
Simpler and Faster Algorithm for Checking the Dynamic Consistency of
Conditional Simple Temporal Networks

Luke Hunsberger1, Roberto Posenato2

1 Vassar College, Poughkeepsie, NY 12604, USA, hunsberger@vassar.edu
2 University of Verona, Verona, Italy, roberto.posenato@univr

Abstract
Recent work on Conditional Simple Temporal Net-
works (CSTNs) has focused on checking the dy-
namic consistency (DC) property assuming that ex-
ecution strategies can react instantaneously to ob-
servations. Three alternative semantics—IR-DC,
0-DC, and π-DC—have been presented. The most
practical DC-checking algorithm for CSTNs has
only been analyzed with respect to the IR-DC se-
mantics, while the 0-DC semantics was shown to
have a serious flaw that the π-DC semantics fixed.
Whether the IR-DC semantics had the same flaw
and, if so, what the consequences would be for the
DC-checking algorithm remained open questions.
This paper (1) shows that the IR-DC semantics is
also flawed; (2) shows that one of the constraint-
propagation rules from the IR-DC-checking algo-
rithm is not sound with respect to the IR-DC se-
mantics; (3) presents a simpler algorithm, called the
π-DC-checking algorithm; (4) proves that it is sound
and complete with respect to the π-DC semantics;
and (5) empirically evaluates the new algorithm.

1 Overview
A Conditional Simple Temporal Network (CSTN) is a data
structure for reasoning about time in domains where some
constraints may apply only in certain scenarios. For example,
a patient who tests positive for a certain disease may need to
receive care more urgently than someone who tests negative.
Conditions in a CSTN are represented by propositional letters
whose truth values are not controlled, but instead observed in
real time. Just as doing a blood test generates a positive or
negative result that is only learned in real time, the execution
of an observation time-point in a CSTN generates a truth
value for its corresponding propositional letter. An execution
strategy for a CSTN specifies when the time-points will be
executed. A strategy can be dynamic in that its decisions can
react to information from past observations. A CSTN is said to
be dynamically consistent (DC) if it admits a dynamic strategy
that guarantees the satisfaction of all relevant constraints no
matter which outcomes are observed during execution.

Different varieties of the DC property have been defined that
differ in how reactive a dynamic strategy can be. Tsamardinos

et al. [2003] stipulated that a strategy can react to an obser-
vation after any arbitrarily small delay. Comin et al. [2015]
defined ε-DC, which assumes that a strategy’s reaction times
are bounded below by a fixed ε > 0. Finally, three different
versions of DC for strategies that can react instantaneously
(i.e., after zero delay) have been defined: IR-DC [Hunsberger
et al., 2015]; 0-DC and π-DC [Cairo et al., 2016].

Several approaches to DC-checking algorithms have been
presented to address the different flavors of DC [Tsamardi-
nos et al., 2003; Cimatti et al., 2014; 2016; Comin and Rizzi,
2015], but the approach based on the propagation of labeled
constraints [Hunsberger et al., 2015; Hunsberger and Posenato,
2016] is the only one that has been demonstrated to be prac-
tical. Three variations of their DC-checking algorithm have
been presented: one for DC, one for ε-DC, and one for IR-DC.
This paper focuses on their IR-DC-checking algorithm.

Subsequently, Cairo et al. [2016] showed that the 0-DC
semantics (i.e., the ε-DC semantics where ε = 0) had a serious
flaw: it allows a kind of circular dependence among simul-
taneous observations. To correct this, their π-DC semantics
requires a strategy to specify an order-of-dependence among
simultaneous observations. Whether the IR-DC semantics is
similarly flawed and, if so, what the consequences would be
for the IR-DC-checking algorithm, remained open questions.

This paper (1) shows that the IR-DC semantics is also
flawed; (2) shows that one of the constraint-propagation rules
from the IR-DC-checking algorithm is not sound with respect
to the IR-DC semantics; (3) presents a simpler algorithm,
called the π-DC-checking algorithm; (4) proves that the new
algorithm is sound and complete with respect to the π-DC
semantics; and (5) empirically evaluates the new algorithm.

2 Background
Dechter et al. [1991] introduced Simple Temporal Networks
(STNs) to facilitate reasoning about time. An STN comprises
real-valued variables, called time-points, and binary difference
constraints on those variables. Typically, an STN includes a
time-point, Z, whose value is fixed at zero. A consistent STN
is one that has a solution as a constraint satisfaction problem.

Tsamardinos et al. [2003] presented CSTNs, which aug-
ment STNs to include observation time-points and their asso-
ciated propositional letters. In a CSTN, the execution of an
observation time-point P? generates a truth value for its asso-
ciated letter p. In addition, each time-point can be labeled by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217584445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P?0 = Z Q?p

YW¬p Vpq

Up¬q0

〈−10, p¬q〉
〈−

10
, p
q〉

〈−10, p〉

〈3
, p〉

〈−7,¬p〉

〈12,¬p〉

〈−10,¬p〉 〈5,
¬p〉

〈−7,
p〉

Figure 1: A sample CSTN

a conjunction of literals specifying the scenarios in which that
time-point must be executed. Later work generalized CSTNs
to also include labels on constraints [Hunsberger et al., 2012].

Fig. 1 shows a sample CSTN in its graphical form, where the
nodes represent time-points, and the directed edges represent
binary difference constraints. In the figure, Z is fixed at 0;
and P? and Q? are observation time-points whose execution
generates truth values for p and q, respectively. Q? being
labeled by p indicates that Q? is executed only if p is observed
to be true; and the edge from U to Q? being labeled by p¬q
indicates that it applies only in scenarios where p is true and
q is false . The dashed edges are generated by the IR-DC-
checking algorithm [Hunsberger et al., 2015], discussed later.

Tsamardinos et al. [2003] noted that for any reasonable
CSTN, the propositional labels on its time-points must satisfy
certain properties. Hunsberger et al. [2012] extended those
properties to cover labels on constraints, and formalized the
notion of a well-defined CSTN. Recently, Cairo et al. [2017]
showed that for any well-defined CSTN, no loss of generality
results from removing the labels from its time-points. There-
fore, this paper restricts attention to CSTNs whose time-points
do not have any labels, the so-called streamlined CSTNs.

2.1 Streamlined CSTNs
The following definitions are from Hunsberger et al. [2015],
except that propositional labels appear only on constraints.
Henceforth, the term CSTN shall refer to streamlined CSTNs.

Definition 1 (Labels). Given a set P of propositional letters: a
label is a (possibly empty) conjunction of (positive or negative)
literals from P . The empty label is notated �; for any label
`, and any p ∈ P , if ` |= p or ` |= ¬p, then we say that p
appears in `; for any labels `1 and `2, if `1 |= `2, then `1
is said to entail `2; if `1 ∧ `2 is satisfiable, then `1 and `2
are called consistent; and P∗ denotes the set of all consistent
labels whose literals are drawn from P .

Definition 2 (CSTN). A Conditional Simple Temporal Net-
work (CSTN) is a tuple, 〈T ,P, C,OT ,O〉, where:

• T is a finite set of real-valued time-points (i.e., variables);

• P is a finite set of propositional letters (or propositions);

• C is a set of labeled constraints, each having the form,
(Y −X ≤ δ, `), where X,Y ∈ T , δ ∈ R, and ` ∈ P∗;
• OT ⊆ T is a set of observation time-points (OTPs); and

• O : P → OT is a bijection that associates a unique
observation time-point to each propositional letter.

In a CSTN graph, the observation time-point for p (i.e.,
O(p)) may be denoted by P?; and each labeled constraint,
(Y −X ≤ δ, `), is represented by an arrow from X to Y an-
notated by the labeled value, 〈δ, `〉: X 〈δ, `〉 Y . Since any

time-points X and Y may participate in multiple constraints
of the form, (Y − X ≤ δi, `i), the edge from X to Y may
have multiple labeled values of the form, 〈δi, `i〉.
Definition 3 (Scenario). A function, s : P → {true, false},
that assigns a truth value to each p ∈ P is called a scenario.
For any label ` ∈ P∗, the truth value of ` determined by s is
denoted by s(`). I denotes the set of all scenarios over P .

Definition 4 (Schedule). A schedule for a set of time-points
T is a mapping, ψ : T → R. The set of all schedules for any
subset of T is denoted by Ψ.

The projection of a CSTN onto a scenario, s, is the STN
obtained by restricting attention to the constraints whose labels
are true under s (i.e., that must be satisfied in that scenario).

Definition 5 (Projection). Let S = 〈T ,P, C,OT ,O〉 be any
CSTN, and s any scenario over P . The projection of S onto
s—notated S(s)—is the STN, (T , C+

s), where:

C+
s ={(Y −X≤δ) | ∃`, (Y −X≤δ, `) ∈ C ∧ s(`)= true}

Definition 6 (Execution Strategy). An execution strategy for a
CSTN S = 〈T ,P, C,OT ,O〉 is a mapping, σ : I → Ψ, from
scenarios to schedules. The execution time for the time-point
X in the schedule σ(s) is denoted by [σ(s)]X . An execution
strategy σ for a CSTN S is viable if for each scenario s, the
schedule σ(s) is a solution to the projection S(s).

3 Strategies with Instantaneous Reaction
The truth values of propositions in a CSTN are not known in
advance, but a dynamic execution strategy can react to obser-
vations in real time. Three distinct semantics for strategies
that can react instantaneously have been defined: IR-dynamic
[Hunsberger et al., 2015]; and 0-dynamic and π-dynamic
[Cairo et al., 2016], each yielding a distinct version of DC.
Since Cairo et al. [2016] showed that the 0-DC semantics is
flawed, this paper focuses on the IR-DC and π-DC semantics.

3.1 IR-Dynamic Strategies and IR-DC
This section demonstrates that the definition of IR-dynamic
strategies (IR for “instantaneous reaction”) [2015] is flawed
in that it also allows a kind of circular dependence among
simultaneous observations.

Definition 7 (History). Let S = 〈T ,P, C,OT ,O〉 be any
CSTN, s any scenario, σ any execution strategy for S, and t
any real number. The history of t in the scenario s, for the
strategy σ—notated Hist(t, s, σ)—is the set of observations
made before time t according to the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P? < t}

Definition 8 (IR-Dynamic Strategy). An execution strategy
σ for a CSTN S = 〈T ,P, C,OT ,O〉 is called IR-dynamic if
for any scenarios s1 and s2, and any time-point X ∈ T :

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t
unless: [σ(s1)]Q? = [σ(s2)]Q? = t and, for some

Q? ∈ OT , Q? 6≡ X and s1(q) 6= s2(q).

ZA?

B?

C?
〈0,¬b〉, 〈0, c〉

〈−1, b¬c〉

〈0,¬a〉, 〈0,¬c〉

〈−1, ac〉
〈0, a〉, 〈0, b〉

〈−1,¬a¬b〉

Figure 2: An absurd CSTN that is nonetheless IR-DC

LP(X,u, α, Y, v, β): X Y Z
〈u, α〉 〈v, β〉

〈u+ v, αβ〉

qR0(P?, w, α, p̃): P? Z
〈w,αp̃〉
〈w,α〉

qR∗3(P?, w, α, v, β, p̃, Y): P? Z Y
〈w,α〉 〈v, βp̃〉

〈m,α ? β〉
X,Y ∈ T ; P? ∈ OT ; and Z is fixed at 0. LP applies if αβ ∈ P∗;
qR0 and qR∗3 apply if w < 0. In qR0 and qR∗3, p̃ ∈ {p,¬p, ?p};
p does not appear in α or β; and m = max{v, w}.

LP(X,−3, pqr, Y,−4, rs¬t): X Y Z
〈−3, pqr〉 〈−4, rs¬t〉

〈−7, pqrs¬t〉

qR0(P?,−9, qr, ?p): P? Z
〈−9, (?p)qr〉
〈−9, qr〉

qR∗3(A?,−1, b¬c,−1, c, a, B?): A? Z B?
〈−1, b¬c〉 〈−1, ac〉

〈−1, b(?c)〉

Table 1: The LP, qR0 and qR∗3 propagation rules for CSTNs (above)
and instances of their use (below)

Thus, if an IR-dynamic strategy σ executes X at time t in
scenario s1, and the schedules σ(s1) and σ(s2) have the same
history of observations, then σ must also execute X at t in s2,
unless some observation at time t, whereQ? andX are distinct
time-points, yielded different results in the two scenarios.

That the definition of IR-dynamic strategies is flawed is
demonstrated by the CSTN in Fig. 2, which is equivalent
to a CSTN from Cairo et al. [2016]. It has three observation
time-points,A?,B? andC?, with corresponding propositional
letters, a, b and c. A?, B? and C? are each forced to execute
at 0 in some scenarios, and at or above 1 in another scenario.
Thus, there is no time-point that can be executed first, at or
after Z, implying that no implementable strategy can exist.
Yet, the strategy, σ′, defined below, is viable and IR-dynamic.

if s |= b¬c, [σ′(s)]A? = 1, else [σ′(s)]A? = 0.
if s |= ac, [σ′(s)]B? = 1, else [σ′(s)]B? = 0.
if s |= ¬a¬b, [σ′(s)]C? = 1, else [σ′(s)]C? = 0.

A tedious check confirms that for any scenarios, s1 and s2,
and any X? ∈ {A?, B?, C?}, where [σ′(s1)]X? = 0 and
[σ′(s2)]X? = 1, there is always another observation time-
point Y ? 6≡ X? that σ′ executes at 0, but for which s1(y) 6=
s2(y). Thus, the “unless” clause of Defn. 8 invariably applies,
allowing a circular dependence among A?, B? and C?.

3.2 The IR-DC-checking Algorithm
Hunsberger et al. [2015] claimed that their IR-DC-checking
algorithm was sound and complete. But their algorithm says
the CSTN in Fig. 2 is not IR-DC. Something is wrong.

Table 1 lists three of the six constraint-propagation rules
from their IR-DC-checking algorithm. Unlike the original, the
LP rule shown in Table 1 focuses on generating edges termi-
nating at Z, but that restriction does not affect what follows.

The qR∗3 rule can generate a new kind of label, called a q-label;
the qR0 and qR∗3 rules can each be applied to q-labeled edges.
Whereas a constraint labeled by p must hold in all scenarios
in which p is true, a constraint labeled by the q-literal ?p need
only hold as long as the truth value of p is unknown.

Definition 9 (Q-literals, q-labels). A q-literal is a literal of
the form ?p, where p ∈ P . A q-label is a conjunction of
literals and/or q-literals. Q∗ denotes the set of all q-labels. For
any scenario s, and any q-literal ?p, we stipulate that s 6|=?p.

For example, p(?q)¬r and (?p)(?q)(?r) are both q-labels.
The ? operator extends ordinary conjunction to accommo-

date q-labels. Intuitively, if the constraint C1 is labeled by p,
and C2 is labeled by ¬p, then both C1 and C2 must hold as
long as the value of p is unknown, represented by p?¬p = ?p.

Definition 10 (?). The operator, ? : Q∗ × Q∗ → Q?, is
defined thusly. First, for any p ∈ P , p ? p = p and
¬p ? ¬p = ¬p. Next, for any p1, p2 ∈ {p,¬p, ?p} for which
p1 6= p2, p1 ? p2 = ?p. Finally, for any q-labels `1, `2 ∈ Q∗,
`1 ? `2 ∈ Q∗ denotes the conjunction obtained by applying ?
in pairwise fashion to matching literals from `1 and `2, and
conjoining any unmatched literals.

For example: (p¬q(?r)t) ? (qr¬s) = p(?q)(?r)¬st.
Lemma 1. The IR-DC-checking algorithm is not sound with
respect to the IR-DC semantics.

Proof. The CSTN from Fig. 2 is IR-DC, given the valid and
IR-dynamic strategy σ′. But the IR-DC-checking algorithm
declares it to be not IR-DC, as follows. First, applying the qR∗3
rule as shown in the last row of Table 1 generates the constraint
(B? ≥ 1, b(?c)).1 Next, applying qR0 to this constraint yields:
(B? ≥ 1, (?c)) (i.e., B must be at least 1 as long as c is
unknown). But this constraint is not satisfied by σ′. For
example, in the scenario ¬a¬bc, σ′ executes B? at 0, but C?
at 1. Furthermore, the Spreading Lemma [Hunsberger et al.,
2015] ensures that continued application of the qR∗3 and qR0
rules will generate the constraints, (A? ≥ 1,�), (B? ≥ 1,�)
and (C? ≥ 1,�) (i.e., A?, B? and C? must all be executed at
or after 1 in all scenarios), which is inconsistent, for example,
with the constraint (A? ≤ 0, c). This inconsistency is detected
by the LP rule, which generates a negative self-loop with a
consistent propositional label, causing the algorithm to declare
that the network is not IR-DC, which is wrong.

3.3 π-Dynamic Strategies and π-DC
This section summarizes the π-DC semantics [Cairo et al.,
2016] that forces strategies to select orders of dependence
among simultaneous observations. The Table 1 rules will be
shown to be sound and complete for the π-DC semantics.

Definition 11 (Order of dependence). For any scenario s, and
ordering (P1?, . . . , Pk?) of observation time-points, where
k = |OT |, an order of dependence is a permutation π over
(1, 2, . . . , k); and for each P? ∈ OT , π(P?) ∈ {1, 2, ..., k}
denotes the integer position of P? in that order. For any non-
observation time-point X , we set π(X) = ∞ . Finally, Πk

denotes the set of all permutations over (1, 2, . . . , k).
1(B? ≥ 1) is an abbreviation for (Z−B? ≤ −1).

Definition 12 (π-Execution Strategy). Given any CSTN S =
〈T ,P, C,OT ,O〉, let k = |OT |. A π-execution strategy for
S is a mapping, σ : I → (Ψ×Πk), such that for each sce-
nario s, σ(s) is a pair (ψ, π) where ψ : T → R is a schedule
and π ∈ Πk is an order of dependence. For any X ∈ T ,
[σ(s)]X denotes the execution time of X (i.e., ψ(X)); and for
any P? ∈ OT , [σ(s)]πP? denotes the position of P? in the or-
der of dependence (i.e., π(P?)). Finally, a π-dynamic strategy
must be coherent: for any scenario s, and any P?, Q? ∈ OT ,
[σ(s)]P? < [σ(s)]Q? implies [σ(s)]πP? < [σ(s)]πQ? (i.e., if
σ(s) schedules P? before Q?, then it orders P? before Q?).
Definition 13 (Viability). The π-execution strategy σ is called
viable for the CSTN S if for each scenario s, the schedule ψ
is a solution to the projection S(s), where σ(s) = (ψ, π).
Definition 14 (π-History). Let σ be any π-execution strategy
for some CSTN S = 〈T ,P, C,OT ,O〉, s any scenario, t any
real number, and d ∈ {1, 2, . . . , |OT |} ∪ {∞} any integer
position (or infinity). The π-history of (t, d) for the scenario s
and strategy σ—denoted by πHist(t, d, s, σ)—is the set
{(p, s(p)) | P? ∈ OT , [σ(s)]P? ≤ t, π(P?) < d}.

The π-history specifies the truth value of each p ∈ P that is
observed before t in the schedule ψ, or at t if the corresponding
P? is ordered before position d by the permutation π.

The following definition is equivalent to that given by Cairo
et al. [2016]. (Proof omitted to save space.) It was chosen to
facilitate comparison with IR-dynamic strategies (Defn. 8).
Definition 15 (π-Dynamic Strategy). A π-execution strategy,
σ, for a CSTN is called π-dynamic if for every pair of scenar-
ios, s1 and s2, and every time-point X ∈ T :

let: t = [σ(s1)]X , and d = [σ(s1)]πX .
if: πHist(t, d, s1, σ) = πHist(t, d, s2, σ)
then: [σ(s2)]X = t and [σ(s2)]πX = d.

Thus, if σ executes X at time t and position d in scenario s1,
and the histories, πHist(t, d, s1, σ) and πHist(t, d, s2, σ), are
the same, then σ must also execute X at time t and in position
d in scenario s2. (X may be an observation time-point.)
Definition 16 (π-Dynamic Consistency). A CSTN, S, is π-
dynamically consistent (π-DC) if there exists a π-execution
strategy for S that is both viable and π-dynamic.

4 Sound and Complete π-DC Checking
This section proves that the constraint-propagation rules in
Table 1 are sound and complete for the π-DC semantics.
Lemma 2 (Soundness of the LP rule). If σ is a valid and
π-dynamic strategy for a CSTN S that includes the constraints
(W −X ≤ u, α) and (Y −W ≤ v, β), where αβ ∈ P∗, then
σ also satisfies the constraint (Y −X ≤ u+ v, αβ) (i.e., for
each scenario s, if s |= αβ, then [σ(s)]Y − [σ(s)]X ≤ u+ v).

Proof. Let s be any scenario for which s |= αβ. Since σ is
valid and s |= α, [σ(s)]W − [σ(s)]X ≤ u. Similarly, since σ
is valid and s |= β, [σ(s)]Y − [σ(s)]W ≤ v. Summing these
inequalities yields: [σ(s)]Y − [σ(s)]X ≤ u+ v.

Definition 17 (π-before). For a given scenario s, we say that
an execution strategy σ observes p (or executes P?) π-before
executing Y if [σ(s)]P? ≤ [σ(s)]Y and [σ(s)]πP? < [σ(s)]πY .

Intuitively, if σ observes p π-before Y , then σ’s decision to
execute Y can depend on the value of p. In addition, note that
if P? and Q? are distinct, then a coherent strategy σ observes
p π-before Q? if and only if [σ(s)]πP? < [σ(s)]πQ?.

Since the qR0 and qR∗3 rules involve lower-bound con-
straints whose labels may be q-labels, we first provide a se-
mantics for such constraints for π-dynamic strategies. The
following definitions extends that of Hunsberger et al. [2015].

Definition 18 (Satisfying a lower-bound constraint). A strat-
egy σ satisfies the lower-bound constraint (Y ≥ δ, α), where
α ∈ Q∗, iff for each scenario s: (1) [σ(s)]Y ≥ δ; or (2) some
ã ∈ {a,¬a, ?a} appears in α, where σ observes a π-before
Y , and s 6|= ã. (i.e., σ(s) can execute Y before δ only if some
observation was made π-before Y that ensured that s 6|= α).

Lemma 3 (Soundness of qR0). If σ is a valid and π-dynamic
strategy that satisfies (P? ≥ δ, αp̃), where α ∈ Q∗ and
p̃ ∈ {p,¬p, ?p}, then σ also satisfies (P? ≥ δ, α).

Proof. If σ satisfies (P? ≥ δ, αp̃), for some p̃ ∈ {p,¬p, ?p}
and α ∈ Q∗, then for any scenario s either: (1) [σ(s)]P? ≥ δ;
or (2) for some ã ∈ αp̃, σ observes a π-before P? (and
hence A? 6≡ P?) and s 6|= ã. Since qR0 stipulates that p does
not appear in α, (1) and (2) are equivalent to the satisfaction
conditions for (P? ≥ δ, α).

Lemma 4 (Soundness of the qR∗3 rule). Let σ be any viable
and π-dynamic strategy for a CSTN S. If σ satisfies the con-
straints (P? ≥ g, α) and (Y ≥ h, βp̃), where α, β ∈ Q∗,
then σ also satisfies (Y ≥ x, α ? β), where x = min{g, h}.2

Proof. Suppose the conditions of the lemma hold, but σ does
not satisfy (Y ≥ x, α?β). Then for some scenario s, the nega-
tion of Defn. 18 holds: (1†) [σ(s)]Y < x = min{g, h}; and
(2†) for each ã ∈ {a,¬a, ?a} appearing in α ? β such that σ
observes a π-before Y , s |= ã. Since σ satisfies (Y ≥ h, βp̃),
one of the following holds: (1) [σ(s)]Y ≥ h ≥ x; or (2) some
b̃ ∈ {b,¬b, ?b} appears in βp̃ such that σ observes b π-before
Y and s 6|= b̃. Since (1) contradicts (1†), (2) must hold for
some b̃ ∈ βp̃. If b̃ = b ∈ β and b ∈ α ? β, then s 6|= b contra-
dicts (2†); but if ?b ∈ α ? β, then s 6|=?b again contradicts (2†).
Similar remarks apply to the cases, b̃ = ¬b and b̃ = ?b. Finally,
if (2) holds for b̃ = p̃, then σ observes p π-before Y and s 6|= p̃.
Since σ satisfies (P? ≥ g, α), but [σ(s)]P? ≤ [σ(s)]Y < g,
Defn. 18 implies that some c̃ ∈ {c,¬c, ?c} appears in α such
that σ observes c π-before P? and s 6|= c̃. But since σ observes
p π-before Y , it follows that σ observes c π-before Y (i.e.,
[σ(s)]πC? < [σ(s)]πP? < [σ(s)]πY). And c̃ ∈ α implies that
either c̃ or ?c is in α ? β, contradicting (2†).

4.1 The π-DC-Checking Algorithm for CSTNs
Unlike the 6-rule IR-DC-checking algorithm, our new π-DC-
checking algorithm, whose pseudo-code is shown in Algo-
rithm 1, (1) uses only the three rules from Table 1; and (2) only
generates edges terminating at Z. It begins (Lines 1–2) by con-
straining each time-point X thusly: 0 ≤ X ≤ h = Mn,
where M is the maximum absolute value of any negative

2Substitutions from Table 1: g = −w; h = −v; and x = −m.

Algorithm 1: π-DC-Check
Input: S = 〈T ,P, C,OT ,O〉, any (streamlined) CSTN

1 foreach (X ∈ T) do
2 Insert (X ≥ 0,�) and (X ≤Mn,�) // Mn = horizon
3 Cnew ··= ∅; Cprev ··= C
4 while (Cprev 6= ∅) do
5 foreach ((Z−X ≤ v, `) ∈ Cprev) do
6 if ((X ≡ P?) and (` = αp̃)) then
7 Cnew ··= Cnew ∪ qR0(P?, v, α, p̃)

8 foreach ((Z−Q? ≤ w,α) ∈ C | ` = βq̃) do
9 Cnew ··= Cnew ∪ qR∗3(Q?, w, α, v, β, q̃,X)

10 foreach ((X − Y ≤ w, `′) ∈ C) do
11 Cnew ··= Cnew ∪ LP(Y, v, `,X,w, `′)

12 if (∃ a negative self-loop in Cnew with label in P∗) then
13 return S is not π-DC

14 C ··= C ∪ Cnew; Cprev ··= Cnew; Cnew = ∅
15 return S is π-DC

weight in the CSTN, and n = |T |. Cairo et al. [2017] proved
that inserting such horizon constraints preserves the DC prop-
erty assuming that all weights are rational.

Each iteration of the main loop (Lines 5–13) processes
each constraint C ∈ Cprev generated by the previous iteration,
checking for possible applications of qR0 (Lines 6–7), qR∗3
(Lines 8–9), and LP (Lines 10–11). Only constraints that are
not entailed by constraints already in C are collected in Cnew.
The main loop ends when: (1) a negative self-loop with a
consistent label is found (Line 12); or (2) no new constraints
were generated by the current iteration (Line 4). The algorithm
reports not π-DC in the first case; π-DC in the second.

An upper bound for the computational complexity of the π-
DC-checking algorithm is O(M |T |(|P||T |3|P| + |T |22|P|))
= O(M |T |43|P|). Although exponential in the worst case,
it will be shown to be practical across a variety of networks.
The space complexity is O(|T |24|P|), but is typically much
smaller in practice.

4.2 Completeness of π-DC Checking
This section proves that the π-DC-checking algorithm is sound
and complete with respect to the π-DC semantics. It general-
izes the approach used by Hunsberger et al. [2015].

During execution, the observations made so far can be rep-
resented by a label ` ∈ P∗ that is equivalent to the π-history
at that point. For convenience, such a label is called a current
partial scenario (CPS). A q-label α ∈ Q∗ is called applicable
in a given CPS `, if the observations in ` are consistent with α.
Definition 19 (Applicable q-Label). A q-label α is applicable
in a CPS `, notated as appl(α, `), if whenever any letter p
appears in both ` and α, it appears identically (i.e., as p in both
or as ¬p in both).

Note that if ?p ∈ α, then appl(α, `) only holds if p has not
yet been observed (i.e., if p does not appear in `).
Lemma 5. If σ is a viable and π-dynamic strategy for some
CSTN S , then σ satisfies the constraint (X ≥ δ, α) if and only
if for each scenario s, [σ(s)]X < δ ⇒ ¬appl(α, `), where
` = πHist([σ(s)]X , [σ(s)]πX , s, σ) is the relevant CPS.

Proof. Suppose [σ(s)]X < δ. Since σ satisfies (X ≥ δ, α),
there must be some ã ∈ {a,¬a, ?a} appearing in α such that
σ observes a π-before X , and s 6|= ã. Since σ observes a
π-before X , then either a or ¬a appears in the CPS `. Now, if
ã = a, then a ∈ α, but s 6|= a implies that ¬a ∈ `; and, hence,
¬appl(α, `). The case, ã = ¬a, is similar. And if ã =?a, then
?a ∈ α and a appearing in ` imply that ¬appl(α, `).

Lemma 6 (Spreading Lemma). Let S be any CSTN whose
set of constraints C is closed under the qR0 and qR∗3 rules.
Let ` ∈ P∗ be any consistent label, representing a possible
CPS. Let T` = {P? | p appears in `} be the observation time-
points corresponding to the observations in `. Let Tx be any
set of time-points such that T` ⊆ Tx ⊂ T , and Tx ∩OT = T`.
Tx represents the time-points that have been executed so far.
And let Tu = T \ Tx be the as-yet-unexecuted time-points.
For each X ∈ Tu, let ELB(X, `) be its effective lower bound:

max{δ | ∃α ∈ Q∗ and (X ≥ δ, α) ∈ C such that appl(α, `)}.

And let Λ(`, Tu) be the minimum ELB value among all unex-
ecuted time-points: Λ(`, Tu) = min{ELB(X, `) | X ∈ Tu}.
Then for each X ∈ Tu, the constraint (X ≥ Λ(`, Tu), `) is
entailed by constraints in C.

Proof. Let Λ denote Λ(`, Tu), ELB(X) denote ELB(X, `),
and Pu = {p ∈ P | P? ∈ Tu} be the as-yet-unobserved
letters. By construction, for each p ∈ Pu, ELB(P?) ≥ Λ;
so there must be a constraint, (P? ≥ λp, αp) ∈ C, for some
λp ≥ Λ and αp ∈ Q∗ such that appl(αp, `). Now, if p appears
in αp, then qR0 can remove it from αp; thus, since C is closed
under qR0, it can be assumed that p does not appear in αp.

Next, let r be any other letter in Pu. Again, there must be
a constraint, (R? ≥ λr, αr), for some λr ≥ Λ, and r ∈ Q∗
such that appl(αr, `). Now, if p appears in αr, then it can
be removed using qR∗3, generating (R? ≥ λpr, αpr), where
λpr = min{λp, λr} ≥ Λ, and αpr = αp ? α

′
r, where α′r is

obtained by removing any p̃ from αr. Since appl(αp, `) and
appl(αr, `), it follows that appl(αpr, `). As before, since C is
closed under qR0 and qR∗3, this constraint must be entailed by
constraints in C. Thus, we can assume that p does not appear
in αr. Continuing in this way, each observation time-point
T? ∈ Tu must have a corresponding constraint (T? ≥ λt, αt)
where λt ≥ Λ and αt does not include p.

Once p has been removed from all such labels, then r can
similarly be removed, and so on, until each T? ∈ Tu is seen
to have a lower-bound constraint, (T? ≥ λt, αt), where λt ≥
Λ and αt has no letters from Pu. Thus, each αt can only
have letters that appear in `; whence appl(αt, `) implies that
` |= αt. Finally, qR∗3 can be used to similarly process the
labels from lower-bound constraints on all X ∈ Tu, removing
all occurrences of letters from Pu. Thus, for each X ∈ Tu,
(X ≥ Λ, `) must be entailed by constraints in C.

Lemma 7. Let S be any CSTN, s any scenario, and S(s) the
corresponding STN projection. If P is a path from X to Y of
length δ in S(s), then there is a corresponding path P ′ in S
from X to Y whose length is δ and whose edges have labels
that are consistent with s. In addition, if the edges in S are
closed under the LP rule, then there is a single edge in S from
X to Y of length δ whose label is consistent with s.

Algorithm 2: EarliestFirstExecutionStrategy(S)
Input: S = 〈T ,P, C,OT ,O〉, a CSTN
t ··= 0, d ··= 1, ` ··= � // time, dependency position, CPS
[σ(s)]Z ··= 0, Tu ··= T \ {Z} // execute Z at 0
while (Tu 6= ∅) do

t ··= Λ(`, Tu) // as in Lemma 6
χ ··= {X ∈ Tu | ELB(X, `) = t} // as in Lemma 6
foreach (X ∈ χ) do

[σ(s)]X ··= t, Tu ··= Tu \ {X} // execute X at t
if (X ∈ OT) then // record observation

[σ(s)]πX ··= d, d ··= d+ 1, ` ··= ` ∧ s(x)

return 〈σ(s), s〉 // ` = s at end

X Z
−x

|Π|

(a)
Z

Y
y

|Π|

(b)
X Z

Y

−x
y

|Π|

(c)

Figure 3: Loops discussed in proof of Theorem 1

Proof. Follows from Defn. 5 and the LP rule.

Theorem 1. Algorithm 1 is sound and complete for π-DC
checking for CSTNs with rational weights.

Proof. Soundness follows from Lemmas 2–4. Termination
is guaranteed by the horizon constraints: for each X ∈ T ,
0 ≤ X ≤ h. A finite number of rational weights can be
put over a common denominator D, yielding, in effect, an
integer domain. Because there are n2 edges, each with at most
3k different q-labels and D different numerical weights, the
algorithm generates at most n2(3k)D incremental updates.

Next, let S be any fully propagated CSTN that the algorithm
says is π-DC. Then S must be closed under LP, qR0 and qR∗3.

Let σ be the earliest-first execution strategy (Algorithm 2).
This strategy can be incrementally computed in real time as
the execution of observation time-points incrementally reveals
the scenario s. We must show that σ is viable and π-dynamic.

(I) σ is π-dynamic. Lemma 6 ensures that every unexecuted
time-point is constrained to occur at or after t = Λ(`, Tu).
Hence, the next round of ELB values cannot go below t. As
a result, the next Λ(`, Tu) value cannot go below t. Thus,
the strategy is well defined. By construction, each decision
depends only on past observations, or concurrent observations
with a lower d value. Thus, each execution decision depends
only on the relevant π-history, as required by Defn. 15.

(II) For any scenario s, the projection S(s) is consistent. If
S(s) contains a negative loop, then Lemma 7 implies there
is a single-edge negative loop in S whose label is consistent
with s, contradicting the algorithm’s report that S is π-DC.

(III) σ is valid. Let s be any scenario, and S(s) the corre-
sponding projection. Suppose that σ(s) is not a solution to the
STN S(s). For each X , let x = [σ(s)]X . The corresponding
execution constraints are (Z − X ≤ x) and (X − Z ≤ x)
(i.e., X = x). Since σ(s) is not a solution, inserting these
constraints into S(s) must create a negative loop—call it L.
Without loss of generality, L has only one occurrence of Z.

Case 1 (Fig. 3a). L consists of the lower-bound execution
constraint (Z − X ≤ −x) followed by a path Π from Z to
X , where: (1) x = Λ(`, Tu) = ELB(X, `), where ` is the
CPS when X was executed; (2) |Π| < x, and (3) the edges
in Π are from S(s). By Lemma 7, there must be an edge in
S from Z to X of length |Π| whose label is consistent with s.
Lemma 6 ensures that the constraint, (Z − X ≤ −x, `), is
entailed by constraints in S. And ` is necessarily consistent
with s. Applying the LP rule to these two edges would yield a
single-edge negative loop in S with a consistent label, causing
the algorithm to report that S was not π-DC, a contradiction.

Case 2 (Fig. 3b). L consists of the constraint (Y − Z ≤ y)
followed by a path Π from Y to Z, where: (1) y = Λ(`, Tu) =
ELB(Y, `), where ` is the CPS when Y was executed; (2) the
edges in Π are from S(s); and (3) |Π| < −y. By Lemma 7,
there must be an edge in S from Y to Z of length |Π| whose
label is consistent with s. But then ELB(Y, `) must satisfy
−|Π| ≤ ELB(Y, `) = y, which contradicts that |Π| < −y.

Case 3 (Fig. 3c). L has a path Π from Y to X with edges in
S(s), a lower-bound (LB) edge (Z−X ≤ −x), and an upper-
bound edge (Y − Z ≤ y). Here, |Π|−x+y < 0. By Lemma 7,
S has an edge Π′ of length |Π| whose label is consistent with s.
By Case 1, the LB constraint for X is entailed by constraints
in S. Thus, applying LP to Π′ and the LB edge for X would
have yielded an edge, (Z − Y ≤ |Π| − x, α) in S, with α
consistent with s. So −|Π|+ x must be a lower bound for Y .
Hence, ELB(Y, `y) ≥ −|Π|+ x > y, a contradiction.

Corollary 1. The six-rule IR-DC-checking algorithm [Huns-
berger et al., 2015] is also sound and complete for π-DC
checking.

Proof. The IR-DC-checking and π-DC-checking algorithms
both use the qR0 and qR∗3 rules from Table 1. However,
whereas the π-DC-checking algorithm uses the LP rule from
Table 1, which only generates edges terminating at Z, the IR-
DC-checking algorithm uses a more general version of that
rule that can generate edges pointing at any time-point. On top
of that, the IR-DC-checking algorithm uses three more rules,
called qLP , R0 and R∗3. The qLP rule is a generalization of
the LP rule that accommodates parent edges with inconsistent
labels and, thus, can generate q-labeled edges; the R0 and R∗3
rules are analogous to the qR0 and qR∗3 rules, except that they
can generate edges terminating at any time-point, not just Z,
but they require the labels on the parent edges to be consis-
tent and, thus, can only generate edges with consistent labels.
From these observations, it follows that the propagations done
by the IR-DC-checking algorithm form a superset of the prop-
agations done by the π-DC-checking algorithm. Therefore, if
a given CSTN passes the IR-DC-checking algorithm, then it
must also pass the π-DC-checking algorithm.

It remains to show that if a given CSTN fails the IR-DC-
checking algorithm, then it must also fail the π-DC-checking
algorithm. In other words, it remains to show that the addi-
tional propagations done by the IR-DC-checking algorithm
are sound with respect to the π-DC semantics. Due to space
limitations, we leave this part of the proof to the reader.

43 59 75 91 107 123 139 155

0.3s

3s

30s
1m

5m

Benchmark 1
N=10, |P|=3

Benchmark 2
N=20, |P|=5

Benchmark 3
N=30, |P|=7

Benchmark 4
N=40, |P|=9

n

ex
ec

ut
io

n
tim

e
IR-DC-Ch π-DC-Ch

Figure 4: Execution time vs. number of time-points n

5 Empirical Evaluation
This section compares the performance of the π-DC-checking
and IR-DC-checking algorithms. π-DC-Ch is our imple-
mentation of Algorithm 1; IR-DC-Ch is the freely available
implementation of the IR-DC-checking algorithm [Posenato,
2017]. All algorithms and procedures were implemented in
Java and executed on a JVM 8 in a Linux box with two AMD
Opteron 4334 CPUs and 64GB of RAM.

Both implementations were tested on instances of the four
benchmarks from Hunsberger and Posenato [2016]. Each
benchmark has at least 60 DC and 60 non-DC CSTNs, ob-
tained from random workflow schemata generated by the
ATAPIS toolset [Lanz and Reichert, 2014]. The numbers
of activites (N) and observations (|P|) were varied, as shown
in Fig. 4. Since non-DC networks were regularly solved one
to two orders of magnitude faster than similarly sized DC net-
works, this section focuses on the results for the DC networks.

Fig. 4 displays the average execution times for the two al-
gorithms over all four benchmarks, each point representing
the average execution time for instances of the given size. We
extended the benchmarks, adding up to 50 DC instances, to
generate tight 95% confidence intervals. The results demon-
strate that the 3-rule π-DC-Ch algorithm is much faster than
the 6-rule IR-DC-Ch algorithm. Moreover, the performance
improvement increases as the instance size increases.

Regarding non-DC networks, we verified that the difference
in performance of the two algorithms is statistically insignif-
icant: for each network size, the confidence intervals for the
average execution times of the two algorithms invariably over-
lap.

6 Conclusions
This paper began by showing that the IR-DC semantics for
CSTNs is flawed, and that one of the six rules from the IR-
DC-checking algorithm for CSTNs is unsound with respect to
the IR-DC semantics. However, the major contribution of the
paper was to present the simpler, three-rule π-DC-checking
algorithm and prove that it is sound and complete with respect
to the (unflawed) π-DC semantics from Cairo et al. [2016].
An empirical evaluation showed that the π-DC-checking al-
gorithm is faster than the IR-DC-checking algorithm, which
also happens to be sound and complete for the π-DC-checking
problem.

References
[Cairo et al., 2016] Massimo Cairo, Carlo Comin, and

Romeo Rizzi. Instantaneous reaction-time in dynamic-

consistency checking of conditional simple temporal net-
works. In TIME 2016, 2016.

[Cairo et al., 2017] Massimo Cairo, Luke Hunsberger,
Roberto Posenato, and Romeo Rizzi. A Streamlined Model
of Conditional Simple Temporal Networks - Semantics and
Equivalence Results. In 24th International Symposium
on Temporal Representation and Reasoning (TIME 2017),
volume 90 of LIPIcs, pages 10:1–10:19, 2017.

[Cimatti et al., 2014] A. Cimatti, L. Hunsberger, A. Micheli,
R. Posenato, and M. Roveri. Sound and complete algo-
rithms for checking the dynamic controllability of temporal
networks with uncertainty, disjunction and observation. In
21st International Symposium on Temporal Representation
and Reasoning (TIME 2014), pages 27–36. IEEE, 2014.

[Cimatti et al., 2016] A. Cimatti, L. Hunsberger, A. Micheli,
R. Posenato, and M. Roveri. Dynamic controllability via
Timed Game Automata. Acta Informatica, 53(6-8):681–
722, 2016.

[Comin and Rizzi, 2015] Carlo Comin and Romeo Rizzi. Dy-
namic consistency of conditional simple temporal networks
via mean payoff games: a singly-exponential time dc-
checking. In 22st International Symposium on Temporal
Representation and Reasoning (TIME 2015), pages 19–28.
IEEE, 2015.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial Intelligence,
49(1-3):61–95, 1991.

[Hunsberger and Posenato, 2016] Luke Hunsberger and
Roberto Posenato. Checking the Dynamic Consistency of
Conditional Temporal Networks with Bounded Reaction
Times. In Proceedings of the 26th International Conference
on Automated Planning and Scheduling, ICAPS 2016,
pages 175–183, 2016.

[Hunsberger et al., 2012] Luke Hunsberger, Roberto Posen-
ato, and Carlo Combi. The Dynamic Controllability of
Conditional STNs with Uncertainty. In PlanEx at ICAPS
2012, pages 1–8, 2012.

[Hunsberger et al., 2015] Luke Hunsberger, Roberto Posen-
ato, and Carlo Combi. A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of
conditional simple temporal networks. In 22st International
Symposium on Temporal Representation and Reasoning
(TIME 2015), pages 4–18. IEEE, 2015.

[Lanz and Reichert, 2014] Andreas Lanz and Manfred Re-
ichert. Enabling time-aware process support with the AT-
APIS Toolset. In Proceedings of the BPM Demo Sessions
2014, volume 1295, pages 41–45, 2014.

[Posenato, 2017] Roberto Posenato. A CSTN(U) consistency
check algorithm implementation in Java. Version 1.20.
http://profs.scienze.univr.it/∼posenato/software/cstnu,
November 2017.

[Tsamardinos et al., 2003] Ioannis Tsamardinos, Thierry Vi-
dal, and Martha E. Pollack. CTP: A new constraint-based
formalism for conditional, temporal planning. Constraints,

8:365–388, 2003.

