cosmed, Rome, Italy). Before each test, the flow meter was calibrated 

with a 3-L syringe, and the analyser was calibrated with known gas mixtures (16% 

O2 - 5% CO2) and environmental air (20.9% O2 - 0.03% CO2). 

The protocol test was individualized for each subject to control the duration of each 

test. Therefore, initial speed was determined by the subject’s capacity, and it was 

increased by 0.5 km h-1 every minute until exhaustion. The duration of the test was 

expected to be between 10 and 15 min. The treadmill (Run Race 800; Technogym, 

Gambettola, Italy) was maintained at 1% grade throughout the test, a standard 

method to simulate level running on a treadmill. All subjects were familiarized with 

running on a treadmill.  

 V’O2max was defined as the highest 30s average achieved during the test. The first 

ventilatory threshold (VT) was defined as an increase in VE·V’O2
-1, corresponding 

to a break in linearity of VE, but without an increase in VE · V’CO2
-1. The 

respiratory-compensation threshold (RCT) was defined as the intensity where 

VE · V’CO2
-1 also began to rise. Two independent evaluators made the threshold 

determinations. If there was discordance between the 2 observers, a third was 

brought in (Beaver, Wasserman, & Whipp, 1986).  

Running economy 

Running economy (RE) was determined by measuring submaximal V’O2 while the 

subject ran on a treadmill (Kyle R Barnes & Kilding, 2015): 4 minutes at 1 km h-1 
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slower than the last individual marathon pace (8.9 ± 0.2 km h-1) after a standardized 

warm up (4’ at 90% of marathon pace). Before each test, the flow meter was 

calibrated with a 3-L syringe and the analyser was calibrated with known gas 

mixtures (16% O2 and 5% CO2) and environmental air (20.9% O2 and 0.03% CO2). 

During each test heart rate was monitored and recorded using a Cosmed flow meter 

(Quark PFT, Cosmed, Rome, Italy). RE was defined as the mean V’O2 collected at 

the final 1 minute. RE was measured at week 0 and after completing the training 

program at week 9. All tests were performed at the same time of day for everyone. 

 

2km performance 

Before and after training, following a standardized warm-up session, the subjects 

participated in a 2 km simulated race on a 400m running track. Performance time 

was the mean value between the times recorded by two people manually. The race-

test was done on the same weekday and at the same hour of day.  

 

One-repetition maximum 

Maximal strength was estimated with a 6RM test on a leg press machine. All 

subjects were positioned on a horizontal leg press (Technogym, Gambettola, Italy) 

and the knee angle (90°) was fixed to maintain the same position in all test occasions. 

After a 5-minute warm-up and an appropriate rest period, the subject performed the 

first session with a preliminary load of 15 repetitions. Thereafter, the load was 

increased every step by 30% until the athlete could not successively complete a 

6RM repetition (ACSM’s Guidlines for Exercise Testing and Presctription (8th ed.). 

Baltimore, 2010). 1RM was estimated through a conversion table, and 1RM was 

measured for all subjects after proper familiarization. 

 

 

Jumping performance 

All subjects performed a squat jump (SJ) and counter movement jump (CMJ) test. 

Vertical jump ability was assessed using the SJ and the CMJ tests according to the 

procedures suggested by Bosco et al. (Bosco, Luhtanen, & Komi, 1983). Jumping 

height was calculated from flight time using a kinematics equation (Lehance, 
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Croisier, & Bury, 2005). Flight time was recorded using an infrared photocell 

connected to a digital computer (Optojump System, Microgate SARL, Bolzano, 

Italy). All tests were performed in a randomized order; however, the same order was 

followed during tests at the end of a training period. 

 

Exercise training load 

HR was recorded continuously for all subjects during each training session over the 

training period. To get comparable results, the different training models were 

chosen to determine the total exercise load (intensity X training volume) using the 

method suggested by Foster et al for calculating TRIMP (Foster et al., 2001). This 

method was also used by Munoz et al to estimate the exercise load of 10 weeks of 

training in recreational runners (Muñoz et al., 2014) as well as to monitor the 

exercise load of 3 weeks of a professional cycling race (Santalla, Earnest, Marroyo, 

& Lucia, 2012). This method integrates heart rate data with volume and relative 

intensity in the three zones detected by heart rate at VT and RCT. Heart rate values 

for VT and RCT were determined from the incremental test results and then the 

time spent in each intensity zone was quantified: zone 1, HR below the VT; zone 2, 

HR between VT and RCT; and zone 3, HR above RCT. TRIMP was computed by 

multiplying the accumulated time in each zone by an intensity weighted coefficient 

(1 for zone 1, 2 for zone 2 and 3 for zone 3) to obtain a score. The total TRIMP load 

was then obtained by summing the 3 zone scores.  

 

Training monitoring 

During the training period, each session was recorded and uploaded on a network 

platform that allowed the recording of the time spent in each intensity zone during 

each session. A 100 point rating perceived exertion (RPE) (Borg & Kaijser, 2006) 

was obtained at the end of each session. 

 

Statistical analyses 

Independent t-tests were used to determine the significance of differences 

in the measured variables indicative of fitness levels before training between groups. 

To ensure that total training load and distribution in intensity zones were different, 
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total TRIMP and total time spent in zones 1, 2 and 3 were also compared. A 2x2 

repeated ANOVA measure was done after training for all variables using 

Bonferroni’s correction method. Differences between PRE vs. POST were reported 

in absolute values, the precision of estimates for absolute values was indicated with 

95% confidence limits (CL), effect size (d) and benchmark for significance was set 

at p ≤ 0.05.  

 

Results 

Total training time over 8 weeks was significantly different and was 29.8 ± 3.07 

hours and 24.8 ± 1.96 for the PET and FET groups, respectively. Weekly 308.0 ± 

1.4 and 307.2 ± 1.0 and total 2464 ± 12.4 and 2455.9 ± 15.9 TRIMP scores (PET 

and FET, respectively) were not different between the two groups (P > 0.05).  Total 

training times spent were: in zone 1 (PET = 23.3 ± 2.7h vs FET = 9.1 ± 2.4h, P < 

0.0001), in zone 2 (PET = 0.9 ± 0.4h vs FET = 11.5 ± 3.2h, P < 0.0001) and in zone 

3 (PET = 5.7 ± 1.4h vs FET = 3.1 ± 1.4h, P = 0.0001).  

 

  Group 

 
PET  FET  

  
(n = 19) (n = 19) 

Total running time 29.8±3.1 24.8±2.0 

TTT in Zone 1 (h) 23.3±2.7 9.1±2.4 

TTT in Zone 2 (h) 0.9 ± 0.4 11.5±3.2 

TTT in Zone 3 (h) 5.7±1.4 3.1±1.4 

TTT % in Zone 1 (%) 78±9.2 36.7±9.6 

TTT % in Zone 2 (%) 3.1±1.3 46.4±12.8 

TTT % in Zone 3 (%) 18.9±4.6 12.4±5.7 

mean RPE session  60.9±15.5 65.4±14.6 

Total TRIMPs (au) 2464±124 2558.2±10.94 

mean TRIMPs/wk (au) 308.0±47.46 319.8±28.1 

 

Table  2.  Results of the training load over the 8-week total training time (TTT). Mean ± SD 

 

No significant differences were found in the comparison between the groups in any 
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investigated variable before and after training. However, significant improvements 

from pre-training to post-training were observed in both PET’s and FEC’s 

physiological parameters. In the PET group there were significant improvements in 

speed at V’O2max (vV’O2max) of 3.2% (12.9 km h-1 ± 1.7 km h-1 vs 14.3 km h-1 ± 1.5 

km h-1, P < 0.001 ), speed at VT of 4.0% (10.5 km h-1 ± 1.2 km h-1 vs 10.9 km h-1 ± 

1.2 km h-1, P < 0.001), speed at RCT of 5.7% (12.1 km h-1 ± 1.5 km h-1 vs 12.8 km 

h-1 ± 1.4 km h-1, P < 0.001), RE of 5.3% (226.3 ± 35.2 vs 214.3 ± 33.0 ml min-1 km-

1, P = 0.03), and average velocity in a 2km run of 3.5% (13.8 ± 2.0 vs 14.3 ± 1.7 

km h-1). Also for the FET group we recorded significant improvements in the same 

variables for speed at vV’O2max of 4.0% (13.8 km h-1 ± 1.9 km h-1 vs 14.3 km h-1 ± 

1.8 km h-1, P = 0.01), speed at VT of 3.2% (10.8 km h-1 ± 1.4 km h-1 vs 11.1 km h-

1 ± 1.5 km h-1, P = 0.03), speed at RCT of 3.4% (12.4 km h-1 ± 1.7 km h-1 vs 12.8 

km h-1 ± 1.7), and average velocity on a 2km run of 3.0% (13.9 ± 1.9 vs 14.3±1.9 

km h-1). 

  

Pretraining 

  

Posttraining 

  

Differenc
e 

  
Lower 
Bound 

Upper 
Bound 

  

Effect 

Size 

(d) 
    

STRUCTURAL 
         

       
Weight (kg) 72.0 ± 7.7  71.8 ± 7.3  -0.22  -0.56 1.00  0.0  

 

Fat mass (%) 19.9 ± 5.9   17.4 ± 4.9   -2.52   0.69 4.34   0.4 * 

FUNCTIONAL                  
  

     
  

 

V'O2max   (ml min-1 kg-1) 53.0 ± 5.9  53.6 ± 4.8  0.63 
 

-2.01 0.75  0.1 
 

 

vV'O2max (km h-1) 13.9 ± 1.7  14.3 ± 1.5  0.45 
 

-0.67 -0.22  0.3 * 

vVT (km h-1) 10.5 ± 1.2  10.9 ± 1.2  0.42 
 

-0.62 -0.22  0.3 * 

vRCT (km h-1) 12.1 ± 1.5  12.8 ± 1.4  0.68 
 

-0.94 -0.43  0.4 * 

RE (ml kg-1  km-1) 226.3 ± 35.2  214.3 ± 33.0  -12.02 
 

1.39 22.64  0.4 * 

1RM leg press (kg) 223.7 ± 64.6  223.9 ± 61.1  0.23  -31.39 30.92  0.0 
 

 

SJ (cm) 22.7 ± 4.6  23.3 ± 4.4  0.64  -2.03 0.75  0.1 
 

 

CMJ (cm) 24.9 ± 5.3   24.9 ± 4.9   0.07   -1.41 1.26   0.0     

PERFORMANCE                  
  

        

avg velocity 2 Km (km h-

1) 
13.8 ± 2.0   14.3 ± 1.7   0.48 

  
-0.86 -0.11   0.1 

* 

Table 3.  Structural, functional and performance results in the PET groups. Results are presented as 

mean ± SD. * p value PRE vs POST <0.05.  
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Pretraining 

  

Posttraining 

  

Differenc

e 
  

Lower 

Bound 

Upper 

Bound 
  

Effect 
Size 

(d) 
    

STRUCTURAL 
         

 
  

    
Weight (kg) 70.9 ± 2.5  69.9 ± 2.5  -1.0  0.08 1.87  0.1   
Fat mass (%) 18.5 ± 1.8   16.9 ± 1.7   -1.6  -0.15 3.41   0.3 *  

FUNCTIONAL          
 

     
   

V'O2max   (ml min-1 kg-1) 53.7 ± 1.9  53.2 ± 1.9  -0.5 
 

-1.00 2.00  0.1 
  

vV'O2max (km h-1) 13.8 ± 0.5  14.3 ± 0.4  0.5 
 

-0.85 -0.15  0.3 * 

vVT (km h-1) 10.8 ± 0.3  11.1 ± 0.4  0.3 
 

-0.65 -0.04  0.3 * 

vRCT (km h-1) 12.4 ± 0.4  12.8 ± 0.4  0.4 
 

-0.67 -0.14  0.3 * 

RE (ml kg-1  km-1) 
231.

8 
± 9.1  211.6 ± 6.3  -20.2 

 
8.88 31.54  0.6 

* 

1RM leg press (kg) 
210.

5 
± 18.8  193.8 ± 15.5  -16.8 

 
-11.92 45.47  0.3 

  
SJ (cm) 24.1 ± 1.7  25.3 ± 1.7  1.2 

 
-3.02 0.62  0.2 

  
CMJ (cm) 27.1 ± 1.9   27.1 ± 2.0   0.1   -1.49 1.35   0.0    

PERFORMANCE 
         

  
     

   

avg velocity 2 Km (km h-1) 13.9 ± 0.5   14.3 ± 0.5   0.4   -0.62 -0.18   0.1 *  

Table 4.  Structural, functional and performance results in the PET groups. Results are presented as 

mean ± SD. * p value PRE vs POST <0.05.  

 

Discussion 

The main purpose of our study was to evaluate the effects of different intensity 

distributions in laboratory tests and field performance. Both groups, polarized and 

focused (intensity distribution 77/3/20 and 40/50/10, respectively) showed 

significant improvement in velocity at V’O2max, VT, RCT, running economy and in 

performance in a 2km run, without any variations in the values of V’O2max. There 

were no significant differences between groups that could support one approach 

over another regarding recreational athletes. In their study on recreational runners, 

Seiler et al. found improvements in 10K run performance between pre- and post-

training, but no differences between groups that followed their training programs 

diligently with emphasis on a polarized intensity distribution and threshold 

emphasis distribution.  

The changes recorded in our study are in agreement with the results reported in 

several training studies that used different training modalities for 8 weeks for 

recreational runners. In a recent study by Pugliese et al (Pugliese et al., 2018), there 

was an improvement in speed at V’O2max  of about +6% and speed at VT of about 

+5% with no increment in V’O2max; whereas improvement in a 5K run performance 

was about 3%. Similar results were observed also in master runners following 
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concurrent strength and endurance training (Piacentini et al., 2013a). Also, changes 

recorded for RE were aligned with changes reported in other studies (Piacentini et 

al., 2013a; Spurrs et al., 2003).   

To date, these are the only studies that have analyzed the effects of different 

intensity distributions on recreational runners. A study by Neal et al. (Neal et al., 

2013) observed superior performance effects of polarized training in a group of 

cyclists with a better fitness level than in our current study runners. Their study was 

well controlled and the differences between the groups were emphasized because 

they eliminated all training above the RCT (zone 3) in their threshold group.  

While there is strong agreement that the polarized training model is widely used 

among elite coaches and athletes, and several studies have shown that it allows them 

to achieve greater improvements in performance, no evidence has yet emerged 

among the compared models concerning recreational athletes. 

The polarized distribution is necessary for athletes who perform a large volume of 

training to prevent overtraining or a steady state of performance. Moreover, by 

accumulating less effort, the quality of high-intensity sessions is better and this 

could lead to greater improvement compared to threshold or focused models 

(Muñoz et al., 2014). The average volume for recreational runners is 3 to 5 hours a 

week, and the probability of overtraining is very low; they seem to show that they 

have good tolerance to accumulating time at such intensity. 

 

Practical application 

The limited amount of training hours spent by recreational athletes is determined 

primarily by their availability of time to train. The focused model seems to better 

meet the needs of recreational athletes to maximize improvement from training. 

 

Conclusions 

The focused endurance training model seems to better meet the needs of 

recreational athletes and to achieve an improvement in performance similar to 

polarized endurance training by saving about 17% of time in 8 weeks. 
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Chapter 9  
Discussion 

 

 

The purpose of this thesis was to identify training strategies that can improve 

running performance in long distance in recreational athletes. The first thing we 

want to emphasize is that the model of the "recreational runner" is capable of 

satisfying the needs of this kind of research. Recreational runners showed an 

interest in changing their training routines, even if that meant sacrificing some of 

their time in order to improve their performance. In addition, the data collected was 

of good quality and consistent when compared with the results of high-level athletes. 

It is worth remembering that elite athletes have training schedules that are not 

compatible, or compatible with a complex scientific approach, with training 

protocols that this type of research requires and that cannot be applied without 

affecting their performance. 

The decision to concentrate the study on RE and the distribution of training intensity 

originated from the need to answer questions regarding strategies to improve 

performance in recreational runners that previously had no answers, but which are 

fundamental for elite athletes. 

 As shown in the results of study 1, and as reported abundantly in the literature 

regarding elite athletes, strength training is essential to improving performance even 

for endurance sports such as running, cycling, cross country skiing, and the triathlon. 

The benefits of strength training translate into an improvement in RE even among 

amateur athletes. 

The Yo-Yo Leg Press, a machine that uses the isoinertial system, allows to 

emphasize the eccentric component (such as plyometric training) during the 

execution of exercises without overloading the muscle-tendon structures and 

thereby avoiding possible injuries, an aspect that should not be underestimated 

where amateur athletes are concerned. The other aspect that should not be 

underestimated is the duration of this kind of training, based on about 20-25 minutes 

including the warm-up, which means that the time dedicated to the running itself 

does not need to be reduced, and in this case it is based on about 3-4.5h a week.  

Improvements in the value of RE and performance obtained in this study are similar 
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to those obtained with strategies of strength training among both elite and amateur 

athletes .  

In the second study, focus was on investigating possible differences in improvement 

between two modes of intensity distribution. The aim, besides verifying the effects 

of the polarized distribution model on a group of amateur athletes, was also to 

propose an alternative training program that would achieve the same improvements, 

but which would be able to reduce the time dedicated to training. The results of the 

study are not able to conclude if one of the two models is better to achieve greater 

improvement. In fact, no differences were found between the polarized method 

(intensity distribution 77-3-20% respectively in Z 1,2,3 of the total training time) 

and the focused method (40-50-10%, respectively), between the physiological 

parameters obtained in the laboratory and those recorded during field performance. 

The only important difference was that the improvements in the focused training 

group were achieved with 15% of time saved compared with the polarized group, 

without encountering any injuries or other problems. 

The RE has shown to be sensitive to the training volume at high intensity. In 

subjects exclusively trained at aerobic or poorly anaerobic intensity, indeed, the RE 

did not improve. Differently, it has significantly improved in massively-trained 

groups at medium or high intensity. This implies the need to insert the high intensity 

exercises into the training plans with meaningful volumes. This is not always 

possible, due to time constraints and the low tolerability of these regimes in 

recreational runners. However, the RE was sensitive to improvement even to 

specific activities with massively eccentric work, although of very short duration. 

It results therefore, after opportune familiarization a valid alternative in recreational 

runners that, have no possibility to invest too much time in the training at medium 

and/or high intensity. 

It may be important to work on techniques that integrate a strength workout with a 

careful intensity distribution training. It is necessary to lengthen training periods in 

order to investigate whether any improvement takes place only in the first weeks or 

if such changes occur constantly. 

Alongside its scientific contribution, this work provides practical evidence and 

ideas applicable and useful to coaches and amateur athletes in order to achieve the 
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best possible performance even with this kind of athlete. 
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Chapter 10  
Conclusion 

 

The scientific literature related to running training presents studies regarding all 

aspects that determine performance. Most of the studies refer to elite athletes and 

only recently the interest shifted to amateur athletes because they represent the 

largest number of participants and therefore also arouse great interest for companies 

producing apparel, shoes and technological tools. 

Given the traumatic nature of the race on joints and muscle-tendinous apparatus, 

training strategies used for elite athletes and amateurs must take count of 

individual’s technical skills and ability to sustain certain training loads due to 

intensity, the nature of the training stimulus and the progressive increase of these 

loads. This will subsequently lead to a greater ability to support these stressful 

stimuli.  

Recently, strength training has received great attention in endurance sports because 

it allows the improvement of energy cost as shown in studies realized with cyclists, 

cross-country skiers, swimmers and runners, and because of its essential role in 

preventing injuries. Another important tool for injury prevention is the management 

of the training load. To do this, we tried to identify patterns of intensity distribution 

able to enhance improvements without causing injuries, trying to optimize the time 

/ benefit ratio for amateur athletes who have little time to train. 

During these years I also realized that the research can be used by few people and 

that it would be better to promote the dissemination of the results obtained in a way 

that everyone can understand them. In this way, the research would become more 

important than practice and experience, as for now these three make a mixture 

where solely research adopts the objective way of explanation of the adaptation 

phenomena that training induces. 

This reflection fits into a context already taken in consideration in the past, leaving 

an important legacy on the purpose of the research to those who are approaching 

this path. 
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“Sin dagli albori del mondo sportivo moderno il desiderio e la necessità costanti 

dei tecnici, degli allenatori, dei medici e degli atleti delle diverse discipline sportive 

sono stati quelli di studiare ed ottimizzare il gesto tecnico e l’eventuale attrezzo da 

gara, rendere oggettive le esperienze maturate sul campo e analizzare gli avversari 

più forti.”  

Marcello Faina (Dipartimento di Scienza dello Sport dell’Istituto di Medicina e Scienza dello 

Sport del CONI) 
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