
Optimal Parallel Algorithms for Rectilinear LinkDistance Problems ��Andrzej LingasDepartment of Computer ScienceLund UniversityBox 118, S-22100 Lund, Swedenandrzej@dna.lth.se Anil MaheshwariComputer Systems and Communications GroupTata Institute of Fundamental ResearchHomi Bhabha Road, Bombay - 400 005, Indiamanil@tifrvax.tifr.res.inJ�org-R�udiger SackyySchool of Computer ScienceCarleton UniversityOttawa, Ontario K1S 5B6, Canadasack@scs.carleton.caKeywords: Computational geometry, Algorithms and data structures, Parallel computation, Linkdistance, Rectilinear polygons. AbstractWe provide optimal parallel solutions to several link distance problems set in trapezoided rec-tilinear polygons. All our main parallel algorithms are deterministic and designed to run on theexclusive read exclusive write parallel random- access machine (EREW PRAM). Let P be a trape-zoided rectilinear simple polygon with n vertices. In O(logn) time using O(n=logn) processors wecan optimally compute1. minimum rectilinear link paths, or shortest paths in the L1 metric from any point in P to allvertices of P ,2. minimum rectilinear link paths from any segment inside P to all vertices of P ,3. the rectilinear window (histogram) partition of P ,4. both covering radii and vertex intervals for any diagonal of P ,5. a data structure to support rectilinear link distance queries between any two points in P(queries can be answered optimally in O(logn) time by a uniprocessor).Our solution to 5 is based on a new linear-time sequential algorithm for this problemwhich is alsoprovided here. This improves on the previously best known sequential algorithm for this problemwhich used O(n logn) time and space�. We develop techniques for solving link distance problemsin parallel which are expected to �nd applications in the design of other parallel computationalgeometry algorithms. We employ these parallel techniques for example to optimally compute (on aCREW PRAM) the link diameter, the link center and the central diagonal of a rectilinear polygon.�This research work was partially supported by TFR.yThe research of the third author was partially supported by Natural Sciences and Engineering Council of Canada.�Independently, Schuierer [31] obtained a linear-time sequential algorithm.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217584170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 IntroductionThe link distance between two points s and t inside a polygon P is the minimum number of segments(straight edges) required to connect s and t inside P . The link distance is an appropriate distancemeasure in environments such as motion planning, broadcasting transmission, or VLSI, where makinga turn is more expensive than moving along a straight-line motion (see [32]). The study of link distanceproblems has recently attracted a lot of attention in computational geometry, see e.g. [2, 3, 6, 10,11, 12, 17, 20, 28, 29, 32, 33]. Many of these sequential algorithms run in linear time in triangulatedpolygons. Combined with the recent triangulation algorithm by Chazelle [5] these algorithms are nowoptimal.The very recent parallel triangulation algorithm by Clarkson et al. [7], and Goodrich [13] haveintensi�ed the need for parallel algorithms which are optimal after triangulation or trapezoidal decom-position. For the Euclidean distance measure now optimal parallel algorithms have been developed fora variety of computational geometry problems set in triangulated polygons [13, 15]. These problemsinclude the parallel construction of data structures for answering shortest path queries or shootingqueries, solving visibility problems, constructing shortest paths trees, and relative convex hulls. Atpresent no parallel algorithm is known for solving non-trivial link distance problems optimally in tri-angulated polygons. An e�cient parallel algorithm for computing a minimum link path between twovertices in a simple polygon is due to Chandru et al. [6]. Their algorithm runs in O(logn log logn)time using O(n) processors on the CREW-PRAM, where n is the number of vertices in the inputpolygon. Ghosh and Maheshwari developed a link center algorithm which runs in O(log2 n log logn)time using O(n2) processors [12]. For details on PRAM models, see [18].Even in the sequential setting link distance related problems seem to be more di�cult to solvethan the corresponding problems using the geodesic distance measure. The di�culties stem from thefact that several minimum link paths may exist connecting a given pair of vertices, while the minimumgeodesic path is always unique.In this paper we present optimal parallel algorithms for a variety of rectilinear link distance prob-lems set in trapezoided rectilinear polygons [27, 29]. A rectilinear polygon y is one whose edges are allaligned with a pair of orthogonal coordinate axes, which we take to be horizontal and vertical withoutloss of generality. Rectilinear polygons are commonly used as approximations to arbitrary simplepolygons; and they arise naturally in domains dominated by Cartesian coordinates, such as rastergraphics, VLSI design, robotic, or architecture. A rectilinear polygon is called trapezoided if both itsvertical and horizontal visibility maps are given (see [13, 14] for trapezoidation in parallel). Some ofthe problems discussed in this paper either explicitly or implicitly deal with the construction of one ormore rectilinear paths. A (simple) rectilinear path inside a rectilinear polygon P is a simple path insideP that consists of axis-parallel (or orthogonal) segments only. The rectilinear link distance betweentwo points in P is de�ned as the minimum number of segments of any rectilinear path connecting thetwo points. A corresponding path is called a minimum rectilinear link path and its computation arisese.g. in robotics and VLSI problems.Unless otherwise speci�ed all algorithms are deterministic, run in O(logn) time and have anoptimal time-processor product; they are designed for a PRAM of the exclusive-read exclusive write(EREW) variety. In particular we have solved:Minimum rectilinear link paths: The sequential computation of rectilinear link paths has receivedconsiderable attention in computational geometry; see for example [3, 8, 9, 29]. de Berg [3] proposedan optimal sequential algorithm for computing a minimum rectilinear link path between two verticesin a rectilinear polygon P . Parallel algorithms for optimally computing a rectilinear link path betweenyRectilinear polygons are also called orthogonal polygons, isothetic polygons and rectanguloid polygons in the literature.2

two points inside a trapezoided rectilinear polygon have been proposed by [23, 24]; they run in O(logn)time using O(n=logn) processors on the EREW PRAM.A challenging problem which has been well-studied in computational geometry is the determinationof distances (in e.g. the Euclidean or link metric) from a point or vertex to all vertices inside a polygon[33, 34]. In the context of link distance problems the study is motivated for example as follows. Supposethat a broadcast station is placed at some point inside a polygonally bounded domain; each vertexrepresents a location and must be reached by a signal originating from the broadcast station. Theobjective is to determine the total number of retransmissions necessary to reach each location. Wegive an optimal algorithm to compute the rectilinear link distance from a point to each vertex ofa rectilinear polygon. Our algorithm can also be used to solve the above broadcasting problem forrectilinear domains. It also yields an optimal algorithm for computing the shortest path from a pointto all vertices in the L1 metric.To solve this and other rectilinear link distance problems we require the information about therectilinear link distances and the rectilinear link paths from a diagonal or segment in P to all verticesof P . We show that these minimum link distance problems can be solved in O(logn) time usingO(n=logn) processors. The required information is provided by the rectilinear window (or histogram)partition from a diagonal of P introduced next. The problem of computing the link distance from adiagonal or segment to all vertices of P may also �nd applications. For example, assume that a robotis mounted on a track and that its arm is built out of telescopic links. The question of how manyrectilinear links the robot must have to reach all vertices can be solved using our result.Rectilinear window (or histogram) partition: A fundamental tool used for solving a number of linkdistance problems is the window partition developed by Suri [33]. Its analog for rectilinear polygonsis the rectilinear window partition or histogram partition introduced by Levcopoulos [21] who usedit in the design of approximation algorithms of optimal polygon decompositions. In the sequentialsetting window and histogram partitions have been used to e�ciently solve a variety of problemsincluding link path computation and link distance queries [32, 33], the link center [10], central linksegment problem [1], and the construction of bounded Voronoi diagrams [19]. For the parallel settingwe provide an optimal algorithm for determining a histogram partition from any segment in P . Thusour method might be used to parallelize several known interesting sequential algorithms. We use thistool e.g. to compute the link diameter, answer rectilinear link distance queries, and for �nding thecovering radius and intervals of segments as discussed next.Segment covering radius and vertex intervals: Let d be a segment joining two boundary points ofP . The covering radius (or link distance) of d is the value which minimizes the maximum rectilinearlink distance from a point on d to each point in P . The covering radius is realized between a point ond and a vertex of P ; its optimal parallel computation is described in this paper. The rectilinear linkdistance from a vertex v of P to d is the minimum rectilinear link distance from v to any point on d.In general, this distance is realized to more than one point on d; the set of all such points on d form ainterval called the vertex interval on d. These intervals are instrumental in de Berg's [3] link diameteralgorithm and rectilinear link distance query algorithm. We give an optimal parallel algorithm forcomputing the vertex intervals on d for all vertices of P . This algorithm enables us to construct adata structure for answering link queries, �nding the link diameter of a rectilinear polygon, and tocompute the vertex-to-vertex link distances already mentioned.Parallel construction of a data structure for rectilinear link distance queries: de Berg [3] presents anO(n logn) sequential-time and O(n logn) space algorithm for constructing a data structure to supportrectilinear link distance queries between any two points in P . We describe an optimal parallel algorithmwhose total work is O(n) (queries can be answered optimally in O(logn) time by a uniprocessor); wherework is the product of the number of processors and parallel time. Our parallel algorithm thereforeimplies a linear-time sequential algorithm for solving this problem which improves on the O(n logn)time bound established by de Berg. Independently, a linear-time algorithm has been discovered by3

Schuierer [31]; (vertex-vertex queries can be answered in constant time). Link distance queries �ndapplications e.g. in placements of mobile units or robots. Suppose that a constant number of mobileunits are operating in a rectilinearly bounded domain. Mobile units are assumed to take signi�cantlylonger to turn than to move along a straight line. In case of an emergency encountered at some location(point) in the domain the unit having the shortest link distance is to be dispatched. The problem canbe solved by using a constant number of link distance queries posed to our data structure.Using the algorithms developed in this paper we provide optimal CREW-PRAM solutions to thefollowing problems:Link diameter: The link diameter of a rectilinear polygon P is the maximum rectilinear linkdistance between any pair of points in P . It is realized between a pair of vertices of P . Knowledgeof the link diameter helps to determine the worst constellation of a placement a mobile unit can havewith respect to the location of an emergency. The link diameter is also instrumental in �nding the linkcenter and the link radius of a simple polygon [20, 10, 17, 25]. Nilsson and Schuierer [25] gave a linear-time algorithm for �nding the link diameter thus improving on an earlier result of de Berg. Using thetechniques developed in this paper we develop an optimal parallel implementation of their algorithm.The algorithm takes O(log� n logn) time and performs O(n) work. In addition to reporting the valueof the diameter our algorithm reports a pair of vertices and a link path connecting them whose linkdistance is the diameter. The analysis of the algorithm leads to an interesting recurrence relation andmay provide a tool for designing other optimal parallel algorithms from existing sequential ones.Link center, link radius, and central diagonal: An interesting geometrical min-max problem is todetermine the set of points x in a polygon P at which the maximum link distance from x to any otherpoint in P is minimized. The set of points x is called the link center; its determination has beenstudied in [20, 25, 10, 12, 17]. Most algorithms for computing the link center report as a by-productthe value of the link radius which is the maximum link distance from a point in the link center to allpoints in P . To e�ciently compute the link center of a simple polygon, Djidjev et al. [10] introducethe concept of a central diagonal of a simple polygon; subsequently termed splitting chord by [25]in the context of rectilinear polygons. Our results are O(log� n logn) time and O(n) work-optimal(CREW-PRAM) algorithms for the problems of computing the rectilinear link center, link radius, andcentral diagonal of a rectilinear polygon.We use the following tools previously developed in parallel computing: Lowest common ancestorin a tree [30], tree operations including the Euler tour technique [36], tree contraction and traversals[18], point location in planar subdivision [35] and parenthesis matching [4, 22]. For the other toolssuch as parallel pre�x, list ranking and doubling, see [16, 18].The paper is organized as follows: in Section 2 we introduce some notation and state some pre-liminaries. In Section 3 we describe our parallel algorithms for determining the link distances froma diagonal (or segment) to all other diagonals of a rectilinear polygon and from a diagonal to allvertices. In Section 4 we describe the construction of a rectilinear window partition. The paralleland sequential construction of a data structure for answering point-to-point link distance queries isprovided in Section 5. In Section 6 we discuss the parallel determination of the link diameter. InSection 7 we discuss an optimal CREW-PRAM algorithm for computing the link center, link radius,and a central diagonal. In Section 8 we summarize the results obtained in this paper and discuss afew open problems.2 PreliminariesThroughout, all geometric objects (polygons, paths, boundaries, distances, etc.) are implicitly assumedto be rectilinear (i.e., each of their constituent segments is parallel to one of the coordinate axes). Weassume that the simple rectilinear polygon P is given as a clockwise sequence of vertices p1, p2, ..., pn4

with their respective x and y coordinates. The symbol P is also used to denote the (closed) region ofthe plane enclosed by P . Let bd(P) denote the boundary of P . If u and v are two points on bd(P)then the clockwise boundary of P from u to v is denoted as bd(u; v). Two points of P are said to be(rectilinearly) visible if there is a (rectilinear) line segment joining them that lies totally inside P . Avertex u of P is reex if the internal angle at that vertex is greater than 180�, convex otherwise.A line segment c interior to P is a chord if c is axis parallel and the end points of c are on bd(P).A histogram is a rectilinear polygon that has one distinguished edge, called its base, whose length isequal to the sum of the lengths of the other edges that are parallel to it. We de�ne a histogram Hinside P having an axis parallel chord c in P as its base to be the maximum area histogram interiorto P with c as its base. A window is a maximal segment of the boundary of the histogramH which isnot part of the boundary of P . A window w of H partitions P into two subpolygons. The subpolygonof P , not containing H , is referred to as the pocket associated with w.As a preprocessing step, in this paper, we require the horizontal and vertical visibility maps. Byhorizontal and vertical visibility maps we mean that each edge is extended (possibly to both sides)towards the polygon interior until the boundary of the polygon is reached. These extensions canbe computed by the algorithms of Goodrich [13] and Goodrich et al. [14]. We insert the extensionpoints of each edge as vertices on the boundary of the polygon. Note that the number of new verticesintroduced on the boundary is linear. From now onwards we assume that both horizontal and verticalvisibility maps are provided as a part of the input. For simplicity we refer to a rectilinear polygontogether with its visibility map as a trapezoided rectilinear polygon.3 Optimal parallel algorithms for computing link distancesIn this section we present optimal parallel algorithms to compute link distances from a horizontal orvertical segment d (or a diagonal) within a rectilinear polygon P to all vertices of P and from a point(or a vertex) to all vertices of P:A diagonal in P is a horizontal or vertical closed straight-line segment within P joining a point onan edge ei to a vertex of an edge ej , where ei and ej are neither equal nor incident to each other. Adiagonal is maximal if it is not properly contained in any other diagonal. Analogously, a diagonal is aminimal diagonal if it does not contain properly any other diagonal. The link distance from a diagonald to a vertex v is de�ned as the minimum among the link distances from x to v, where x 2 d. The linkdistance between two straight-line segments d and d0 is de�ned as the minimum over link distancesbetween x and y, where x 2 d and y 2 d0 and is denoted by LD(d; d0).3.1 Link distances from a minimal diagonal to all maximal diagonalsWe may assume without loss of generality that the minimal diagonal d is horizontal. It splits Pinto two subpolygons : the top subpolygon and the bottom subpolygon. Consider the horizontaltrapezoidation of the bottom subpolygon and the tree T dual to it. Root the tree at the trapezoidbounded by d: Now consider all the maximal horizontal diagonals within the subpolygon. The tree Tinduces a rooted tree U on the set of the maximal horizontal diagonals as follows: if the trapezoid uis the parent of the trapezoid t in T; then the maximal horizontal diagonal that separates u from tis the parent in U of the other maximal horizontal diagonal edging t: In this section �rst we presentan optimal parallel algorithm for computing the link distance from d to all the horizontal maximaldiagonals in the bottom subpolygon. Then using this information we compute the link distance fromd to all vertices in the subpolygon. Algorithm 1 computes the link distance from d to all maximalhorizontal diagonals of P . In the following theorem we show that Algorithm 1 correctly computes thelink distance between the diagonals and it runs in O(logn)-time using O(n= logn) processors.5

1. Mark all minimal diagonals that lie within the bottom polygon.2. Compute the tree T dual to the horizontal trapezoidation of the bottom polygon.3. Root T at the trapezoid incident to d.4. Compute the rooted tree U:5. For each non-root maximal diagonal u in U compute its furthest ancestor f(u) in U that isvisible from it.6. Compute the directed tree U 0 on the set of maximal diagonals in U such that u is a child of f(u)if f(u) is de�ned otherwise u is a child of the root diagonal d:7. For each diagonal u in U 0 compute its distance d(u) to the root diagonal d in of U 0 (i.e. thenumber of edges on the path to the root).8. For each diagonal u in U de�ne its link distance md(u) to the root diagonal d as follows: If f(u)is de�ned then md(u) := 2d(u)� 1 else md(u) = 1:9. Repeat Steps 1-8 for the top polygon in place of the bottom polygon.Algorithm 1: Algorithm for computing the link distances from d to all maximal horizontal diagonalsTheorem 3.1 Let d be a minimal horizontal diagonal in a (trapezoided) rectilinear simple polygonP: Algorithm 1 computes for all maximal horizontal diagonals of P their minimum link distance to dwithin P in O(logn)-time using O(n= logn) EREW PRAM processors.Proof: The correctness of Algorithm 1 follows by induction on the value of md(u): If md(u) = 1then the link distance from u to d is indeed 1: Suppose md(u) > 1: Assume inductively that the linkdistance from f(u) to d ismd(f(u)):Any link path R from u to d within P either crosses f(u) verticallyor has a vertical link starting from f(u) towards d in U: To reach the crossing point or the verticallink, starting from u; R needs exactly two links by the de�nition of f(u): Hence, the total length L(u)of R is 2+L(f(u)) which by induction is 2 +2d(f(u))� 1 which is 2d(u)� 1 by d(f(u)) = d(u)� 1.It remains to be shown that each step of the above algorithm can be implemented within thebounds claimed in the theorem thesis.Step 1: Knowing for each horizontal diagonal e of P (in particular d) the vertex and the edge of P bridgedby e and assuming that the vertices of P are numbered with consecutive integers 1; 2; ...n; wecan mark all minimal diagonals within the bottom polygon in O(logn)-time using O(n= logn)processors.Step 2: We build the tree T by assigning to each marked diagonal a single processor. First the processorchecks whether the diagonal associated to it is the upper leftmost diagonal of P in a trapezoid inconstant time. If so the name of the diagonal is distributed to all the diagonals on the boundaryof the trapezoid as the identi�cation of the trapezoid. It can be done in logarithmic time withO(n= logn) processors by using parallel list ranking. Now, for each of the two trapezoids tadjacent to a diagonal its processor �nds the next clockwise trapezoid adjacent to t and linksit with the other trapezoid adjacent to the diagonal. In this way a circular list of trapezoidsadjacent to t is created in constant time (or in logarithmic time using O(n= logn) processors byBrent's principle [18]). 6

Step 3: The tree T can be rooted at the trapezoid containing d as part of its boundary by using theEuler tour technique of [36]. It can be done optimally in logarithmic time [36].Step 4: Again using the Euler tour technique, we number the trapezoids in T in preorder. To eachminimal diagonal (i.e. marked diagonal), we assign the pair of preorder numbers of the adjacenttrapezoids. Next, using the horizontal trapezoidation, we formmaximal alternating chains (lists)of incident horizontal edges and minimal horizontal diagonals in constant time using a linearnumber of processors (or in logarithmic time using O(n= logn) processors by Brent's principle).Observe that each such a list (chain) can be identi�ed with a maximal horizontal diagonal u: Byusing optimal list ranking, we assign the lowest preorder number lp(u) of the trapezoids adjacentto the minimal diagonals included by u to u: For convention, lp(d) = 0: We specially mark allthe preorder numbers that have been selected as the identi�ers of maximal diagonals. Now, wecan identify the marked preorder numbers of trapezoids adjacent to u that are di�erent fromlp(u) as the children of lp(u) in U: Thus the entire step can be done in logarithmic time usingO(n= logn) processors by Brent's principle.Step 5: The given vertical trapezoidation divides the horizontal edges of P into a linear number ofmaximal edge pieces whose insides are free from the vertical projection of vertices of P (see,Figure 1). For all maximal horizontal diagonals u, we form a list of such pieces covered bythe alternating chain it corresponds to (see Step 4) in constant time using a linear number ofprocessors. Also, for all pieces p, we compute the vertically opposite pieces op(p) in constanttime using a linear number of processors. By Brent's principle, the two above steps can beimplemented in logarithmic time using O(n= logn) processors. By applying parallel list rankingto the lists of the pieces, we can assign to each of them the maximal diagonal u it belongs to.Further, for each piece p covered by a maximal diagonal u we �nd the lowest common ancestorlca(p) of u and the maximal diagonal including op(p) on the way to the root of U: Using Schieberand Vishkin's [30] parallel algorithm for the lowest common ancestor queries it can be done inlogarithmic time with optimal number of processors. Next, for all maximal diagonals u; wecompute the maximal diagonal f�(u) that is the most vertically remote lca(p) where p is coveredby u: f�(u) is our preliminary candidate for f(u): By a standard processor-optimal technique forcomputing maximum in logarithmic time it can be done in logarithmic time using O(n= logn)processors. Now, we inductively de�ne f(u) as the most vertically remote maximal diagonalamong f�(u) and the f(c)'s for children c of u: Note that this reduces the computation of f(u)to �nding a minimum of single values given by children and a single precomputed value at thenode u: Therefore, we can use the tree contraction technique here and compute the requiredinformation by performing the work in logarithmic time using O(n= logn) processors [16, 18].Step 6: The edges of U 0 are given by the pointers from u to f(u):Step 7: The distances d(u) can be computed in logarithmic time optimally by using the Euler tourtechnique [36].Step 8: This step takes constant time and O(n) processors. Hence, it can be performed in logarithmictime with O(n= logn) processors by the Brent's principle.3.2 Link distances to all verticesUsing the results of Theorem 3.1, we �rst present an algorithm for computing the link distances fromvertices v to a horizontal diagonal d in P . Consider a maximal horizontal diagonal e including v:Next, let pv be the maximal piece of e that belongs to the perimeter of P; includes v and is free fromvertical vertex projections (see Step 5 of Algorithm 1). Let lca(pv) be the lowest common ancestor7

of e and the maximal diagonal including the opposite piece op(pv) in the tree U (see Step 2 and 5 ofAlgorithm 1). We may assume w.l.o.g that op(pv) does not belong to d: Note that lca(pv) is the mostremote vertically maximal diagonal where the �rst turning point of a minimum link path to d startingvertically from v could occur.Assume that lca(pv) is e0. Any link path from v to d crosses e0 (see, Figure 2). By the de�nitionof e0; if a minimum link path to d starts vertically from v it needs exactly two links to reach anypoint from where e0 achieves its minimum link distance LD(e0; d) to d: Therefore, the minimum linkdistance to d starting vertically from v is either LD(e0; d) + 2 or in�nity if it is impossible to startvertically from v: It remains to observe that the minimum link distance to d starting horizontally fromv is exactly LD(e; d)+ 1: The above argument immediately implies the correctness of Algorithm 2 forthe link distance between v and d.1. Compute the diagonals e and e0:2. Compute LD(e; d) and LD(e0; d) by Algorithm 1.3. LD(v; d) := if one can start vertically from v towards d then LD(e0; d) + 2 else 14. LD(v; d) := min(LD(e; d) + 1; LD(v; d))Algorithm 2: An algorithm for computing the link distance from a vertex v to a horizontal diagonald Now we analyze the complexity of the Algorithm 2. The maximal diagonal containing v can befound in constant time using the data structures built by Algorithm 1. Also the maximal diagonal e0can be found in constant time by using the above data structures, in particular Schieber and Vishkin's[30] parallel preprocessing for the lowest common ancestor queries. The minimum link distances inStep 2 are optimally computed by Algorithm 1. Hence, by Brent's principle, we obtain the followingtheorem.Theorem 3.2 Let d be a horizontal diagonal of a trapezoided rectilinear simple polygon P: Algorithm2 computes the distance from d to all vertices of P in O(logn)-time using the EREW PRAM withO(n= logn) processors.Next we discuss how to solve the problem of computing for a point in P the link distances to allvertices of P . For computing minimum link paths from a vertex in a simple polygon to all its verticesa parallel algorithm has been presented in [12]; the algorithm runs in O(log2 n log logn) time usingO(n) processors on the CREW PRAM. From a given point p in a rectilinear polygon P we �rst shootin the four rectilinear directions towards the boundary of P thereby computing the horizontal andvertical chord containing p. By Theorem 3.2 we can compute the link distances for the horizontal andthe vertical chord containing p to all vertices of P . If we wish to compute an approximation of thelink distances from p only we are done. The correct distance from p to a vertex v can di�er by atmost one from the value obtained for v to one of the chords. The determination of the exact value issigni�cantly harder (as is the case for many link distance problems see e.g. [33]). We need to computethe set of points, the interval, for v on the chord(s) having minimum link distance among all pointson the chord(s) (recall the introduction). Given that information and the corresponding value for thelink distance, the problem is solved. In Lemma 5.3 we will show that for a given rectilinear segmentin P all vertex intervals and the corresponding link distances can be optimally computed in O(logn).It then follows, 8

Theorem 3.3 Let p be a point in a trapezoided rectilinear simple polygon P: The distance from p to allvertices of P can be computed in O(logn)-time using the EREW PRAM with O(n= logn) processors.Corollary 3.4 Let s be a rectilinear segment in a trapezoided rectilinear simple polygon P: The dis-tance from s to all vertices of P can be computed in O(logn)-time using the EREW PRAM withO(n= logn) processors.Corollary 3.5 Let s be a rectilinear segment in a trapezoided rectilinear simple polygon P: Then theL1 shortest path from any point or from s to all vertices of P can be computed optimally in O(logn)-time using the EREW PRAM with O(n= logn) processors.4 An optimal parallel algorithm for computing window partitionThe window partition of a simple polygon was introduced by Suri [33] as a technique for preprocessinga polygon that leads to e�cient sequential algorithms for solving a number of link distance problems.Window partitions have been e�ectively used for the sequential computation of vertex-vertex linkdistance, link center [10], link query problems [2], etc.Its analog for rectilinear polygons is the histogram partition introduced by Levcopoulos [21]. Inthe histogram partitioning of a rectilinear polygon P , we partition P with respect to a diagonal din P into regions over which the link distance from d is same. First compute the visibility polygonfrom d in P , which is a histogram with base d denoted as H(d). The histogram H(d) is the set ofpoints which can be reached from d by a link. Next remove the histogram H(d) from P ; this resultsin a partition of P into several subpolygons. The link distance two is realized from those points ofP �H(d) which are visible from some boundary edge of H(d). So for each window of H(d) computethe histogram in P �H(d). This procedure of partitioning P into histograms is repeated till whole ofP is covered. Finally, a partition of P into histograms is obtained. This partition of P is termed asthe histogram partition.In this section we present an optimal parallel algorithm for computing the histogram partition ofP with respect to a given diagonal d. As a consequence this fundamental tool is now available inparticular for solving link distance problems in parallel. The �rst step of our algorithm is to computethe link distance from d to all vertices of P by Algorithms 1 and 2. Recall that, in the preprocessingstep, the extension points of each edge to bd(P) have been inserted as vertices on bd(P). We show animportant order property of the link distance of vertices of P and using this property we compute thehistogram partition of P . The diagonal d partitions P into two subpolygons P1 and P2. We restrictour attention to the subpolygon P1. The algorithm and the arguments for P2 are analogous. To keepthe notation simpler, assume that P1 is the subpolygon formed by bd(p1; pn) and the diagonal p1pn,where p1 and pn are the endpoints of d. Algorithm 3 computes the histogram partition of P1 withrespect to the diagonal d; for an illustration see Figure 3. The correctness of Algorithm 3 follows fromfollowing lemmas.Lemma 4.1 Let the link distance of pi and pj from d be a and b, respectively, where pi and pj aretwo arbitrary vertices of P1 and i < j. For each a0 between a and b, there exist vertices on bd(pi; pj)having link distance a0 from d.Proof: trivial.Lemma 4.2 Let P be a rectilinear polygon and d a diagonal of P . Then the bracket sequence computedby Algorithm 3 is well-formed. 9

1. Compute the link distance from d to all vertices of P1 by Algorithms 1 and 2.2. Construct an array, where the kth location in the array is the link distance of pk from d.3. Assign an open parenthesis to p1 and a closing parenthesis to pn.4. Assign an open parenthesis to a vertex pi if the link distance of pi+1 is more than pi.5. Assign a closing parenthesis to a vertex pi if the link distance of pi�1 is greater than pi.6. Compute matching parenthesis by the algorithm of [4] or [22].7. Construct the circular list of the vertices belonging to each histogram in the histogram partition.Algorithm 3: Algorithm for computing the histogram partitionProof: The proof is by induction on the link distance (or covering radius) L from diagonal d in P .Let P be a rectilinear polygon with link distance L = 1 from d. Then P is a histogram and, in Step3, Algorithm 3 computes one well-formed bracket pair for P . The result thus follows in this case.Now let P be a rectilinear polygon with link distance L from d. Assume that for all polygons P 0and diagonals d0 in P 0 with link distance at most L� 1 the result holds. Then compute the histogramfrom d. This induces a number of windows in the histogram together with their associated pockets.The link distance from a window to its pocket is at most L�1 and thus the bracket sequence assignedto it inductively is well-formed. The link distance of any vertex properly contained in a pocket is onelarger when computed from d than from the window. Thus the brackets assigned in each pocket arealso brackets for P computed from d. A window is entered at a vertex pi which is at link distance 1from d and whose successor is at link distance 2; thus an opening parenthesis is assigned to pi by Step4. On exiting the window the reverse holds and, by Step 5, a closing bracket is assigned to the vertex.(Note that we have included the Steiner points of the trapezoidation as vertices.) The enclosure ofa well-formed bracket sequence by an opening and closing bracket (as produced in Step 3) is itselfwell-formed. All well-formed sequences of the pockets are encountered in order and thus appear inthat order in the sequence of brackets associated with P . The concatenation of well-formed bracketsequences is itself well-formed which completes the proof.Corollary 4.3 Vertices pi and pj form the base of a histogram in the histogram partition of P if andonly if they form a matching parenthesis pair.Now we analyze the complexity of the above algorithm. Link distance from d to all verticesof P can be computed in O(logn) time using O(n=logn) processors by the algorithm of Section 3.Opening and closing parenthesis to the appropriate vertices can be assigned in O(logn) time usingO(n) operations. Parenthesis matching can be done by the algorithm of [4, 22] in O(logn) time usingO(n=logn) operations. Using the standard doubling technique, we can construct the circular list ofvertices belonging to each histogram in O(logn) time using O(n=logn) operations. Hence, the overallcomplexity of the above algorithm is O(logn) time using O(n=logn) processors. We summarize theresults in the following theorem.Theorem 4.4 A histogram (or window) partition of an n-vertex trapezoided rectilinear polygon withrespect to a diagonal can be computed in optimal O(logn) time using O(n=logn) processors on theEREW PRAM. 10

5 Results on link queriesIn this section we present an optimal parallel algorithm to preprocess a simple rectilinear polygonP such that the rectilinear link distance between two query points s and t in P can be computede�ciently. We show that the query data structure can be computed in optimal O(logn) time usingO(n=logn) processors on the EREW PRAM. Given this data structure, a processor can answer linkdistance queries between two points in O(logn) time.Let e be a horizontal diagonal inside P that partitions P into two subpolygons P1 and P2. For allquery point pairs where one of the query points is in P1 and the other in P2, any link path between thetwo query points intersects e. For these pairs we compute the link distance between the query pointsand e and then appropriately compose these two link distances to obtain the link distance betweenthe query points. For all other pairs the problem reduces to that of �nding the link distance in asubpolygon of P .In the following we �rst show how to compose the two link distances, if the query points are inthe di�erent subpolygons of e. For the diagonal e and a vertex v of P , let e(v; l) be the part of e thatcan be reached from v with a path � of length l such that the last segment of � is perpendicular to e.Let the rectilinear link distance from v to e be de�ned as the distance from v to a closest point on e:d(v; e) = minfd(v; q)jq 2 eg = dv. The following lemma due to de Berg [3] enables us to compose thetwo link distances.Lemma 5.1 (de Berg [3]) Let the diagonal e cut P into two subpolygons such that s and t lie indi�erent subpolygons, and let d(s; e) = ds and d(t; e) = dt. Then d(s; t) = ds + dt +�, where� = 8>>><>>>: �1 if e(s; ds) \ e(t; dt) 6= ;0 if e(s; ds) \ e(t; dt) = ;^(e(s; ds + 1) \ e(t; dt) 6= ; _ e(s; ds) \ e(t; dt + 1) 6= ;)+1 otherwiseThe above lemma suggests that to compose the two link distances it is su�cient to compute thefast interval e(v; dv) and the slow interval e(v; dv + 1) for each vertex v in the subpolygon, where eis the diagonal and dv = d(v; e). The following lemma of de Berg [3] shows that for any vertex v atdistance dv > 2 from e, there exists a vertex vnext such that any point on e(v; dv) can be optimallyreached via vnext. Similarly, a vertex vnext2 exists such that any point on e(v; dv + 1) can be reachedvia vnext2.Lemma 5.2 (de Berg [3])1. Let v be a vertex of P with d(v; e) = dv > 2. Then a vertex vnext of P exists such thatdvnext = dv � 1 or dvnext = dv � 2 and e(vnext; dvnext) = e(v; dv). Moreover, for every pointx 2 e(v; dv) there exists a shortest path � = l1l2:::ldv from v to x with vnext 2 l2.2. Let v be a vertex of P with d(v; e) = dv > 1. Then a vertex vnext2 of P exists such thatdvnext2 = dv and e(vnext; dvnext) = e(v; dv + 1). Moreover, for every point x 2 e(v; dv + 1) thereexists a shortest path � = l1l2:::ldv from v to x with vnext2 2 l2.Using the above lemmas, Algorithm 4 computes the intervals e(v; dv) and e(v; dv + 1) and thevertices vnext and vnext2 for each vertex v of P in optimal O(logn) time using O(n) operations.Lemma 5.3 Algorithm 4 computes e(v; dv), e(v; dv + 1), vnext and vnext2 for each vertex v of P inoptimal O(logn) time using O(n=logn) processors on the EREW PRAM.11

1. Compute the histogram partition of P with respect to e by Algorithm 3.2. Project all vertices of each histogram onto its base.3. For each histogram compute the vertex-edge visible pairs.4. For a vertex v with dv > 2, there are exactly two possibilities for vnext. Let v 2 Hdv , i.e., thehistogram at a distance dv in the histogram partitioning of P . Either turn immediately whileentering into the histogram Hdv�1 from Hdv and vnext is a vertex of the base of Hdv , or turn aslate as possible and vnext is a vertex of the edge of Hdv�1 that is visible from v.5. For all vertices v with dv � 2, compute e(v; dv) and for all vertices v with dv > 2 assign a pointerto its next vertex vnext.6. Using the pointer jumping technique [16], for each vertex w assign a pointer to a vertex v forwhich e(v; dv) is known and dv � 2. Assign e(w; dw) = e(v; dv).7. Perform analogous steps for computing e(v; dv + 1).Algorithm 4: Algorithm for computing intervalsProof: The correctness of the algorithm follows from Lemma 5.2. Now we analyze the parallelcomplexity of the algorithm. The histogram partition of P can be computed in O(logn) time usingO(n) operations by Algorithm 3. Various visibility information within a trapezoided histogram canbe computed in optimal O(n) operations. The pointer jumping technique requires O(logn) time usingO(n) operations [16]. Hence, the overall complexity of the algorithm follows.Lemma 5.4 If the query pair (s; t) is located on di�erent sides of the diagonal e of P , then the linkdistance between s and t can be computed in optimal O(logn) time.Proof: Suppose that we can locate the vertices vnext and vnext2 of s and t, then we can computetheir intervals on e by Algorithm 4 and compose them by Lemma 5.1 to obtain the link distancebetween s and t. Now we describe the data structures to compute vnext and vnext2 vertices for a querypoint v. One data structure is required to compute the edge of Hdv�1 that is hit by an axis-parallelquery ray entering Hdv�1 through the base of Hdv , another data structure is used to compute the edgeof Hdv that is hit by a ray parallel to the base of Hdv . (Analogously for rays entering through thebase.) Note that Hdv is the histogram in the histogram partition of P , containing v, at link distancedv from diagonal e. So we need to preprocess each histogram for ray shooting queries with rays thatare parallel to the base of the histogram. This can be achieved by adding segments that are parallelto the base from every reex vertex of each histogram to the opposite side. These segments can beadded in optimal parallel work. Note that the total number of segments introduced is linear. We canlocate the histograms containing the query points in O(logn) time by the algorithm of Tamassia andVitter [35]. Hence, the lemma follows.Next we state the procedure for computing the link distance between the query points when theyare located on the same side of the diagonal e. Algorithm 5 describes the procedure for computinga data structure for answering such link distance queries. Algorithm 6 describes the procedure foranswering of queries. Algorithm 6 requires two procedures which are also described in detail. Without12

loss of generality assume that the query pair is located in the subpolygon P1. Further, to simplify thenotation we denote P1 by P .1. Compute the histogram partition of P with respect to e by Algorithm 3.2. Construct the dual tree TH of the histogram partition of P . The nodes in TH are histogramsand there is an edge between two histograms, if the corresponding histograms are incident to acommon window.3. Construct a data structure to answer lowest common ancestors queries in TH by the algorithmof Schieber and Vishkin [30].4. Construct a planar point location data structure over the histogram partition of P by thealgorithm of Tamassia and Vitter [35].5. Compute the data structure to locate vnext and vnext2 for query points in the relevant histogramsas follows.(a) Compute the vnext vertex for each vertex v of P by Algorithm 4.(b) For each vertex v of P , assign a pointer to its vnext vertex; this de�nes a tree referred toby Tnext. The parent of v in Tnext is vnext.(c) Create a dummy node to root the forest Tnext.(d) For each vertex v in the tree Tnext compute the corresponding histogram on whose base vforms a fast interval.(e) Assign a label to each vertex v in Tnext as follows. Let H be the histogram correspondingto v. The vertex v is assigned a label i if the depth of the node corresponding to H in THis i.(f) Compute the preorder numbering of the nodes in Tnext by the algorithm of Tarjan andVishkin [36] and store the nodes (pointers to them) in the consecutive location in a lineararray A.(g) Construct the data structure to answer lowest common ancestor queries in Tnext by thealgorithm of Schieber and Vishkin [30].(h) Perform the analogous steps for vnext2 replacing fast intervals by slow intervals and Tnextby Tnext2.Algorithm 5: Algorithm for computing the link query data structure.Lemma 5.5 Algorithm 5 runs in O(logn) time using O(n=logn) processors on the EREW PRAMand the size of the data structure computed by it is linear.Proof: The number of histograms in the histogram partition of P is linear. Therefore, the num-ber of nodes in TH is at most O(n). The lowest common ancestor data structure of Schieber andVishkin [30] and the planar point location data structure of Tamassia and Vitter [35] require O(logn)construction time using a linear number of operations and space. Since the vertices vnext and vnext2for each vertex v are unique, the number of nodes in trees Tnext and Tnext2 is linear. The preordernumbering of vertices in the tree can be computed by using Euler tour technique of Tarjan and Vishkin[36] in O(logn) time using linear number of operations and storage. We need a suitable representation13

1. Locate the histograms containing s and t by the algorithm of Tamassia and Vitter [35].2. Compute the node corresponding to the lowest common ancestor histogram of the histogramscontaining s and t in TH by the algorithm of Schieber and Vishkin [30].3. Let H be the histogram corresponding to the lowest common ancestor node in TH . If s and tare located in H then compute the link distance between them as follows :Without loss of generality assume that the base of H is horizontal and the interior of H is abovethe base.If s = t then LD(s; t) = 0 else if s and t are visible then LD(s; t) = 1.Otherwise, let t0 be the maximal vertical segment passing through t in H and let s0 be themaximal horizontal segment passing through s in H .If s0 and t0 intersects then LD(s; t) = 2 else it is 3.The segments s0 and t0 are computed using the horizontal and vertical trapezoidation of H .4. Let ws (or wt) be the window in H of the pocket containing s (respectively, t) and let Hs(respectively, Ht) be the histogram with base ws (respectively, wt). Compute the slow and fastintervals from s (respectively, t) on ws (respectively, wt) by Algorithm 7.5. Let the link distance from s to ws be ds and the link distance from t to wt be dt. The linkdistance LD(s; t) between s and t is ds + dt +�, where � is as given by Algorithm 8.Algorithm 6: Algorithm for answering link queries.1. Compute the next vertex of the query point s by the procedure discussed in Lemma 5.3 and callit v.2. **Procedure for locating the vertex u (corresponding to the histogram Hs) on the path from vto the root of Tnext for which (1) LD(u; ws) � 2 and (2) the interval formed by u and v on wsis same.**Perform a binary search in the array A computed in Algorithm 5 (Step 5f) in the followingmanner.(a) Compute the middle element, say x, of A.(b) Compute the lowest common ancestor, x0 of x and v by the algorithm of [35].(c) If the label of x0 is same as that of u, then u = x0 and the binary search ends.(d) Otherwise ** Label of u 6= label of x0.**If the preorder number of x � v or the level of x0 is greater than u, then perform a binarysearch in the left half of A else in the right half of A.3. Assign to s the interval formed by u on Hs.4. Repeat this procedure to compute intervals of t on wt.Algorithm 7: Algorithm for computing intervals.14

1. Let the base of histogram H be horizontal and assume that the interior of H is above its base.Decide whether the pockets ws and wt are visible (ws and wt are said to be visible if there exista segment dd0 which lies completely inside H and d 2 ws and d0 2 wt). This is done as follows:Let a and b be the lower endpoints of the pockets ws and wt, respectively. Let a0 and b0 be themaximal horizontal segment from a and b respectively in H . Compute whether a0 intersects wtor b0 intersects ws.2. (*** Pockets ws and wt are not visible ***)Neither a0 intersects wt nor b0 intersects ws. Let endpoints of the fast and the slow intervalfrom s on ws be (s1; s2) and (s1; s3), respectively. Let s2s02 and s3s03 be the maximal horizontalsegment through s2 and s3 in H . Let w0t be the maximal vertical segment containing wt in H .Similarly, let endpoints of the fast and the slow interval from t on wt be (t1; t2) and (t1; t3),respectively. Let t2t02 and t3t03 be the maximal horizontal segment through t2 and t3 in H . Letw0s be the maximal vertical segment containing ws in H .If (s2s02 intersects w0t or t2t02 intersects w0s) then � = 1else if (s3s03 intersects w0t or t3t03 intersects w0s) then � = 2else � = 3.3. (*** Pockets ws and wt are visible ***)Either a0 intersects wt or b0 intersects ws. Project the interval endpoints s1; s2; s3 on wt andanalogously project t1; t2; t3 on ws.If s1s2 and t1t2 are visible then � = �1else if s2s3 and t1t2 are visible then � = 0else if s1s2 and t2t3 are visible then � = 0else if s2s3 and t2t3 are visible then � = 1else if s1s3 and t1t3 are not visible then � = 2.Algorithm 8: Algorithm for computing �.
15

of T to support Euler tour technique. For each node vnext in T , we require all of its children to be in alinked list. It is possible to compute the appropriate linked lists by using simple geometric propertiesof rectilinear polygons as mentioned in Step 4 of Algorithm 4, modifying Step 5 of Algorithm 1, andthe trapezoidation of P .Lemma 5.6 A single processor can answer link distance queries in O(logn) time by executing Algo-rithm 6.Proof: To prove the correctness, we show that Algorithm 7 correctly computes the requiredintervals, since the proof of the rest is straightforward. In the following we show the correctness ofAlgorithm 7.Observe that the label of a node in Tnext is its level number in Tnext. Hence, the labels of nodes inTnext decrease monotonically along any path from the leaf node to the root of Tnext. We are interestedin locating a node with a speci�c label (i.e. the label of u) along the path from v to the root of Tnext.From the above observations, it can be seen that the binary search described in Algorithm 4 locatesthe appropriate node in O(logn) time.Now we analyze the complexity of the algorithm. The histograms containing the query points sand t can be located in O(logn) time by the algorithm of [35]. Lowest common ancestor of two nodesin a tree can be computed in constant time [30]. The required visibility informations can be computedin at most O(logn) time in a trapezoided histogram. The binary search in the array A to locate thevertex u takes O(logn) time. The algorithm for computing � requires at most O(logn) time sincethe projection of interval points to the windows of the pockets can be achieved within the claimedcomplexity bound.Theorem 5.7 A data structure which supports rectilinear link distance queries in any n-vertex trape-zoided rectilinear polygon can be constructed in O(logn) time using O(n=logn) processors on theEREW PRAM. Using this data structure a single processor can answer link distance queries betweentwo points in O(logn) time.Proof: The complexity bounds follow from Lemmas 5.4, 5.5 and 5.6. Now we show the correct-ness. If the query point are located in di�erent subpolygons of e then the correctness follows fromLemma 5.4. If the query points are located within a histogram of the histogram partition of P , thecorrectness is obvious. Assume that the query points s and t lie in di�erent histograms and let H bethe lowest common ancestor histogram of them in the dual tree TH (Step 2, Algorithm 6). Observethat the link path from s to t passes through the histogram H . Now we compute the intervals on thewindows of the pockets of H containing s and t and appropriately compose the two link distances.The binary search (Step 2, Algorithm 7) computes the correct node u since the labels of vertices inany path from a node to the root are monotonically decreasing. Hence, the correctness follows.Since our parallel algorithm performs a total work of O(n) we obtain a linear time sequentialalgorithm for computing the link query data structure. It is also possible to design a linear timesequential algorithm which is simpler than one obtained by straight-forward adaptation of our parallelalgorithm (see [23]). Independently, a linear-time algorithm has also been proposed by Schuierer [31].Theorem 5.8 A data structure can be computed in linear time, which allows rectilinear link distancequeries between two query points in an n-vertex rectilinear polygon to be answered in O(logn) time.16

6 Link diameterIn this section we present a work-optimal parallel algorithm for computing the link diameter of ann-vertex simple rectilinear polygon P . Our approach yields a general technique for designing optimalparallel algorithms. The link diameter of P is de�ned as Diam(P) = maxfLD(s; t)js; t 2 Pg, whereLD(s; t) denotes the link distance between two points s and t in P . The diameter is realized between apair of vertices of P [32]. In addition to computing the valueDiam(P) we are interested in producing apair of vertices whose link distance realizes the diameter and a minimum link path of length Diam(P)between these.A sequential method for computing the rectilinear link diameter of a rectilinear polygon wasdeveloped by de Berg [3] (see Algorithm 9); it runs in O(n logn) time. A parallel algorithm forcomputing link diameter can be designed by providing a parallel implementation of each step ofAlgorithm 9 as follows.In Step 2, an appropriate cut segment e is computed from the given horizontal and vertical trape-zoidation of P . In Step 4, the value of M is computed by analyzing several cases in the algorithm of[3]. The majority of the computation entails the computation of intersections of slow and fast intervalson e (from the vertices in the subpolygons P1 and P2) and the computation of dominance relationshipsamong the end points of slow and fast intervals. It can be seen that intersections and dominance pairscan be computed in parallel by using parallel pre�x operations. So this naive parallel algorithm runsin O(log2 n) time using O(n=logn) processors.1. If P is a rectangle then Diam(P) = 2, otherwise go to Step 2.2. Compute a cut segment e of P that cuts P into two subpolygons P1 and P2, such that jP1j; jP2j �34n + 2.3. Compute d1:=max fLD(v; e)j where v is a vertex of P1g and compute d2:= max fLD(v; e)jwhere v is a vertex of P2g, recursively.4. Compute M =maxfLD(v; w)jv 2 P1; w 2 P2g.5. Let Diam(P) := max(Diam(P1); Diam(P2);M).Algorithm 9: de Berg's algorithm for computing the link diameterNilsson and Schuierer [26] gave a linear time algorithm for this problem. Based on the followingobservations they presented an algorithm which di�ers from de Berg's algorithm in only the thirdStep. They observe that the value of M is at least d1+ d2� 1. W.l.o.g. one may assume that d1 � d2then Diam(P2) � 2d2 + 1. Thus there is no need to recur on P2 if Diam(P2) � d1 + d2 � 1. Thisimplies that these values for Diam(P2) which are of interest for the diameter computation lie in therange from d1 + d2 � 1 to 2d2 + 1. They [26] presented a linear time (in the size of P2) algorithm fordetermining whether Diam(P2) � 2d2 � 1 � M and for computing the exact value of Diam(P2) incase D(P2) > 2d2 � 1. The recurrence relation for the time complexity T (n) of their entire algorithmis T (n) = T (34n) + O(n) which is O(n).We analyze the parallel complexity of the above linear time algorithm. Assume that we candetermine in optimal parallel work either whether Diam(P2) �M or, if this is not the case, the exactvalue of Diam(P2). Then a straightforward parallel implementation of the above sequential algorithmwill give rise to the following recurrence for the time complexity T (n) of the parallel algorithm;T (n) = T (34n)+O(logn) = O(log2 n). It can be seen that the processor complexity of the algorithm is17

O(n=logn). It would appear that a straightforward parallel implementation of the sequential algorithmdoes not lead to any improvement in the complexity of the parallel algorithm.We develop a more complex O(log� n logn) time implementation of the algorithm which is workoptimal. This implementation may be seen as a general technique for implementing algorithms ofthe same sequential avor. The sequential algorithm has a time complexity which is described by arecurrence of the form T (n) = T (cn) +O(n), with c < 1. A sequential execution of the algorithm canbe seen as traversing a path from the root of a binary tree to a leaf node. Linear (in the subproblemsize) time is spent at level i to determine which of the two subproblems at level i + 1 needs to besolved. For the parallel execution, each of the O(logn) sequential recursion steps can be implementedoptimally in logarithmic (in the size of the subproblem) parallel time. Furthermore, the subproblemsare either known in advance or can be determined at no additional cost (this is clari�ed later).We analyze the computation in the recursion tree. The recursion tree is a binary tree with O(logn)levels. Once the computation at the root level has been completed the algorithm needs to recur oneither the left or the right subtree. During the computation at the second level, which is of sizeO(cn), a fraction of the O(n) processors are idle and this holds analogously for any subsequent levelof the computation. So we can perform the computation simultaneously in several levels instead ofperforming it level by level (in a sort of speculative way). Thus unlike the sequential computation theparallel computation performs work on more than one node per level of the tree. While the total workperformed by the sequential algorithm is only linear the di�culty arises because a parallel algorithmdoes not know in advance which path of the recursion tree will be taken. Notice that this is not astraight-forward application of Brent's principle.The algorithm consists of two phases. During the �rst phase we sequentially process the �rstO(log� n) levels using O(n=log� n logn) processors on each level. After this step the problem sizeis reduced to at most O(n=2log� n). Then, in a second phase, we employ a parallel algorithm tosolve all subproblems on several adjacent levels at the same time. This is repeated O(log� n) timestaking O(logn) time each and requiring O(n=log� n logn) processors in total. To prove the claimedcomplexity bounds we begin by showing that the �rst phase can be executed in O(log� n logn) timeusing O(n=log� n logn) processors.In the �rst phase of the algorithmwe solve one subproblem on each of the �rst O(log� n) levels. Weallocate for each level O(n=log� n logn) processors which perform their work level by level. Analysisof the �rst phase shows that O(log� n logn=2i) time is taken to execute levels 2i � log� n and for thelevels log log� n < i � log� n, O(logn) time is taken. Hence, the total time taken to execute all levels(level 0 to log� n) sums to O(log� n logn).The second phase of our parallel algorithm has O(log� n) stages. During the ith stage we solve allsubproblems associated with a subtree of the recursion tree. The subtree of the ith stage is rooted ata vertex of level a = 22:::22) i 20s and it consists only of nodes on levels a to 2a. The total size ofthe subproblems associated with this subtree is easily seen to be O(n). For the ith stage let T be therecursion subtree rooted at v, where v is a vertex at level a. Since the total size of the subproblemsassociated with T is O(n) we can assign a linear number (in the size of the subproblem associated witha node) of processors to the subproblem associated with each node. It is crucial that we know thesubproblems that need be worked on. For the diameter algorithm this determination is given below.Each node of T can solve its associated subproblem and determine which of its children will be activefor the next step of the recursion in optimal parallel work. Now we know for each node in T , whichchild will be active during the next recursion step. We can �nd the path from v to a leaf of T of theactive nodes in the recursion for example by using the standard method of doubling. Let this leafnode be v0. In the (i+ 1)st stage, the recursion subtree will be rooted at v0 and will have nodes fromlevels 2a to 22a . It is easy to see that each stage of the recursion can be implemented in O(logn) time18

using O(n=logn) processors. Since there are in all O(log� n) levels, the total complexity of the abovealgorithm will be O(log�n logn) time using O(n=logn) processors. Since after the �rst phase, the sizeof the problem left is only O(n=2log� n), so the number of the processors required in the second phaseis only O(n=log� n logn).The analysis given so far is general and does not depend on the particular geometric propertiesof the diameter problem. We expect it to be useful for any algorithm whose sequential computationfollows the above pattern. What remains to be shown for the computation of the link diameter isthat all subproblems required at each level of the recursion can be determined within the claimedcomplexity bounds. Let a be a level in the recursion tree and T be the associated subtree rooted atsome node on that level. Let b = 2a be the leaf level for T. Denote by Pi the polygon associated withroot(T). For phase 2 we took b = 2a and solved the entire subproblem for T in time O(logn) usingO(n=logn) processors. We need to identify all subproblems in T in the same time/processor bounds.We do this level by level taking O(1) time per level and thus in all taking O(logn) time using su�cientnumber of processors. It is known that there exists a diagonal in P splitting the polygon associatedwith root(T) into two subpolygons of sizes (i.e. number of vertices) no less than 1=4s and no morethan 3=4s, where s is the number of vertices in Pi [3].Assume that the dual tree of the horizontal and vertical trapezoidation of the polygon P are avail-able. Note that the dual trees need not be binary trees. We simplify the exposition by �rst assumingthe (arbitrary) CRCW computation model. Associate a processor with each diagonal; the processorcomputes in O(1) time the number of vertices in each of its two subpolygons. A diagonal is a candidatediagonal if the number of vertices in the two subpolygons fall within the bounds required. Processorsassociated with candidate diagonals are called candidate processors. All candidate processors writetheir name into a common location. One of them will succeed and by using the common read allcandidates are informed of the so selected diagonal. Each vertex computes in which of the two sub-polygons it lies and updates it vertex number (subtracting the number of vertices cut o� in the otherportion). All diagonals which cross the selected diagonal are also updated in the constant time. It iseasy to observe that the above algorithm runs in the desired complexity on the CRCW PRAM.Now we discuss the CREW implementation. Clearly, several candidates may exist. We need toshow that these candidates can select one diagonal among themselves in O(1) time. We claim thatthere are only a constant number of connected components containing such candidates in the dualtrees. In each connected component, to select one candidate, we choose the highest (in the tree sense).Each node in the dual tree determines whether its parent is also a candidate in which case it doesnothing; otherwise, it is the highest and it is the selected candidate in its connected component. Werun this test on each of the constant number of connected components. As will be shown in thefollowing lemma the number of connected components and thus the number of selected candidates isconstant.Since the dual trees are not constant degree trees, we need to convert them to binary trees in orderto avoid concurrent writes. This can be done by the algorithm in [16]. Hence, each node in the dualtree can determine, in constant time without using any concurrent writes, whether it is the selectednode in its component. The correctness follows from the following lemma.Lemma 6.1 In each dual tree (of a horizontal and vertical trapezoidation) there exist only a constantnumber of connected components of nodes representing diagonals which split the polygon into no lessthan 1=4th and no greater than 3=4th of its size.Proof: Let n be the total number of vertices in the polygon. Assume that the dual trees(corresponding to horizontal and vertical trapezoidation) are rooted at some node. First we show thatalong any path from a leaf to the root in the dual tree, there is at most one connected component ofnodes representing diagonals which split the polygon appropriately.19

Let a, b and c be three nodes along a leaf-to-root path, encountered in that order. Furthermore,assume that the diagonals corresponding to the nodes a and c are candidate diagonals. Then thereare at least 1=4n vertices in the subpolygon split by the diagonal corresponding to a not containingthe diagonal corresponding to b.Analogously for c. Thus, by de�nition, the diagonal corresponding tob is a candidate diagonal.There are at least 1=4n nodes in each subpolygon corresponding to the subtree rooted at the rootof each connected component. Since the dual tree is of size n, it follows that the number of connectedcomponents is constant.Now we show that we can solve each subproblem in optimal work. Using algorithm of Section 5we compute the intervals I1 = fe(v; d2)jv 2 P2g and I2 =fe(v; d2+ 1)jv 2 P2g. Then we test whetherthe inequality for Diam(P2) is met; if this is not so, we compute the exact value of Diam(P2). Theoverall parallel complexity of this procedure is O(logn) time using O(n=logn) processors. The mainresult of this section is stated in the following theorem.Theorem 6.2 The rectilinear link diameter of an n-vertex simple rectilinear polygon can be computedin O(log� n logn) time using O(n=log� n logn) processors on the CREW-PRAM. A link path connectingtwo vertices of P realizing the diameter can be found in O(logn) time using O(n=logn) processors onan EREW-PRAM.The above technique is general and works for any sequential algorithm whose run time can beanalyzed in the same way. The designer of the parallel algorithmmust take care that the subproblemsare available for phase 2 of the algorithm.7 Central diagonal and link centerIn this section we present parallel algorithms for computing the link radius, a central diagonal, andthe link center of an n-vertex simple rectilinear polygon P . Djidjev et al. [10] introduced the conceptof central diagonal for simple polygons. A central diagonal is a diagonal, say d, for which the di�erencebetween the covering radii to the two subpolygons induced by d is minimized. They showed that acentral diagonal exists for which the covering radius di�erence is at most one (in absolute value); itcan be found in O(n logn) time [10]. Furthermore they showed that the covering radii of a centraldiagonal di�ers from the link radius R of P by at most one. Thus a central diagonal is near the linkcenter, or more precisely, the link center of a simple polygon is in the 2-visibility region of any centraldiagonal. This was used to compute, in O(n logn) time, the link center of a simple polygon [10] aswell as to �nd a shortest central segment inside P [1] (this bound has independently been claimed in[17]).A central segment is a segment in P which minimizes the covering radius to both sides. A robothaving telescoping links and moving along a track can reach every point of the simple polygon P withthe minimum number of links if the track is placed at the central segment. A shortest central segmentminimizes the track length. For simple polygons a shortest central segment can be found in O(n logn)time.For rectilinear polygons Nilsson et al. [25] made analogous observations regarding the centraldiagonal; they called such a `diagonal' a splitting chord. We prefer to keep the notation centraldiagonal. A central diagonal exists whose covering radius di�erence is at most one and whose coveringradii on either side is R-1 or R, where R is the link radius of P .(The covering radius of a diagonalwithin a subpolygon is the maximum link distance of any vertex in the subpolygon to the diagonal.)A central diagonal can be found in linear time. Using the techniques developed in this paper, theapproach taken by Nilsson et al. is easily parallelizable; it is thus only sketched here.20

To �nd a central diagonal �rst a diameter realizing path is constructed which can be done usingthe results of Section 6. Let v1, v2 be determined as a vertex pair realizing the diameter as its linkdistance; again these can also be found using the results developed in Section 6. The segment at thelower median index position on the path from v1 to v2 has been shown to be in the vicinity of a centraldiagonal [25]. Finding a central diagonal then reduces to computing covering radii to both sides fromat most four chords. This is done using the optimal parallel interval computation given in Section 5.Except for the diameter computation all steps can be performed in optimal parallel time. Since ourdiameter computation takes O(log� n logn) time we get,Theorem 7.1 A central diagonal in an n-vertex simple rectilinear polygon can be computed inO(log� n logn) time using O(n=log� n logn) processors on the CREW PRAM.The link center of a simple polygon P is the set of points x in P at which the maximal linkdistance from x to any other point in P is minimized. The link center-problem has several potentialapplications. It could arise when locating a transmitter so that the maximumnumber of retransmissionneeded to reach any point in a polygonal region is minimized, or when choosing the best location fora mobile unit minimizing the number of turns needed to reach any point in a polygonal regions. In[10] and [17] an O(n logn) time algorithm was given to determine the link center of a simple n-vertexpolygon. In [25] a linear time sequential algorithm for computing the rectilinear link center of P waspresented. The rectilinear link center of a rectilinear polygon is obtained by using the rectilinear linkdistance. We show that the algorithm of [25] can be parallelized by using the techniques developed inthis paper. In the following we sketch their algorithm and show how it can be parallelized.First compute the link radius R of P . The link radius of P is the maximum link distance froma point in the link center to any vertex of P . It has been shown in [20] that dDiam(P)=2e � R �dDiam(P)=2e+ 1. Using the above inequality, we know that R can have one of two possible values.Compute the link center of P by assuming �rst the lower value of R. Either this is the correct valueof R, or the algorithm will report that the link center is empty. In either case the exact value of R isknown.Compute the central diagonal d of P . Let d split P into two subpolygons, P1 and P2. Let d1 (ord2) denote the maximum link distance from d to all vertices in P1 (respectively, P2). Without loss ofgenerality assume that d is vertical, P1 is to the left of d, and P2 is to the right of d. Since d is thecentral diagonal, d1; d2 � R� 1. Compute the part of the link center lying in P1 and in P2. Since thecomputations are analogous, we discuss the computation of the link center in P2. If R � d1, then thelink center in P2 is contained inside the histogram of d in P2.The computation of the link center in a histogram H is based on the following. For each windoww of H , compute the region of H that can be reached from the vertices in the pocket of w by using atmost R links. Once this region for each pocket is determined, the remaining task is to intersect theseregions for all pockets. The region in H induced by each pocket can be determined by knowing theslow and fast intervals from the vertices inside the pocket to the window w of the pocket. The regiondue to each pocket in H is shown to be monotone and thus can be intersected e�ciently to obtain thelink center in H .If d1 = R � 1 then the link center is contained in the 2-visibility region of d in P2. There are twomain cases depending on whether the fast intervals for vertices in P1 have a non-empty intersectionon d, or not. In each case there are various subcases not elaborated on here; and �nally the compu-tation is reduced to that of computing the link center in a histogram. In the following we state theseprocedures that are required by the algorithm in [25] to compute the link center and briey discusstheir parallel implementation.Central diagonal d : Compute the central diagonal using the results of Theorem 7.1.21

1-visibility (or histogram) and 2-visibility polygons from d: We �rst compute the window partition ofthe polygon with respect to d using the algorithm in Section 4. From the window partition we caneasily compute the 1-visibility and the 2-visibility polygon from d.Slow and fast intervals: We need to compute slow and fast intervals from vertices inside the pocketsto their respective windows or to the diagonal d. The slow and fast intervals can be computed byAlgorithm 4.Sweeping a segment in the interior of P : In a few cases, during the computation of the rectilinear linkcenter, we need to compute the �rst point where an internal segment s, swept, horizontally or verti-cally, inside P , intersects bd(P). The desired point of intersection can be computed by �rst locatingthe edges of P which possibly can have an intersection when the segment is swept. After locating allsuch edges, pick the one which is at the closest to s.Intersection of histograms: In order to compute the link center, we need to compute the intersectionregion of a constant number of histograms, where the base of all of them is either horizontal or vertical.Without loss of generality assume that their bases are horizontal. We compute the intersection regionwith linear (in the size of the histograms) amount of work in parallel as follows. First sort the verticeswith respect to their x-coordinate. This can be done with linear amount of work, since the verticesfor each histogram are already sorted with respect to their x-coordinates. Now sweep a vertical linefrom the left to the right, where the sweep line traces the region of intersection of the histograms. Thecomputation of the sweep line can be simulated easily in parallel in linear amount of work. Hence, wecan compute the intersection region of the histograms within the desired complexity.Intersection of intervals: During the computation of the link center, we need to compute the inter-section of the fast and slow intervals from vertices in P1 (or P2) on d and from the vertices in thepockets to their corresponding windows. The above intersection information can be computed fromthe knowledge of the end points of the intervals. The interval endpoints can be computed by Algorithm4. Using the above steps, the rectilinear link center of a rectilinear polygon can be optimally computed.We omit further details and state the result in the following theorem.Theorem 7.2 The rectilinear link center of an n�vertex rectilinear simple polygon can be computedin O(log� n logn) time using O(n=log� n logn) processors on the CREW-PRAM.It has been observed [20, 10] that any algorithm for constructing the link center which is basedon knowledge of the exact value R of the link radius, i.e. the algorithm returns the empty set if R isestimated to be too small, can be used to �nd the link radius. The above algorithm is of that kindand thus we get:Corollary 7.3 The rectilinear link radius of an n�vertex rectilinear simple polygon can be computedin O(log� n logn) time using O(n=log� n logn) processors on the CREW PRAM.8 Conclusions and Open ProblemsWe have given optimal algorithms for a variety of fundamental problems involving the link distancein trapezoided rectilinear polygons. As yet no optimal EREW algorithm is know for trapezoidingrectilinear polygons and thus an obvious open problem is to �nd such an algorithm. A solution to thisproblem implies that our algorithms are optimal even for (untrapezoided) rectilinear polygons. We22

have also given applications of our algorithms to a number of other link distance problems yieldingoptimal CREW-PRAM solutions for the link diameter, link center, link radius, and central diagonalproblems. The total work performed by each of these algorithms is O(n).Acknowledgements : Authors gratefully acknowledge Torben Hagerup for suggesting an improve-ment of the diameter algorithm over an earlier version of this paper. The authors would like to thankthe referee for suggestions which resulted in an improved presentation of this paper.References[1] L.G. Alexandrov, H.N. Djidjev and J.-R. Sack, Finding a central link segment of a simple polygonin O(n logn) time, Technical Report No. SCS-TR-163, Carleton University, 1989.[2] E.M. Arkin, J.S.B. Mitchell and S. Suri, Link queries and polygon approximation, Proc. of the3rd ACM-SIAM Symp. on Discrete Algorithms, 1991, pp. 269-279.[3] M. de Berg, On rectilinear link distance, Computation Geometry: Theory and Applications, 1(1991), pp. 13-34.[4] O. Berkman, B. Schieber and U. Vishkin, Some doubly logarithmic optimal parallel algorithmsbased on �nding all nearest smaller values, Technical Report UMIACS-TR-88-79, University ofMaryland, 1988.[5] B. Chazelle, Triangulating a simple polygon in linear time, Discrete and ComputationalGeometry,4 (1991), pp. 485-524.[6] V. Chandru, S.K. Ghosh, A. Maheshwari, V T Rajan and S. Saluja, NC-Algorithms for mini-mum link path and related problems, Technical Report, Tata Institute of Fundamental Research,Bombay, 1992.[7] K.L. Clarkson, R. Cole and R.E. Tarjan, Randomized parallel algorithms for trapezoidal decom-position, Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 152-161.[8] K.L. Clarkson, S. Kapoor and P.M. Vaidya, Rectilinear shortest paths through polygonal obstaclesin O(n(logn)2) time, Proc. 3rd Annual ACM Symp. on Computation Geometry, 1987, pp. 251-257.[9] P.J. de Rezende, D.T. Lee and Y.F. Wu, Rectilinear shortest paths with rectangular barriers,Discrete and Computational Geometry, 4 (1989), pp. 41-53.[10] H.N. Djidjev, A. Lingas and J.-R Sack, An O(n logn) algorithm for computing the link center ofa simple polygon, Discrete and Computational Geometry, 8 (1992), pp. 131-152.[11] S.K. Ghosh, Computing the visibility polygon from a convex set and related problems, Journal ofAlgorithms, 12(1991), pp. 75-95.[12] S.K. Ghosh and A. Maheshwari, Parallel algorithms for all minimum link paths and link centerproblems, SWAT 92, Lecture Notes in Computer Science, vol. 621, 1992.[13] M.T. Goodrich, Planar separators and parallel polygon triangulation, Proc. ACM STOC, pp.507-515, 1992.[14] M.T. Goodrich, S. Shauck and S. Guha, Parallel methods for visibility and shortest path problemsin simple polygons, Proc. 6th ACM Symposium on Computational Geometry, 1990, pp. 73-82.23

[15] J. Hershberger, Optimal parallel algorithms for triangulated simple polygons, Proc. 8th ACMSymposium on Computational Geometry, 1992, pp. 33-42.[16] J. J�aJ�a, An introduction to parallel algorithms, Addison-Weseley Publishing Company, 1992.[17] Y. Ke, An e�cient algorithm for link distance-problems, Proc. 5th ACM Symposium on Compu-tational Geometry, 1989, pp. 69-78.[18] R. M. Karp and R. Vijaya Ramachandran, Parallel Algorithms for Shared-Memory Machines,Handbook of Theoretical Computer Science, Edited by J. van Leeuwen, Volume 1, Elsevier SciencePublishers B.V., 1990.[19] R. Klein and A. Lingas, Manhattonian Proximity in a Simple Polygon, Proc. 8th ACM Symp. onComputational Geometry, 1992, pp. 312-319.[20] W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides andC. Yap, Computing the link center of a simple polygon, Discrete and Computational Geometry, 3(1988), pp. 281-293.[21] C. Levcopoulos, On approximation behavior of the greedy triangulation, Link�oping Studies inScience and Technology, Ph.D. Thesis, No. 74, Link�oping University, Sweden, 1986.[22] C. Levcopoulos and O. Petersson, Matching parenthesis in parallel, Discrete and Applied Math-ematics, 1992.[23] A. Lingas, A. Maheshwari and J.-R. Sack, Optimal parallel algorithms for rectilinear link distanceproblems, Technical Report SCS-TR-213, School of Computer Science, Carleton University, 1992.[24] K. M. McDonald and J. G. Peters, Smallest paths in simple rectilinear polygons, IEEE Transac-tions on Computer-Aided Design, Vol. 11, No. 7, 1992, pp. 864-875.[25] B.J. Nilsson and S. Schuierer, An optimal algorithm for the rectilinear link center of a rectilinearpolygon, Proc. 2nd Workshop on Algorithms and Data Structures, Springer Verlag, eds. F. Dehne,J.-R. Sack, and N. Santoro, 1991, pp. 249-260.[26] B.J. Nilsson and S. Schuierer, Computing the rectilinear link diameter of a polygon, ComputationalGeometry- Methods, Algorithms, and Applications, Lecture Notes in Computer Science 553,Springer Verlag, eds.: H. Noltemeier and H. Bieri, 1991, pp. 203-216.[27] J. O'Rourke, Art gallery theorems and algorithms, Oxford University Press, 1987.[28] J.H. Reif and J.A. Storer, Minimizing turns for discrete movement in the interior of a polygon,IEEE Journal of Robotics and Automation, RA-3 (1987), pp. 182-193.[29] J-R. Sack, Rectilinear Computational Geometry, Ph.D. Thesis, McGill University, 1984.[30] B. Schieber and U. Vishkin, On �nding lowest common ancestors: Simpli�cation and Paralleliza-tion, SIAM J. on Computing, 17(1988), pp. 1253-1262.[31] S. Schuierer, Rectilinear path queries in a simple rectilinear polygon , STACS'93, Lecture Notesin Computer Science, vol. 665, Springer-Verlag, 1993, pp. 282-293.[32] S. Suri, A linear time algorithm for minimum link path inside a simple polygon, Computer Vision,Graphics and Image Processing, 35(1986), pp. 99-110.24

[33] S. Suri, Minimum link paths in polygons and related problems, Ph.D. Thesis, Johns HopkinsUniversity, 1987.[34] S. Suri, Computing furthest neighbors in simple polygons , J. Comput. Sci., 39(1989), pp. 220-235.[35] R. Tamassia and J.S. Vitter, Optimal parallel algorithms for transitive closure and point locationin planar structures, Proc. 1st ACM Symposium on Parallel Algorithms and Architectures, pp.339-408, 1989.[36] R.E. Tarjan and U. Vishkin, An e�cient parallel biconnectivity algorithm, SIAM Journal onComputing, 14, pp. 862-874, 1982.

25

