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Abstract In this paper we formulate a time-optimal control problem in the space of prob-
ability measures. The main motivation is to face situations in finite-dimensional control
systems evolving deterministically where the initial position of the controlled particle is
not exactly known, but can be expressed by a probability measure on R

d . We propose
for this problem a generalized version of some concepts from classical control theory in
finite dimensional systems (namely, target set, dynamic, minimum time function...) and for-
mulate an Hamilton-Jacobi-Bellman equation in the space of probability measures solved
by the generalized minimum time function, by extending a concept of approximate vis-
cosity sub/superdifferential in the space of probability measures, originally introduced by
Cardaliaguet-Quincampoix in Cardaliaguet and Quincampoix (Int. Game Theor. Rev. 10,
1–16, 2008). We prove also some representation results linking the classical concept to the
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corresponding generalized ones. The main tool used is a superposition principle, proved by
Ambrosio, Gigli and Savaré in Ambrosio et al. [3], which provides a probabilistic represen-
tation of the solution of the continuity equation as a weighted superposition of absolutely
continuous solutions of the characteristic system.

Keywords Optimal transport · Differential inclusions · Time-optimal control · Set-valued
analysis

Mathematics Subject Classification (2010) 34A60 · 49J15

1 Introduction

Classical minimum time problem in finite-dimension deals with the minimization of the
time needed to steer a point x0 ∈ R

d to a given closed subset S of Rd , called the target set,
along the trajectories of a controlled dynamics of the form

⎧
⎨

⎩

ẋ(t) ∈ F(x(t)), t > 0,

x(0) = x0,

(1)

where F is a set-valued map from R
d to R

d whose value at each point denotes the set of
admissible velocities at that point.

In this way it is possible to define the minimum time function T : given x ∈ R
d , we define

T (x) to be the minimum time needed to steer such point to the target S along trajectories of
(1). The study of regularity property of T is a central topic in optimal control theory and it
has been extensively treated in literature. In particular, we refer to [12, 13] and to references
therein, for recent results on the regularity of T in the framework of differential inclusions.

Our study moves from the natural consideration that in many real applications we do
not know exactly the starting position x0 ∈ R

d of the particle, and we can express it only
with some uncertainty. This happens even if we assume to have a deterministic evolution of
the system.

A natural choice to face this situation is to model the uncertainty on the initial position
by a probability measure μ0 ∈ P(Rd) on R

d , looking to a new macroscopic control system
made by a suitable superposition of a continuum of weighted solutions of the classical
differential inclusion (1) starting from each point of the support of μ0 (microscopic point
of view).

The time evolution of the macroscopic system in the space of probability measures, under
suitable assumptions, can be thought as ruled by the continuity equation

⎧
⎨

⎩

∂tμ(t, x) + div(vt (x)μ(t, x)) = 0, for t > 0, x ∈ R
d ,

μ(0, ·) = μ0.

(2)

which represents the conservation of the total mass μ0(R
d) during the evolution. Here vt (x)

is a suitable time-depending Eulerian vector field, representing the velocity of the mass
crossing position x at time t .

In order to reflect the original control system (1) at a microscopic level, a natural require-
ment on the vector field vt (·) is to be a selection of the set-valued map F(·): this means that
the microscopic particles still obey the nonholonomic constraints coming from (1). On the

Author's personal copy



Generalized Control Systems in the Space of Probability Measures 665

other hand, since the conservation of the mass gives us the property μ(t,Rd) = μ0(R
d) for

all t , we are entitled – according to our motivation – to say that the measure μ(t, ·) actually
represents the probability distribution in the space R

d of the evolving particles at time t .
The analysis of (2) by mean of the superposition of ODEs of the form ẋ(t) = v(x(t)),

or ẋ(t) = v(t, x(t)), has been extensively studied in the past years by many authors: for a
general introduction, an overview of known results and open problems, and a comprehensive
bibliography, we refer to the recent survey [1]. The main issue in these problems is to study
existence, uniqueness and regularity of the solution of (2), for μ0 in a suitable class of
measures, when the vector field v has low regularity and, hence, it does not ensure that the
corresponding ODEs have a (possibly not unique) solution among absolutely continuous
functions, for every initial data x0. In this case, the solution of (2) provides existence and
uniqueness not in a pointwise sense, but rather generically. However we will not address
this problem in this paper.

In order to face control problems involving measures, we need first of all a coherent
generalization of the target set S ⊆ R

d . To this aim, we consider an observer which mea-
sures the average of certain quantities φ(·) ∈ Φ on the system, and consider as target set
S̃Φ ⊆ P(Rd) all the probability measures representing states which make the result of the
measurements nonpositive. If we take for instance Φ = {dS(·)}, the generalized target in
P(Rd) turns out to be the set of all probability measures supported on S.

This choice seems to be the simplest possible in this framework and it results in a quite
natural definition of generalized minimum time: we aim to minimize the time needed to
steer an initial measure towards a measure in the generalized target, along solutions of (2)
with the additional constraint v(x) ∈ F(x) a.e. in R

d . This can be viewed as a controlled
version of (2).

The links between continuity Eq. 2 and optimal transport theory have been investigated
recently by many authors. One can prove that suitable subsets of P(Rd) can be endowed
with a metric structure – the Wasserstein metric – whose absolutely continuous curves turn
out to be precisely the solutions of (2). This has been applied to solve many variational
problems, among which we recall optimal transport problems, asymptotic limit for gradient
flows of integral functionals, and calculus of variations in infinite dimensional spaces. We
refer to [3] and [26] for an introduction to the subject, and for generalizations from R

d to
infinite dimensional metric spaces.

Our main results can be summarized as follows:

• a theorem of existence of time–optimal curves in the space of probability measures
(Theorem 5);

• a comparison result between classical and generalized minimum time functions in some
cases (Proposition 2);

• a sufficient condition for the generalized minimum time function to be finite, with an
upper estimate based on the initial data (Theorem 7);

• the proof that the generalized minimum time function is a viscosity solution in a suit-
able sense of an Hamilton-Jacobi-Bellman equation analoguos to the classical one
(Theorem 8).

Recent works (see e.g. [2, 20]) have treated the problem of viscosity solutions of
Hamilton-Jacobi equations in the space of probability measures endowed with Wasserstein
metric. Since classical minimum time function can be characterized as unique viscosity
solution of Hamilton-Jacobi-Bellman equation, it would be interesting to investigate if it is
possible to characterize in similar way the generalized minimum time function in this set-
ting. Indeed, in this paper we just proved that the generalized minimum time function solves
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666 G. Cavagnari et al.

in a suitable viscosity sense a natural Hamilton-Jacobi-Bellman, which presents strong
analogies with the finite-dimensional case.

Related to such a problem, a further application could be the theory of mean field
games [22, 23]. According to this theory, in games with a continuum of agents, having the
same dynamics and the same performance criteria, the value function for an average player
can be retrieved by solving an infinite dimensional Hamilton–Jacobi equation, coupled with
the continuity equation describing how the mass of players evolves in time.

Further applications of our approach, that we plan to investigate in the next future, are in
the direction of the classical control problems. For instance, we plan to apply it to the study

of control–affine systems of the form ẋ =
m∑

i=1

uifi(x), where ui ∈ [−1, 1] are the controls

and fi(·) are given vector fields. In these systems, controllability depends on the Lie algebra
generated by vector fields fi(·). When these vector fields are rough, classical Lie brackets
may not be available at every point of Rd , but just in some set of full measure. This problem
was treated in [24], leading to a definition of nonsmooth Lie brackets. However, a valid
alternative might be to extend the given system to the measure–valued context and to choose
the initial data of such generalized system in a suitable subclass of measures, in the spirit
of [1]. The definition of an object in the measure-theoretic setting which corresponds to the
Lie brackets in the finite-dimensional context is in the purpose of a forthcoming paper of
the first two authors.

Another application might be in the context of discontinuous feedback controls for gen-
eral nonlinear control systems ẋ = f (x, u). Here, the construction of stabilizing or nearly
optimal controls x �→ u(x) cannot be performed, even for smooth dynamics, among con-
tinuous controls [25]. However, it is possible to construct discontinuous feedback controls
which are stabilizing or nearly optimal, and whose discontinuities are sufficiently tame to
ensure the existence of Carathéodory solutions for the closed loop system ẋ = f (x, u(x)),
the so–called patchy feedback controls [4, 5, 10], but uniqueness only holds for a set of full
measure of initial data.

The paper is structured as follows: in Section 2 we review some notion from measure
theory, optimal transport, continuity equation, differential inclusions, and control theory.
In Section 3 we first introduce a definition of generalized target and then we give two
definitions of generalized minimum time functions, providing some comparison results
between them and with the classical minimum time function, then we prove the Existence
Theorem 5 and the Attainability Theorem 7. Finally, in Section 4 we prove that the
generalized minimum time function solves in a suitable viscosity sense an Hamilton-Jacobi-
Bellman equation.

2 Preliminaries

In this section we review some concepts from measure theory, optimal transport, and
control theory.

Our main references for preliminaries on measure theory are [3] and [26].
Let X be a separable metric space. P(X) stands for the set of Borel probability measures

on X endowed with narrow convergence, M +(X) denotes the set of positive and finite
Radon measures on X and M (X;Rd) the set of vector-valued Radon measures on X. We
recall that P(X) can be identified with a convex subset of the unitary ball of the dual
space (C0

b (X))′, and that narrow convergence is induced by the weak∗-topology on the dual
space (C0

b(X))′.
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Let X, Y be separable metric spaces, the push-forward of a measure μ ∈ P(X) through
a Borel map r : X → Y is defined by r�μ(B) := μ(r−1(B)) ∈ P(Y ), for all Borel sets
B ⊆ Y , or equivalently it is defined by

∫

X

f (r(x)) dμ(x) =
∫

Y

f (y) dr�μ(y),

for every bounded (or r�μ-integrable) Borel function f : Y → R. For properties of push-
forward we cite [3], Chapter 5, Section 2.

Let μ ∈ P(Rd), p ≥ 1, we say that μ has finite p-moment if

mp(μ) :=
∫

Rd

|x|p dμ(x) < +∞,

and Pp(Rd) denotes the subset of P(Rd) made of measures with finite p-moment.

Definition 1 (Wasserstein distance) Given μ1, μ2 ∈ P(Rd), p ≥ 1, we define the
p-Wasserstein distance between μ1 and μ2 by setting

Wp(μ1, μ2) :=
(

inf

{∫∫

Rd×Rd

|x1 − x2|p dπ(x1, x2) : π ∈ Π(μ1, μ2)

})1/p

, (3)

where the set of admissible transport plans Π(μ1, μ2) is defined by

Π(μ1, μ2) :=
{

π ∈ P(Rd × R
d) : π(A1 × R

d) = μ1(A1),

π(Rd × A2) = μ2(A2),

for all μi-measurable sets Ai, i = 1, 2

}

.

We also denote with Π
p
o (μ1, μ2) the subset of Π(μ1, μ2) consisting of optimal transport

plans, i.e. the set of all plans π for which the infimum in (3) is attained. We will also use the
notation Πo(μ1, μ2) when the context makes clear which distance Wp is being considered.

Proposition 1 Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·) is a complete sep-
arable metric space. Moreover, given a sequence {μn}n∈N ⊆ Pp(Rd) and μ ∈ Pp(Rd),
we have that the following are equivalent

1. lim
n→∞ Wp(μn, μ) = 0,

2. μn ⇀∗ μ and {μn}n∈N has uniformly integrable p-moments.

Given μ1, μ2 ∈ P(Rd), p ≥ 1, the following dual representation (called Monge–
Kantorovich duality) holds

W
p
p (μ1, μ2)=sup

⎧
⎨

⎩

∫

Rd

ϕ(x1) dμ1(x1)+
∫

Rd

ψ(x2) dμ2(x2) :
ϕ,ψ ∈ C0

b (Rd )
ϕ(x1) + ψ(x2) ≤ |x1−x2|p
for μi–a.e. xi ∈ R

d

⎫
⎬

⎭
.

(4)

Proof See Lemma 5.1.7, Proposition 7.1.5 and Theorem 6.1.1 in [3].

For other properties of the Wasserstein distance we refer for example to Chapter 6 in [26]
or Section 7.1 in [3].
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Theorem 1 (Superposition principle) Let μ = {μt }t∈[0,T ] be a solution of the continuity
equation ∂tμt + div(vtμt ) = 0 for a suitable Borel vector field v : [0, T ] × R

d → R
d

satisfying
∫ T

0

∫

Rd

|vt (x)|
1 + |x| dμt (x) dt < +∞ .

Then there exists a probability measure η ∈ P(Rd × ΓT ), with ΓT = C0([0, T ];Rd)

endowed with the sup norm, such that

(i) η is concentrated on the pairs (x, γ ) ∈ R
d × ΓT such that γ is an absolutely

continuous solution of
{

γ̇ (t) = vt (γ (t)), for L 1-a.e t ∈ (0, T )

γ (0) = x,

(ii) for all t ∈ [0, T ] and all ϕ ∈ C0
b (Rd) we have

∫

Rd

ϕ(x)dμt (x) =
∫∫

Rd×ΓT

ϕ(γ (t)) dη(x, γ ).

Conversely, given any η satisfying (i) above and defined μ = {μt }t∈[0,T ] as in (ii) above,
we have that ∂tμt + div(vtμt ) = 0 and μ|t=0 = γ (0)�η.

Proof See Theorem 5.8 in [9] and Theorem 8.2.1 in [3].

We recall now some preliminaries about differential inclusions governing the classical
control problem. For this part, our main references are [7] and [8].

Definition 2 (Standing Assumptions) We will say that a set-valued function F : Rd ⇒ R
d

satisfies the assumption (Fj ), j = 0, 1, 2 if the following hold true

(F0) F (x) �= ∅ is compact and convex for every x ∈ R
d , moreover F(·) is continuous with

respect to the Hausdorff metric, i.e. given x ∈ X, for every ε > 0 there exists δ > 0
such that |y − x| ≤ δ implies F(y) ⊆ F(x) + B(0, ε) and F(x) ⊆ F(y) + B(0, ε).

(F1) F (·) has linear growth, i.e. there exists a constant C > 0 such that F(x) ⊆
B(0, C(|x| + 1)) for every x ∈ R

d .
(F2) F (·) is bounded, i.e. there exist M > 0 such that |y| ≤ M for all x ∈ R

d , y ∈ F(x).

Theorem 2 Under assumptions (F0) and (F1), the differential inclusion

ẋ(t) ∈ F(x(t)) , (5)

has at least one Carathéodory solution defined in [0, +∞[ for every initial data x(0) in Rd ,
i.e., an absolutely continuous function x(·) satisfying (5) for a.e. t ≥ 0.

Moreover, the set of trajectories of the differential inclusions (5) is closed in the topology
of uniform convergence.

Proof See e.g. Theorem 2 p. 97 in [7] and Theorem 1.11 p.186 in Chapter 4 of [18].

The following simple classical lemma will be used.
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Lemma 1 (A priori estimate on differential inclusions) Assume (F0) and (F1). Let K ⊂
R

d be compact and T > 0 and set |K| = max
y∈K

|y|. Then, for all Carathéodory solutions

γ : [0, T ] → R
d of (5) we have

(i) forward estimate: if γ (0) ∈ K then |γ (t)| ≤ (|K| + CT ) eCT for all t ∈ [0, T ];
(ii) backward estimate: if γ (T ) ∈ K then |γ (t)| ≤ (|K| + CT ) eCT for all t ∈ [0, T ],
where C is the constant in (F1).

Proof Recalling that γ̇ (s) ∈ F(γ (s)) for a.e. s ∈ [0, T ] and that F(γ (s)) ⊆
B(0, C(|x| + 1)), we have

|γ (t)| ≤ |γ (0)| +
∫ t

0
|γ̇ (s)| ds ≤ |K| + CT + C

∫ t

0
|γ (s)| ds .

According to Gronwall’s inequality, we then have |γ (t)| ≤ (|K| + CT )eCt , whence
(i) follows.

Next, we define w(t) = γ (T − t) and observe that w is a solution of ẇ(t) ∈ −F(w(t)).
Since −F(·) still satisfies (F0) and (F1) and w(0) ∈ K , the previous analysis implies

|γ (t)| = |w(T − t)| ≤ (|K| + CT ) eC(T −t),

whence (ii) follows.

Definition 3 (Weak invariance) Given a set-valued map F : Rd ⇒ R
d , we say that S ⊆ R

d

is weakly invariant for F(·) if for every x ∈ S there exists a Carathéodory solution x(·)
of (5), defined in [0, +∞[, such that x(0) = x and x(t) ∈ S for every t ≥ 0.

For conditions on S and F ensuring weak invariance, we refer to Theorem 2.10 in
Chapter 4 of [18].

Given T ∈ [0, +∞[, we set

ΓT := C0([0, T ];Rd), Γ x
T := {γ ∈ ΓT : γ (0) = x ∈ R

d},
endowed with the usual sup-norm, where we recall that ΓT is a complete separable metric
space for every 0 < T < +∞. The evaluation map et : Rd × ΓT → R

d is defined by
et (x, γ ) = γ (t) for all 0 ≤ t ≤ T .

Let X be a set, A ⊆ X. In the following, the indicator function of A is the function
IA : X → {0, +∞} defined as IA(x) = 0 for all x ∈ A and IA(x) = +∞ for all x /∈ A.
The characteristic function of A is the function χA : X → {0, 1} defined as χA(x) = 1 for
all x ∈ A and χA(x) = 0 for all x /∈ A.

If X is a Banach space, X′ its topological dual, A ⊆ X nonempty, we denote with
σA : X′ → [−∞, +∞] the support function to A, defined by σA(x∗) := sup

x∈A

〈x∗, x〉X′,X.

3 Generalized Minimum Time Problem

In this section we first propose a suitable generalization of the classical target set that will
be used in our framework in the space of probability measures, and then we define a suitable
notion of minimum time function, modeled on the finite-dimensional case.
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Definition 4 (Generalized targets) Let p ≥ 1, Φ be a given set of lower semicontinuous
maps from R

d to R, such that the following property holds

(TE) there exists x0 ∈ R
d with φ(x0) ≤ 0 for all φ ∈ Φ, and all φ ∈ Φ are bounded

from below.

We define the generalized targets S̃Φ and S̃Φ
p as follows

S̃Φ :=
{

μ ∈ P(Rd) : φ ∈ L1
μ and

∫

Rd

φ(x) dμ(x) ≤ 0 for all φ ∈ Φ

}

,

S̃Φ
p := S̃Φ ∩ Pp(Rd).

It can be proved that S̃Φ is w∗-closed in P(Rd) and S̃Φ
p is Wp-closed in Pp(Rd).

When we can write Φ = {dS}, with S ⊆ R
d closed and nonempty, then we will say

that S̃Φ (or S̃Φ
p ) admits a classical counterpart, or that S is the classical counterpart of S̃Φ

(or S̃Φ
p ).

We define also the generalized distance from S̃Φ
p as

d̃
S̃Φ

p
(·) := inf

μ∈S̃Φ
p

Wp(·, μ).

Notice that S̃Φ
p �= ∅ because δx0 ∈ S̃Φ

p , hence S̃Φ �= ∅. The 1-Lipschitz continuity of d̃
S̃Φ

p
(·)

is trivial.

We refer the reader to [16] for an analysis of the properties of these objects.

Definition 5 (Admissible curves) Let F : Rd ⇒ R
d be a set-valued function, I = [a, b] a

compact interval of R, α, β ∈ P(Rd). We say that a Borel family of probability measures
μ = {μt }t∈I ⊆ P(Rd) is an admissible trajectory (curve) defined in I for the system �F

joining α and β, if there exists a family of Borel vector-valued measures ν = {νt }t∈I ⊆
M (Rd ;Rd) such that

1. μ is a narrowly continuous (i.e., continuous w.r.t. the topology induced by the duality
with the set C0

b (Rd) of real-valued continuous bounded functions on R
d ) solution in

the distributional sense of ∂tμt + div(νt ) = 0, with μ|t=a = α and μ|t=b = β.

2. |νt | � μt for L 1-a.e. t ∈ I , and vt (x) := νt

μt

(x) ∈ F(x) for μt -a.e. x ∈ R
d and

L 1-a.e. t ∈ I .

In this case, we will also shortly say that μ is driven by ν.

Remark 1 We can express condition (2) above by introducing the functional

JF (μ, ν) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b − a, if |νt | � μt for L 1-a.e. t ∈ I,

and vt (x) := νt

μt

(x) ∈ F(x) for μt -a.e. x, L 1-a.e. t ∈ I,

+∞, otherwise.

(6)

Indeed, the finiteness of JF (μ, ν) forces the elements of ν to have the form νt = vtμt for a
vector field vt ∈ L1

μt
for a.e. t ∈ I , and moreover we have vt (x) ∈ F(x) for μt–a.e. x ∈ R

d

and a.e. t ∈ I . When JF (·, ·) is finite, this value expresses the time needed by the system
�F to steer α to β along the trajectory μ with family of velocity vector fields v = {vt }t∈I .
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In view of the superposition principle stated at Theorem 1, we can give the following
alternative equivalent definition.

Definition 6 (Admissible curves (alternative definition)) Let F : Rd ⇒ R
d be a set-valued

function satisfying (F1), I = [a, b] a compact interval of R, α, β ∈ P(Rd). We say that
a Borel family of probability measures μ = {μt }t∈I is an admissible trajectory (curve)
defined in I for the system �F joining α and β, if there exist a probability measure η ∈
P(Rd × ΓI ) and a Borel vector field v : I × R

d → R
d such that:

1. η is concentrated on the pairs (x, γ ) such that γ is an absolutely continuous solution of
ẋ(t) = vt (x(t)) with initial condition γ (a) = x;

2. for every ϕ ∈ C0
b (Rd), t ∈ I we have

∫

Rd

ϕ(x) dμt (x) =
∫∫

Rd×ΓI

ϕ(γ (t)) dη(x, γ ),

3. γ (a)�η = α, γ (b)�η = β,
4. vt (x) ∈ F(x) for μt -a.e. x ∈ R

d and a.e. t ∈ I and vt ∈ L1
μt

for a.e. t ∈ I .

In this case, we can define νt = vtμt thus we have simply JF (μ, ν) = b − a.

Remark 2 In general, the measure η representing a solution μ = {μt }t∈[0,T ] of the
continuity equation by μt = et �η is not unique, as shown by Example 2.

In the following, we will mainly focus our attention on admissible curves defined in
[0, T ], for some suitable T > 0. We introduce the following notation.

Definition 7 Given T ∈ [0, +∞[, we set

TF (μ0) := {η ∈ P(Rd × ΓT ) : T > 0, η concentrated on trajectories of

γ̇ (t) ∈ F(γ (t)) and satisfies γ (0)�η = μ0},
where μ0 ∈ P(Rd).

By the Superposition Principle (Theorem 1), given F : R
d ⇒ R

d satisfying (F1), a
Borel family of probability measures μ = {μt }t∈[0,T ] is an admissible trajectory if and
only if there exists η ∈ TF (μ0) such that μt = et �η for all t ∈ [0, T ], i.e., η = μ0 ⊗ ηx

where for μ0-a.e. x ∈ R
d we have that ηx ∈ P(Γ x

T ) is concentrated on the solutions of
ẋ(t) ∈ F(x(t)), x(0) = x.

In this case, we will shortly say that the admissible trajectory μ = {μt }t∈[0,T ] is
represented by η ∈ TF (μ0).

For later use we state the following technical lemma.

Lemma 2 (Basic estimates) Assume (F0) and (F1), and let C be the constant as in (F1).
Let T > 0, p ≥ 1, μ0 ∈ Pp(Rd) and μ = {μt }t∈[0,T ] be an admissible trajectory driven
by ν = {νt }t∈[0,T ] and represented by η ∈ TF (μ0). Then we have:

(i) |et (x, γ )| ≤ (|e0(x, γ )| + CT ) eCT for all t ∈ [0, T ] and η-a.e. (x, γ ) ∈ R
d × ΓT ;

(ii) et ∈ L
p
η (Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists D > 0 depending only on C, T , p such that for all t ∈ [0, T ] we have
∥
∥
∥
∥
et − e0

t

∥
∥
∥
∥

p

L
p
η

≤ D
(
mp(μ0) + 1

) ;
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(iv) there exist D′, D′′ > 0 depending only on C, T , p such that for all t ∈ [0, T ] we have
mp(μt ) ≤ D′(mp(μ0) + 1),

mp(|νt |) ≤ D′′(mp+1(μ0) + 1).

In particular, we have μ = {μt }t∈[0,T ] ⊆ Pp(Rd).

Proof Item (i) follows from Lemma 1. To prove (ii) it is enough to show e0 ∈ L
p
η (Rd ×ΓT )

and then apply item (i). Indeed, recalling that (a + b)p ≤ 2p−1(ap + bp) for any a, b ≥ 0,
we have

∫∫

Rd×ΓT

|e0(x, γ )|p dη(x, γ ) =
∫

Rd

|z|p d(γ (0)�η)(z) = mp(μ0) < +∞,

∫∫

Rd×ΓT

|et (x, γ )|p dη(x, γ ) ≤ 2p−1eCTp

(∫∫

Rd×ΓT

|e0(x, γ )|p dη + CpT p

)

≤ K
(
mp(μ0) + 1

)
,

for a suitable constant K > 0 depending only on C, T , p.
For the proof of (iii), (iv) we refer to Lemma 3.2 in the forthcoming paper [15] for

the case p = 2. The generalization of these results to the case p ≥ 1 is trivial, and
based on classical estimates on the solution of the characteristic system following from
Gronwall’s inequality.

We will provide now a couple of examples of admissible curves in some relevant case, in
particular it can be shown that, without further constraint on vt besides being an integrable
selection of F(·), concentration and separation of mass along the admissible curves are
possibile, mainly due to the multiplicity of the solutions of the characteristic system of
suitable non-Lipschitz vector field selected from F(·). We refer to [1] for a discussion on
the properties that must be requested on vt to prevent this behaviour.

Example 1 The ground space is R. We define:

– the set-valued map F : R ⇒ R by setting F(x) ≡ [−3/2, 3/2] for all x ∈ R;
– the vector field v : [0, 1]×R → R by setting vt (x) = 3

2x1/3 for all (t, x) ∈ [0, 1]×R;
– the map ϒ : [0, 1] → C0([0, 1];R) by setting ϒ(a) = γa for all a ∈ [0, 1], where

γa(t) := χ[a,1](t)(t − a)3/2, for t ∈ [0, 1];
– the Borel map f : [0, 1] → R defined as f (y) = 1 − y2/3;
– the measures

θ := f �
(
L 1|[0,1]

)
∈ P(R), μt := et �η ∈ P(R), t ∈ [0, 1],

η := δ0 ⊗ 1

2
(ϒ�θ + (−ϒ)�θ) ∈ P(R × Γ1), νt := vtμt ∈ M (R;R), t ∈ [0, 1],

where L 1|[a,b] ∈ P([a, b]) is the Lebesgue 1-dimensional measure restricted to the

interval [a, b]: L 1|[a,b](B) = L 1(B ∩ [a, b]) for every Borel set B, a, b ∈ R, a ≤ b.

We notice that

– supp θ ⊆ [0, 1];
– the map ϒ is clearly continuous, hence Borel, thus η and μt are well-defined;
– η is supported on pairs ±(γa(0), γa) where a ∈ [0, 1], and the curves ±γa(·) are all

absolutely continuous solutions of γ̇ (t) = vt (γ (t)), t ∈]0, 1], with γa(0) = 0 for all
a ∈ [0, 1];
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– given t ∈ [0, 1] and a Borel set B ⊆ R we have

μt(B) = η
(
e−1
t (B)

)
= η ({(x, γ ) ∈ R × Γ1 : γ (t) ∈ B})

= δ0(R) · 1

2
(ϒ�θ + (−ϒ)�θ) ({γ ∈ Γ1 : γ (t) ∈ B})

= 1

2

[
θ
(
ϒ−1({γ ∈ Γ1 : γ (t) ∈ B})

)
+ θ

(
(−ϒ)−1({γ ∈ Γ1 : γ (t) ∈ B})

)]

= 1

2
θ ({a ∈ [0, 1] : γa(t) ∈ B}) + 1

2
θ ({a ∈ [0, 1] : −γa(t) ∈ B}) ,

so supp μt ⊆ [−t3/2, t3/2].
– We have μ0(B) = 0 if 0 /∈ B and μ0(B) = 1 if 0 ∈ B, thus μ0 = δ0. Moreover,

μ1(B) = 1

2
θ
({

a ∈ [0, 1] : (1−a)3/2 ∈ B
})

+ 1

2
θ
({

a ∈ [0, 1] : (1−a)3/2 ∈ −B
})

= 1

2
θ
({

1 − x2/3 : x ∈ B ∩ [0, 1]
})

+ 1

2
θ
({

1 − x2/3 : x ∈ −B ∩ [0, 1]
})

= 1

2
θ (f (B ∩ [0, 1])) + 1

2
θ (f (−B ∩ [0, 1])) = 1

2
L 1 (B ∩ [−1, 1]) .

According to the superposition principle, we obtain that μ := {μt }t∈[0,1] is a solution of the
continuity equation driven by ν = {νt }t∈[0,1]

{
∂tμt + div(vtμt ) = 0, if t > 0,

μ|t=0 = δ0,

where vt (x) ∈ F(x) for μt -a.e. x ∈ R
d and t ∈ [0, 1]. Thus we can join μ0 = δ0 to

μ1 = 1

2
L 1|[−1,1] with an admissible curve.

Similarly, by defining μ̂ = {μ̂t }t∈[0,1] with μ̂t = μ1−t , and v̂t = −vt , we have
{

∂t μ̂t + div(v̂t μ̂t ) = 0, if t > 0,

μ̂|t=0 = 1

2
L 1|[−1,1],

and μ̂1 = δ0. Also in this case we have v̂t (x) ∈ F(x) for μ̂t -a.e. x ∈ R
d and t ∈ [0, 1].

Thus we can join also μ̂0 = 1

2
L 1|[−1,1] to μ̂1 = δ0 with an admissible curve.

By using the very same construction, defined η̃ := δ0 ⊗ 1

2

(
δγ0 + δ−γ0

)
, μ̃t := et �η̃,

ν̃t := vt μ̃t , t ∈ [0, 1] we have an admissible trajectory μ̃ = {μ̃t }t∈[0,1] driven by ν̃ =
{νt }t∈[0,1] joining μ̃0 = δ0 to μ̃1 = 1

2
(δ−1 + δ1) and, by using v̂t in place of vt , we can also

join
1

2
(δ−1 + δ1) to δ0.

Example 2 In R consider γ1(t) ≡ 0, γ2(t) = sgn (t−1)|t−1|3/2, γ̂1(t) = χ[1,2](t)|t−1|3/2,

γ̂2(t) = −χ[0,1](t)|t − 1|3/2, for t ∈ [0, 2] and define η = δ0 ⊗ δγ1 + δ−1 ⊗ δγ2

2
,

η̂ = δ0 ⊗ δγ̂1 + δ−1 ⊗ δγ̂2

2
, μt = δ0 + δsgn (t−1)|t−1|3/2

2
. We have μt = et �η = et �η̂ for

all t ∈ [0, 2], but η �= η̂, and γ1, γ2, γ̂1, γ̂2 are all solutions of ẋ(t) = vt (x(t)) with

vt (x) = 3

2
|x|1/3 and γ1(0) = γ̂1(0) = 0, γ2(0) = γ̂2(0) = −1. Thus μ = {μt }t∈[0,2] is a
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solution of ∂tμt + div(vtμt ) = 0, with initial condition μ|t=0 = δ0 + δ−1

2
, which can be

represented by the push forward w.r.t. the evaluation operator et of two different probabil-
ity measures, η and η̂, concentrated on the solutions of the characteristic system. Moreover,
set F(x) = [−3/2, 3/2] for all x ∈ R, we have that {μt }t∈[0,1] is an admissible trajectory

joining μ|t=0 = δ0 + δ−1

2
to δ0 and {μt+1}t∈[0,1] is an admissible trajectory joining δ0 to

δ0 + δ1

2
.

The following definitions are the natural counterpart of the classical case.

Definition 8 (Reachable set) Let μ0 ∈ P(Rd), and T > 0. Define the set of admissible
curves defined on [0, T ] and starting from μ0 by setting

AT (μ0) := {μ = {μt }t∈[0,T ] ⊆ P(Rd) : μ is an admissible trajectory with μ|t=0 = μ0}.
The reachable set from μ0 in time T is

RT (μ0) := {μ ∈ P(Rd) : there exists μ = {μt }t∈[0,T ] ∈ AT (μ0) with μ = μT }.

Definition 9 (Generalized minimum time) Let p ≥ 1, Φ ⊆ C0(Rd ;R) satisfying (TE) in
Definition 4, and S̃Φ , S̃Φ

p be the corresponding generalized targets defined in Definition 4.

In analogy with the classical case, we define the generalized minimum time function T̃ Φ :
P(Rd) → [0, +∞] by setting

T̃ Φ(μ0) := inf
{
JF (μ, ν) : μ ∈ AT (μ0), μ is driven by ν, μ|t=T ∈ S̃Φ

}
, (7)

where, by convention, inf ∅ = +∞.
Given μ0 ∈ P(Rd) with T Φ(μ0) < +∞, an admissible curve μ = {μt }t∈[0,T̃ Φ (μ0)] ⊆

P(Rd), driven by a family of Borel vector-valued measures ν = {νt }t∈[0,T̃ Φ (μ0)] and

satisfying μ|t=0 = μ0 and μ|t=T̃ Φ (μ0)
∈ S̃Φ is optimal for μ0 if

T̃ Φ(μ0) = JF (μ, ν).

Given p ≥ 1, we define also a generalized minimum time function T̃ Φ
p : Pp(Rd) →

[0, +∞] by replacing in the above definitions S̃Φ by S̃Φ
p and P(Rd) by Pp(Rd). Since

S̃Φ
p ⊆ S̃Φ , it is clear that T̃ Φ(μ0) ≤ T̃ Φ

p (μ0).

Remark 3 In view of the characterization in Theorem 8.3.1 in [3], and of Remark 1, one
can think to T̃ Φ as the minimum time needed by the system to steer μ0 to a measure in S̃Φ ,
along absolutely continuous curves in Pp(Rd).

When the generalized target S̃Φ admits a classical counterpart S, it is natural to ask for
a comparison between the generalized minimum time function and the classical minimum
time needed to reach S.

Proposition 2 (First comparison between T̃ Φ and T ) Consider the generalized minimum
time problem for �F as in Definition 9 assuming (F0), (F1), and suppose that the cor-
responding generalized target S̃Φ admits S as classical counterpart. Then for all μ0 ∈
P(Rd) we have

T̃ Φ(μ0) ≥ ‖T ‖L∞
μ0

,

Author's personal copy



Generalized Control Systems in the Space of Probability Measures 675

where T : Rd → [0, +∞] is the classical minimum time function for the system ẋ(t) ∈
F(x(t)) with target S.

Proof For sake of clarity, in this proof we will simply write T̃ and S̃, thus omitting Φ = {dS}
by assumption of existence of the classical counterpart S for S̃Φ .

If T̃ (μ0) = +∞ there is nothing to prove, so assume T̃ (μ0) < +∞. Fix ε > 0 and
let μ = {μt }t∈[0,T ] ⊆ P(Rd) be an admissible curve starting from μ0, driven by a family
of Borel vector-valued measures ν = {νt }t∈I such that T = JF (μ, ν) < T̃ (μ0) + ε and

μ|t=T ∈ S̃. In particular, we have that vt (x) := νt

μt

(x) ∈ F(x) for μt -a.e. x ∈ R
d and a.e.

t ∈ [0, T ], hence |vt (x)| ≤ C(1 + |x|) for μt -a.e x ∈ R
d . Accordingly,

∫ T

0

∫

Rd

|vt (x)|
1 + |x| dμt dt ≤ CT < +∞.

By the Superposition Principle (Theorem 1), recalling Definition 7, we have that there exists
a probability measure η = μ0 ⊗ ηx ∈ TF (μ0) such that for μ0-a.e x ∈ R

d , the measure
ηx ∈ P(Γ x

T ) is concentrated on absolutely continuous curves γ satisfying γ̇ (t) = vt (γ (t))

for a.e. t , and μt = et �μ0. In particular, if x /∈ supp μ0 or γ (0) �= x, then (x, γ ) /∈ supp η.
Let {ψn}n∈N ∈ C∞

c (Rd ; [0, 1]) with ψn(x) = 0 if x �∈ B(0, n + 1) and ψn(x) = 1 if
x ∈ B(0, n). By Monotone Convergent Theorem, since {ψn(·)dS(·)}n∈N ⊆ C0

b (Rd) is an
increasing sequence of nonnegative functions pointwise convergent to dS(·), we have for
every t ∈ [0, T ]

∫∫

Rd×ΓT

dS(γ (t)) dη(x, γ ) = lim
n→∞

∫∫

Rd×ΓT

ψn(γ (t))dS(γ (t)) dη(x, γ )

= lim
n→∞

∫

Rd

ψn(x)dS(x) dμt (x)

By taking t = T , we have that the last term vanishes because μ|t=T ∈ S̃ and so
supp μ|t=T ⊆ S, therefore

∫∫

Rd×ΓT

dS(γ (T )) dη(x, γ ) = 0.

In particular, we necessarily have that γ (T ) ∈ S and γ (0) = x for η-a.e. (x, γ ) ∈ P(Rd ×
ΓT ), whence T ≥ T (x) for μ0-a.e. x ∈ R

d , since T (x) is the infimum of the times needed
to steer x to S along trajectories of the system. Thus, T̃ (μ0) + ε ≥ T (x) for μ0-a.e. x ∈ R

d

and, by letting ε → 0, we conclude that T̃ (μ0) ≥ ‖T ‖L∞
μ0

.

We notice that the inequality appearing in Proposition 2 may be strict without further
assumptions.

Example 3 In R, let F(x) = {1} for all x ∈ R and set Φ = {|·|}, thus S = {0} is the classical
counterpart of S̃Φ = {δ0}. Moreover, we have T (x) = |x| for x ≤ 0 and T (x) = +∞
for x > 0. Define μ0 = 1

2
(δ−2 + δ−1). We have ‖T ‖L∞

μ0
= max{T (−1), T (−2)} =

2. However there are no solutions of ẋ(t) = 1 steering any two different points to the
origin in the same time, thus the set of admissible trajectories joining μ0 and δ0 is empty,
hence T̃ Φ(μ0) = +∞. This does not contradict Example 1, since the underlying finite-
dimensional differential inclusions in the two cases are different. In this case, the key point
is the noninvariance of the classical counterpart of the target w.r.t. the differential inclusion.
The situation will be discussed in Corollary 1.

Author's personal copy



676 G. Cavagnari et al.

Remark 4 This implies that in general the problem of the generalized minimum time cannot
be reduced to the underlying finite dimensional control problem, even in the cases where the
underlying control problem is particulary simple. A consequence of this fact is that even if
the underlying system enjoys some properties as closure and relative compactness of the set
of admissible trajectories (provided for instance by good assumptions on the set-valued map
F ), which lead to the existence of optimal trajectories for the problem, in our generalized
framework all these results must be proved.

Definition 10 (Convergence of curves in P(Rd)) We say that a family of curves μn =
{μn

t }t∈[0,T ] in P(Rd)

1. pointwise converges to a curve μ = {μt }t∈[0,T ] in P(Rd) if and only if μn
t ⇀∗ μt for

all t ∈ [0, T ]. In this case we will write μn ⇀∗ μ.
2. pointwise converges to a curve μ = {μt }t∈[0,T ] in Pp(Rd) if and only if μn =

{μn
t }t∈[0,T ] ⊆ Pp(Rd) and limn→+∞ Wp(μn

t , μt ) = 0 for all t ∈ [0, T ]. In this case
we will write μn →p μ.

3. uniformly converges to a curve μ = {μt }t∈[0,T ] in Pp(Rd) if and only if μn =
{μn

t }t∈[0,T ] ⊆ Pp(Rd) and

lim
n→+∞ sup

t∈[0,T ]
Wp(μn

t , μt ) = 0.

In this case we will write μn ⇒p μ.

Lemma 3 Assume that F : Rd ⇒ R
d satisfies (F0). Then the functional F : P(Rd) ×

M (Rd ;Rd) → {0,+∞} defined by

F (μ,E) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

Rd

IF (x)

(
E

μ
(x)

)

dμ(x), if E � μ,

+∞, otherwise

(8)

is l.s.c. w.r.t. narrow convergence.

Proof Define f (x, v) = IF(x)(v). Since F is u.s.c. with convex values, we have that f (·, ·)
is l.s.c. and f (x, ·) is convex. By compactness of F(x), we have that the domain of f (x, ·) is
bounded, thus following the notation in [11] we have f∞(x, v) = 0 if v = 0 and f∞(x, v) =
+∞ if v �= 0, where f ∞(x, ·) denotes the recession function for f (x, ·). By l.s.c. of F ,
there exists a continuous selection z0 : Rd → R

d of F , i.e., there exists z0 ∈ C0(Rd ;Rd)

satisfying z0(x) ∈ F(x) for all x ∈ R
d . Thus x �→ f (x, z0(x)) is continuous and finite.

Hence, the functional (8) is l.s.c. w.r.t. a.e. pointwise weak∗ convergence of measures (see
Lemma 2.2.3, p. 39, Theorem 3.4.1, p.115, and Corollary 3.4.2 in [11] or Theorem 2.34
in [6]).

Proposition 3 (Convergence of admissible trajectories) Assume (F0). Let μn = {μn
t }t∈[0,T ]

be a sequence of admissible curves defined on [0, T ] such that μn is driven by νn =
{νn

t }t∈[0,T ] and suppose that there exist μ = {μt }t∈[0,T ] ⊆ P(Rd) and ν = {νt }t∈[0,T ] ⊆
M (Rd ;Rd) such that for a.e. t ∈ [0, T ] it holds (μn

t , ν
n
t ) ⇀∗ (μt , νt ). Then μ is an

admissible trajectory driven by ν.
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Proof Fix t ∈ [0, T ] such that (μn
t , ν

n
t ) ⇀∗ (μt , νt ) and F (μn

t , ν
n
t ) = 0 for all n ∈ N. By

l.s.c. of F and recalling that F ≥ 0, we have

0 ≤ F (μt , νt ) ≤ lim inf
n→+∞ F (μn

t , ν
n
t ) = 0,

and so for a.e. t ∈ [0, T ] we have
νt

μt

(x) ∈ F(x) for μt -a.e. x ∈ R
d .

Since for every ϕ ∈ C1
c (Rd) we have in the sense of distributions on [0, T ],
d

dt

∫

Rd

ϕ(x)dμn
t (x) =

∫

Rd

∇ϕ(x) dνn
t (x),

and for the last term we have

lim
n→∞

∫

Rd

∇ϕ(x) dνn
t (x) =

∫

Rd

∇ϕ(x) dνt (x),

due to the w∗-convergence of νn
t to νt , thanks to Lemma 8.1.2 in [3], we deduce that, up to

changing μt and νt for all t belonging to a L 1-negligible set of [0, T ], we have that μ is an
admissible curve driven by ν.

The previous Proposition is the key ingredient to prove the following theorem which,
in analogy with the classical case, establishes a sufficient condition to have relative
compactness of a set of admissible trajectories.

Theorem 3 Assume (F0), (F1). Let A be a set of admissible trajectories defined on [0, T ]
and C1 > 0, p ≥ 1 be constants such that for all μ = {μt }t∈[0,T ] ∈ A it holds mp(μt ) ≤
C1 for a.e. t ∈ [0, T ]. Then the pointwisew∗-closure ofA is a set of admissible trajectories.

In particular, this holds if {mp(μ0) : there exists μ ∈ A with μ|t=0 = μ0} is bounded,
and, in particular, it holds for AT (μ0) when μ0 ∈ Pp(Rd).

Proof Let {μn}n∈N be a sequence in A . Since μn is an admissible trajectory, it is driven
by νn = {vn

t μn
t }t∈[0,T ] with vn

t ∈ L1
μn

t
and vn

t (x) ∈ F(x) for a.e. t ∈ [0, T ] and μn
t -a.e.

x ∈ R
d . Since ∫∫

[0,T ]×Rd

|x|p dμn
t (x) dt ≤ T C1,

according to Remark 5.1.5 in [3], we have that the sequence {dt⊗μn
t }n∈N narrowly con-

verges up to subsequences. Hence, for a.e. t ∈ [0, T ] there exists μt ∈ P(Rd) such
that μn

t ⇀∗ μt , moreover we have convergence in Wp by the assumption of uniform
boundedness on the moments of {μn

t }n. Similarly,
for all ϕ ∈ C0

c ([0, T ] × R
d ;Rd) we have

∣
∣
∣
∣

∫∫

[0,T ]×Rd

ϕ(t, x) · dνn
t (x) dt

∣
∣
∣
∣ ≤ ‖ϕ‖∞

∫∫

[0,T ]×Rd

|vn
t (x)| dμn

t (x) dt

≤ T L(C
1/p

1 + 1)‖ϕ‖∞,

for a constant L > 0, and so the sequence {dt⊗νn
t }n∈N is bounded in (C0

c ([0, T ]×R
d ;Rd))′,

thus, up to a subsequence, it converges in the w∗-topology. In particular, there exists νt ∈
M (Rd ;Rd) such that νn

t ⇀∗ νt for a.e. t ∈ [0, T ]. By Proposition 3, we have that μ =
{μt }t∈[0,T ] is an admissible trajectory defined on [0, T ] driven by ν = {νt }t∈[0,T ]. The last
assertion comes from Lemma 2, which allows to estimate the moments of μt and νt in terms
of the moments of μ0.
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Theorem 4 (L.s.c. of the generalized minimum time) Assume (F0) and (F1). Then T̃ Φ
p :

Pp(Rd) → [0, +∞] is l.s.c. for all p ≥ 1.

Proof Let μ0 ∈ Pp(Rd), we have to prove that T̃ Φ
p (μ0) ≤ lim inf

Wp(μ,μ0)→0
T̃ Φ

p (μ).

Taken a sequence {μn
0}n∈N ⊆ Pp(Rd) s.t. Wp(μn

0, μ0) → 0 for n → +∞, and
lim inf

Wp(μ,μ0)→0
T̃ Φ

p (μ) = lim
n→+∞ T̃ Φ

p (μn
0) =: T , we want to prove that T̃ Φ

p (μ0) ≤ T .

If T = +∞ there is nothing to prove, so let us assume T < +∞. Then there exists a
sequence {Tn}n∈N such that Tn → T , and a sequence of admissible trajectories {μn}n∈N,
with μn = {μn

t }t∈[0,Tn] ⊆ Pp(Rd), such that μn|t=Tn
∈ S̃Φ

p for all n ∈ N.
Without loss of generality, we can assume that all {μn}n∈N are defined in an interval

containing [0, T ], since if Tn < T we can use the gluing Lemma 4.4 in [19] and extend
μn to a trajectory defined in [0, T ] simply by taking any Borel selection v̄ of F(·) (which
exists by (F0) and by Theorem 8.1.3 in [8]), and considering the solution of the continu-
ity equation ∂tμt + div v̄μt = 0 in ]Tn, T ] with μ|t=Tn = μn

Tn
. Now, since μn

0 converges
in Wp to μ0, we have that there exists n̄ > 0 such that the set {mp(μn

0) : n > n̄} is
uniformly bounded by mp(μ0) + 1. Then, by Lemma 2 and by Theorem 3 there exists
an admissible trajectory μ := {μt }t∈[0,T ] ⊆ Pp(Rd) such that μn →p μ, n → +∞,
up to subsequences and μ|t=0 = μ0. Recalling Theorem 8.3.1 in [3], for all n ∈ N

we have

d̃
S̃Φ

p
(μT ) ≤ Wp(μT , μn

Tn
) ≤ Wp(μT , μn

T ) + Wp(μn
T , μn

Tn
)

≤ Wp(μT , μn
T ) +

∣
∣
∣
∣
∣
∣

∫ T

Tn

∥
∥
∥
∥

νn
t

μn
t

∥
∥
∥
∥

L
p

μn
t

dt

∣
∣
∣
∣
∣
∣
.

If we show a uniform bound on

∥
∥
∥
∥

νn
t

μn
t

∥
∥
∥
∥

L
p

μn
t

, then by letting n → +∞ we have that μT ∈ S̃Φ
p ,

thus T̃ Φ
p (μ0) ≤ T and the proof is concluded.

For a.e. t ∈ [0, T ] and μn
t -a.e. x we have

νn
t

μn
t

(x) ∈ F(x). By (F1) there exists C > 0

such that
∥
∥
∥
∥

νn
t

μn
t

∥
∥
∥
∥

L
p

μn
t

≤ C
(

m1/p
p (μn

t ) + 1
)

.

We conclude by using the Lemma 2 to estimate mp(μn
t ) in terms of mp(μn

0) and recall-
ing that since μn

0 converges to μ0 in Wp, for n sufficiently large we have mp(μn
0) ≤

mp(μ0) + 1.

Remark 5 Unfortunately, we have that T̃ Φ
p (·) in general fails to be continuous, being just

lower semicontinuous. Moreover, it seems to be quite a difficult problem to provide general
necessary and sufficient conditions on problem data granting this continuity property. In
the forthcoming paper [15], the author provides some sufficient conditions granting local
Lipschitz continuity of T̃ Φ

2 . However, we can provide a simple example in which those

Author's personal copy



Generalized Control Systems in the Space of Probability Measures 679

sufficient conditions are not satisfied but we can still have continuity of the generalized
minimum time function, as shown below.

Example 4 In R
2, take Φ = {φ}, where φ is the 1-Lipschitz continuous map φ(x, y) = 1 −∫ x

−∞
e−|s|ds ∈ C1

b (R2;R). Let F(x, y) := {(α, 0) : α ∈ [0, 1]}, μ0 ∈ P2(R
2). Since for

every solution of γ (t) ∈ F(γ (t)), γ (0) = (x, y) we have φ ◦γ (t) = φ(x+∫ t

0 γ̇ (s) ds, y) ≥
φ(x + t, y), due to the fact that ∂xφ(x, y) = −e−|x| < 0, every trajectory μ = {μt }t>0
defined by μt = (Id + tv)�μ0 for v = (1, 0) is optimal for μ0, moreover, if we define
G : R × P2(R

d) → R by setting

G(t, μ0) :=
∫

R2
φ((x, y) + tv) dμ0 =

∫

R2
φ(x, y) dμt (x, y),

we have that for any μ0 /∈ S̃Φ
2 , it holds G(t, μ0) = 0 if and only if t = T̃ Φ

2 (μ0), due to
the strictly decreasing property of G(t, μ0) w.r.t. t (due to the sign of ∂xφ). It is easy to
see that G is continuous w.r.t. both the variables, moreover, since lim

t→+∞ G(t, μ) = −1, we

have T̃ Φ
2 (μ) < +∞ for all μ ∈ P2(R

2). Consider a sequence {μn}n∈N ⊆ P2(R
2) \ S̃Φ

2 ,
such that W2(μn, μ) → 0, then G(T̃ Φ

2 (μn), μn) = 0 for all n ∈ N, and by joint continuity

property of G, we have that G

(

lim sup
n→+∞

T̃ Φ
2 (μn), μ

)

= 0, thus T̃ Φ
2 (μ) = lim sup

n→+∞
T̃ Φ

2 (μn),

which proves upper semicontinuity of T̃ Φ
2 , and so continuity of T̃ Φ

2 (·) by Theorem 4.

Theorem 5 (Existence of minimizers) Assume (F0), (F1) and p > 1. Let μ0 ∈ Pp(Rd),
Φ ⊆ C0(Rd ;R) satisfying (TE) in Definition 4, and let S̃Φ be the corresponding general-
ized target. Let T̃ Φ(μ0) < ∞. Then there exists an admissible curve μ = {μt }t∈[0,T ] driven
by ν = {νt }t∈[0,T ] which is optimal for μ0, that is T̃ Φ(μ0) = JF (μ, ν). Moreover, we have
also T̃ Φ(μ0) = T̃ Φ

p (μ0).

Proof By the hypothesis of finiteness of T̃ Φ(μ0) and by definition of infimum we have that
there exist {tn}n∈N ⊂ R and a sequence of admissible trajectories μn = {μn

t }t∈[0,tn], such
that μn|t=0 = μ0, μn|t=tn =: σn ∈ S̃Φ , tn → T̃ Φ(μ0)

+. Moreover, by Lemma 2, we have
that σn ∈ S̃Φ

p for all n ∈ N. We restrict all μn to be defined on [0, T̃ Φ(μ0)].
By Theorem 3, μn w∗-converges up to subsequences to an admissible trajectory μ =

{μt }t∈[0,T̃ Φ (μ0)] starting from μ0 driven by ν = {νt }t∈[0,T̃ Φ(μ0)], and by w∗-closure of S̃Φ

we have σn ⇀∗ μ|
t=T̃ Φ (μ0)

∈ S̃Φ . Applying again Lemma 2, we have that μ|
t=T̃ Φ (μ0)

∈
S̃Φ

p . Thus T̃ Φ(μ0) = T̃ Φ
p (μ0) = JF (μ, ν).

The following results allow us to justify the name of generalized minimum time given to
functions T̃ Φ(·) and T̃ Φ

p (·).

Lemma 4 (Convexity property of the embedding of classical trajectories) Let N ∈ N \ {0},
T > 0 be given. Assume (F0) and (F1). Consider a family of continuous curves and real
numbers {(γi, λi)}i=1,...,N ⊆ ΓT × [0, 1] such that γi(·) is a trajectory of ẋ(t) ∈ F(x(t))

for i = 1, . . . , N , and
N∑

i=1

λi = 1.
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For all i = 1, . . . , N and t ∈ [0, T ], define the measures μ
(i)
t = δγi (t), μt =

N∑

i=1

λiμ
(i)
t ,

ν
(i)
t =

⎧
⎨

⎩

γ̇i (t)δγi (t), if γ̇i (t) exists,

0, otherwise,

and νt =
N∑

i=1

λiν
(i)
t . Then μ = {μt }t∈[0,T ] is an admissible trajectory driven by ν =

{νt }t∈[0,T ].

Proof By linearity, clearly we have that

∂tμt + div νt = 0

is satisfied in the sense of distributions, moreover μt(B) = 0 implies νt (B) = 0 for every
Borel set B ⊆ R

d , thus |νt | � μt . It remains only to prove that for a.e. t ∈ [0, T ] we have
νt = vtμt for a vector-valued function vt ∈ L1(Rd ;Rd) satisfying vt (x) ∈ F(x) for μt -a.e.
x ∈ R

d . Set

τ = {t ∈ [0, T ] : γ̇i (t) exists for all i = 1, . . . , N and γ̇i (t) ∈ F(γi(t))},
and notice that τ has full measure in [0, T ].

Fix t ∈ τ , x ∈ supp μt . By definition of μt , we have that there exists I ⊆ {1, . . . , N}
such that μ

(i)
t = δx if and only if i ∈ I . So it is possible to find δ > 0 such that for all

0 < ρ < δ we have

μt(B(x, ρ)) =
∑

j∈I

λj , νt (B(x, ρ)) =
∑

i∈I

λi

∫

B(x,ρ)

ν
(i)
t

μ
(i)
t

(y)dμ
(i)
t (y) =

∑

i∈I

λi

ν
(i)
t

μ
(i)
t

(x).

Thus for every t ∈ τ and x ∈ supp μt we have

vt (x) := lim
ρ→0+

νt (B(x, ρ))

μt (B(x, ρ))
=
∑

i∈I

λi
∑

j∈I λj

ν
(i)
t

μ
(i)
t

(x),

i.e., a convex combination of γ̇i (t) = ν
(i)
t

μ
(i)
t

(x) ∈ F(x) for μt -a.e. x ∈ R
d . Thus

νt

μt

(x) =
vt (x) ∈ F(x), and so μ = {μt }t∈[0,T ] is an admissible trajectory driven by ν = {νt }t∈[0,T ].

Corollary 1 Assume (F0), (F1). Let Φ ⊆ C0(Rd ;R) satisfying (TE) in Definition 4, and
assume that the generalized target S̃Φ admits a classical counterpart S ⊆ R

d which is
weakly invariant for the dynamics ẋ(t) ∈ F(x(t)). Let μ0 ∈ Pp(Rd) with p > 1. Then
T̃ Φ

p (μ0) = T̃ Φ(μ0) = ‖T (·)‖L∞
μ0
.

Proof Since S̃Φ admits classical counterpart S, closed and nonempty, we have that Φ =
{dS(·)}. Thus in this proof we will simply write T̃p and S̃p in place of T̃ Φ

p and S̃Φ
p ,

respectively.
By Proposition 2, we have only to prove that T̃p(μ0) ≤ T := ‖T (·)‖L∞

μ0
. Assume that

T < +∞, otherwise there is nothing to prove. For μ0-a.e. point x ∈ R
d we have T (x) ≤ T ,
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thus there exists a trajectory γx(·) such that γx(T (x)) ∈ S. By the weak invariance of S,
we can extend this trajectory to be defined on [0, T ] with the constraint γx(t) ∈ S for all
T (x) ≤ t ≤ T , thus in particular γx(T ) ∈ S. Fix ε > 0, then there exists N = Nε ∈ N\ {0},
and {(xi, λi) : i = 1, . . . , Nε} ⊆ supp μ0 × [0, 1] such that:

1.
Nε∑

i=1

λi = 1;

2. Wp

(

μ0,

Nε∑

i=1

λiδxi

)

< ε;

3. there exist classical admissible trajectories {γi : [0, T ] → R
d : i = 1, . . . , Nε}

satisfying γi(0) = xi and γi(T ) ∈ S for all i = 1, . . . , Nε .

It is possible to find an admissible trajectory μ(ε) =
{
μ

(ε)
t

}

t∈[0,T ] ⊆ Pp(Rd) such that

μ
(ε)
0 = ∑Nε

i=1λiδxi
and μ

(ε)
T ∈ S̃p, indeed, we can set

μ
(ε)
t =

Nε∑

i=1

λiδγi (t), ν
(ε)
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nε∑

i=1

λi γ̇i(t)δγi (t), if γ̇i (t) exists for all i = 1, . . . , Nε,

0, otherwise,

and then apply Lemma 4.
Since μ

(ε)
0 converges in Wp to μ0, we have that there exists ε̄ > 0 such that the set

{
mp

(
μ

(ε)
0

)
: 0 < ε < ε̄

}
is uniformly bounded by mp(μ0) + 1. In particular, by taking a

sequence εk → 0+, and the corresponding admissible trajectories μ(εk) driven by ν(εk), we
can extract by Theorem 3 a subsequence converging to an admissible trajectory μ̄ driven by
ν̄ satisfying μ̄0 = μ0. Since μ

(ε)
T ∈ S̃p for all ε > 0, by the closure of S̃p we have μ̄T ∈ S̃p ,

thus T̃p(μ0) ≤ T .

Corollary 2 (Second comparison result) Assume (F0), (F1). Let Φ ⊆ C0(Rd ;R) satisfying
(TE) in Definition 4, and assume that the generalized target S̃Φ admits a classical counter-
part S. Then, for every x0 ∈ R

d we have T̃ Φ(δx0) = T̃ Φ
p (δx0) = T (x0) for all p ≥ 1, where

T (·) is the classical minimum time function for ẋ(t) ∈ F(x(t)) with target S.

Proof Apply Lemma 4 to the family {(γ, 1)}, where γ (·) is an admissible trajectory of
ẋ(t) ∈ F(x(t)) satisfying γ (0) = x0 and γ (T (x0)) ∈ S. We obtain an admissible trajectory
steering δx0 to S̃p for all p ≥ 1 in time T (x0), thus T̃p(δx0) ≤ T (x0). By Proposition 2,
since ‖T (·)‖L∞

δx0
= T (x0), equality holds.

Remark 6 This means that if we have a precise knowledge of the initial state, we recover
exactly the classical objects in finite-dimension.

Theorem 6 (Dynamic programming principle) Let 0 ≤ s ≤ τ , let F : R
d ⇒ R

d be a
set-valued function, let μ = {μt }t∈[0,τ ] be an admissible curve for �F . Then we have

T̃ Φ(μ0) ≤ s + T̃ Φ(μs).
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Moreover, if T̃ Φ(μ0) < +∞, equality holds for all s ∈ [0, T̃ Φ(μ0)] if and only if μ is
optimal for μ0 = μ|t=0. The same result holds for T̃ Φ

p in place of T̃ Φ , p ≥ 1.

Proof Let ν = {νt }t∈[0,τ ] ⊆ M (Rd ;Rd) be such that μ is driven by ν. Fix s ∈ [0, τ ], ε > 0.
If T̃ Φ(μs) = +∞ there is nothing to prove. Otherwise there exists an admissible curve
με := {με

t }t∈[0,T̃ Φ (μs)+ε] ⊆ P(Rd) driven by νε = {νε
t }

t∈[0,T̃ Φ (μs)+ε] ⊆ M (Rd ;Rd) such

that με
|t=0 = μs and με

|t=T̃ Φ (μs)+ε
∈ S̃Φ . We consider

ṽε
t (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

νt

μt

(x), for 0 ≤ t ≤ s,

νε
t−s

με
t−s

(x), for s < t ≤ T̃ Φ(μs) + s + ε.

μ̃ε
t :=

⎧
⎨

⎩

μt , for 0 ≤ t ≤ s,

με
t−s , for s < t ≤ T̃ Φ(μs) + s + ε.

It is clear that μ̃ε
|t=0 = μ0, that μ̃ε

|t=T̃ Φ (μs)+s+ε
∈ S̃Φ , and that ṽε

t (x) ∈ F(x) for μ̃ε
t –

a.e. x ∈ R
d and a.e. t ∈ [0, T̃ Φ(μs) + ε]. Moreover, t �→ μ̃ε

t is narrowly continuous.
Since the gluing Lemma 4.4 in [19] ensures that μ̃ε := {μ̃ε

t }t∈[0,T̃ Φ(μs)+s+ε] is a solution
of the continuity equation driven by ν̃ε = {ν̃ε

t = ṽε
t μ̃

ε
t }t∈[0,T̃ Φ(μs)+s+ε], thus an admissible

trajectory, we have that

T̃ Φ(μ0) ≤ JF (μ̃ε, ν̃ε) = T̃ Φ(μs) + s + ε .

By arbitrariness of ε > 0, we conclude that T̃ Φ(μ0) ≤ s + T̃ Φ(μs).
Assume now that T̃ Φ(μ0) < +∞ and equality holds for all s ∈ [0, T̃ Φ(μ0)]. Then, in

particular, when s = T̃ Φ(μ0) we get

T̃ Φ(μ0) = T̃ Φ(μ0) + T̃ Φ(μ
T̃ Φ(μ0)

) ⇒ T̃ Φ(μ
T̃ Φ(μ0)

) = 0 .

In turn, this implies μ
T̃ Φ(μ0)

= μ
s+T̃ Φ (μs)

∈ S̃Φ , and so μ = {μt }t∈[0,T̃ Φ(μ0)] joins μ0 with

the generalized target in the minimum time T̃ Φ(μ0), thus μ is optimal for μ0.
Finally, assume that μ, driven by ν, is optimal for μ0 and T̃ Φ(μ0) < +∞. To have

equality T̃ Φ(μ0) = s + T̃ Φ(μs), it is enough to show that T̃ Φ(μ0) ≥ s + T̃ Φ(μs). If
we define ν′

t := νt+s , we have that μ′ = {μ′
t }t∈[0,T̃ Φ(μ0)−s] := {μt+s}t∈[0,T̃ Φ (μ0)−s] is an

admissible trajectory driven by ν′ = {ν′
t }t∈[0,T̃ Φ(μ0)−s] and starting by μs . This implies that

T̃ Φ(μ0) = s + (T̃ Φ(μ0) − s) = s + JF (μ′, ν′) ≥ s + T̃ Φ(μs).

which concludes the proof.

We are now interested in proving sufficient conditions on the set-valued function F(·)
in order to have attainability of the generalized control system, i.e. to steer a probability
measure on the generalized target by following an admissible trajectory in finite time.

In other words, we want to prove a generalization of the so called Petrov’s condition that
gives, in the classical case, an attainability property for the control system, i.e. a sufficient
condition for continuity of the minimum time function at the boundary of the target.

Author's personal copy



Generalized Control Systems in the Space of Probability Measures 683

Theorem 7 (Attainability in the smooth case) Assume (F0), (F1). Let Φ ⊆ C1
b (Rd ;R) ∩

Lip(Rd ;R) satisfying (TE) in Definition 4 and let μ0 ∈ Pp(Rd), p ≥ 1. Assume that:

1. for all φ ∈ Φ there exists a L 1-integrable map kφ :]0, +∞[→]0, +∞[;
2. there exists T ∈ [0, +∞[ such that

T ≥ sup
φ∈Φ

inf

{

t ≥ 0 :
∫

Rd

φ(x) dμ0(x)≤
∫ t

0
kφ(s) ds

}

;

3. there exist a Borel vector field v : [0, T ]×R
d → R

d and an admissible trajectory μ :=
{μt }t∈[0,T ] ⊆ P(Rd) driven by ν = {νt := vtμt }t∈[0,T ], and satisfying μ|t=0 = μ0,

such that the following condition holds:

(Cc) for all φ ∈ Φ we have
∫

Rd

〈∇φ(x), vt (x)〉 dμt (x) ≤ −kφ(t) for a.e. t ∈]0, T ].
Then we have

T̃ Φ
p (μ0) ≤ sup

φ∈Φ

inf

{

t ≥ 0 :
∫

Rd

φ(x) dμ0(x)≤
∫ t

0
kφ(s) ds

}

.

Before proving Theorem 7, we comment briefly its assumptions. Assumption (Cc) mea-
sures the infinitesimal variation of the observables along the solution of the continuity
equation. In particular, it requires the existence of a vector field (3) generating a solution
of the continuity equation along which all the observables decrease, indeed kφ > 0 by (1).
More precisely, we are requiring that this decrease occurs with a sufficiently fast rate, pro-
vided by the integrability of kφ and by the fact that by (2) the decreasing rate steers the
observables below the threshold in a finite amount of time (less than T ).

Proof We notice that by Lemma 2, we have μ ⊆ Pp(Rd).

Given φ ∈ Φ, we set L
φ
t :=

∫

Rd

φ(x) dμt (x). Take μ0 ∈ Pp(Rd) and notice that if

T = 0 we have

sup
φ∈Φ

inf

{

t ≥ 0 :
∫

Rd

φ(x) dμ0(x)≤
∫ t

0
kφ(s) ds

}

= 0,

so μ0 ∈ S̃Φ
p and T̃ Φ

p (μ0) = 0. We assume then T > 0.
From the continuity equation we have that in the distributional sense it holds (see Remark

8.1.1 in [3], allowing to use the functions of Φ as test functions)

L̇
φ
t = d

dt

∫

Rd

φ(x)dμt (x) =
∫

Rd

〈∇φ(x), vt (x)〉 dμt (x) ≤ −kφ(t).

Then L
φ
t ≤ L

φ
0 − ∫ t

0 kφ(s) ds for 0 < t ≤ T . Thus if we take t ∈]0, T ] s.t. we have
∫

Rd φ(x) dμ0(x)≤ ∫ t

0 kφ(s) ds for all φ ∈ Φ, then we have that L
φ
t ≤ 0 for all φ ∈ Φ,

hence μt ∈ S̃Φ
p for all such t , which ends the proof.

Remark 7 In particular, if in the condition (Cc) above we can choose kφ(t) ≡ kφ for a.e.

t > 0, for a constant kφ > 0, then we get T̃ Φ
p (μ0) ≤ supφ∈Φ

{
1
kφ

∫

Rd φ(x) dμ0(x)
}

.

For other results about the regularity of the minimum time function, we refer the reader
to the forthcoming [15].
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4 Hamilton-Jacobi-Bellman Equation

In this section we will prove that under suitable assumptions, the generalized minimum time
function solves a natural Hamilton-Jacobi-Bellman equation on P2(R

d) in the viscosity
sense. The notion of viscosity sub-/superdifferential that we are going to use is different
from other currently available in literature (e.g. [3, 14, 20, 21]), being modeled on this
particular problem.

Throughout this section we will mainly use the alternative definition of admissible curve
and the notation provided by Definition 7.

Definition 11 (Averaged speed set) Assume (F0) and (F1), T > 0. For any μ0 ∈ P2(R
d),

η ∈ TF (μ0), we set

V (η) :=
{

wη ∈ L2
η(R

d × ΓT ) : ∃{ti}i∈N ⊆]0, T [, with ti → 0+ and

eti − e0

ti
⇀ wη weakly in L2

η(R
d × ΓT ;Rd)

}

.

We notice that, according to the boundedness result of Lemma 2 (iii), for any sequence
{ti}i∈N ⊆]0, T [ with ti → 0+, there exists a subsequence τ = {tik }k∈N and wη ∈ L2

η(R
d ×

ΓT ;Rd) such that
etik

− e0

tik
weakly converges to an element of L2

η(R
d × ΓT ;Rd), thus

V (η) �= ∅.

Lemma 5 (Properties of the averaged speed set) Assume (F0) and (F1), T > 0. For any
μ0 ∈ P2(R

d), η ∈ TF (μ0) and every wη ∈ V (η) we have that

(i) wη(x, γ ) ∈ F(γ (0)) for η-a.e (x, γ ) ∈ R
d × ΓT .

(ii) if we denote by {ηx}x∈Rd the disintegration of η w.r.t. the map e0, the map

x �→
∫

Γ x
T

wη(x, γ ) dηx(γ ),

belongs to L2
μ0

(Rd ;Rd).

Proof We prove (i). Fix ε > 0 and (x, γ ) ∈ supp η. Since γ (·) and F(·) are continuous,
there exists t∗ε,γ > 0 such that for all 0 < t < t∗ε,γ we have F(γ (t)) ⊆ F(γ (0)) + εB(0, 1).

In particular, for all 0 < t < t∗ε,γ and v ∈ R
d we have

〈v, ϕt (x, γ )〉 = 〈v,
γ (t) − γ (0)

t
〉 = 1

t

∫ t

0
〈v, γ̇ (s)〉 ds

≤ 1

t

∫ t

0
σF(γ (s))(v) ds ≤ σF(γ (0))+εB(0,1)(v),

where ϕt (x, γ ) = et (x, γ ) − e0(x, γ )

t
.

Thus
co{ϕt (x, γ ) : 0 < t < t∗ε,γ } ⊆ F(γ (0)) + εB(0, 1)

Given wη ∈ V (η), let {ti}i∈N ⊆]0, 1] be a sequence such that ti → 0+ and ϕti ⇀ wη

weakly in L2
η. In particular, by Mazur’s Lemma, there is a sequence in co{ϕti : i ∈ N}
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strongly convergent to wη. In particular, for (x, γ )-a.e. point of Rd ×ΓT we have pointwise
convergence, i.e.

wη(x, γ ) ∈ co{ϕti (x, γ ) : i ∈ N}.
Given a point (x, γ ) where above pointwise convergence occurs, we can consider a
subsequence {tik }k∈N of ti satisfying 0 < tik < t∗ε,γ , obtaining that

wη(x, γ ) ∈ co{ϕtik
(x, γ ) : k ∈ N}) ⊆ co{ϕt (x, γ ) : 0 < t < t∗ε,γ }

⊆ F(γ (0)) + εB(0, 1).

By letting ε → 0+ we have that wη(x, γ ) ∈ F(γ (0)) for η-a.e. (x, γ ) ∈ R
d × ΓT .

We prove now (ii). By definition, the disintegration of η w.r.t. the evaluation map e0 is a
family of measures {ηx}x∈Rd satisfying (recall that e0�η = μ0)
∫∫

Rd×ΓT

f (x, γ )wη(x, γ ) dη(x, γ ) =
∫

Rd

(∫

Γ x
T

〈f (x, γ ), wη(x, γ )〉 dηx(γ )

)

dμ0(x),

for all Borel map f : Rd ×ΓT → R
d . Moreover the family {ηx}x∈Rd is uniquely determined

for μ0-a.e. x ∈ R
d (see e.g. Theorem 5.3.1 in [3]).

For any ψ ∈ L2
μ0

(Rd ;Rd), clearly we have ψ ◦e0 ∈ L2
η(R

d ×ΓT ;Rd), since e0�η = μ0.

Recalling that wη ∈ L2
η , we obtain

∫

Rd

〈ψ(x),

∫

Γ x
T

wη(x, γ ) dηx(γ )〉 dμ0(x) =
∫

Rd

∫

Γ x
T

〈ψ(x), wη(x, γ )〉 dηx(γ ) dμ0(x)

=
∫

Rd

∫

Γ x
T

〈ψ ◦ e0(x, γ ), wη(x, γ )〉 dηx(γ ) dμ0(x)

=
∫∫

Rd×ΓT

〈ψ ◦ e0(x, γ ), wη(x, γ )〉 dη(x, γ ) < +∞.

By the arbitrariness of ψ ∈ L2
μ0

(Rd ;Rd), we obtain that the map

x �→
∫

Γ x
T

wη(x, γ ) dηx(γ ),

belongs to L2
μ0

(Rd ;Rd), moreover for μ0-a.e. x ∈ R
d , we have from (i) that

∫

Γ x
T

wη(γ ) dηx(γ ) ∈ F(x).

Remark 8 We can interpret each wη ∈ V (η) as a sort of averaged vector field of initial
velocity in the sense of measure (we recall that in general an admissible trajectory γ may
fail to possess a tangent vector at t = 0). The map

x �→
∫

Γ x
T

wη(γ ) dηx(γ ),

can be interpreted as an initial barycentric speed of all the (weighted) trajectories emanating
from x in the support of η. This approach is quite related to Theorem 5.4.4. in [3].

In the case in which the trajectory t �→ et �η is driven by a continuous vector field, we
recover exactly as averaged vector field and initial barycentric speed the expected objects,
as shown below.
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Lemma 6 (Continuous driving vector fields) Assume (F0), (F1) and let μ0 ∈ P2(R
d). Let

μ = {μt }t∈[0,T ] be an absolutely continuous solution of
⎧
⎨

⎩

∂tμt + div(vtμt ) = 0, t ∈]0, T [

μ|t=0 = μ0,

where v ∈ C0([0, T ] ×R
d ;Rd) satisfies v0(x) ∈ F(x) for all x ∈ R

d . Then if η ∈ TF (μ0)

satisfies μt = et �η for all t ∈ [0, T ], we have that
lim
t→0

∥
∥
∥
∥
et − e0

t
− v0 ◦ e0

∥
∥
∥
∥

L2
η

= 0,

and so V (η) = {v0 ◦ e0}, thus we have
{

x �→
∫

Γ x
T

wη(x, γ ) dηx : wη ∈ V (η)

}

= {v0(·)}.

Proof We have
∥
∥
∥
∥
et − e0

t
− v0 ◦ e0

∥
∥
∥
∥

2

L2
η

=
∫∫

Rd×ΓT

∣
∣
∣
∣
γ (t) − γ (0)

t
− v0(γ (0))

∣
∣
∣
∣

2

dη(x, γ ),

For η-a.e. (x, γ ) ∈ R
d × ΓT , by continuity of v we have γ ∈ C1 and γ̇ (t) = vt (γ (t)),

hence for t small enough we get
∣
∣
∣
∣
γ (t) − γ (0)

t
− v0(γ (0))

∣
∣
∣
∣ ≤ 1

t

∫ t

0
|γ̇ (s)| ds + |v0(γ (0))|= 1

t

∫ t

0
|vs(γ (s))| ds+|v0(γ (0))|

≤ 2|v0(γ (0))| + 1 ∈ L2
η,

indeed by (F1) we have
∫∫

Rd×ΓT

|v0(γ (0))|2 dη(x, γ ) =
∫

Rd

|v0(x)|2 dμ0(x) ≤ C2
∫

Rd

(|x| + 1)2 dμ0(x)

≤ 2C2 (m2(μ0) + 1) ,

with C > 0 as in (F1). Thus, for η-a.e. (x, γ ) ∈ R
d × ΓT ,

lim
t→0+

∣
∣
∣
∣
γ (t) − γ (0)

t
− v0(γ (0))

∣
∣
∣
∣ = 0.

Thus applying Lebesgue’s Dominated Convergence Theorem we obtain

lim
t→0

∥
∥
∥
∥
et − e0

t
− v0 ◦ e0

∥
∥
∥
∥

2

L2
η

= 0,

hence wη = v0 ◦ e0. The last assertion now follows.

We have already proved that the set
{

x �→
∫

Γ x
T

wη(x, γ ) dηx : η ∈ TF (μ0), wη ∈ V (η)

}

is contained in the set of all L2
μ0

(Rd ;Rd)-selections of F(·). The next density result
shows that, indeed, equality holds: since allows to approximate every L2

μ0
-selections by

C0-selections, and then use Lemma 6.
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Lemma 7 (Approximation) Let μ0 ∈ P2(R
d). Assume (F0) and (F1). Then given any

v ∈ L2
μ0

(Rd ;Rd) satisfying v(x) ∈ F(x) for μ0-a.e. x ∈ R
d , there exists a sequence of

continuous maps {gn}n∈N ⊆ C0(Rd ;Rd) such that

1. lim
n→∞ ‖gn − v‖L2

μ0
= 0;

2. gn(x) ∈ F(x) for all x ∈ R
d .

In particular, we have

{v ∈ L2
μ0

(Rd ;Rd) : v(x) ∈ F(x) for μ0-a.e. x ∈ R
d}

=
{

x �→
∫

Γ x
T

wη(x, γ ) dηx : η ∈ TF (μ0), wη ∈ V (η)

}

.

Proof By Lusin’s Theorem (see e.g. Theorem 1.45 in [6]), we can construct a sequence of
compact sets {Kn}n∈N ⊆ R

d and of continuous maps {vn}n∈N ⊆ C0
c (Rd ;Rd) such that

vn = v on Kn and μ0(R
d \ Kn) ≤ 1/n. For all n ∈ N define the set valued maps

Gn(x) :=
⎧
⎨

⎩

F(x), for x ∈ R
d \ Kn,

{vn(x)}, for x ∈ Kn.

We prove that Gn(·) is lower semicontinuous. If x ∈ R
d \ Kn, then in a neighborhood of

x we have Gn = F , thus Gn is lower semicontinuous. Let x ∈ Kn and V be an open set
such that V ∩ Gn(x) �= ∅. In particular, we have that V is an open neighborhood of vn(x).
Without loss of generality, we may assume that V = B(vn(x), ε) for ε > 0, thus there
exists δ > 0 such that if y ∈ B(x, δ) ∩ Kn we have vn(y) ∈ V , and so Gn(y) ∩ V �= ∅.
On the other hand, by continuity of F , there exists an open neighborhood U of x such that
V ∩ F(y) �= ∅ for all y ∈ U . Thus, if we set U ′ = U ∩ B(x, δ) \ Kn, we have that U ′ is an
open neighborhood of x satisfying:

(a) for all y ∈ U ′ \ Kn we have F(y) = Gn(y) and so Gn(y) ∩ V �= ∅;
(b) for all y ∈ U ′ ∩ Kn we have vn(y) ∈ V , and so Gn(y) ∩ V �= ∅;

and so given V for all y ∈ U ′ we have Gn(y) ∩ V �= ∅, which proves lower semicon-
tinuity. Since Gn(·) is lower semicontinuous with compact convex values, by Michael’s
Selection Theorem (see e.g. Theorem 9.1.2 in [8]) we can find a continuous selection
gn ∈ C0(Rd ;Rd) which by construction agrees with v and vn on Kn and satisfies gn(x) ∈
Gn(x) ⊆ F(x) for all x ∈ R

d . Finally, we have
∫

Rd

|v(x) − gn(x)|2 dμ0(x) =
∫

Rd\Kn

|v(x) − gn(x)|2 dμ0(x)

≤
∫

Rd\Kn

4C2(|x| + 1)2 dμ0(x) ≤ 8C2 (m2(μ0) + 1) ,

with C > 0 as in (F1), hence (1) follows. The last assertion comes from Lemma 6 with
v = v0.

We introduce now the following definition of viscosity sub-/superdifferential. For other
concepts of viscosity sub-/superdifferential, we refer the reader to [3] and [14].

Definition 12 (Sub-/Super-differential in P2(R
d)) Let V : P2(R

d) → R be a func-
tion. Fix μ ∈ P2(R

d) and δ > 0. We say that pμ ∈ L2
μ(Rd ;Rd) belongs to the
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δ-superdifferential D+
δ V (μ) at μ if for all T > 0 and η ∈ P(Rd ×ΓT ) such that t �→ et �η

is an absolutely continuous curve in P2(R
d) defined in [0, T ] with e0�η = μ we have

lim sup
t→0+

V (et �η) − V (e0�η) −
∫

Rd×ΓT

〈pμ ◦ e0(x, γ ), et (x, γ ) − e0(x, γ )〉 dη(x, γ )

‖et − e0‖L2
η

≤ δ.

(9)

In the same way, qμ ∈ L2
μ(Rd ;Rd) belongs to the δ-subdifferential D−

δ V (μ) at μ if −qμ ∈
D+

δ [−V ](μ).

Definition 13 (Viscosity solutions) Let V : P2(R
d) → R be a function and H :

T ∗P2(R
d) → R. We say that V is a

1. viscosity supersolution of H (μ,DV (μ)) = 0 if V is l.s.c. and there exists C > 0
depending only on H such that H (μ, qμ) ≥ −Cδ for all qμ ∈ D−

δ V (μ), μ ∈
P2(R

d), and for all δ > 0.
2. viscosity subsolution of H (μ,DV (μ)) = 0 if V is u.s.c. and there exists C > 0

depending only on H such that H (μ, pμ) ≤ Cδ for all pμ ∈ D+
δ V (μ), μ ∈ P2(R

d),
and for all δ > 0.

3. viscosity solution of H (μ,DV (μ)) = 0 if it is both a viscosity subsolution and a
viscosity supersolution.

Definition 14 (Hamiltonian Function) Given μ ∈ P(Rd), define

D(μ) :=
{

ν ∈ M (Rd ;Rd) : |ν| � μ and
∫

Rd

(∣
∣
∣
∣
ν

μ

∣
∣
∣
∣

2

+ IF(x)

(
ν

μ
(x)

))

dμ < +∞
}

.

Since the tangent space TμP2(R
d) to P2(R

d) at μ ∈ P2(R
d) is L2

μ(Rd ;Rd), which
coincides with its dual, we can define a map HF : T ∗P2(R

d) → R by setting

HF (μ,ψ) := −
[

1 + inf
ν∈D(μ)

∫

Rd

〈ψ(x),
ν

μ
(x)〉 dμ

]

,

= −
⎡

⎢
⎣1 + inf

v∈L2
μ(Rd ;Rd )

v(x)∈F(x) for μ-a.e. x

∫

Rd

〈ψ(x), v(x)〉 dμ

⎤

⎥
⎦ ,

where (μ,ψ) ∈ T ∗P2(R
d), i.e., μ ∈ P2(R

d) and ψ ∈ L2
μ(Rd ;Rd).

If we assume (F2), or more generally that F possesses a Borel selection uniformly
bounded, we have

HF (μ,ψ) := −1 +
∫

Rd

σ−F(x)(ψ(x)) dμ,

by using a consequence of classical Measurable Selection Lemma (see e.g. Theorem 6.31
p. 119 in [17]).

Theorem 8 (Viscosity solution) Let A be any open subset of P2(R
d) with uniformly

bounded 2−moments. Assume (F0) and (F1) and that T̃ Φ
2 (·) is continuous onA. Then T̃ Φ

2 (·)
is a viscosity solution of HF (μ,DT̃ Φ

2 (μ))=0 on A, with HF defined as in Definition 14.
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Proof The proof is splitted in two claims.

Claim 1: T̃ Φ
2 (·) is a subsolution of HF (μ,DT̃ Φ

2 (μ)) = 0 on A.

Proof of Claim 1. Let μ0 ∈ A. Given η ∈ TF (μ0) and set μt = et �η for all t , by the
Dynamic Programming Principle (Theorem 6) we have T̃ Φ

2 (μ0) ≤ T̃ Φ
2 (μs) + s for all

0 < s ≤ T̃ Φ
2 (μ0). Without loss of generality, we can assume 0 < s < 1. Given any

pμ0 ∈ D+
δ T̃ Φ

2 (μ0), and set

A(s, pμ0 , η) := −s −
∫∫

Rd×ΓT

〈pμ0 ◦ e0(x, γ ), es(x, γ ) − e0(x, γ )〉 dη,

B(s, pμ0 , η) := T̃ Φ
2 (μs) − T̃ Φ

2 (μ0) −
∫∫

Rd×ΓT

〈pμ0 ◦ e0(x, γ ), es(x, γ ) − e0(x, γ )〉dη,

we have A(s, pμ0 , η) ≤ B(s, pμ0 , η).
We recall that since by definition pμ0 ∈ L2

μ0
, we have that pμ0 ◦ e0 ∈ L2

η. Dividing by
s > 0, we obtain that

lim sup
s→0+

A(s, pμ0 , η)

s
≥ −1 −

∫∫

Rd×ΓT

〈pμ0 ◦ e0(x, γ ), wη(x, γ )〉 dη(x, γ ),

for all wη ∈ V (η).
Recalling the choice of pμ0 , we have

lim sup
s→0+

B(s, pμ0 , η)

s
= lim sup

s→0+

B(s, pμ0 , η)

‖es − e0‖L2
η

·
∥
∥
∥
∥
es − e0

s

∥
∥
∥
∥

L2
η

≤ Kδ,

where K > 0 is a suitable constant coming from Lemma 2 and from hypothesis.
We thus obtain for all η ∈ TF (μ0) and all wη ∈ V (η), that

1 +
∫∫

Rd×ΓT

〈pμ0 ◦ e0(x, γ ), wη(x, γ )〉 dη(x, γ ) ≥ −Kδ.

By passing to the infimum on η ∈ TF (μ0) and wη ∈ V (η), and recalling Lemma 7,
we have

−Kδ ≤ 1 + inf
η∈TF (μ0)
wη∈V (η)

∫∫

Rd×ΓT

〈pμ0 ◦ e0(x, γ ),wη(x, γ )〉 dη(x, γ )

= 1 + inf
η∈TF (μ0)
wη∈V (η)

∫

Rd

∫

Γ x
T

〈pμ0 ◦ e0(x, γ ), wη(x, γ )〉 dηx dμ0

= 1 + inf
η∈TF (μ0)
wη∈V (η)

∫

Rd

〈pμ0 ◦ e0(x, γ ),

∫

Γ x
T

wη(x, γ ) dηx〉 dμ0

= 1 + inf
v∈L2

μ0
(Rd ;Rd )

v(x)∈F(x) μ0-a.e. x

∫

Rd

〈pμ0 , v〉 dμ0 = −HF (μ0, pμ0),

so T̃ Φ
2 (·) is a subsolution, thus confirming Claim 1.

Claim 2: T̃ Φ
2 (·) is a supersolution of HF (μ,DT̃ Φ

2 (μ)) = 0 on A.
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Proof of Claim 2. Let μ0 ∈ A. Given η ∈ TF (μ0) and defined the admissible trajectory
μ = {μt }t∈[0,T ] = {et �η}t∈[0,T ], and qμ0 ∈ D−

δ T̃ Φ
2 (μ0), there is a sequence {si}i∈N ⊆]0, T [

and wη ∈ V (η) such that si → 0+,
esi − e0

si
weakly converges to wη in L2

η, and for all

i ∈ N
∫∫

Rd×ΓT

〈qμ0 ◦ e0(x, γ ),
esi (x, γ ) − e0(x, γ )

si
〉 dη(x, γ )

≤ 2δ

∥
∥
∥
∥
esi − e0

si

∥
∥
∥
∥

L2
η

− T̃ Φ
2 (μ0) − T̃ Φ

2 (μsi )

si
.

By taking i sufficiently large we thus obtain
∫∫

Rd×ΓT

〈qμ0 ◦ e0(x, γ ), wη(x, γ )〉 dη(x, γ ) ≤ 3Kδ − T̃ Φ
2 (μ0) − T̃ Φ

2 (μsi )

si
.

By using Lemma 7 and arguing as in Claim 1, we have

inf
η∈TF (μ0)
wη∈V (η)

∫∫

Rd×ΓT

〈qμ0 ◦ e0(x, γ ), wη(x, γ )〉 dη(x, γ ) = −HF (μ0, qμ0) − 1,

and so

HF (μ0, qμ0) ≥ −3Kδ + T̃ Φ
2 (μ0) − T̃ Φ

2 (μsi )

si
− 1.

By the Dynamic Programming Principle, passing to the infimum on all admissible curves

and recalling that
T̃ Φ

2 (μ0) − T̃ Φ
2 (μs)

s
− 1 ≤ 0 with equality holding if and only if μ is

optimal, we obtain HF (μ0, qμ0) ≥ −C′δ, which proves that T̃ Φ
2 (·) is a supersolution, thus

confirming Claim 2.
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