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Summary

Diffusion Magnetic Resonance Imaging (dMRI) techniques provide a non-invasive
way to explore organization and integrity of the white matter structures in hu-
man brain. dMRI quantifies in each voxel, the diffusion process of water molecules
which are mechanically constrained in their motion by the axons of the neurons.
This technique can be used in surgical planning and in the study of anatomical
connectivity, brain changes and mental disorders. From dMRI data, white matter
fiber tracts can be reconstructed using a class of technique called tractography.
The dataset derived by tractography is composed by a large number of stream-
lines, which are sequences of points in 3D space. To simplify the visualization and
analysis of white matter fiber tracts obtained from tracking algorithms, it is often
necessary to group them into larger clusters or bundles. This step is called clus-
tering. In order to perform clustering, a mathematical definition of fiber similarity
(or more commonly a fiber distance) must be specified. On the basis of this met-
ric, pairwise fiber distance can be computed and used as input for a clustering
algorithm. The most common metrics used for distance measure are able to cap-
ture only the local relationship between streamlines but not the global structure
of the fiber. The global structure refers to the variability of the shape. Together,
local and global information, can define a better metric of similarity. We have
extracted the global information using a mathematical representation based on
the study of the tract with Frénet equations. In particular, we have defined some
intrinsic parameters of the fibers that led to a classification of the tracts based on
global geometrical characteristics. Using these parameters, a new distance metric
for fiber similarity has been developed. For the evaluation of the goodness of the
new metric, indices were used for a qualitative study of the results.
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1

Introduction

The human brain is the central organ of the human nervous system, and with the
spinal cord makes up the central nervous system. It is the seat of recruitment,
processing and transmission of information and the system of regulation of body
functions. The brain directs the things we choose to do (like walking and talk-
ing) and the things our body does without thinking (like breathing). It is also in
charge of sensing (sight, hearing, touch, taste, and smell), memory, emotions, and
personality. Externally the brain is a soft, spongy mass of tissue. It is basically
made up of two voluminous masses, the cerebral hemispheres, the surface full of
pits and fissures that divide them into lobes. Internally a gray sub-stance and a
white substance constitute it.

The gray matter is arranged peripherally and constitutes the cerebral cortex,
while the white mat is in the center and consists of bundles of nerve fibers and
of nuclei of gray matter, which are important nerve centers. The cerebral cortex
is not functionally homogeneous, but divided into centers of localization, each
one with different tasks. There is in fact a motor cortex, located in the frontal
lobe, which processes and sends signals intended to produce the movements of the
muscle groups; and a sensory cortex, which, placed in the parietal lobe, collects
the stimuli from the periphery of our body.

With the use of brain imaging techniques, doctors and researchers have the
opportunity to visualize behavior or clinical disorders within the human brain
without recurring to invasive neurosurgery. There are a number of accepted, safe
imaging techniques in use today in group facilities and hospitals throughout the
world.

1.1 Neuroimaging

Neuroimaging or brain imaging is the use of various techniques to either directly
or indirectly image the structure, function/pharmacology of the brain [24].

In 1918 the American neurosurgeon Walter Dandy introduced the technique of
ventriculography [38]. X-ray [30] images of the ventricular system within the brain
were obtained by injection of filtered air directly into one or both lateral ventricles
of the brain. Dandy also observed that air introduced into the subarachnoid space
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via lumbar spinal puncture could enter the cerebral ventricles and also demon-
strate the cerebrospinal fluid compartments around the base of the brain and over
its surface. This technique was called pneumoencephalography. Moniz [7], a neu-
rologist, accomplished the first cerebral arteriogram in 1927, whereby both normal
and abnormal blood vessels in and around the brain could be visualized with
great precision. In the early 1970s, Allan McLeod Cormack and Godfrey Newbold
Hounsfield introduced computerized axial tomography (CAT or CT scanning) [29],
and ever more detailed anatomic images of the brain became available for diag-
nostic and research purposes. Cormack and Hounsfield won the 1979 Nobel Prize
for Physiology or Medicine for their work. Soon after the introduction of CAT in
the early 1980s, the development of radioligands study of biomolecular behaviour,
allowed single photon emission computed tomography (SPECT) [33] and positron
emission tomography (PET) [9] of the brain. More or less concurrently, magnetic
resonance imaging (MRI or MR scanning) [51] was developed by researchers in-
cluding Peter Mansfield and Paul Lauterbur, who were awarded the Nobel Prize
for Physiology or Medicine in 2003 [41]. In the early 1980s MRI was introduced
clinically, and during the 1980s a veritable explosion of technical refinements and
diagnostic MR applications took place. Scientists soon learned that the large blood
flow changes measured by PET could also be imaged by the correct type of MRI.
Functional magnetic resonance imaging (fMRI) [35] was born, and since the 1990s,
fMRI has come to dominate the brain mapping field due to its low invasiveness,
lack of radiation exposure, and relatively wide availability.

The ability to visualize anatomical connections between different parts of the
brain, non-invasively and on an individual basis, has emerged as a major break-
through for neuroscience’s Human Connectome Project [1] . More recently, a new
field has emerged, diffusion functional MRI (dfMRI) [42] as it was suggested that
with DWI (Diffusion Weighted imaging) [42] one could also get images of neuronal
activation in the brain. Finally, the method of diffusion MRI has also been shown
to be sensitive to perfusion, as the movement of water in blood vessels mimics a
random process, intra-voxel incoherent motion (IVIM) [43]. IVIM dMRI is rapidly
becoming a major method to obtain images of perfusion in the body, especially for
cancer detection and monitoring. In diffusion weighted imaging, the intensity of
each image element (voxel) reflects the best estimate of the rate of water diffusion
at that location. Because the mobility of water is driven by thermal agitation and
highly dependent on its cellular environment, the hypothesis behind DWI is that
findings may indicate (early) pathologic change. For instance, DWI is more sensi-
tive to early changes after a stroke than more traditional MRI measurements such
as T1 or T2 relaxation rates. A variant of diffusion weighted imaging, diffusion
spectrum imaging (DSI) [72], was used in deriving the Connectome data sets; DSI
is a variant of diffusion-weighted imaging that is sensitive to intra-voxel hetero-
geneities in diffusion directions caused by crossing fiber tracts and thus allows more
accurate mapping of axonal trajectories than other diffusion imaging approaches.
DWI is most applicable when the tissue of interest is dominated by isotropic water
movement e.g. grey matter in the cerebral cortex and major brain nuclei, or in the
body, where the diffusion rate appears to be the same when measured along any
axis. However, DWI also remains sensitive to T1 and T2 relaxation. To entangle
diffusion and relaxation effects on image contrast, one may obtain quantitative im-
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ages of the diffusion coefficient, or more exactly the apparent diffusion coefficient
(ADC) [44]. The ADC concept was introduced to take into account the fact that
the diffusion process is complex in biological tissues and reflects several different
mechanisms. Diffusion tensor imaging (DTI) [40] is important when a tissue such
as the neural axons of white matter in the brain or muscle fibers in the heart has
an internal fibrous structure analogous to the anisotropy of some crystals. Water
will then diffuse more rapidly in the direction aligned with the internal structure,
and more slowly as it moves perpendicular to the preferred direction. This also
means that the measured rate of diffusion will differ depending on the direction
from which an observer is looking. Traditionally, in diffusion-weighted imaging,
three gradient-directions are applied, sufficient to estimate the different properties
of diffusion tensor, for the measure of stroke. The principal direction of the dif-
fusion tensor can be used to infer the white-matter connectivity of the brain (i.e.
tractography; trying to see which part of the brain is connected to which other
part). More extended DTI scans derive neural tract directional information from
the data using 3D or multidimensional vector algorithms based on six or more
gradient directions, sufficient to compute the diffusion tensor. The diffusion model
is a rather simple model of the diffusion process, assuming homogeneity and lin-
earity of the diffusion within each image voxel. Recently, more advanced models
of the diffusion process have been proposed that aim to overcome the weaknesses
of the diffusion tensor model. Amongst others, these include q-space imaging [39]
and generalized diffusion tensor imaging.

1.1.1 Process of Diffusion

Diffusion is a passive form of material transport from areas of high concentration
to areas of low concentration across a cell membrane. A distinguishing feature of
diffusion is that it is dependent on particle random walk and results in mixing or
mass transport, without requiring directed bulk motion.

The process of diffusion could be visualized by thinking of a drop of dark ink
dropped into a glass of clear water. Initially, the ink appears to remain concentrated
at the point of release. Gradually, some of the ink moves away from the region of
high concentration, and instead of there being a dark region and a clear region,
there is a graduation of color. After a long time, the ink is uniformly distributed
in the water. The movement of the ink from the region of high concentration (ink
drop) to the region of low concentration (the rest of the glass of water) is an
illustration of the process of diffusion Figure(1.1).

Physis of Diffusion

There are two ways to describe the notion of diffusion: either a phenomenological
approach starting with Fick’s laws and their mathematical solutions, or a physical
and atomistic one, by considering the random walk of the diffusing particles [58].
From the atomistic point of view, diffusion is considered as a result of the random
walk of the diffusing particles. In molecular diffusion, the moving molecules are
self-propelled by thermal energy. Random walk of small particles in suspension
in a fluid was discovered in 1827 by Robert Brown. In 1826 a botanist Robert
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Fig. 1.1: Diffusion
Diffusion and Brownian Motion: on the left side of the figure, dark in into water can

explain diffusion of ink in a fluid. On the right site of the picture trajectory of
molecules show the random pathways of free diffusion.

Brown was studying the seemingly random pattern of motion that pollen grains
exhibited when suspended in water through his microscope [37]. Initially puzzled,
he attributed it to some biological phenomenon of the pollen, but when he later
observed the same behavior with inanimate, inorganic substances, he rejected this
hypothesis. It later became clear that the motion that he had observed was due to
the buffeting of the pollen grains by water molecules surrounding them. This led
to the revelation that liquids and gases were not static and lifeless as they might
appear at first glance. The atoms and molecules from which they are constituent
are in constant motion, undergoing persistent collisions and energy exchanges with
other molecules and atoms. This phenomenon was called Brownian motion. The
theory of the Brownian motion and the atomistic backgrounds of diffusion were
developed by Albert Einstein [3].

The physical and mathematical theories of diffusion were developed and refined
over the next two centuries by prominent scientists including Thomas Graham [61]
and Adolf Fick [69], who developed a rigorous mathematical framework, which is
still in use today Figure(1.2).

In 1855 Adolf Fick described and solved the diffusion coefficient D [16] by
means of the first diffusion law:

J = −Ddϕ
dx

(1.1)

and the second diffusion law:
∂ϕ

∂t
= D

∂2ϕ

∂x2
(1.2)

where J is the flux, ϕ is the concentration,D is the proportional coefficient between
flux and concentration, t was time-variable, x was the displacement variable, in
the one dimensional case. In 1.1, Fick relates the diffusive flux to the concentration
under the assumption of steady state. It postulates that the flux goes from regions
of high concentration to regions of low concentration, with the concept that a solute



1.1 Neuroimaging 5

Fig. 1.2: Random walk.
(a)Random walk according to Gamow; (b)Random walk trajectory due to Brownian

motion in water.

will move from a region of high concentration to a region of low concentration
across a concentration gradient. In 1.2, Fick predicts how diffusion causes the
concentration to change with time.

In 1905 Albert Einstein, using Boltzmann’s thermal energy predictions [50], de-
rived a rule to estimate Avogadro’s number by observing how far the polled grain
moved over a given time. Einstein showed that the language of the Fick’s Law
still applied in the cases of self-diffusion where no macroscopic gradient existed.
He provided a formulation of local probability to find the molecule and he realized
a correlation between thermal fluctuations and diffusion coefficient. Einstein’s ex-
planation of Brownian motion was that the Brownian particles experience a net
force resulting from the exterior collisions of surrounding water molecules. Einstein
proved that the squared displacement of the particles from their starting point over
a time, averaged over all of the sampled particles was directly proportional to the
observation time; this formulation of diffusion model assumed that the medium
was unrestricted and the particles therefore had equal mobility in every direction
(free diffusion). The diffusion of particles inside fluids depends by the character-
istics of the medium and obstacles characterize diffusion phenomena. Respect to
the presence of preferable direction of molecules in their Brownian motion, we can
define Figure(1.3):

• Anisotropic Diffusion, when a preferred direction is chosen by particles. This is
typical in living tissues like fiber’s muscles and cell’s membranes. This means
that obstacles characterize the medium as motion’s constrictor.

• Isotropic Diffusion, when no direction is preferred by diffusion process. Ink in
free water shows that the medium is isotropic. This means that no barriers
obstacle the Brownian motion of particles.
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• Restricted Diffusion occurs when particles are linked by membranes and bar-
riers obstacle the diffusion process.

• Hindered Diffusion occurs when particles are linked by surrounding object but
barriers don’t obstacle diffusion propagation of molecules.

Fig. 1.3: Diffusion of particles
Picture a presents difference between anisotropic and isotropic diffusion (respectively
left and right). Picture b show difference between restricted and hindered diffusion

respectively left and right).

1.1.2 Diffusion MR Tractography

Diffusion MR imaging [56] of the brain was first adopted for use in clinical neuro-
radiology during the early 1990s and was found to have immediate utility for the
evaluation of suspected acute ischemic stroke Figure(1.4).

Fig. 1.4: Diffusion MR tractography
Diffusion-weighted image (left) reflect water diffusion behavior (random walk) (right).
Diffusion behavior is modulated by tissue structure at the cellular level (middle).

Since that time, enormous strides forward in the technology of diffusion imaging
have greatly improved image quality and enabled many new clinical applications.



1.1 Neuroimaging 7

These include the diagnosis of intracranial pyogenic infections, masses, trauma,
and so on. In neuroscience, tractography is a 3D modeling technique used to vi-
sually represent neural tracts using data collected by difusion-weighted images. It
uses special techniques of magnetic resonance imaging and computer-based im-
age analysis. The results are presented in two-dimensional and three-dimensional
images, Figure(1.5).

Fig. 1.5: MRI imaging
Results of MRI, in two-dimensional (left) and three-dimensional (right).

In addition to the long tracts that connect the brain to the rest of the body,
there are complicated neural networks formed by short connections among dif-
ferent cortical and subcortical regions. The existence of these bundles has been
revealed by histochemistry and biological techniques on post-mortem specimens.
Brain tracts are not identifiable by direct exam, CT, or MRI scans. This difficulty
explains the paucity of their description in neuroanatomy atlases and the poor
understanding of their functions.

Tractography can be considered a large class of algorithms that generate a
bundle interpretation of Diffusion Processes in the brain. This means that trac-
tography is an interpretation of anatomy with a different grade of accuracy based
on diffusion data elaborations. Fibers are obtained by following the paths of par-
ticles dropped in a vector field. The strategy used to approximate these paths
constitutes the main difference between the methods analyzed.

White matter tractography algorithms can be classified into deterministic and
probabilistic [8], [74]. The first only considers the main eigenvector direction in
order to reconstruct the tract; the second class introduces the concept of pertur-
bation in order to modify the vector direction at each location.

The deterministic approach produces a streamline that represents the main
direction of diffusion for each voxel. This approach works well for many fiber
bundles and can help to understand many configurations of lesion-pathways. The
limit concerns the interpretation of voxels with low anisotropy. The Functional
Anisotropy(FA) [10] interpretation is correct when voxels describe a region with-
out any particular diffusion direction (ventricles). When a region is involved in fiber
crossing, FA is around zero and the algorithm produces a wrong reconstruction
(i.e. lateral portions of the corticospinal and corticobulbar tracts). The proba-
bilistic approach aims to address this criticism by considering multiple pathways
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moving from the seed point and from each point along the reconstructed trajecto-
ries: the method accounts for the uncertainty in the estimation of fiber direction.
Behind the probabilistic algorithm there are many pre-processing steps, such as co-
registration, white matter extraction and statistical model estimation. This mean
that it is very slow and non interactive.

Despite differences between strategies and algorithm implementation, the trac-
tography procedure is based solving pathway equation [19]; common steps between
different approaches are required to solve the pathway equation:

• Definition of seeds, the tracking process requires a starting point; this is typi-
cally known as seed region, a collection of voxel defined in derived tensor map.
Drawing seed region requires anatomical knowledge of fiber bundles and their
localization. Alternative approaches can used label definition of the brain from
external sources: using digital label atlas and parcellation method, it is possible
to automatically set seeds. This method can be imprecise and computationally
expensive.

• Selection of an integration strategy: different integration methods can be ap-
plied in order to calculate pathways. The difference between them consists in
the methodology of calculating the propagation direction and the step size.
The most applied strategies are the Euler integration method, Runge-Kutta,
Fiber Assignment by Continuous Tracking (FACT) and other alternative in-
terpolation methods (Interpolated Streamline). As required for seed definition,
stopping criteria determine when the tracking process has to finish. Thes meth-
ods can be defined as a combination of limits imposed by used definition that
interrupts calculation of fiber tracts. Some example of it are FA threshold,
Angle Threshold, maximal length of fiber and number of iterations.

Deterministic algorithms use a linear propagation approach. Fiber trajectories are
generated in a stepwise fashion deriving the direction of each step from the local
diffusion tensor. Approaches of deterministic category are the following:

• Streamline approaches [20] generate fibers following the direction of faster
diffusion (often main eigenvector). The propagation direction is described by
a linear propagation of diffusion measurements. The main drawback appeared
in areas where diffusion propagation was not linear, such as planar regions,
since the trace of the fiber can not be determined in order to partial volume
effects, such as crossing, kissing, and branching. FACT (Fiber Assignment
by Continuous Tracking) algorithm altered the propagation direction at the
voxel boundary interfaces. FACT algorithm used variable step sizes,depending
upon the length of the trajectory needed to pass through a voxel. The tensor
deflection approach (TEND) was proposed in order to improve propagation in
regions with low anisotropy, such as crossing fiber regions, where the direction
of fastest diffusivity is not well defined. The idea is to use the entire D to deflect
the incoming vector direction and to obtain a smoother tract reconstruction
result.

• The tensor line propagation method incorporates information about the voxel
orientation, as well as the anisotropic classification of the local tensor given
anisotropic indices. Tensor line propagation direction is a combination of the



1.2 Fibers Tractography 9

previous direction (main eigenvector) and the tensor deflection direction. Dif-
fusion Toolkit and Trackvis are a famous couple of packages dedicated to
diffusion tractography. The Diffusion Toolkit implements the most relevant
deterministic algorithms such as the FACT, 2-order Runge Kutta, Interpo-
lated Streamline and Tensorline. The Trackvis is the extraction software that
calculates a sub-set of fiber bundle using ROI approaches.

Probabilistic fiber tractography algorithms aim to overcome bugs of determin-
istic approaches by adding some random choice. Probabilistic fiber tracking can be
considered a simulation protocol that describes random walk of particles through
a set of voxels guided by tensor rules. For each seed points, probability algorithms
trace different paths and calculate the spatial probability distribution of connec-
tivity. Final tracking is the spectrum of possible paths.

1.2 Fibers Tractography

In clinical application, it is common practice to focus on selected white matter fiber
bundles; these bundles represent major pathways in the overall physical connec-
tivity of the brain, i.e., groups of fibers belonging to the same anatomical regions
Figure(1.6).

Fig. 1.6: Anatomical Bundles
This image represent some of anatomical fibers bundle in the brain.

Identify the structures that compose the different part of the brain is an im-
portant task in neuroimaging. One of the crucial points in neuroscience is image
segmentation to partition the voxel into homogeneous subgroups that correspond
to tissue types. Various techniques are proposed to segment fibers into meaningful
anatomical structures for quantification and comparison between individuals.

Catani et al. [18] used a technique called virtual dissection to interactively
select fibers passing through some manually defined regions of interests (ROIs).
These approaches require a first manual intervention to select tracts of interest in
a subset of subjects and then retrieve the same structure in other subjects, and
making them unsuitable for a global WM segmentation. The manual identification
of regions of interest is strongly affected by the prior knowledge used to identify
the structures and very much prone to operator bias. Methods for the automatic
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decomposition of whole brain tractography into fiber bundles could greatly help
reduce complexity and bias associated with manual segmentation. This approach,
frequently referred to as tractography segmentation, aims at generating a simpli-
fied representation of the WM structure, enabling easier navigation and improved
understanding of the structural organization of the brain and its overall connec-
tivity. Though this technique is highly flexible, it is very time consuming due to a
large amount of complex fiber structures. Moreover, the results may be biased by
subjective opinions of experts.

Therefore, automatic fiber clustering algorithms, which require no user inter-
action and thus exclude undesirable bias have gained considerable attention. Clus-
tering approaches represent a logical alternative to supervised methods as they
permit to discover bundle structures without the need of prior anatomical knowl-
edge. Using tractography technique, white matter fiber tracts are represented as
streamlines, which are sequences of points in 3D space. These streamlines can be
grouped into fiber bundles, i.e., groupings of streamlines with similar spatial and
shape characteristics, based on anatomical knowledge using clustering methods.

In the tractography literature we can find approaches which use unsupervised
and/or supervised learning algorithms to create bundles. In supervised learning
the data sets are divided into training and a test set. For the training set, experts
will have provided anatomical labels for a set of manually segmented streamline
bundles. The task is then to identify similar structures amongst the unlabeled
streamlines in the test set. In unsupervised learning the focus is on creating a
partitioning of the streamlines without knowing any labels. Several fiber-clustering
approaches have been described in the literature of which their main goal is to
analyze a collection of tractography fiber paths in 3D and separate them into
bundles, by taking advantage of their similarity. Most automatic techniques for
segmenting fibers are based on geometric properties of fibers. Two fibers are usually
grouped into a bundle if a small distance separates them, have comparable length
and have similar shape. However, these criteria might be insufficient, since two
fibers with different shapes can be grouped into a bundle if they start and end at
the same region. So, fiber segmentation remains an area of active research and a
fiber similarity measure is also needed to cluster fibers. A fiber similarity measure
is a function that computes the (dis) similarity between pairs of fibers.

1.3 Aims of thesis

Recognize the anatomic bundles within the brain is a very important task in the
scientific community. It is important both in the diagnostic phase, because a good
display of the subdivision of the areas of the brain may help the surgeon in the
general view of the problem and in the intraoperative phase the importance of
identifying the fascicles relies on the repute for a good result in neurosurgical re-
section of the tumor, it is fundamental to preserve the areas of the main functional
activities. Despite advances in the field of neuroimaging, this task is not easy to
implement. There are many aspects to consider in order to get a good clustering
algorithm that allows splitting the fibers of the brain in anatomical bundles.

Currently the surgeons, during surgery, make use of neuronavigation as a
support tool. Neuronavigation represents the new frontier of minimally invasive
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surgery. A neuronavigation tool allows the surgeon to perform brain surgery with
extreme accuracy and speed. Intraoperatively, the system shows on MRI or CT the
tool position thus solving the first problem of the surgery, which is the spatial ori-
entation of the anatomy. The possibility of preliminary planning the intervention
and the help of a computer during the procedure create a new approach on how to
consider the brain leading to innovative methods of surgical procedures. Through
the use of neuron-navigation it is possible to identify the best path and the area
where to attack the pathology considering its three-dimensional appearance and
movements of adjacent structures.

As described above:

• From MR data, the white matter fiber tract can be reconstructed using a class
of technique called tractography.

• The dataset derived by tractography is composed of a large number of stream-
lines, which are sequences of points in 3D space. To simplify the visualization
and analysis of white matter fiber tracts obtained from MR data, it is often
necessary to group them into larger clusters or bundles.

• In order to perform clustering, first a mathematical definition of fiber similarity
(or more commonly a fiber distance) must be specified. Then, pairwise fiber
distance may be calculated and used as input for a clustering algorithm.

The main problems that we are analyze:

• Define a relevant metric to assess the similarity of tracts.
• Establish the right number of clusters.
• Evaluate, once the clusters are obtained, qualitatively the results.

The final goal of this analysis is to obtain a new metrics for brain fiber classifi-
cation. In literature various distance similarity measures are used; some methods
calculates the similarity of the fiber point to point but these procedures are sen-
sitive to noise, which affects the final distance similarity between pairs of fibers.
The final distance alone between two fibers is not enough to tell whether they
have a similar shape or they are separated by a small distance. Thus, this limits
their ability to effectively group fibers into meaningful bundles. Another point is
that the most common techniques have quadratic time complexity, is a problem
for large fiber data sets. Several techniques are proposed to measure the shape
similarity of two fibers; they also are efficient and robust to noise within fibers,
but the complexity is still quadratic time.

Distance study during the last years captures the local relationship between
pairwise fiber tracts but tend to lack the ability to captures the global structure
of fiber tracts such as the shape variability and the neighborhood structures. In
order to provide such information, the purpose of our proposed method, named
"NewSimilarity" metric, is to developed a metric where both distance and shape
information are considered during the clustering. The results obtained with our
similarity metric confirm a good shape classification of the fibers of the brain.
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In subsequent sections, we analyze the similarity metrics between fibers best
known in the literature and we study the main clustering methods.

After this introduction, this thesis is organized as follows:

• Chapter 2 : State Of the Art
Overview of the distance metrics between the fibers and the clustering algo-
rithms used in the literature.
To simplify the visualization and analysis of white matter fiber tracts obtained
from diffusion Magnetic Resonance Imaging data, it is often necessary to group
fibers into larger clusters, or bundles. One approach is based on the knowledge
of experts and is referred to as virtual dissection; it often requires several
inclusion and exclusion regions of interest that make it a very hard process
to reproduce across expert. Manual segmentation is very time consuming, is
strongly user-dependent and adds biases to tract-based analyses.
For this reason, it is preferable to use fiber clustering algorithms, which use
distance metrics to classify the fibers in the different anatomical bundles.

• Chapter 3 : Mathematical Background
Overview of the mathematical foundations necessary in order to understand
our method of studying the shape and classification of fibers.
In particular we describe the properties to be verified by our metrics and how
similarity metrics (or dissimilarity) are applied to clustering algorithms.

• Chapter 4 : Method for our processing of create NewSimilarity metric
New frameworks of clustering techniques and distance measures.
The most common measures used for distance only capture the local rela-
tionship between streamlines but not the global structure of the fiber. Global
structure, refer to the fiber variability shape. Together, local and global in-
formation, may define a good measure of similarity. In order to provide such
information, we developed a novel framework where both distance and shape
information are considered during the clustering.

• Chapter 5 : Experimentals
As a first step we consider datasets available online by ISMRM 2015 Trac-
tography challenge-Data. Tractography challenge was based on an artificial
phantom generated using the Fiberfox software, based on bundles segmented
from a HCP subject.

• Chapter 6 : Algorithm verification with clinical data
In the following we show the results obtained by analyzing, as a first step,
only the step related to the similarity metric. The clinical data used have been
previously processed using the tractography algorithms and the bundles have
already been segmented. The purpose is to understand which is the distance
metrics that offers, compared to a ground truth, the best recognition of the
different anatomical bundles. We also want to see if the metrics applied to
online data are also applicable to clinical data. Afterwards we will summarize
in a table the results obtained by applying the selected metrics to the clinical
datasets and how clustering occurs in the different cases. We will present in
detail the most significant cases. We use the library in Python, ?scikit-learn?
for clustering classification.

• Chapter 7 : Conclusions and future work



2

State of the Art

After pre-processing images and fit a diffusion model at every voxel, the fiber tracts
can be virtually reconstructed or traced throughout the brain using computational
methods called tractography. It is a method to reconstruct the pathways of ma-
jor white matter fiber bundles, by fitting a curved path through the directional
diffusion data at each voxel.

Deterministic tractography recovers fibers emanating from a seed voxel by fol-
lowing the principal direction of the diffusion tensor or the dominant direction of
the diffusion orientation distribution function (ODF). However, this method has
limitations: it depends on the choice of initial seed points and can be sensitive
to the estimated principal directions. To overcome those drawbacks, probabilistic
tractography methods have been proposed.

They can be computationally more intensive but can be more robust to partial
volume averaging effects and uncertainties in the underlying fiber direction, which
are inevitable due to imaging noise. Regardless of the chosen type, the analysis
produces a large number of fibers that need to be grouped into anatomical bundles.

To simplify the visualization and analysis of white matter fiber tracts obtained
from diffusion Magnetic Resonance Imaging data, it is often necessary to group
them into larger clusters, or bundles. One way is based on the knowledge of experts
and is referred to as virtual dissection; it often requires several inclusion and exclu-
sion regions of interest that make it a process that is very hard to reproduce across
expert. Manual segmentation is very time consuming, is strongly user-dependent
and adds biases to tract-based analyses. For this reason, it is preferable to use
fiber clustering algorithms, which use distance metrics to classify the fibers in the
different anatomical bundles.

An overview of the distance metrics between the fibers and the clustering al-
gorithms used in the literature is shown in Figure(2.1) where we have a general
overview of the ingredients necessary for the study of a new similarity metric; in
Figure(2.2) and Figure(2.3) we will see in detail, the similarity metrics and the
clustering algorithms, used in the literature.
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Fig. 2.1: State of the Art
Metrics of fiber (di)similarity and Fiber Clustering. Overview of the ingredients

necessary for the study of a NewSimilarity metric.

2.1 Metrics of fiber (di)similarity: fibers similarity
point-to-point and fibers similarity shape

A typical framework for fiber clustering defines a pairwise similarity/distance be-
tween each pair of fibers in a large set of candidate fibers, to group them into
separate and distinct tracts. In order to perform clustering, first a fiber similarity
measure must be specified, which is then used as input to a clustering algorithm.
A fiber similarity measure is a function that computes the (dis)similarity between
pairs of fibers. Two fibers are considered similar when they have comparable length,
similar shape and are separated by a small distance.

Distances between pairwise fibers Fi and Fj are used for the similarity measure:

• Brun et al [5] considere the measure of similarity based on the idea that two
fibers with similar end points should be considered similar. Euclidean distance
between the end points of fibers is then used to calculate the fiber similarity.
This similarity measure works fine in most cases where the fibers are not broken
and really connect different parts of the brain in an anatomically correct way.
This point is a great limitation because the white matter tracts contain many
spurious and noisy fibers which do not allow an efficient calculus measure of
similarity.
The assumption done by Brun is not reasonable in many cases since not all
fiber bundles start and end in the same regions.
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Fig. 2.2: State of the Art
Metrics of fiber (di)similarity. Review of principal distance used in literature.
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Fig. 2.3: State of the Art
Fiber Clustering and Index. Review of principal clustering algorithms used in literature.

• Later Brun et al. introduced a 9-D tract shape descriptor vector, defined as
the mean and lower triangular part of the covariance matrix of the points on
a fiber, and computed the Euclidean distance between shape descriptors [4].
It ignores the information of most other points and the fiber pairwise shape
similarity.

• Corouge et al [32] form point pairs by mapping each point of one fiber to the
closest point on the other fiber; the distance between the pairs of fibers is
calculated using these points. Three distances are defined; the first one is the
closest point distance:

dc(Fi, F j) = minpk∈Fi,pl∈Fj
||pk − pl||

with || · || being the Euclidean norm
(2.1)

It is the minimum distance between a pair of points. These distance cannot be
expected to have a good discrimination power between fibers since it encodes
only very raw information about fiber similarity and closeness.
The second distance is the mean of closest point distances (MCP):

dM (Fi, F j) = mean(dm(Fi, Fj), dm(Fi, Fj))

with dm(Fi, Fj) = meanpl∈Fiminpk∈Fj ||pk − pl||
(2.2)

which calculates the average of the points pair distances. The minimum dis-
tance provides a global similarity measure integrated along the whole curve.
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The last measure is the Hausdorff distance (HDD):

dH(Fi, Fj) = max(dh(Fi, Fj), dh(Fi, Fj)))

with dh(Fi, Fj) = maxpk∈Fiminpl∈Fj ||pk − pl||
(2.3)

that is the maximum distance between a pair of points.
Being a worst-case distance, the Hausdorff distance is a useful metric to reject
outliers and prevents the algorithm from clustering curves with high dissimi-
larity.

• Zhang and Laidlaw [76] define the mean of thresholded closest distances; the
distance between two fibers as the average distance from any point on the
shorter fiber to the closest point on the longer fiber, and only distances above
a certain threshold contribute to this average.

• The average point-by-point distance between corresponding segment is defined
by Ding et al. [22]. Their fiber similarity measure is then defined as the mean
distance between the corresponding segments.
When two fibers are similar in shape and close in location these distance is
small; when the distance between a pair of fibers is large, or their shapes are
different, the distance is large. To define piece-wise similarity, the authors use
the mean Euclidean distance between the segments. This similarity method
is efficient but not effective since this measure also loses the point-by-point
information.

• The distance measure such as closest point distance, Chamfer distance [26]:

D(Fi, Fj) =
1

|Fi|
∑

Fip∈Fi

minFjq∈Fj
||Fip − Fjq ||

with Fi = Fip p = 1, Fj = Fjq q = 1

where p,q are the set of points on a fiber Fi, Fj
|| · || Euclidean norm

(2.4)

and Hausdorff distance [31], have been the most used that adequately capture
the local relationship between pairwise fiber tracts.
In [46] the authors propose a novel approach for measuring the similarity of
3D curves in a large dataset that includes the whole information of the curve
for more accurate clustering and further quantitative analysis.
In [6] a manifold learning approach to fiber tract clustering is using. To gen-
erate the similarity measure, the Chamfer and Hausdorff distance are initially
employed as a local distance metric to construct minimum spanning trees be-
tween pairwise fiber tracts.
All these distances lack the ability to capture the global structure of fiber
tracts such as the shape variability and the neighborhood structures. In [53]
several distance measures are implemented for fiber evaluation and the authors
concluded that the mean of closest distances performs better than closest point
distance, Hausdorff distance and end point distance.

• Shao et al. [34] extended the idea of the functions proposed by Courouge, using
Dynamic Time Warping (DTW):
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ddtw(Fi, Fj) = ||pn − qm||+min(ddtw(fin−1
, fjm), ddtw(fin , fjm−1

), ddtw(fin−1
, fjm−1

))

with Fi = (p1, ..., pn), Fj = (q1, ..., qm)
(2.5)

due to its flexibility with varying length fibers. It is a technique that looks for
the optimal alignment of two time series.

• Garyfallidis et al. [23] used Minimum average Direct-Flip (MDF) distance:

MDF (F, t) = min(ddirect(F, t), dflipped(F, t))

ddirect(F, t) = d(F, t) =
1

K

∑
K

i = 1|Fi − ti|

dflipped(F, t) = d(F, tflip) = d(F flip, t)

(2.6)

which is a symmetric distance function that can address with the streamline
bi-directionality problem. The direct distance ddirect(F, t) between two stream-
lines F ,t is the mean of the Euclidean distances between corresponding points.
MDF can be applied only when both streamlines have the same number of
points.
The main advantages of the MDF distance are that it is fast to compute,
it takes account of streamline direction issues through consideration of both
direct and flipped streamlines.

The distance measures similar to those mentioned above:

• Are sensitive to noise due to their point-to-point distance mechanism which
affects the final distance similarity between pairs of fibers.

• Ignore the contribution of the start and end points of fibers which play an
important role in the segmentation.

• Adequately capture the local relationship between pairwise fiber tracts but
tend to lack the ability to capture the global structure of fiber tracts such as
the shape variability and the neighborhood structures, due to the complexity
of fiber structure.

• Their quadratic time complexity makes them hard to deal with large fiber
datasets.

For these reason other approaches are being studied. These metrics, compared to
previous metrics, are better to an analysis of fibers regarding the shape.

Two key aspects for achieving effectiveness and efficiency when managing time
series data are representation methods and similarity measures. Time series are
essentially high dimensional data and directly dealing with such data in its raw
format is very expensive in terms of processing and memory cost. The best known
of such distance is the Longest Common Subsequence (LCSS) distance [47]:

LCSS(MBEδ,ε(A), B) =

n∑
i=1

(2.7)

that utilizes the longest common subsequence model. Given a time constrain δ
and a similarity threshold ε, the lower bounding distance of LCSSδ,ε(A,B) of two
equal longth fibers can be calculated by using the Minimum Bounding Envelope of
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A(MBEδ,ε(A)) with respect to the time constraint δ and the similarity threshold
ε.

To adapt the concept of matching characters in the settings of time series, a
threshold parameter was introduced, starting that two different points from two
time series are considered to match if their distance is less than the parameter.

Edit Distance on Real sequence (EDR) [27], given two trajectories R and S
of lengths n and m, respectively the distance between R and S is the number of
insert, delete, or replace operations that are needed to change R into S,

EDRε(R,S) =
edrε(R,S)

max(n,m)
(2.8)

Similar to LCSS, EDR also uses a threshold parameter, except its role is to quantify
the distance between a pair of points to 0 or 1.

• Mai et al. [67] introduce a novel similarity model called SIM for fiber segmen-
tation, using a so-called fiber envelope. Based on this scheme, some new shape
similarity techniques are proposed by adapting existing similarity techniques
for trajectory data such as those mentioned before, Warped Longest Common
Subsequence (WLCS) is one of these.
Given a time constrain δ and a similarity threshold ε, the similarity between
two sequences A, B, with time points n, m is:

WLCδ,ε(A,B) = 1−
wlcsδ,ε(A,B)

n,m
(2.9)

is more accurate and more robust to noise and local time shifting within fibers
than other similarity measures.

• Böhm C. et al [15], propose a novel similarity measure for fiber clustering by
combining shape similarity and distance similarity into a unified and flexible
method.
LCSS is specially adapted to points in three-dimensional space to measure
shape similarity, and is less sensitive to noise than other distance based meth-
ods. In addition, the distance between start and end points of a pair of fibers,
which is referred to as distance similarity, is also incorporated to effectively
capture the complex notion of fiber similarity.
As a result, our approach provides an effective and flexible way to the similarity
between fibers.

• Siless V. et al [64], propose tu use the Point Density Model (PDM) metric.
Given a fiber X, it is represented as the sum of Dirac concentrated at each
fiber point, respect to fiber Y :

PDM2(X,Y ) = ||X||2 + ||Y ||2 − 2〈X,Y 〉 (2.10)

Whereas PDM time complexity is quadratic in the number of points per fiber,
using it for computing a full distance matrix is too expensive time-wise. By using
multidimensional scaling the authors only compute a partial distance matrix and
embed this information in a new set of fiber-like points. PDM is sensitive to the
fibers form and position and is quite robust to missing fiber segments.
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This last property is much desired as fibers are often mis-segmented due to
noise and crossing fibers issues. MDF distance and PDM distance require us to
resample tracts so that they have the same amount of points each. Hausdorff and
Mean Closest Point work for tracts with different amounts of points.

2.2 Fiber Classification

Diffusion-Weighted Magnetic Resonance Imaging is one of the most used tech-
niques for the analysis of the human brain white matter. Tractography datasets,
composed of a big set of 3D streamlines, can be reconstructed from dMRI and
represent the main anatomical connections in the brain.

There are two ways for analysis of dMRI tractography data generatting a quan-
titative description of the white matter connections. The first method, fiber clus-
tering, describes the connections of the white matter as clusters of fiber trajecto-
ries. The clusters give anatomical regions in which properties of the white matter
structure may be measured.

The second method is parcellation-based and uses tractography to estimate
the "structural connectivity" between pairs of parcellated cortical regions. The
pairwise connectivities are encoded in a matrix that models networks in the brain.

These two types of analysis of dMRI tractography data both perform a seg-
mentation of the white matter, but with different goals.

Parcellation-based approaches for white matter segmentation address the ques-
tion of what regions a fiber trajectory may connect. These approaches take advan-
tage of additional information in the form of a cortical parcellation into regions of
interest (ROIs) that define network nodes, enabling analysis of the brain as a net-
work. Once the nodes are defined, segmentation of tractography is straightforward
and is based simply on connections between ROIs.

Clustering approaches generally address the goal of detecting the central,
anatomically named portions of each fiber tract, without reference to cortical re-
gions. These approaches do not enable graphical analysis of the brain networks,
but rather focus on measuring properties of the anatomy of the fiber tracts. Early
work in tractography clustering had the goal of organizing the fibers within a single
subject into fiber tracts or bundles.

In the literature this problem is divided into two parts:

• choice of similarity or distance metric for comparing fibers (methods explained
in the previous section)

• choice of clustering method

In the following section, we especially focus on reviewing the fiber clustering meth-
ods, which is the scope of our work.

2.2.1 Fiber Clustering: Supervised and Unsupervised

In a supervised setting, the classes are a predetermined finite set. A learning data
set is labeled with the classifications. The task of the algorithm is to find predictive
patterns and build mathematical models to relate those to the known classification.
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Unsupervised algorithms do not start with a classification; they search for
similarities in the data to determine if they can be characterized as belonging to
the same group. In an unsupervised setting, or "cluster analysis", the algorithm
does not rely on any information on how elements are grouped and its task is to
group them. Several methods have been proposed to obtain the clear fiber bundles
representation.

We analyze as first step the Supervised methods: the identification of fiber
bundles is carried out via manual identification of regions of interest corresponding
to the main known pathways. The three mains algorithms of this type are:

• Mori et al. [54]
• Wakana et al. [71]
• Catani et al. [17]

However, these technique requires a priori knowledge about the trajectory and can
be used only for well-characterized white matter tracts.

To reduce the complexity of manual segmentation and reduce the errors in-
troduced by it, methods are introduced for the automatic decomposition of whole
brain tractography into fiber bundles. For this reason over the years, many semi-
automatic methods have been studied in the scientific community for determining
the bundles within and across subjects with little or no human intervention.

This approach, frequently referred to as tractography segmentation, aims at
generating a simplified representation of the white matter structure, enabling easier
navigation and improved understanding of the structural organization of the brain
and its overall connectivity.

To automate bundles retrieval, various methods, based on different strategy
were proposed over the last few years. The solution proposed in Li et al. [45] is an
evolution of the ROI-based technique that works directly on fiber and applies prior
knowledge to perform preliminary parcellation of the brain. A nonlinear method
of kernel-principal component analysis (PCA) is used to project the fiber curves
onto the principal component space of the kernel vectors.

Then, a fuzzy c-mean algorithm is applied to automatically group the fibers in
the feature space. However, this approach is limited by the level of detail of the
brain atlases, which can prevent the retrieval of small structures or suffer from
cross-subject misalignments.

Other methods were also proposed to recover local white matter bundles using
prior knowledge. Mayer et al. [49] presented a supervised framework for the auto-
matic registration and segmentation of white matter tractography extracted from
brain diffusion magnetic resonance imaging.

The framework relies on the direct registration between the fibers, without
requiring any intensity-based registration as preprocessing. An affine transform is
recovered together with a set of segmented fibers. These approaches require a first
manual intervention to select tracts of interest in a subset of subjects and then
retrieve the same structure in other subjects, and making them unsuitable for a
global white matter segmentation.

The second method for fiber classification is "Unsupervised". Indeed clustering
approaches represent a logical alternative to supervised methods as they permit
to discover bundle structures without the need of prior anatomical knowledge.
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In unsupervised method, we can classify the clustering techniques on the basis
of the type of algorithm used to divide space:

• 1 Partitioning methods.
A partitioning method first creates an initial set of k partitions, where, pa-
rameter k is the number of partitions to construct. It then uses an iterative
relocation technique that attempts to improve the partitioning by moving ob-
jects from one group to another. These clustering techniques create a one-level
partitioning of the data points.
The best known algorithms in this area are K-means, K-medoids and fuzzy C-
means. The clusters are formed according to the distance between data points
and cluster centers are formed for each cluster. The number of clusters ( k-
value) is specified by the user. The data points in each cluster are displayed
by different colors, one color for one cluster.
K-Means is one of the simplest unsupervised learning algorithms that solves
the well known clustering problem. The procedure follows a simple and easy
way to classify a given data set through a certain number of cluster fixed a
priori.
The main idea is to define k centroids, one for each cluster. These centroids
should be placed in a cunning way because of different location causes different
result. So, the better choice is to place them as much as possible far away from
each other.
The next step is to take each point belonging to a given data set and associate
it to the nearest centroid. When, no point is pending, the first step is completed
and an early group age is done. At this point it is necessary to re-calculate k
new centroids as bar centers of the clusters resulting from the previous step.
After obtaining these k new centroids, a new binding has to be done between
the same data set points and the nearest new centroid.
A loop has been generated. As a result of this loop, one may notice that the k
centroids change their location step by step until no more changes are done. K-
means is a simple algorithm that has been adapted to many problem domains
and it is a good candidate to work for a randomly generated data points.
One of the most popular heuristics for solving the K-means problem is based
on a simple iterative scheme for finding a locally minimal solution.
The basic strategy of K-medoids clustering algorithms is to find k clusters in
n objects by first arbitrarily finding a representative object (the medoids) for
each cluster.
Each remaining object is clustered with the medoid to which it is the most sim-
ilar. K-medoids method uses representative objects as reference points instead
of taking the mean value of the objects in each cluster.
The algorithm takes the input parameter k, the number of clusters to be
partitioned among a set of n objects.
Traditional clustering approaches generate partitions; in a partition, each pat-
tern belongs to one and only one cluster.
Hence, the clusters in a hard clustering are disjoint. Fuzzy clustering extends
this notion to associate each pattern with every cluster using a membership
function.
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The output of such algorithms is a clustering, but not a partition. Fuzzy clus-
tering is a widely applied method for obtaining fuzzy models from data. It has
been applied successfully in various fields including geographical surveying,
finance or marketing.
K-means algorithm is efficient for smaller data sets and K-medoids algorithm
seems to perform better for large data sets.
The performance of Fuzzy clustering is intermediary between them. It produces
close results to K-means clustering, yet it requires more computation time than
K-means because of the fuzzy measures calculations involved in the algorithm.

• 2 Hierarchical methods.
A partitional clustering is a simply a division of the set of data objects into
non-overlapping subsets such that each data object is in exactly one subset.
A hierarchical clustering is a set of nested clusters that are organized as a tree.
Hierarchical clustering algorithm is of two types, Agglomerative Hierarchical
clustering algorithm and Divisive Hierarchical clustering algorithm; both this
algorithm are exactly reverse of each other.
Agglomerative Hierarchical clustering works by grouping the data one by one
on the basis of the nearest distance measure of all the pairwise distance between
the data point. Again distance between the data point is recalculated but
which distance to consider when the groups has been formed. There are many
available methods, some of them are single linkage, complete linkage, average
linkage and centroid distance.
The advantages of this method is no a-priori information about the number
of clusters required and are easy to implement and gives best result in some
cases.
As disadvantages, the algorithm can never undo what was done previously,
time complexity, sensitivity to noise and outliers and breaking large clusters.

• 3 Density-Based.
In density-based clustering, clusters are defined as areas of higher density than
the remainder of the data set. Objects in these sparse areas are usually con-
sidered to be noise and border points.
The most popular density based clustering method is DBSCAN. In contrast to
many newer methods, it features a well-defined cluster model called "density-
reachability". Similar to linkage based clustering, it is based on connecting
points within certain distance thresholds. However, it only connects points
that satisfy a density criterion, in the original variant defined as a minimum
number of other objects within this radius.
A cluster consists of all density-connected objects (which can form a cluster of
an arbitrary shape, in contrast to many other methods) plus all objects that
are within these objects’ range.
Another interesting property of DBSCAN is that its complexity is fairly low
- it requires a linear number of range queries on the database - and that it
will discover essentially the same results (it is deterministic for core and noise
points, but not for border points) in each run, therefore there is no need to
run it multiple times.
Mean-shift is a clustering approach where each object is moved to the densest
area in its vicinity, based on kernel density estimation. Eventually, objects con-
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verge to local maxima of density. Similar to k-means clustering, these "density
attractors" can serve as representatives for the data set, but mean-shift can
detect arbitrary-shaped clusters similar to DBSCAN.
Due to the expensive iterative procedure and density estimation, mean-shift is
usually slower than DBSCAN or k-Means. Besides that, the applicability of the
mean-shift algorithm to multidimensional data is hindered by the unsmooth
behaviour of the kernel density estimate, which results in over-fragmentation
of cluster tails.

A common clustering framework is based on the exploitation of the affinity
matrix of a single subject that indicates the similarity between each pair of fibers:

• Brun et al. [4] present a framework for unsupervised segmentation of white
matter fiber traces obtained from diffusion weighted MRI data.
Fibers are compared pairwise to create a weighted undirected graph which is
partitioned into coherent sets using the normalized cut criterion. The points to
be clustered are represented by a undirected graph, where the nodes correspond
to the points to be clustered and each edge represent the similarity between
points. The cut is a graph theoretical concept which for a partition of the
nodes into two disjunct sets.

• O’Donnell et al. [55] use the eigenvectors of the similarity matrix. An eigen-
vector is a vector that when multiplied by the matrix, still points in the same
direction.
The authors used the top eigenvectors of the fiber similarity matrix to calculate
the most important shape similarity information for each fiber path while
removing noise. For each fiber path, this information could be visualized as a
point, to show the separation of clusters according to similarity.

• Zhang et al. [75] used the agglomerative hierarchical clustering method and
defined the distance between two clusters as the minimum proximity value
between any two curves from two clusters.

A limitation common to all algorithms based on affinity matrix is their propensity
to suffer from computational load owing to the calculation of pairwise distances
between streamlines.

Approaches to reduce computational complexity have been proposed like:

• Quick Bundles (QB) [23]. This method overcomes the complexity of these large
data sets and provides informative clusters in seconds.
Each cluster can be represented by a single centroid streamline, collectively
these centroid streamlines can be taken as an effective representation of the
tractography. QB is a surprisingly simple and fast algorithm which can reduce
tractography representation to an accessible structure in a time that is linear
in the number of streamlines.
The streamlines, are a fixed-length ordered sequence of points.

• Demir et al. [21] adopt the scenario of clustering data streams into the fiber
clustering framework.
Existing clustering methods often suffer from the burden of computing pairwise
fiber (dis)similarities, which escalates quadratically as the number of fiber
pathways increases. To address this challenge, the authors propose to use an
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online hierarchical clustering method, which yields a framework similar to
doing clustering while simultaneously performing tractography.

• Ros et al. [60] uses a hierarchical cluster analysis approach that exploits the
inherent redundancy in large datasets to time-efficiently group fiber tracts.
Structural information of a white matter atlas can be incorporated into the
clustering to achieve an anatomically correct and reproducible grouping of
fiber tracts.
This approach facilitates not only the identification of the bundles correspond-
ing to the classes of the atlas; it also enables the extraction of bundles that
are not present in the atlas.

• In Guevara et al. [25], the authors describe a sequence of algorithms performing
a robust hierarchical clustering that can deal with millions of diffusion-based
tracts. The end result is a set of a few thousand homogeneous bundles. This
simplified representation of white matter that can be used further for group
analysis.
The bundles can also be labelled using ROI-based strategies in order to perform
bundle oriented morphometry.

The methods described above, have been proposals to automatically estimate the
number of cluster from the dataset. However, the results of this approach are
strongly conditioned by the number of hierarchical steps and several input param-
eters are required to carry out a comprehensive map of white matter bundles.

2.3 Validation

Clinical applications of diffusion MR fibre tractography tend to be more concerned
with the anatomical trajectory of the fibres rather than structural or functional
connectivity, i.e. to determine the exact spatial location of white matter pathways
in the human brain.

For clinical application it is therefore not only important to validate what white
matter pathways connect to what brain region, but also validate their exact course
through the brain. In following, we will discuss of methods available for validation
of the precise anatomical trajectory of diffusion MR fibre tractography and we
address their benefits and drawbacks.

One more challenges still remaining in validating tractography is defining a
proper evaluation metric for comparing the tractography results with the estab-
lished ground truth. Fibre tractography in its current state is inherently limited
by the spatial resolution of MRI and noise.

Tractography results are therefore unlikely to exactly coincide with the true
anatomy. If we want to compare the performance of fibre tractography algorithms,
we not only need to establish a ground truth, but also require a metric to compare
the performance. A common metric in image analysis with respect to segmentation
is the use of volume overlap to determine how well two segmentations coincide.

One common approach to validating the accuracy and performance of clinical
scanners of any kind is the use of physical phantoms.

Two distinct classes of physical phantoms are available.
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The first class of phantoms are the phantoms constructed from artificial fibrous
materials such a polymer or yarn.

The second class of phantoms are the biological tissue samples. Phantoms are
constructed from materials with known properties and modelled in such a way
it represents the part of the body of interest. Finding the right materials and
constructing a descent model are the major challenges for physical phantoms. The
phantoms tend to be overly simplistic compared to the complex structure of the
brain, although an attempt has been made to create a semi-realistic phantom for
use in the FiberCup competition.

This semi-realistic phantom contains all forms of white matter tracts that are
common to the human brain. Another limitation to physical phantoms is that it
can be difficult to select the right material to match properties of white matter.
Therefore any polymer material would face the same limitations; this limitation
has been overcome by using biological tissue. Another validation technique that
belongs to the phantom class is software models. Based on the models on white
matter structures from neuroanatomy that are available in large-scale brain maps
and atlases, artificial diffusion-weighted MR images can be synthesised. The main
advantage of software simulations is that any shape imaginable can be modelled
using synthetic tensor fields.

Moreover, the imaging parameters can be set to any preferred value and the ex-
act position of the tracts in known with high-precision. No other class of phantoms
or validation technique allows this much control over the parameters. Additional
benefits are achieved when comparing the derived results with the ground truth
as no registration of the two images is requires since they operate within the same
coordinate space.

A disadvantage of this technique is that generation of a realistic model is com-
putationally intensive.

2.3.1 Clastering Results Validation

The problem of evaluating models in unsupervised settings is notoriously difficult;
evaluating the performance of a clustering algorithm is not as trivial as count-
ing the number of errors or the precision and recall of a supervised classification
algorithm.

In particular any evaluation metric should not take the absolute values of the
cluster labels into account but rather if this clustering defines separations of the
data similar to some ground truth set of classes or satisfying some assumption such
that members belong to the same class are more similar that members of different
classes according to some similarity metric.

The process of clustering validation that we utilizing for our datasets is sum-
marize in Figure(2.4). We considering the final result of tractography algorithm,
then the bundles fibers; these fibers are extracted by expert clinician and utilized it
as ground truth. Cluster of these fibers is formed by with two ingredients, the first
is the measure of similarity between them, the second the clustering algorithm.
This step produce a classification of all fibers where their evaluation is generating
by studying of index of measures of cluster.

For clustering metric validation, there is one set of standard criteria, given the
knowledge of the ground truth:
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Fig. 2.4: Tractography results
Scheme of clustering validation.

• The Adjusted Rand Index (ARI) computes a similarity measure between two
clusterings by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and true clusterings.
If C is a ground truth class assignment and K the clustering, let us define a
and b as:
– a, the number of pairs of elements that are in the same set in C and in

the same set in K
– b, the number of pairs of elements that are in different sets in C and in
different sets in K

The raw (unadjusted) Rand index is then given by:

RI =
a+ b

C
nsamples

2

(2.11)

Where Cnsamples

2 is the total number of possible pairs in the dataset (without
ordering).
Advantages:
– random (uniform) label assignments have a ARI score close to 0.0 for any
value of nclusters and nsamples

– bounded range [−1, 1]: negative values are bad (independent labelings),
similar clusterings have a positive ARI, 1.0 is the perfect match score

– no assumption is made on the cluster structure: can be used to compare
clustering algorithms such as k-means
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• Mutual Information is a function that measures the agreement of the two
assignments, ignoring permutations.
Two different normalized versions of this measure are available, Normalized
Mutual Information(NMI) and Adjusted Mutual Information(AMI).
Assume two label assignments (of the sameN objects), U and V . Their entropy
is the amount of uncertainty for a partition set, defined by:

H(U) = −
∑

i = 1|U |P (i)log(P (i)) (2.12)

where P (i) = |Ui|/N is the probability that an object picked at random from
U falls into class Ui. Likewise for V :

H(V ) = −
∑

j = 1|V |P
′
(j)log(P

′
(j)) (2.13)

with P
′
(j) = |Vj |/N . The mutual information (MI) between U and V is

calculated by:

MI(U, V ) =
∑

i = 1|U |
∑

j = 1|V |P (i, j)log(
P (i, j)

P (i)P ′(j)
) (2.14)

where P (i, j) = |Ui∪Vj |/N is the probability that an object picked at random
falls into both classes Ui and Vj . It also can be expressed in set cardinality
formulation:

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log

(
N |Ui ∩ Vj |
|Ui||Vj |

)
(2.15)

The normalized mutual information is defined as

NMI(U, V ) =
MI(U, V )√
H(U)H(V )

(2.16)

This value of the mutual information and also the normalized variant is not
adjusted for chance and will tend to increase as the number of different labels
(clusters) increases, regardless of the actual amount of mutual information
between the label assignments.
Advantages:
– random (uniform) label assignments have a AMI score close to 0.0 for
any value of nclusters and nsamples (which is not the case for raw Mutual
Information or the V-measure for instance)

– bounded range [0, 1]: Values close to zero indicate two label assignments
that are largely independent, while values close to one indicate significant
agreement.
Further, values of exactly 0 indicate purely independent label assignments
and a AMI of exactly 1 indicates that the two label assignments are equal

– no assumption is made on the cluster structure: can be used to compare
clustering algorithms such as k-means

• Given the knowledge of the ground truth class assignments of the samples, it
is possible to define some intuitive metric using conditional entropy analysis:
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– homogeneity: each cluster contains only members of a single class
– completeness: all members of a given class are assigned to the same cluster

Homogeneity and completeness scores are formally given by:

h = 1− H(C|K)

H(C)
(2.17)

c = 1− H(K|C)

H(K)
(2.18)

where H(C|K) is the conditional entropy of the classes given the cluster as-
signments and is given by:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)
(2.19)

and H(C) is the entropy of the classes and is given by:

H(C) = −
|C|∑
c=1

nc
n
· log

(nc
n

)
(2.20)

with n the total number of samples, nc and nk the number of samples respec-
tively belonging to class c and cluster k, and finally nc,k the number of samples
from class c assigned to cluster k.
The conditional entropy of clusters given class H(K|C) and the entropy of
clusters H(K) are defined in a symmetric manner.
Rosenberg and Hirschberg further define V-measure as the harmonic mean of
homogeneity and completeness:

v = 2 · h · c
h+ c

(2.21)

Advantages:
– bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score
– intuitive interpretation: clustering with bad V-measure can be qualitatively
analyzed in terms of homogeneity and completeness to better feel what
k̈indöf mistakes is done by the assignment

– no assumption is made on the cluster structure: can be used to compare
clustering algorithms such as k-means

• The Fowlkes-Mallows index can be used when the ground truth class assign-
ments of the samples is known.
The Fowlkes-Mallows score FMI is defined as the geometric mean of the pair-
wise precision and recall:

FMI =
TP√

(TP + FP)(TP + FN)
(2.22)

Where TP is the number of True Positive (i.e. the number of pair of points
that belong to the same clusters in both the true labels and the predicted
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labels), FP is the number of False Positive (i.e. the number of pair of points
that belong to the same clusters in the true labels and not in the predicted
labels) and FN is the number of False Negative (i.e the number of pair of
points that belongs in the same clusters in the predicted labels and not in the
true labels).
Advantages:
– random (uniform) label assignments have a FMI score close to 0.0 for
any value of nclusters and nsamples (which is not the case for raw Mutual
Information or the V-measure for instance)

– bounded range [0, 1]: Values close to zero indicate two label assignments
that are largely independent, while values close to one indicate significant
agreement. Further, values of exactly 0 indicate purely independent label
assignments and a AMI of exactly 1 indicates that the two label assign-
ments are equal (with or without permutation)

– no assumption is made on the cluster structure: can be used to compare
clustering algorithms such as k-means

• Silhouette Coefficient: measures how close a fiber is to its own cluster in com-
parison to the rest of the clusters, i.e. whether there is another cluster that
might represent it better or as well. Silhouette analysis can be used to study the
separation distance between the resulting clusters. The silhouette plot displays
a measure of how close each point in one cluster is to points in the neighboring
clusters and thus provides a way to assess parameters like number of clusters
visually.
This measure has a range of [-1, 1]. Silhouette coefficients (as these values
are referred to as) near +1 indicate that the sample is far away from the
neighboring clusters.
A value of 0 indicates that the sample is on or very close to the decision
boundary between two neighboring clusters and negative values indicate that
those samples might have been assigned to the wrong cluster. If the ground
truth labels are not known, evaluation must be performed using the model
itself.
The Silhouette Coefficient is defined for each sample and is composed of two
scores:
– a: The mean distance between a sample and all other points in the same
class.

– b: The mean distance between a sample and all other points in the next
nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)
(2.23)

Advantages:
– the score is bounded between −1 for incorrect clustering and +1 for highly
dense clustering. Scores around zero indicate overlapping clusters

– the score is higher when clusters are dense and well separated, which relates
to a standard concept of a cluster
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• If the ground truth labels are not known, the Calinski-Harabaz index can be
used to evaluate the model, where a higher Calinski-Harabaz score relates
to a model with better defined clusters. For k clusters, the Calinski-Harabaz
score s is given as the ratio of the between-clusters dispersion mean and the
within-cluster dispersion:

s(k) =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(2.24)

where BK is the between group dispersion matrix andWK is the within-cluster
dispersion matrix defined by:

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T (2.25)

Bk =
∑
q

nq(cq − c)(cq − c)T (2.26)

with N be the number of points in our data, Cq be the set of points in cluster
q, cq be the center of cluster q, c be the center of E, nq be the number of points
in cluster q.
Advantages:
– the score is higher when clusters are dense and well separated, which relates
to a standard concept of a cluster

– the score is fast to compute

2.4 Conclusions

The study carried out in this project aims to perform a pre-processing function
of images and a support function to a clinical context. To pursue these goals, it
is necessary to study how fibers are located within the brain and to study their
shapes.

Understanding the geometric organization of fibers that make up the bundles
within the brain is a well-studied task in neuroscience. Over the years, many
methods for calculating the distance between fibers have been proposed, suitably
inserted into clustering algorithms. Through our research, we want to compare all
these different possibilities both at the results and at the computational levels. The
objectives of this work are referred to the two main contexts of the application.

The first context is the preoperative phase, that is to provide the neurosurgeon
with a simpler visualization of the fibers defining the anatomical bundles within the
brain. This simplification is very important because the tractography algorithms
produce a dataset consisting of a large number of fibers. Facilitating the phase of
analysis for the neurosurgeon can lead to a benefit in the operative phase.

The operative phase is part of the second context of application; here it is
important to assist the surgeon in tumour resection. Analyzing how the anatomical
bundles are clustered and understanding which fibers are similar to each other,
allow surgeons to identify by how many fibers have been deformed the presence of
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a tumour mass. The main contribution of this thesis is to provide neurosurgeons
with new analytical tools that, together with the physician anatomical background,
can provide a good framework for a new and effective pre-processing image and
guideline method for the intervention. With respect to the state of the art, we
have already highlighted the limits of the known similarity metrics. With our
metric we show that considering together the concept of distance and shape to
classify the fibers leads to improvements in the cluster phase. These improvements
are directly visible in the pre-operative phase, as a metric providing a good cluster
gives the neurosurgeon the opportunity to perform a more accurate analysis of the
intervention. Even though we know that technology does not replace the surgeon’s
knowledge, we think that a good system of analysis to understand how to plan
an intervention or to figure out whether an instrument is at an operational stage
can have a positive impact on the patient. A positive impact on the safeguard of
key functions such as word or movement, which are at risk during neurosurgery
because often the tumor mass is masked by the fibers that make up the beam.
Studying well the shape of the fibers and the features that cluster them brings a
lower stress to the surgeon because he knows a priori the most important parts on
which to concentrate.

For tractography results we analyze two types of datasets, online dataset and
clinical dataset. For both, we apply some of metrics of (di)similarity know in
literature and some cluster algorithms. For clustering metric validation, there is
one set of standard criteria, given the knowledge of the ground truth; this criteria
are indices that measure the level of performance of algorithms for brain fibers
classification.
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Mathematical Background

We present, below, the key mathematical arguments studied as a basis for our new
similarity metric.

In section 3.1 we give a brief introduction explaining the metric spaces and the
proprieties needed to talk about distance and the proprieties that must be satisfied
for define a new metric of distance. Furthermore, the importance of similarity
measures in the context of fibers clustering will be explained

In section 3.2 we introduce the concept of differential geometry of curve, for
planar case and for three dimensional case. For the differential geometry of curves
in the plane an essential tool is the complex structure of R2; we introduce a new
concept of similarity between fibers as a complex number, where the Real com-
ponent composed by Euclidean distance and Imaginary component, composed by
angular difference. Considering the fibers of the brain as a set of points that pro-
vide generic curves, we see the limits of study in the case of fiber analysis in two
dimensional space and then we analyze the behavior of the curves in 3D space; it
is the space in which we make our analysis.

In section 3.3 we talk about the concept of correlation and its proprieties.
Specifically we will talk about cross-correlation, the function used to classify fibers
with our method.

3.1 Metric Space

A metric space [14], [62] is a set X equipped with a function d of two variables
which measures the distance between points: d(x, y) is the distance between two
points x and y in X.

3.1.1 Metrics

A metrics on a set is a function that satisfies the minimal properties we might
expect of a distance.

Definition 3.1. A metric d on a set X is a function

d : X ×X → R such that for all x,y ∈ X:
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d(x, y) ≥ 0 (non negativity) (3.1)

d(x, y) = 0 if and only if x = y (identity of indiscernibles) (3.2)

d(x, y) = d(y, x) (symmetry); (3.3)

d(x, y) ≤ d(x, z) + d(z, x) (triangle inequality). (3.4)

A metric space (X, d) is a set X with a metrics d defined on X.

The first condition follows from the other three. Since for any x, y ∈ X:

d(x, y) + d(y, x) ≥ d(x, x) by triangle inequality (3.5)

d(x, y) + d(x, y) ≥ d(x, x) by simmetry (3.6)

2d(x, y) ≥ 0 by identiy of indiscernibles (3.7)

d(x, y) ≥ 0 we have non-negativity (3.8)

where, function d is also called distance function.

• 1. Define: R× R→ R by

d(x, y) = |x− y| (3.9)

Then d is a metric on R. Nearly all the concepts we discuss for metric spaces are
natural generalizations of the corresponding concepts for R with this absolute-
value metrics.

• 2. Define d : R2 × R2 → R by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 x = (x1, x2), y = (y1, y2) (3.10)

Then d is a metrics on R2, called the Euclidean. It corresponds to the usual
notion of distance between points in the plane.

• 3. The Euclidean metric d : Rn × Rn → R on Rn is defined by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...(xn − yn)2 (3.11)
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where

x = (x1, x2, ..., xn) y = (y1, y2, ..., yn) (3.12)

For n = 1 this metrics reduces to the absolute-value metrics on R, and for
n = 2 it is the previous example.

• 4. Define d : R2 × R2 → R by

d(x, y) = max(|x1 − y1|+ |x2 − y2|) x = (x1, x2), y = (y1, y2) (3.13)

Then d is a metric on R2, called maximum metric.

• 5. Let C(K) denote the set of continuous functions f : K → R, where K ⊂ R
is compact; for example, we could take K = [a, b] to be a closed, bounded
interval. For f, g ∈ C(K) define

d(f, g) = supx∈K |f(x)− g(x)| (3.14)

The function d : C(K)×C(K)→ R is well-defined, since a continuous function
on a compact set is bounded; in fact, such a function attains it maximum value,
so we could also write

d(f, g) = maxx∈K |f(x)− g(x)| (3.15)

Then d is a metrics on C(K). Two functions are close with respect to this
metrics if their values are close at every point of K.

Subspaces of a metric space (X, d) are subsets A ⊂ X with the metrics dA
obtained by restricting the metrics d on X toA.

Definition 3.2. Let (X, d) be a metric space. A sub space (A, dA) of (X, d) consists
of a subset A ⊂ X whose metrics dA : A× A → R is is the restriction of d to A;
that is, dA(x, y) = d(x, y) for all x, y ∈ A.

In general, there are no algebraic operations defined on a metric space, only a
distance function. Most of the spaces that arise in analysis are vector, or linear,
spaces, and the metrics on them are usually derived from a norm, which gives the
length of a vector.

Definition 3.3. A normed vector space (X, || · ||) is a vector space X, assumed to
be real, together with a function || · || : X → R, called a norm on X, such that for
all x, y ∈ X and k ∈ R:
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0 ≤ ||x|| < inf and ||x|| = 0 if and only if x = 0 (3.16)

||kx|| = |k|||x|| (3.17)

||x+ y|| ≤ ||x||+ ||y|| (3.18)

Proposition 3.4. If (X, || · ||) is a normed vector space X, then d : X ×X → R
defined by d(x, y) = ||x− y|| is a metrics on X.

Ametrics associated to a norm has the additional properties that for all x, y, z ∈
X and k ∈ R

d(x+ z, y + z) = d(x, y), d(kx, ky) = |k|d(x, y), (3.19)

which are called translation invariance and homogeneity, respectively. These prop-
erties do not even make sense in a general metric space since we cannot add points
or multiply them by scalars.

If X is a normed vector space, we always use the metrics associated to its norm,
unless stated specifically otherwise.

• The set of real numbers R with the absolute-value norm |·| is a one-dimensional
normed vector space.

• The set R2 with any of the norms defined for x = (x1, x2) by

||x||1 = |x1|+ |x2|, ||x||2 =
√
x21 + x22, ||x||inf = max(|x1|, (|x2|)

(3.20)

is a two-dimensional normed vector space.
• The set Rn with the lp − norm defined for x = (x1, x2, ..., xn) and 1 ≤ p < inf

by

||x||p = (|x1|p + |x2|p + ...+ |xn|p)1/p (3.21)

and for p = inf by

||x||inf = max(|x1|+ |x2|+ ...+ |xn|p) (3.22)

is an n−dimensional normed vector space for every 1 ≤ p ≤ inf. The Euclidean
case p = 2 is distinguished by the fact that the norm || · ||2 is derived from an
inner product on Rn:
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||x||2 =
√
〈x, x〉, 〈x, y〉 =

∑
ni = 1xiyi (3.23)

The triangle inequality for the lp − norm is called Minkowski’s inequality.
• Let K ⊂ R be compact. Then the space C(K) of continuous functions f : K →
R with the sup-norm || · || : C(K)→ R, defined by

||f || = supx∈K |f(x)| (3.24)

is a normed vector space.

A sequence xn in a set X is a function f : N→ X, where we write xn = f(n)
for the nth term in the sequence.

Definition 3.5. Let (X, d) be a metric space. A sequence (xn) in X converges to
x ∈ X, written xn → x as n→ infor

lim
n→inf

xn = x, (3.25)

if for every ε > 0 there exists N ⊂ N such that

n > N implies that d(xn, x) < ε (3.26)

That is, xn → x if d(xn, x)→ 0 as n→ inf. Equivalently, xn → x as n→ inf if for
every neighborhood U of x there exists N ∈ N such that xn ∈ U for all n > N .

• Let K ⊂ R be compact. A sequence of continuous functions (fn) in C(K)
converges to f ∈ C(K) with respect to the sup-norm if and only if fn → f as
n→ inf uniformly on K.

We define closed sets in terms of sequences in the same way as for R.

Definition 3.6. A subset F ⊂ X of a metric space X is sequentially closed if the
limit every convergent sequence (xn) in F belongs to F .

Explicitly, this means that if (xn) is a sequence of points xn ∈ F and xn → x as
n→ inf in X, then x ∈ F . A subset of a metric space is sequentially closed if and
only if it is closed.

• Let F ⊂ C(K) be the set of continuous functions f : K → R such that
|f(x)| ≤ 1 for all x ∈ K. Then F is a closed subset of C(K).

We can also give a sequential definition of compactness, which generalizes the
Bolzano-Weierstrass property.

Definition 3.7. A subset K ⊂ X of a metric space X is sequentially compact if
every sequence in K has a convergent subsequence whose limit belongs to K.
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Explicitly, this means that if (xn) is a sequence of points xn ∈ K then there is a
subsequence (xnk

) such that xnk
→ x as k → inf, and x ∈ K.

Theorem 3.8. A subset of a metric space is sequentially compact if and only if it
is compact.

We can also define Cauchy sequences in a metric space.

Definition 3.9. Let (X, d) be a metric space. A sequence (xn) in X is a Cauchy
sequence for every ε > 0 there exists N ∈ N such that m,n > N implies that
d(xm, xn) < ε.

Completeness of a metric space is defined using the Cauchy condition.

Definition 3.10. A metric space is complete if every Cauchy sequence converges.

For R, completeness is equivalent to the existence of supreme, but general metric
spaces are not ordered so this property does not apply to them.

3.1.2 Similarity Metric and Clustering problem

From the scientific and mathematical point of view, distance is defined as a quan-
titative degree of how far apart two objects are. Synonyms for distance include
dissimilarity. Those distance measures satisfying the metric properties are simply
called metrics while other non-metric distance measures are occasionally called di-
vergence [13]. Synonyms for similarity include proximity, and similarity measures
are often called similarity coefficients.

The similarity measure is the measure of how much alike two data objects are.
Similarity measure in a data mining context is a distance with dimensions repre-
senting features of the objects. If this distance is small, it will be the high degree
of similarity where large distance will be the low degree of similarity [73]. The
similarity is subjective and is highly dependent on the domain and application.
For example, two fruits are similar because of color or size or taste. Care should
be taken when calculating distance across dimensions/features that are unrelated.
The relative values of each element must be normalized, or one feature could end
up dominating the distance calculation. Similarity are measured in the range 0 to
1. Similarity is 1 if X = Y , is 0 otherwise.

The input to a clustering problem is a finite nonempty set P together with
finitely many attributes, or a dissimilarity coefficient (DC). The goal of a clustering
algorithm is to produce some sort of nested sequence of classifications of P . Most
(though not all) algorithms proceed by first constructing a DC, and then using
the DC to produce the classifications. Our efforts will largely lie with that part
of the procedure that goes from a DC to the output classifications. First we need
some definitions. We agree to let [0,∞) denote the nonnegative real numbers, and∑

: (P ) the set of reflexive, symmetric relations on P , ordered by inclusion.

Definition 3.11. A dissimilarity coefficient (DC) is a mapping d : P×P → [0,∞)
that satisfies:



3.1 Metric Space 39

d(x, x) = 0 for all x ∈ P (3.27)

d(x, y) = d(y, x) for all x,y ∈ P (3.28)

it is called an ultrametric if it also satisfies:

d(x, y) ≤ max{d(x, z), d(y, z)} for all x,y,z ∈ P (3.29)

Definition 3.12. A numerically stratified clustering (NSC) is a mapping C :
[0,∞) 7→

∑
(P )

that satisfies:

h ≤ k implies C(h) ⊆ C(k) (3.30)

there exists h ≥ 0 such that C(h) = P × P (3.31)

corresponding to any h ≥ 0,

there is a number δ = δ(h) > 0 such that C(h) = C(h+δ) (continuity from the right)
(3.32)

if C(h) is an equivalence relation for every h ∈ [0,∞), thenC is called a dendrogram
(3.33)

It will be convenient to let D(P ) denote the set of dissimilarity coefficients on
P , and NSC(P ) the set of numerically stratified clusterings. D(P ) is ordered by
the rule d1 ≤ d2 if and only if d1(x, y) ≤ d2(x, y) for all x, y ∈ P , and NSC(P ) is
ordered in the analogous manner.

A cluster algorithm can then be thought of as a transformation from D(P ) into
NSC(P ), where the output is usually a dendrogram.

Theorem 3.13. (i) corresponding to each DC d there is an NSC Td given by

Td(h) = {(x, y) : d(x, y) ≤ h} (h ≥ 0) (3.34)

(ii) corresponding to each NSC C, there is a DC dC given by

dC(x, y) = min{h ∈ [0,∞) : (x, y) ∈ C(h)} (x, y ∈ P ) (3.35)

(iii) the correspondence d 7→ Td is a bijection between D(P ) and NSC(P )
whose inverse is the mapping C 7→ dC

(iv) the DC d is an ultrametric if and only if Td is a dendrogram
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3.2 Curves

The differential geometry of curves and surfaces has two aspects. One, which may
be called classical differential geometry [68], [70], [65], started with the beginnings
of calculus. The classical differential geometry analyzes the local properties of the
curves and surfaces by using methods based on differential calculus. Thus, curves
and surfaces are defined by functions that can be differentiated a certain number
of times. As classical differential geometry represents mostly the study of surfaces,
the local properties of curves are an important part of this, since they appear
naturally while studying surfaces.

The other aspect is the so-called global differential geometry [11]. The global
differential geometry on the other hand, studies the influence of the local properties
on the behavior on the entire curve or surface, on contrary to the classical geometry
that studies the local properties that depend only on the behavior of the curve
or surface in the neighborhood of a point. The local properties correspond to the
characteristics of the object in the neighborhood of a point on the object such as
the curvature of a curve at the point, while the global properties correspond to
the characteristics of the object on a large scale and over extended parts of the
object such as the number of stationary points of a curve.

Another classification of the properties of curves, which is based on their re-
lation to the embedding external space which they reside in, may be made where
the properties are divided into intrinsic and extrinsic.

The first category corresponds to those properties which are independent in
their existence and definition from the ambient space which embraces the object
such as the distance along a given curve or the Gaussian curvature; the second
category is related to those properties which depend in their existence and defini-
tion on the external embedding space such as having a normal vector at a point
on the curve.

The intrinsic properties are defined and expressed in terms of the metric tensor
which is formulated in differential geometry as the first fundamental form while the
extrinsic properties are expressed in terms of the surface curvature tensor which
is formulated in differential geometry as the second fundamental form.

3.2.1 Curves in the plane.

Properties of Euclidean space.

Definition 3.14. Euclidean n-space Rn consists of the set of all real n-tuples:

Rn = {(p1, ..., pn)|pj is a real number for j = 1, ..., n} (3.36)

The elements of Rn are called vectors.

Rn is an n-dimensional vector space; this means that the operations of addition
and scalar multiplication are defined. Thus if:
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p = (p1, ..., pn) and q = (q1, ..., qn), (3.37)

then p+ q is the element of Rn given by

p+ q = (p1 + q1, ..., pn + qn). (3.38)

Similarly, for λ ∈ R the vector λp is defined by

λp = (λp1, ..., λpn). (3.39)

The dot product of Rn, ·, is an operation that assigns to each pair of vectors
p = (p1, ..., pn) and q = (q1, ..., qn) the real number

p · q =

n∑
j=1

pjqj . (3.40)

The norm and distance functions of Rn are defined by

||p|| = √p · q (3.41)

distance(p, q) = ||p− q|| (3.42)

for p, q ∈ Rn. These functions have the following properties:

p · q = q · p, (p+ r) · q = p · q + r · q, (3.43)

(λp) · q = λ(p · q) = p · (λq), ||λp|| = |λ|||p||, (3.44)

for λ ∈ R and p, q, r ∈ Rn. The Cauchy-Schwarz and triangle inequalities state
that for all p, q ∈ Rn we have

|p · q| ≤ ||p||||q|| and ||p+ q|| ≤ ||p||+ ||q||. (3.45)

The angle θ between nonzero vectors p, q ∈ Rn, is defined by the conditions:
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cosθ =
p · q
||p||||q||

, 0 ≤ θ ≤ pi. (3.46)

The Cauchy-Schwarz inequality implies that

− 1 ≤ p · q
||p||||q||

≤ 1 (3.47)

for nonzero p, q ∈ Rn.
A linear map of Rn into Rn is a function A : Rn → Rm such that

A(λp+ µq) = λAp+ µAq (3.48)

for λ, µ ∈ R and p, q ∈ Rn.
For the differential geometry of curves in the plane an essential tool is the

complex structure of R2; it is the linear map J : R2 → R2 given by

J(p1, p2) = (−p2, p1). (3.49)

It is easy to show that the complex structure J has the following properties:

J2 = −I (3.50)

(Jp)(Jq) = p · q (3.51)

(Jp) · p = 0 (3.52)

for p, q ∈ R2, where I : R2 → R2 is the identity linear map. It is possible to use
the complex structure J of R2 to define the signed curvature of a plane curve.

A point in the plane R2 can be considered a complex number via the canonical
isomorphism

p = (p1, p2)←→ p1 + ip2 = <(p) + i=(p), (3.53)

where <(p) and =(p) denote the real and imaginary parts of p. We shall need
descriptions of the dot product · and the complex structure J in terms of com-
plex numbers. Recall that the complex conjugate and absolute value of a complex
number p are defined by
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p̄ = <(p)− i=(p) and |p| = √pp̄ (3.54)

Lemma 3.15. Identify the plane R2 with the set of complex numbers C, and let
p, q ∈ R2 = C. Then

Jp = ip, |p| = ||q|| and pq̄ = p · q + i(p · Jq) (3.55)

The angle between vectors in Rn does not distinguish between the order of the
vectors, but there is a refined notion of angle between vectors in R2 that makes this
distinction.

Lemma 3.16. Let p and q be nonzero vectors in R2. There exists a unique θ with
the following properties:

cosθ =
p · q
||p||||q||

, sinθ =
p · Jq
||p||||q||

, 0 ≤ θ < 2π (3.56)

We call θ the oriented angle from p to q.

Proof. Since (pq̄)/(|p||q|) is a complex number of absolute value 1, it lies on the
unit circle in C; thus there exists a unique θ with 0 ≤ θ < 2π such that

pq̄

|p||q|
= eiθ (3.57)

We find that

p · q + i(p · Jq) = eiθ|p||q| = |p||q|cosθ + i|p||q|sinθ (3.58)

Curves in Rn: the algebraic properties.

Definition 3.17. Let α : (a, b)→ Rn be a function, where (a, b) is an open interval
in R

α(t) = (a1(t), ..., an(t)), (3.59)

with aj ordinary real-valued function of a real variable. The parameter α is differ-
entiable provided aj is differentiable forj = 1, ..., n.

Definition 3.18. A parametrized curve in Rn is a differentiable function
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α : (a, b)→ Rn, (3.60)

where (a, b) is an open interval in R. If I is any other subset of R:

α : I → Rn (3.61)

is a curve provided there is an open interval (a, b) containing I such that α can be
extended as a differentiable function from (a,b) into Rn.

Definition 3.19. Let α : (a, b) → Rn be a curve with α(t) = (a1(t), ..., an(t)).
Then the velocity of α is the function α

′
: (a, b)→ Rn given by:

α
′
(t) = (a

′

1(t), ..., a
′

n(t)) (3.62)

The function v defined by v(t) = ||α′(t)|| is called the speed of α. The acceleration
of α is α

′′
.

Definition 3.20. A curve α : (a, b)→ Rn is said to be regular if it is differentiable
and its velocity is everywhere defined and nonzero. If ||α′(t)|| = 1 for a < t < b,
then α is said to have unit-speed.

One of the most important geometric quantities associated with a curve is its
length.

Definition 3.21. Let α : (a, b) → Rn be a curve. Assume that α is defined on a
slightly larger interval containing (a, b), so that α is defined and differentiable at
a and b. Then the length of α over the interval [a, b] is given by:

length[a, b][α] = length[α] =

∫ b

a

||α
′
(t)||dt (3.63)

The length does not depend on the parametrization of the curve.

Definition 3.22. Fix a number c with a < c < b. The arc length function s
starting at c of a curve α : (a, b))→ Rn is defined by

s(t) =

∫ t

c

||α
′
(u)||du, (3.64)

for c ≤ t ≤ b.

Theorem 3.23. Let α : (a, b) → Rn be a regular curve. Then there exists a unit-
speed reparametrization β of α.
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Proof. By the fundamental theorem of calculus, any arc length function s of α
satisfies:

ds

dt
(t) = s

′
(t) = ||α

′
(t)|| (3.65)

Since α is regular, by definition α
′
(t) is never zero; hence ds/dt is always positive.

Define β by β(s) = α(t(s)). By:

Lemma 3.24. The chain rule for curves. Suppose that β is a reparametrization
of α. Write β = α ◦ h, where h : (c, d)→ (a, b) is differentiable. Then:

β
′
(u) = h

′
(u)α

′
(h(u)) (3.66)

for c < u < d.

then:

β
′
(s) = (dt/ds)α

′
(t(s)) (3.67)

Hence:

||β
′
(s)|| = || dt

ds
α
′
(t(s))|| = dt

ds
||α
′
(t(s))|| = dt

ds
(s)

ds

dt
(t(s)) = 1 (3.68)

The arc length function of any unit-speed curve β : (c, d) → Rn starting at c
satisfies:

s = s(t) =

∫ t

c

||β
′
(u)||du = t− c (3.69)

Thus the function s actually measures length along β. This is the reason why
unit-speed curves are said to be parametrized by arc length.

Vector Fields along Curves

Definition 3.25. Let α : (a, b) → Rn be a curve. A vector field along α is a
function Y that assigns to each t with a < t < b a vector Y (t) at the point α(t).
At this beginning stage we shall not distinguish between a vector at α(t) and the
vector parallel to it at the origin. This means a vector field Y along a curve α is
really an n-tuple of functions:

Y (t) = (y1(t), ..., yn(t)) (3.70)
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Thus differentiability of Y means that each of the functions y1, ..., yn is differen-
tiable; If Y is a differentiable vector field along a curve, then the derivative Y

′
is

defined by

Y
′
(t) = (y

′

1(t), ..., y
′

n(t)) (3.71)

Lemma 3.26. Let X and Y be differentiable vector fields along a curve α : (a, b)→
Rn, and let f : (a, b)→ R be differentiable. Then

(i) (fY )
′

= f
′
Y + fY

′

(ii) (X + Y )
′

= X
′
+ Y

′

(iii) (X · Y )
′

= X
′ · Y ′ + Y

′ ·X ′

(iv) (JY )
′

= JY
′

(for n = 2)

Curvature of curves in the plane

Definition 3.27. Let α : (a, b) → R2 be a regular curve. The curvature k[α] of α
is given by the formula:

k[α](t) =
α
′′
(t) · Jα′(t)
||α′(t)||3

(3.72)

The positive function 1/|k[α]| is called the radius of curvature of α.

The curvature can assume both positive and negative values. In many cases k is
called the signed curvature Figure(3.1) in order to distinguish it from the curvature
in 3D space.

Fig. 3.1: Curvature
Definition of curvature with signed.
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Like the function length[α] is a geometric quantity associated with a curve α
and it is independent of the parametrization.

Theorem 3.28. Let α : (a, b)→ R2 be a regular curve, and let β : (c, d)→ R2 be
a reparametrization of α. Write β = α◦h, where h : (c, d)→ (a, b) is differentiable.
Then:

k[β](t) = (sign(h
′
(t)))k[α](h(t)), (3.73)

wherever sign(h
′
(t)) is defined. The curvature of a plane curve is up to sign in-

dependent of the parametrization.

Theorem 3.29. Let α : (a, b)→ R2 be a regular curve.

i) α is part of a straight line if and only if k[α](t) ≡ 0.

ii) α is part of a circle of radius a > 0 if and only if |k[α]|(t) ≡ 1/a.

3.2.2 Curves in Space

The Vector Cross Product on R3

Let us recall the notion of vector cross product on R3.First, let us agree to use the
notiation

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) (3.74)

For a ∈ R3 we can write either a = (a1, a2, a3) or a = a1i+ a2j + a3k.

Definition 3.30. Let a = (a1, a2, a3) and b = (b1, b2, b3) be vectors in R3. Then
the vector cross product of a and b is given by

a× b = det


i j k

a1 a2 a3

b1 b2 b3

The vector cross product on R3 has the following well-known properties:

(i) a× c = −c× a

(ii) (a+ b)× c = a× c+ b× c

(iii) (λa)× c = λ(a× c) = a× (λc)

(iv) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
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(v) ||a× b||2 = ||a||2||b||2 − (a · b)2

(vi) a× (b× c) = (a · c)b− (a · b)c

(vii) (a× b) · c = a · (b× c)

for λ ∈ R and a, b, c, d ∈ R3. For a, b, c ∈ R3 we define the vector triple product
(abc) by

(abc) = det


a

b

c

=det


a1 a2 a3

b1 b2 b3

c1 c2 c3

where a = (a1, a2, a3) and so forth. The vector triple product is related to the dot
product and the cross product by the formulas

(abc) = (a× b) · c = a · (b× c) (3.75)

Finally, we note that

||a× b|| = sinθ||a||||b|| (3.76)

where θ is the positive angle between a and b.

Curvature and Torsion of Curves in R3

The notion of curvature of a unit-speed curve in Rn for general n is defined by:

Definition 3.31. Let β : (c, d)→ Rn be a unit-speed curve. Write

k[β](s) = ||β
′′
(s)|| (3.77)

Then the function k[β] : (c, d)rightarrowR is called the curvature of β.

Curvature measures the failure of a curve to be a straight line. A straight line in
Rn is characterized by the fact that its curvature vanishes.

Lemma 3.32. Let β : (c, d)→ Rn be a unit-speed curve. The following conditions
are equivalent:

(i) k ≡ 0

(ii) β′′ ≡ 0

(iii) β is a straight line.
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Definition 3.33. Let β : (c, d)→ Rn be a unit-speed curve. Then

T = β
′

(3.78)

is called the unit tangent vector field of β.

Lemma 3.34. If F is a vector field of unit length along a curve α : (a, b) → Rn,
then F

′ · F = 0.

Proof.

F (t)Ḟ (t) = 1 (3.79)

for all t. Differentiating, 2F (t) · F ′(t) = 0. cvd

Taking F = T , for Lemma 1.13, T
′ · T = 0.

In the unit-speed curves in R3 the curvature is strictly positive. This implies
that T

′
= β

′′
never vanishes.

Definition 3.35. Let β : (c, d) → R3 be a unit-speed curve with k(s) > 0 for
c < s < d. The vector field:

N =
T
′

k
(3.80)

is called the principal normal vector field and B = T × N is called the binormal
vector field. The triple T,N,B is called the Frenet frame field on β.

This frame forms one of the basic tools for the differential geometry of space
curves.

Theorem 3.36. Let β : (c, d) → R3 be a unit-speed curve with k(s) > 0 for
c < s < d. Then:

i) ||T || = ||N || = ||B|| = 1 and T ·N = N ·B = B · T = 0.

ii) Any vector field F along β can be expanded as:

F = (F · T )T + (F ·N)N + (F ·B)B (3.81)

iii) The Frenet Formulas hold:

T
′

= kN

N
′

= −kT τB

B
′

= τN

(3.82)
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where τ = τ [β] is called the torsion of the curve β.

Definition 3.37. Let α : (a, b) → R3 be a regular curve, and let α̃ : (c, d) → R3

be a unit-speed reparametrization of α. Write α(t) = α̃(s(t)), where s(t) is the arc
length function. Denote by k̃and τ̃ the curvature and torsion of α̃, respectively.
Also, let {T̃ , Ñ , B̃, } be the Frenet frame field of α̃.

Then we define:

k(t) = k̃(s(t)), τ(t) = τ̃(s(t), (3.83)

T (t) = T̃ (s(t)), N(t) = Ñ(s(t)), B(t) = B̃(s(t)) (3.84)

In other words, the curvature, torsion and Frenet frame field of an arbitrary-
speed curve α are reparametrizations of those of a unit-speed parametrization of
α.

Theorem 3.38. Let α : (a, b) → R3 be a regular curve with speed v = ||α′ || = s
′
.

Then the following generalizations of the Frenet formulas hold:

T
′

= vkN

N
′

= −vkT + vτB

B
′

= vτN

(3.85)

Proof. By the chain rule we have:

T
′
(t) = s

′
(t)T̃

′
(s(t)) = v(t)T̃

′
(s(t))

N
′
(t) = s

′
(t)Ñ

′
(s(t)) = v(t)Ñ

′
(s(t))

B
′
(t) = s

′
(t)B̃

′
(s(t)) = v(t)B̃

′
(s(t))

(3.86)

Thus from the Frenet formulas for α̃, it follows that:

T
′

= v(t)k̃(s(t))Ñ(s(t)) = v(t)k(t)N(t) (3.87)

The other two formulas are proved similarly.

Lemma 3.39. The velocity α
′
and acceleration α

′′
of a regular curve α are given

by

α
′

= vT, (3.88)
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α
′′

=
dv

dt
T + v2kN, (3.89)

where v denotes the speed of α.

Proof. Write α(t) = α̃(s(t)), where α̃ is a unit-speed parametrization of α. By the
chain rule we have:

α(t) = α̃(s(t))s
′
(t) = v(t)T̃ (s(t)) = v(t)T (t), (3.90)

α′′ =
dv

dt
T + vT

′
=
dv

dt
T + v2kN (3.91)

Theorem 3.40. Let α : (a, b) → R3 be a regular curve with nonzero curvature.
Then:

T =
α
′

||α′
||,

N =B × T,

B =
α
′ × α′′

||α′ × α′′ ||
,

k =
||α′ × α′′ ||
||α3||

,

τ =
α
′ × α′′ · α′′′

||α′ × α′′ ||2

(3.92)

We have attached three orthonormal vectors T (s), N (s), B(s) to each point
of the curve [52], [63], [12]. These three vectors form a basis of R3, which moves
along the curve. Geometers use the word frame instead of the word basis, so T,N,B
is called the moving frame. Imagine an isolated point traveling along the curve at
constant speed. The moving frame allows us to replace this single point with an
airplane. The nose of the airplane should point along T, the left wing along N,
and the tail along B. As we travel along the curve, the airplane pitches and rolls
as T,N, and B move. At each point, the orientation of the plane is completely
determined by T,N, and B.

Theorem 3.41. (The Fundamental Theorem of Space Curves) Let α and γ be
unit-speed curves in R3 defined on the same interval (a, b), and assume they have
the same torsion and the same positive curvature. Then there is a Euclidean motion
F of R3 that maps α onto γ.
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3.3 Correlation

The examples are vectors in Rn but they represent an arbitrary shift of periodic
time series.

The following notation: y+s refers to the vector y shifted by s positions, where
positions are shifted modulo n. We then use the standard inner product between
shifted examples:

〈x, y+s〉 =

n∑
i=1

xi(y+s)i (3.93)

In the context of time series, computing the cross-correlation corresponds to align-
ing two time series such that their inner product, or similarity, is maximized.

3.3.1 Properties of Cross-Correlation

Cross-Correlation [36], [2] has properties similar to an inner product, and can be
used intuitively as a similarity function:

Theorem 3.42. Cross-Correlation

(i) C(x, x) = 〈x, x〉 ≥ 0

(ii) C(x, y) = C(y, x)

(iii) C(x, y) ≤
√
C(x, x)C(y, y) per ogni x, y The Cauchy-Schwartz Inequal-

ity

(iv) If we use the cross-correlation function to give a distance measure d
such that:

d(x, y)2 = C(x, x) + C(y, y)− 2C(x, y) = mins||x− (y+s)||2

then d satisfies the Triangle Inequality.

Proof. For (i) note that by definition C(x, x) ≥ 〈x, x〉. On the other hand,
C(x, x) =

∑
xixi+s and by the Cauchy-Schwartz inequality:∑
xixi+s ≤

√∑
x2i

√∑
x2i+s =

√∑
x2i
√∑

x2i = 〈x, x〉

which means 〈x, x〉 ≥ C(x, x) ≥ 〈x, x〉 or C(x, x) = 〈x, x〉 ≥ 0
To prove (ii) observe that since 〈x, y+s〉 = 〈x−s, y〉 = 〈x+(n−s), y〉 maximizing

over the shift for y is the same as maximizing over the shift for x.
Let C(x, y) = 〈x, y+s〉 = 〈x, z〉, where s is the shift maximizing the correlation

and where we denote z = y+s.
Then by, (i),

√
C(x, x)C(y, y) =

√
〈x, x〉〈y, y〉 = ||x||||y||.

Therefore the claim is equivalent to ||x||||y|| ≥ 〈x, z〉 and since the norm does
not change under shifting the claim is equivalent to ||x||||z|| ≥ 〈x, z〉 = C(x, y).
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The last inequality holds by the Caucht-Schwartz inequality for normal inner
products.

For (iv), let x, y, z ∈ Rn. Let τab be the shift that minimizes d(a, b).

d(x, y) + d(y, z) = ||(x+τxy
)− y||+ ||(y+τyz

)− z|| (1)

= ||(x+τxy+τxy
)− (y+τyz

)||+ ||(y+τyz
)− z|| (2)

≥ ||(x+τxy+τxy
)− (y+τyz

) + (y+τyz
)− z|| (3)

= ||(x+τxy+τxy
)− z|| (4)

≥ ||(x+τxy
)− z|| = d(x, z) (5)

Where (2) holds because shifting x and y by the same amount does not change
the value of ||x − y||, (3) holds because of the triangle inequality, and (5) holds
because by definition τxz minimizes the distance between x and z.

3.3.2 Autocorrelation

The autocorrelation of X(t), denoted by rXX(t1, t2), is defined as the expected
value of the product of the values of the process at two different time points as
follows:

rXX(t1, t2) = E{X(t1)X∗(t2)} (3.94)
The complex conjugate in the above definition assures that the product becomes
the square of the magnitude of the second moment of X(t) when the two time
points coincide, t1 = t2.

By substituting X(t1)and X∗(t2) into the above definition and expanding it,
we obtain the following expression:

rXX(t1, t2) =E[{Xr(t1) + j ∗Xi(t1)}{Xr(t2)− j ∗Xi(t2)}]
=E[{Xr(t1)Xr(t2) +Xi(t1)Xi(t2)}+ ...

...+j ∗ {Xi(t1)Xr(t2)−Xr(t1)Xi(t2)}]
=E[{Xr(t1)Xr(t2)}+ E{Xi(t1)Xi(t2)}] + ...

...+j ∗ [E{Xi(t1)Xr(t2)} − E{Xr(t1)Xi(t2)}]

(3.95)

The first two expectation operations in the above equation are the autocorrelations
defined by () for the real and imaginary components of X(t). The third and fourth
expectation operations in the above equation are the cross-correlations between
the real and imaginary components of X(t), which will be defined later by ().
The above equation can be written in terms of these autocorrelation and cross-
correlation functions as follows:
rXX(t1, t2) =[rXrXr (t1, t2) + [rXiXi(t1, t2)] + j ∗ [rXiXr (t1, t2) + [rXrXi(t1, t2)]

=rrXX(t1, t2) + j ∗ riXX(t1, t2)
(3.96)

where the superscripts r and i denote the real and imaginary components of
the autocorrelation of X(t):

rXX(t1, t2) =[rXrXr
(t1, t2) + [rXiXi

(t1, t2)] + j ∗ [rXiXr
(t1, t2) + [rXrXi

(t1, t2)]

=rrXX(t1, t2) + j ∗ riXX(t1, t2)
(3.97)
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3.3.3 Cross-correlation

The cross-correlation of X(t) and Y (t) is defined by:

rXY (t1, t2) = E{X(t1)Y ∗(t2)} (3.98)
Expanding the above equation, we obtain the following expression:

rXY (t1, t2) = E[{Xr(t1) + jXi(t1)}{Yr(t2)− jYi(t2)}
= E[{Xr(t1)[{Yr(t2) +Xi(t1)Yi(t12)}+ jXi(t1)Yr(t2)−Xr(t1)Yi(t12)}]
= [E{Xr(t1)Yr(t2)}+ E{Xi(t1)Yi(t2)}] + j[E{Xi(t1)Yr(t2)} − E{Xr(t1)Yi(t2)}]

(3.99)
The four expected values in the above equation are the cross-correlations de-

fined by (1.99) for the real and imaginary components of X(t) and the cross-
correlation becomes the following equation:

rXY (t1, t2) =[rXrYr
(t1, t2) + rXiYi

(t1, t2)] + j[rXiYr
(t1, t2)− rXrYi

(t1, t2)]

=rrXY (t1, t2) + jriXY (t1, t2)
(3.100)

where
rrXY (t1, t2) = rXrYr

(t1, t2) + rXrYr
(t1, t2) (3.101)

riXY (t1, t2) = rXiYr (t1, t2)− rXrYi(t1, t2) (3.102)

rXrYr (t1, t2) =

∫ + inf

− inf

∫ + inf

− inf

xryrfZXY (t1,t
′
1)

(xr, yr, t1, t2)dxrdyr (3.103)

rXrYr
(t1, t2) =

∫ + inf

− inf

∫ + inf

− inf

xiyifZXY (t1,t
′
1)

(xi, yi, t1, t2)dxidyi (3.104)

rXrYr
(t1, t2) =

∫ + inf

− inf

∫ + inf

− inf

xiyrfZXY (t1,t
′
1)

(xi, yr, t1, t2)dxidyr (3.105)

rXrYr (t1, t2) =

∫ + inf

− inf

∫ + inf

− inf

xryifZXY (t1,t
′
1)

(xr, yi, t1, t2)dxrdyi (3.106)

For real X(t) and Y (t), the cross-correlation is obtained by setting:

rXiYi(t1, t2) =

=rXiYr (t1, t2)

=rXrYi(t1, t2)

=0

(3.107)

in (1.100) as follows:
rXY (t1, t2) = rXrYr

(t1, t2) (3.108)
which is determined by (1.103).
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3.4 Conclusions

In this chapter we have seen an overview of the mathematical foundations necessary
in order to understand our method of studying the shape and classification of fibers.
In particular we have described the properties to be verified by our metric and how
similarity metrics (or dissimilarity) are applied to clustering algorithms.

We give a brief introduction explaining the metric spaces and the proprieties
needed to talk about distance. Indeed, for talk about new distance is necessary to
have the respect of to the distance properties. If we considering the fibers of the
brain as a set of points in 3D space, that provide generic curves, we can study
the behavior of fibers by means of differential geometry of curves and analyze the
local and global aspect of them. The curves in the plane are described by intrinsic
parameters that describe the geometry, for this reason the frame of Frénet has been
presented that will be used as the first analysis of the behavior of the fibers. We
have seen the limits of analysis if we consider the fibers in the plane and for this
reason we are oriented towards the study of fibers in the three-dimensional case.
To understand how much our new distance is a good distance, we have introduced
the concept of correlation. The results of correlation is the similarity index that
represents how many pairs of fibers are similar to each other.

In the next chapter we will see in detail how these mathematical aspects have
been used to define the novel similarity metric introduced in this thesis.





4

The NewSimilarity metric

4.1 Introduction

Diffusion Imaging (DI) is a structural Magnetic Resonance Imaging (MRI) tech-
nique, which provides a non-invasive way to explore organization and integrity of
the white matter structures in the human brain. DI information can be used in
surgical planning and in the study of anatomical connectivity, brain changes and
mental disorders.

From DI data, the white matter fiber tract can be reconstructed using a class
of techniques called tractography. The reduced fiber set can be utilized:

• As a pre-processing stage for sophisticated algorithms that cannot deal with
huge number of fibers, for example in atlas construction.

• To ease the computational burden, since the reduced set may be sufficient for
detection of various diseases as long as the deduction is performed efficiently.

• As a tool for comparison since there might be many DI datasets of low reso-
lution taken over the years, and a reduced set may help comparing new, high
resolution acquisitions with the old ones as, for example, when an intra-subject
follow-up is needed.

The notion of simplifying the dataset has been proposed in recent years and
different frameworks have been suggested to address this issue. These frameworks
are usually based on combination of clustering techniques and a distance measure.

In order to perform clustering, first a mathematical definition of fiber similarity
(or, more commonly, fiber distance) must be specified. Then, pairwise fiber distance
is to be calculated and used as input to a clustering algorithm.

The most common measures used for distance only capture the local relation-
ship between streamlines but not the global structure of the fiber. Global structure,
refer to the fiber variability shape. Together, local and global information, may
define a good measure of similarity.

In order to provide such information, we developed a novel framework Fig-
ure(4.1) where both distance and shape information are considered during the
clustering. In the following we summarize the mathematical model of our ap-
proach, we define its main features and we show its effectiveness by analyzing a
test data set
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Fig. 4.1: Framework of our method
Input consists of anatomical bundels. After the fiber geometry informations, with
Frenet Frame, we computed a Shape Fibers Analysis and we obtained fibers as a

complex form with introduction of two new parameters, Difference and Angular Shape.
As the last step in exstracting our new similarity metric, we calculated the correlation

index as an estimation of similarity between the fibers.

4.2 Mathematical Model

After tractography, fibers are extracted from DI images and represented as a set of
streamlines in 3D space. Fiber tracking process starts from a set F of 3D polylines,
each represented by a set of 3D points. To study the geometric organization of brain
fibers, we introduce the following definitions.

Definition 4.1. A fiber is a polyline defined on a sequence of p points in a 3-
dimensional space,
f i = {xi1, ..., xip} with xm ∈ R3, m = 1, ..., p ∈ N, i = 1, ..., n ∈ N.
We refer to a fiber also using the term streamline.

Definition 4.2. Let a curve γ = (a, b) → R3 such as γ(tm) = xm with m =
1, ..., p ∈ N and a < t1 <, ..., < tp < b.
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We consider polylines as curves by parameterizing each polyline with respect to
the arc-length and we use a parametric spline approximation to interpolate the
curves.

Definition 4.3. The set of n different 3D streamlines that belong to the same
anatomical structure is called a track set or bundle

F = {f̃1, ..., f̃n}.

Definition 4.4. A metrics on a set X is a function (called the distance function
or simply distance),
d : X ×X 7→ R, where for all x, y, z ∈ X, the following conditions are satisfied:

• d(x, y) ≥ 0 non-negativity or separation axiom
• d(x, y) = 0⇔ x = y identity of indiscernibles
• d(x, y) = d(y, x) symmetry
• d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

In our case we define a measure of similarity between pairs of fibers, f̃ i(tm) and
f̃ j(tm):

{f̃ i, f̃ j} ∈ F, (4.1)

with i, j = 1, ..., n

i 6= j

m = 1, ..., p

4.2.1 Frenet-Frame

We analyze the fiber shape by means of the Frenet Frame representation of the
curves f̃ , which provides a flexible coordinate system determined by the geometric
features of the curve itself.

A curve in space can be defined by a sequence of points, each representing a
vector from the origin of a global X,Y, Z coordinate system. The first geometrical
information of a curve f̃ is its length defined as:

Lf̃ =

∫ M

0

|| ˙̃
f ||dt, where|| · || is the Euclidean norm in R3. (4.2)

A fundamental result of the differential geometry of curves states that the arc-
length:

s : t 7→ s(t) =

∫ t

0

||u̇||du is an admissible parametrization of curves in F.

(4.3)
A direct consequence of the arc-length parametrization is that the derivative of
the curve is the normalized tangent to the curve at point s, T (s):

˙̃
f(t) = ṡ(t)T (s(t)) (4.4)
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The normalized curve can be completely characterized by introducing the Nor-
mal vector N(s) = T

′
(s)/||T ′(s)||, and the Bi-Normal vector B(s) = T (s)×N(s).

The triplet (T (s), N(s), B(s)) forms the orthonormal Frenet-Serret frame and rep-
resents the local change in geometry of the curve. The shape of the curves can
be retrieved from the evolution of the frame. Using Frenet frame it is possible to
define two parameters intrinsic to the curve, Curvature and Torsion; in case of
brain streamlines the torsion is not relevant since we do not consider the case of a
fiber that go around itself.

The curvature could be a candidate parameter but 3D curvature is always
non-negative whereas the 2D case allows for mixed-sign curvatures. Thus for 2D
curves, the notion of “inflection point" (sign change) makes sense, but it does not
for 3D curves.

Therefore, in the case of brain fibers that are curves in 3D space, analyzing the
curvature allows us to distinguish how many fibers have similar shape. Only this
information does not locate their positions in the anatomical bundle, as previously
stated, we do not have 3D information on the sign and therefore on the bending
direction. After having explained the parameterization that we have used and how
we have created the pairs of points between the fibers, we will show the new
parameters that have allowed us to overcome this problem.

Arc-length Parametrization

For to study the fibers bundles behavior composed by multiple 3d curves, we
utilize a cosine series representation. The coordinates of curves are parameterized
as coefficients of cosine series expansion.

Fourier descriptors have been used, in the past, to model planar curves and to
classify of the shape of fiber tracts. These coefficients are computed by the Fourier
transform that involves the both sine and cosine series expansion. In statistical
and computational methods in brain image analysis, instead of using both the
Fourier coefficients, sine and cosine, to obtain local informations on the shape of
the fibers, it has been used only cosine representation. Unlike traditional splines,
the proposed method does not have internal knots and explicitly represents curves
as a linear combination of cosine basis.

We parameterize the arc-length as a unit interval. The i− th control point in
the fibers tract is mapped between 0 and 1. If we have the following streamline
in 3D space, Figure(4.2), the parameterization of the tract is show in Figure(4.3).
We can see the representation of cosine series at various degrees, Figure(4.4).
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Fig. 4.2: Streamline in 3D space
Generic curve representing a possible brain fiber. Data obtained through the Matlab

software.

Fig. 4.3: Parameterization of the tract
Plots of x,y,z coordinates (axis of the ordinates) of original data and values of
parameterization (axis of the abscissa), that is a number between 0 and 1.



62 4 The NewSimilarity metric

Fig. 4.4: The cosine series representation at various degrees
Blue lines are the original tract, while the black lines are the coordinates of cosine series
representation. Starting from the left, we have the cosine series representation with one
degree, five degree, ten degree and nineteen degree. Increasing the degree also increases

the accuracy of the tract reconstruction.
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Pairs of Points: Dynamic Time Warping

Two fibers may have different lengths and consequently different numbers of points
in space; to quantify similarity between two fibers we use Dynamic Time Warping
(DTW), that is a technique that looks for the optimal alignment of two sequence.

Consider two sequence of points,

A = a1×m, ..., ai×m, ..., ap×m

B = b1×m, ..., bi×m, ..., bp×m

with p×m and q ×m dimension
(4.5)

where p and q refer to length of sequences and m represent the number of
features. Two sequences can be arranged as a p× q matrix of the sides of a grid in
which the distance between every possible combination of time instances ai and bj
is stored. To find the best match between two sequences a path through the grid
that minimizes the over all distance is needed. This path can be efficiently found
using dynamic programming as follows:

d(ai, bj) = dEUC(ai, bj) +min

{ d(ai−1, bj)
d(ai, bj−1)
d(ai−1, bj−1)

(4.6)

where dEUC(ai, bj) is the Euclidean distance between the i− th point of sequence
A and j − th point of sequence B which can be calculated as:

dEUC(ai, bj) =

√√√√ m∑
l=1

(ai,l − bj,l)2 (4.7)

Therefore overall Dynamic Time Warping distance between two sequences is:

DTW (A,B) = d(ap, bq) (4.8)

In general, DTW is a method that calculates an optimal match between two
given sequences with certain restrictions.

In this way, given a set of streamlines formed by a number of ordered points,
we can find the best link between the points of fiber pairs. Ordered points mans
that, with respect to anatomical bundles, we decide that fibers within the same
bundles have the same initial and final point. Subsequently, between each pair of
points, we calculated the parameters which compose our new similarity metric.

In order to also have information on the position and more extensive shape
analysis of the fibers, we introduce the following new parameters for the analysis.

4.3 Method

We introduce a new distance measure between streamlines:
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Definition 4.5. Let s : F × F 7→ C be a function of distance between stream-
lines:

s : (f̃ i(tm), f̃ j(tm)) 7→ (Di,j
m , θi,jm ) (4.9)

for each f̃ i and f̃ j, with {f̃ i, f̃ j} ∈ F

i, j = 1, ..., n i 6= j and m = 1, ..., p

D represents the linear distance between points of two streamlines and θ repre-
sents the angular shape between tangents at corresponding points of two stream-
lines,where:

Definition 4.6. Let {f̃ i, f̃ j} ∈ F the first streamline with a sequence of p
points xm ∈ R3 , and any of the other streamlines with the same number of
points. We compute the Distance (D):

Di,j
m : (f̃ i(tm), f̃ j(tm)) 7→ R

Di,j
m (f̃ i(tm), f̃ j(tm)) = ||xim − xjm|| (4.10)

for m = 1, ..., p

that contains the point-to-point distance between the first and the j-th fiber.

Definition 4.7. Let {f̃ i, f̃ j} ∈ F the first streamline with a sequence of p
points in 3D space , and any of the remaining streamlines with the same num-
ber of points. We compute the Angular Shape (θ):

θi,jm : (f̃ i(tm), f̃ j(tm)) 7→ I

θi,jm (f̃ i(tm), f̃ j(tm)) = cos−1(f̃T
i

xm
· f̃T

j

xm
) (4.11)

where f̃T
i

m is the value at xm of the tangent vector.

To analyze the shape of fibers, we have to introduce the above parameters that
describe the new geometric distance computed, according to Definition 1.5, for
each pair of fibers.

The values of the tangents are obtained from the Frenet frame previously cal-
culated. In order to obtain even spatial information on the fiber pattern, we have
calculated the internal product of the tangents values. The distance between the
fibers is calculated from the standard Euclidean definition. The point coordinates
refer to the coordinates of the data acquisition system, in our case to the magnetic
resonance system.
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For each fiber in the bundle, f̃ ∈ F , the similarity is calculated for each pairs of
points in two different fibers.

4.3.1 Similarity of fibers

Two fibers belong to the same bundle, if they have little distance separating them
and if they have similar shapes. The criterion used to classify fibers is based on
the correlation concept. In signal processing, correlation is a measure of similarity
of two series as a function of the displacement of one relative to the other.

In our case, we have brain fibers with discrete sequences of points in 3D space.
We apply discrete correlation, (f ? g)[n] =

∑+∞
m=−∞ f∗[m]g[m + n], to each pair

of fibers and obtain an index of maximum correlation, utilized for clustering the
fibers. We introduce a new concept of similarity between fibers as a complex num-
ber, where the Real component composed by Euclidean distance and Imaginary
component, composed by angular difference.
For combining this information, we use the polar coordinate reference system that
defined a new similarity metric in the space of complex numbers.
These descriptions allow us to have a measure of both distance between the fibers
and orientation of the tangent vectors.
We have grouped into a single equation, the distance Definition 1.6, and shape
information of the fibers Definition 1.7:

Definition 4.8. Given s : F × F 7→ C a distance between streamlines, then
the NewSimilarity is:

NewSimilarity = σ : C× C 7→ R

σ : ((Di,j
m , θi,jm ), (Di,j+1

m , θi,j+1
m )) 7→ R (4.12)

((Di,j
m , θi,jm ), (Di,j+1

m , θi,j+1
m )) = Correlation coefficient between pairs of fibers

Using this definition, we have information on how two fibers are oriented with
respect to each other; indeed, calculating the angle for each pair of points of two
different fibers, we can estimate how much the fibers are comparable in shape.

By means of this new distance it is possible to measure the correlation between
pair of fibers represented as:

f̃ i,j 7→ (Di,j
1 , θi,j1 ), (Di,j

2 , θi,j2 ), ...(Di,j
p , θi,jp )

f̃ i,j+1 7→ (Di,j
1 , θi,j1 ), (Di,j

2 , θi,j2 ), ...(Di,j
p , θi,jp )

where f̃ i,j represents the pair of fibers, in our case f̃1,2, which will correlate
with the rest of pairs in the dataset, f̃ i,j+1 (f̃1,3). As mentioned above, the results
of correlation is the similarity index that represents how many pairs of fibers
are similar to each other. The index is expressed in complex form; we consider
normalizing values to get a unitary index.
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Similarity measures can be transformed into distance simply by taking the
complement to 1. In this case, however, the "dissimilarity" term is preferred, re-
spect to the distance term. The properties that must be met because a distance
or dissimilarity coefficient is of metric type are those given in Definition 1.4.

In general, it is the fourth property the most important; the fact that it is or is
not satisfied distinguishes metric measurements from those so-called semi-metric.
Cross-Correlation has properties similar to an inner product, and can be used
intuitively as a similarity function.

4.4 Method Performance

Below we report the behavior of synthetic data of the similarity metric.
In Figure 4.5, in red color, are highlighted the range where the fibers have a

high correlation value. The set of values plotted (red and blu) are the information
about the Real and Imaginary part like from Definition 1.8.

Fig. 4.5: Range of Fibers with high correlation value (red area)

Figure 4.6 shows the selected fibers respect to high correlation index (values in
red color Figure 4.5). In black color, we have the reference fiber used for comparison
with other fibers.

Otherwise, if we consider another range of values Figure 4.7, using the method,
fibers in Figure 4.8 are selected, respect to high correlation index (values in red
color Figure 4.7).
Compared to the reference fiber, in black color, the selected fibers are concentrated
in the left part. These fibers have a low correlation value.

The Figure 4.9 and in Figure 4.10 shows the ranges, relating to high and low
correlations between the fibers, respectively.

Fibers selected by these two ranges are shows in Figure 4.11 and in Figure 4.12.
In black color the reference fiber.
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Fig. 4.6: Results of Fibers selected by the red area

Fig. 4.7: Range of Fibers with low correlation value (red area)

In Figure 4.11 we have the fibers that are similar to each other, as far as concern
distances and angles; instead in Figure 4.12 the fibers are less similar to each other.
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Fig. 4.8: Results of Fibers selected by the red area

Fig. 4.9: Range of Fibers with high correlation value (red area)
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Fig. 4.10: Range of Fibers with low correlation value (red area)

Fig. 4.11: Results of Fibers selected by the red area
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Fig. 4.12: Results of Fibers selected by the red area
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4.5 Conclusions

The proposed method allows to classify the fibers on the basis of the correlation
concept. In order to evaluate the goodness of the results we have selected two
examples of values for each different set of fibers; a set where fibers appear more
concentrated (Figure 2 and Figure 7), and a set where fibers appear more disparate
(Figure 4 and Figure 8).

These figures provide a description of how, with respect to correlation values,
fibers are placed in space. Each blue circle contains information about the proposal
metric, Definition 1.7 and Definition 1.8, of every pair of related fibers. In red
circles, we have the informations extracted by correlation index. We considered
these examples to see if the metric can distinguish the fibers that make up the
beam with a distance and a similar angle between them and those with the values
of these two parameters are very different from the fiber chosen as a reference.

As is shown in Figure 4.6, 4.8, 4.11 and 4.12 respect to the black fiber, that
is the fiber of reference, the fibers are subdivided with respect to the similarity
criterion. The results confirm a good fiber classification. In the next capther we
want to consider synthetic anatomical dataset and we want to compare our metric
with others and validate the clustering results by means of a ground-truth.
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Experimental

5.1 Introduction

In this section we present the results of using the new similarity metrics, on datasets
available online.

As the first step we analyze the characteristics of anatomical datasets used for
verification, there areavailable online by ISMRM 2015 Tractography challenge -
Data [48] .

The ISMRM 2015 Tractography challenge was based on an artificial phantom
generated using the Fiberfox software [28], based on bundles segmented from a
Human Connectome Project (HCP) subject. The aim was to create a realistic,
clinical-style dataset that provided challenging bundles configurations. The chal-
lenge datasets are the ground-truth bundles for the generation of the dataset. The
white matter bundles were manually segmentated based on definitions found in
Diffusion Tensor Imaging, Introduction and Atla [59], which was written by chal-
lenge coorganizers Bram Stieltjes and Klaus Maier-Hein, as well as R.M. Brunner
and F.B. Laun. Dataset are available with extension .trk and .vtk ; this gives us the
ability to use different software packages to view the data and gives us the ability
to use the data both in the Matlab and in the Python environments. To use the
union of different ground-truths we first loaded the file with the TrackVis software
and then saved the dataset in the same file extension. As we will see in the next
sections we have only used some of the ground-thruth. We chose the best known
anatomical bundles that have geometric characteristics suitable for our analysis.

Afterwards we will show in a table the results obtained by applying the selected
metrics to the datasets and how clusters occur in the different cases. We will present
in detail the most significant cases. We use the Python library scikit-learn [57] for
clustering classification.
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5.2 Datasets

Figure(5.1), Figure(5.2) and Figure(5.3) show the three main datasets used in our
processing.

The cingulum (CA) Figure(5.1) that is a collection of white matter fibers pro-
jecting from the cingulate gyrus to the entorhinal cortex in the brain, allowing for
communication between components of the limbic system.

Fig. 5.1: CA bundle

The corticospinal tract (CST) Figure(5.2) is a white matter motor pathway
starting at the cortex that terminates on motor neurons and interneurons in the
spinal cord, controlling movements of the limbs and trunk.

Fig. 5.2: CST bundle

The Fornix Figure(5.3) is a C-shaped bundle of nerve fibers in the brain that
acts as the major output tract of the hippocampus. The fibers begin in the hip-
pocampus on each side of the brain as fimbriae; the separate left and right sides
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are each called the crus of the Fornix. The bundles of fibers come together in the
midline of the brain, forming the body of the fornix.

Fig. 5.3: Fornix bundle

We consider the case where two anatomical bundles are present, and for a more
extensive application of the metrics we consider both to have two close anatomical
bundles, are to be spaced apart from each other as shown in Figure(5.4).

Fig. 5.4: Bundles of streamlines where fibers are spatial near (left) and far spatial
(right) between them.
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5.2.1 Analysis

In the analysis phase of the selected fiber bundles, we applied to the fibers our
new metrics and other distance metrics most used in the literature; the results
obtained through the clustering algorithms, have been qualitatively evaluated by
means of typical indices, as we will see later in the summary tables.

The indices used need, as input of the algorithm, a ground truth of the fibers,
i.e. the labels that identify the real position of the fibers inside the anatomical
bundle. The ground truth we used was that of dividing the labels according to the
bundles considered; specifically, considering the dataset composed of the fornix
bundle and the CA bundle we obtained the number of fibers of the two bundles
and assigned the value 0 to the 3831 fibers of the fornix bundle and value 1 to the
431 fibers of the CA bundle. In the case of the dataset composed by the bundles
CST and CA we have given label value 0 for the fibers of the CST bundles and
value 1 for the second bundles. We have analyzed the Fornix bundle alone to show
how our metrics correctly identifies the orientation of the fibers relative to the
other metrics. The orientation of the fibers indicates the fibers that are on the left
side with respect to those on the right side. Since we do not have an anatomical
ground truth of the fibers of this bundle we limit ourselves to show only visually
the results obtained.

In our analysis we consider only some of the metric described in the previous
chapters:

• Frechet metric
• Hausdorff metric
• MDF metric
• and the our metrics that we call "NewSimilarity metric"

The steps used for in this analysis are summarized below.

• Choice of input dataset: the image of the initial dataset gives us information
on the type of data we want to analyze; in this case the fibers are colorless
because we have yet to start the analysis of the metrics.

• Quantitative analysis of the dataset. The similarity metrics are applied to the
initial dataset and a clustering algorithm is chosen for the classification of the
fibers. Consider two graphs to represent this analysis; the first one where the
fibers of the initial dataset are colored after the clustering. In this way we have
a first visual result of the classification of the fibers. The second graph, where in
x-axis we represent the value of similarity fibers and in y-axis we represent the
number of element(fibers) in each cluster. Compared to the similarity value,
we see the corresponding number of fibers classified within the cluster.

• Qualitative analysis of the dataset. To facilitate the comparison between the
different metrics, we report a summary table of the clustering performance
with the index values.
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Input Dataset: Fornix

The first case we consider is the single anatomical bundle. This bundle is composed
of two sides, left and right. The fibers have different lengths and different shapes

Figure(5.5a) shows the clustering results and the fibers colored with respect to
the clustering algorithm with Frechet metric and K-mean algorithm; in red color
the result of the first cluster and in violet color the result of the second cluster.
On the x-axis we have the number of elements (fibers) and on the y-axis we have
the value of distance. The value of the centroid of the set of values of each cluster
is visible in dotted line. Figure(5.5b) shows the output of Frechet metric using
different colors for the fiber bundles; in this case, the distance metric does not
clearly distinguish the different orientations of the fibers.

(a) Clustering with Frechet metric, with K-mean algorithm and k=2. The value of the
centroid of the set of values of each cluster is visible in dotted line.

(b) Fornix Fibers Clustering with Frechet metric.

Fig. 5.5: Fornix dataset. Clustering with Frechet metric.
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Figure(5.6a) shows the clustering result and the fibers colored as output of the
clustering algorithm with NewSimilarity metric; in red color the result of the first
cluster and in violet color the result of the second cluster. In the x-axis we have
the number of elements (fibers) and in y-axis we have the index of correlation.
The value of the centroid of the set of values of each cluster is visible in dotted
line. Figure(5.6b) shows the output of the NewSimilarity metrics using different
colors for the fiber bundles; in this case the division of the fibers with respect to
the different orientations appears more marked. With our metrics we are able to
give both a distance contribution and a form contribution to classify the fibers.

(a) Clustering with NewSimilarity metric, with K-mean algorithm and k=2. The value
of the centroid of the set of values of each cluster is visible in dotted line.

(b) Fornix Fibers Clustering with NewSimilarity metric.

Fig. 5.6: Fornix dataset. Clustering with NewSimilarity metric.
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The comparison between Figure(5.6b) and Figure(5.5b) shows that the fibers
classified with the Frechet metric do not have a good distribution. The final clas-
sification of fibers appears disordered, with respect to our method. In this case,
the only metric distance used in Frechet is not enough to classify the fibers. The
form-based classification included in our method best suits this dataset.

Whith our metrics it is possible to have a separate fiber clustering. Only a
restricted group of fibers are classified in the wrong part, as shown in Figure(5.6b).
If we consider the left and right parts of Fornix bundle, we observe that at the
left bundle, we have a few fibers of violet color and vice-versa if we look at the
right bundle we have few red fibers. These fibers of different colors represent for
us the fibers that are not classified correctly; in Figure(5.5b) the fibers classified
with different colors are of a greater number

We considered the right or wrong part, without anatomical or surgical know-
how. With this type of dataset we demonstrate that the metrics used is able to
recognize and then to classify the fibers in two distinct sub groups. At a later
stage, we will analyze the clustering of fibers by validating the result with respect
to the brain anatomy.

Input Dataset: Fornix and CA

In this example Figure(5.7), we consider two anatomical bundles the Fornix bun-
dle Figure(5.3) dataset is composed by fibers whit different length and orientation,
and the CA bundle Figure(5.1) where fibers have the different length but similar
direction and are spatially close to each other. Using two spatially close datasets,
we want to see which parameter influences the most the classification of fibers;
specifically, we are interested in understanding whether the metrics distinguishes
the two different anatomic bundles: i.e. if it is sufficient to consider only the dis-
tance between the fibers or if it is necessary to introduce the shape parameter to
improve the final result.

Fig. 5.7: Fornix and CA Dataset. The bundles are close to each other. Fornix
dataset is composed of fibers whit different length and orientation. We considered
it divided in two sides, right and left. The second dataset is CA, here the fibers
have different lengths but similar direction.
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Figure(5.8a) shows the distance index using the Frechet metric; in violet color
the result of the first cluster and in red color the result of the second cluster. In
x-axis we have the number of elements (fibers) and in y-axis we have the value of
distance. The value of the centroid of the set of values of each cluster is visible
in dotted line. Figure(5.8b) shows the classification of the fibers with K-mean
algorithm and k=2; the final result shows a correct classification of the CA bundle,
but we do not have a clear division of the Fornix bundle; only a few red fibers (in
this case) are classified on the right side and many violet fibers are classified both
on the right side and on the left side.

(a) Index of Distance with Frechet metric, with K-mean algorithm and k=2. The value
of the centroid of the set of values of each cluster is visible in dotted line.

(b) Clustering result with Frechet metric.

Fig. 5.8: Fornix and CA dataset. Clustering with Frechet metric with K-mean
algorithm and k=2.
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Figure(5.9a) shows the distance index using the Frechet metric with K-mean
algorithm and k=3; in violet color the result of the first cluster, in red color the
result of the second cluster and in green color the result of the third cluster. In
x-axis we have the number of elements (fibers) and in y-axis we have the value of
distance. The value of the centroid of the set of values of each cluster is visible in
dotted line. Figure(5.9b) shows that the result of clustering is not homogeneous;
in this case, considering k = 3, we did not obtain a good classification of the CA
bundle and also the classification of the fornix bundles seems more confused than
the results with k = 2.

(a) Index of Distance with Frechet metric, with K-mean algorithm and k=3. The value
of the centroid of the set of values of each cluster is visible in dotted line.

(b) Clustering result with Frechet metric, with K-mean algorithm and k=3.

Fig. 5.9: Fornix and CA dataset. Clustering with Frechet metric with K-mean
algorithm and k=3.
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Figure(5.10a) shows the correlation index using NewSimilarity metric; in red
color the result of the first cluster and in violet color the result of the second cluster.
In x-axis we have the index of correlation otherwise in y-axis we have the number
of elements (fibers). Figure(5.10b) shows the classification of the fibers with K-
mean algorithm and k=2; in this case we have a better division of the Fornix
bundle using our metric, compared to previous results with different metrics. The
CA bundle is classified together with the fibers of the fornix bundle of violet color.

(a) Clustering with our metric, with K-mean algorithm and k=2. The value of the centroid
of the set of values of each cluster is visible in dotted line.

(b) Fornix and CA Fibers Clustering with NewSimilarity metric, with K-mean algorithm
and k=2.

Fig. 5.10: Fornix and CA dataset. Clustering with NewSimilarity metric with K-
mean algorithm and k=2.

We get obtain the classification of Figure(5.10b) by considering two clusters
input divides the left side and the right side of the Fornix bundle quite homoge-
neously, and the whole bundle of the same color (violet) is colored. The CA bundle
is grouped together with part of the Fornix bundle, this result is due to the fact
that considering in our method the pair of fibers the method finds a similarity
in shape and proximity, violet color of the fibers; instead, we have red fibers at
the time the fibers are distant from each other and the comparison of the pairs of
fibers as a final result of the disomogeneities.
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Figure(5.11a) shows the correlation index using our metric with K-mean al-
gorithm and k=3; in green color the result of the first cluster, in violet color the
result of the second cluster and in red color the third cluster. In x-axis we have the
number of elements (fibers) and in y-axis we have the index of correlation. The
value of the centroid of the set of values of each cluster is visible in dotted line.
Figure(5.11b) shows the classification of the fibers with K-mean algorithm and
k=3; in this case we have a better division of the Fornix bundle using our metric,
compared to previous results with different metrics. With our metric, compared
to the Frechet metric, the fibers are classified with better behavior. The metric
identifies the 3 clusters in a clearer way. This result is obtained with respect to a
value of positive ARI and low inertia.

(a) Clustering with our metric, with K-mean algorithm and k=3. The value of the centroid
of the set of values of each cluster is visible in dotted line.

(b) Fornix and CA Fibers Clustering with NewSimilarity metric, with K-mean algorithm
and k=3.

Fig. 5.11: Fornix and CA dataset. Clustering with NewSimilarity metric with K-
mean algorithm and k=2.
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Table(5.1), shows the tables that contain the indices to evaluate the clustering
performance. The indices we have considered are:

• homogeneity score(homo): each cluster contains only members of a single class.
• completeness score(compl): all members of a given class are assigned to the

same cluster
• V-masure(v-meas): entropy-based measure which explicitly measures how suc-

cessfully the criteria of homogeneity and completeness have been satisfied.
• adjusted Rand index(ARI): computes a similarity measure between two clus-

terings by considering all pairs of samples and counting pairs that are assigned
in the same or different clusters in the predicted and true clusterings.

• adjusted mutual information(AMI): function that measures the agreement of
the two assignments, ignoring permutations.

• silhouette coefficient(silhouette): measures how close a fiber is to its own cluster
in comparison to the rest of the clusters, i.e. whether there is another cluster
that might represent it better or as well. Silhouette analysis can be used to
study the separation distance between the resulting clusters.

The clustering algorithm used is K-means and the analyzed metrics are Frechet
metric, Hausdorff metric, MDF metric and NewSimilarity metric.

Figure(5.1a) shows clustering performance of Frechet metric. With this metric
we obtain high values of inertia, values that refer to the measure of coherence of the
clusters. We remember that low values are preferable for this index. Negative values
of the Adjusted Rand index (ARI) indicate that we have independent labelings
between them; indeed similar clusterings have a positive ARI. Both in the case
of clusters=2 and clusters=3 the value of silhouette coefficient is good; range is
between [-1, 1]. The rest of values are reasonable.

Figure(5.1b) shows clustering performance of Hausdorff metric. Compared to
the previous metric we obtain lower values of inertia, values that refer to the
measure of coherence of the clusters. We remember that low values are preferable
for this index. Negative values of the Adjusted Rand index (ARI) indicate that
we have independent labelings between them; indeed similar clusterings have a
positive ARI. Both in the case of clusters=2 and clusters=3 the value of silhouette
coefficient is good; range is between [-1, 1]. The rest of values are reasonable.

Figure(5.1c) shows clustering performance of MDF metric. As for the previous
metric we obtain lower values of inertia, values that refer to the measure of coher-
ence of the clusters. We remember that low values are preferable for this index.
Negative values of the Adjusted Rand index (ARI) indicate that we have indepen-
dent labelings between them; indeed similar clusterings have a positive ARI. Both
in the case of clusters=2 and clusters=3 the value of silhouette coefficient is good;
range is between [-1, 1]. The rest of values are reasonable.

Figure(5.1d) shows clustering performance of NewSimilarity metric. In this case
we have low values of inertia. Both in the case of clusters=2 and clusters=3 the
value of ARI index is positive, even if with a low value. We remember that low
values are preferable for this index. Negative values of the Adjusted Rand index
(ARI) indicate that we have independent labelings between them; indeed similar
clusterings have a positive ARI. The values of silhouette coefficient is good, because
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Metric: Frechet
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 112098 0.076 0.048 0.058 -0.089 0.047 0.889
n_cluster 3 73843 0.077 0.025 0.038 -0.030 0.025 0.647

(a) Clustering Performance with Frechet metric.

Metric: Hausdorff
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 70528 0.078 0.048 0.060 -0.088 0.048 0.831
n_cluster 3 34999 0.085 0.028 0.042 -0.037 0.027 0.643

(b) Clustering Performance with Hausdorff metric.

Metric: MDF
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 93887 0.077 0.048 0.059 -0.089 0.048 0.779
n_cluster 3 50186 0.072 0.029 0.041 -0.083 0.029 0.670

(c) Clustering Performance with MDF metric.

Metric: NewSimilarity
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 46 0.048 0.023 0.032 0.018 0.023 0.646
n_cluster 3 22 0.239 0.074 0.113 0.004 0.074 0.610

(d) Clustering Performance with NewSimilarity metric.

Table 5.1: Clustering Performance using different metrics and K-means algorithm.

are equal to 0.6; these values are slightly lower than the other metrics. The rest of
values are reasonable.
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Figure(5.12a) shows the index of distance using Frechet metrics and the Ag-
glomerative algorithm; in violet color the result of the first cluster and in red color
the result of the second cluster. In x-axis we have the number of elements (fibers)
and in y-axis we have the index of distance. Figure(5.12b) shows clustering result
with Frechet metrics. The final result shows a correct classification of the CA bun-
dle, but we do not have a clear division of the Fornix bundle; neither part (left or
right) of the fornix bundle is classified together with the CA tract (in red color).
This is the result we expected, in spite of considering k = 2 is an underestimation
of clustering, forcing the result. This is the result we expected, despite considering
k = 2 is an underestimation of clustering (we force the result).

(a) Index of Distance with Frechet metric, with Agglomerative algorithm.

(b) Clustering result with Frechet metric.

Fig. 5.12: Fornix and CA dataset. Clustering with Frechet metric with Agglomer-
ative algorithm (numbers of cluster are two).

Figure(5.13a) hows the index of distance using Frechet metrics and the Ag-
glomerative algorithm; in violet color the result of the first cluster, in green color
the result of the second cluster and in red color third cluster. In x-axis we have
the number of elements (fibers) and in y-axis we have the index of distance. Fig-
ure(5.13b) shows clustering result with Frechet metric. The final result shows, with
respect to the values obtained with K-mean algorithm, an bad fibers classification.
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(a) Index of Distance with Frechet metric, with with Agglomerative algorithm.

(b) Clustering result with Frechet metric, with with Agglomerative algorithm.

Fig. 5.13: Fornix and CA dataset. Clustering with Frechet metric with Agglomer-
ative algorithm (numbers of cluster are three).
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Figure(5.14a) shows the index of distance using NewSimilarity metrics and the
Agglomerative algorithm; in violet color the result of the first cluster and in red
color the result of the second cluster. In x-axis we have the number of elements
(fibers) and in y-axis we have the index of correlation. Figure(5.14b) shows cluster-
ing result with NewSimilarity metric. The final result shows a correct classification
of the CA bundle, most of the fibers of the Fornix bundle are classified in a con-
sistent manner with respect to the classification of the CA bundle. Compared to
the Frechet metric using NewSimilarity metric we obtain, as shown in Figure(5.2),
higher values of completeness and silhouette and we do not have negative values
of the ARI index.

(a) Clustering with NewSimilarity metric, with with Agglomerative algorithm.

(b) Fornix and CA Fibers Clustering with NewSimilarity metric, with Agglomerative
algorithm.

Fig. 5.14: Fornix and CA dataset. Clustering with NewSimilarity metric with Ag-
glomerative algorithm (numbers of cluster are two).

Figure(5.15a) shows the index of distance using NewSimilarity metrics and the
Agglomerative algorithm; in violet color the result of the first cluster, in green color
the result of the second cluster and in red color the result of the third cluster. In
x-axis we have the number of elements (fibers) and in y-axis we have the index
of correlation. Figure(5.15b) shows clustering result with NewSimilarity metric.
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The final result shows a better classification if we compare the results with those
obtained using the Frechet metric.

(a) Clustering with our metric, with Agglomerative algorithm.

(b) Fornix and CA Fibers Clustering with our metric, with Agglomerative algorithm.

Fig. 5.15: Fornix and CA dataset. Clustering with NewSimilarity metric with Ag-
glomerative algorithm (numbers of cluster are three).
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Table(5.2), shows the tables that contain the index for evaluate the clustering
performance. The algorithm used for fibers classification is Agglomerative cluster-
ing and the analyzed metrics are Frechet metric, Hausdorff metric, MDF metric
and NewSimilarity metric.

Metric: Frechet
Clustering Algorithm: Agglomerative

Cluster Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 0 0.048 0.058 -0.089 0.047 0.634
n_cluster 3 0 0.037 0.050 -0.106 0.037 0.592

(a) Clustering Performance with Frechet metric.

Metric: Hausdorff
Clustering Algorithm: Agglomerative

Cluster Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 0 0.048 0.058 -0.089 0.047 0.829
n_cluster 3 0 0.029 0.044 -0.050 0.029 0.647

(b) Clustering Performance with Hausdorff metric.

Metric: MDF
Clustering Algorithm: Agglomerative

Cluster Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 0 0.048 0.059 -0.089 0.047 0.780
n_cluster 3 0 0.037 0.050 -0.106 0.037 0.722

(c) Clustering Performance with MDF metric.

Metric: NewSimilarity
Clustering Algorithm: Agglomerative

Cluster Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 0 0.060 0.009 0.008 0.006 0.889
n_cluster 3 0 0.090 0.028 0.030 0.019 0.825

(d) Clustering Performance with NewSimilarity metric.

Table 5.2: Clustering Performance using different metrics and Agglomerative al-
gorithm.

Table(5.2a) shows clustering performance of Frechet metric. We use the ag-
glomerative algorithm we do not have the index of inertia because this index is
representative of the k-means algorithm. We have high values of the silhouette
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coefficient for both clusters. The values of the ARI index are negative as in the
case of k-means algorithm.

Table(5.2b) shows clustering performance of Hausdorff metric. We use the ag-
glomerative algorithm we do not have the index of inertia because this index is
representative of the k-means algorithm. We have high values of the silhouette
coefficient for both clusters. The values of the ARI index are negative as in the
case of k-means algorithm.

Table(5.2c) shows clustering performance of MDF metric. We use the agglom-
erative algorithm we do not have the index of inertia because this index is repre-
sentative of the k-means algorithm. We have values similar to the other metrics.

Table(5.2d) shows clustering performance of Similarity metric. We use the ag-
glomerative algorithm we do not have the index of inertia because this index is
representative of the k-means algorithm. With our metric we have, respect k-means
algorithm, negative values of ARI index.

Input Dataset: CST and CA

In this example Figure(5.16), we consider two anatomical bundles, CST bundle
Figure(5.2) dataset is composed by fibers whit different length and orientation, and
CA bundle Figure(5.1) where fibers have the different length but similar direction.
This anatomical bundles has fibers that are spatially distant from each other.

Fig. 5.16: CST and CA Dataset.

Figure(5.17a) shows the index of distance using Hausdorff metrics and K-mean
algorithm and k=2; in violet color the result of the first cluster and in red color
the result of the second. In x-axis we have the number of elements (fibers) and in
y-axis we have the value of distance. The value of the centroid of the set of values
of each cluster is visible in dotted line. Figure(5.17b) shows that the Hausdorff
metric does not respect the classification of the fibers. In fact the CST bundle and
the CA bundle are not distinctly recognized.
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(a) Clustering with Hausdorff metric, with K-mean algorithm and k=2. The value of the
centroid of the set of values of each cluster is visible in dotted line.

(b) CST and CA Fibers Clustering with Hausdorff metric.

Fig. 5.17: CST and CA Fibers Clustering with Hausdorff metric, and K-means
algorithm (k=2).

Figure(5.18a) shows the index of distance using Hausdorff metrics and K-mean
algorithm and k=3; in green color the result of the first cluster, in violet color
the result of the second cluster and in red color the result of the third cluster. In
x-axis we have the number of elements (fibers) and in y-axis we have the value
of distance. Figure(5.18b) shows that the Hausdorff metric does not respect the
classification of the fibers.
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(a) Clustering with Hausdorff metric, with K-mean algorithm and k=3. The value of the
centroid of the set of values of each cluster is visible in dotted line.

(b) CST and CA Fibers Clustering with Hausdorff metric.

Fig. 5.18: CST and CA Fibers Clustering with Hausdorff metric, and K-means
algorithm (k=3).
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Figure(5.19a) shows the index of correlation using NewSimilarity metrics and
K-mean algorithm and k=2; in violet color the result of the first cluster and in red
color the result of the second cluster. In x-axis we have the number of elements
(fibers) and in y-axis we have the index of correlation. Figure(5.19b) shows a good
classification of the fibers. As can we see in Figure(5.19a) (right image) few values
of fibers in red color, are considered in the wrong bundle.

(a) Clustering with NewSimilarity metric, with K-mean algorithm and k=2.

(b) CST and CA Fibers Clustering with NewSimilarity metric.

Fig. 5.19: CST and CA Fibers Clustering with NewSimilarity metric, and K-means
algorithm (k=2).
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Figure(5.20a) shows the index of correlation using NewSimilarity metrics and
K-mean algorithm and k=3; in green color the result of the first cluster, in violet
color the result of the second cluster and in red color the result of the third cluster.
In x-axis we have the number of elements (fibers) and in y-axis we have the index
of correlation. The value of the centroid of the set of values of each cluster is visible
in dotted line. Figure(5.20b) shows that the NewSimilarity metric, with value of
parameter k equal three, classify very well CA bundle (red color) and CST bundle
is subdivision in two sides.

(a) Clustering with our metric, with K-mean algorithm and k=3. The value of the centroid
of the set of values of each cluster is visible in dotted line.

(b) CST and CA Fibers Clustering with NewSimilarity metric.

Fig. 5.20: CST and CA Fibers Clustering with NewSimilarity metric, and K-means
algorithm (k=2).



Table(5.3), shows the tables that contain the index for evaluate the clustering
performance. The indices we have considered are:

• homogeneity score(homo): each cluster contains only members of a single class.
• completeness score(compl): all members of a given class are assigned to the

same cluster
• V-masure(v-meas): entropy-based measure which explicitly measures how suc-

cessfully the criteria of homogeneity and completeness have been satisfied.
• adjusted Rand index(ARI): computes a similarity measure between two clus-

terings by considering all pairs of samples and counting pairs that are assigned
in the same or different clusters in the predicted and true clusterings.

• adjusted mutual information(AMI): function that measures the agreement of
the two assignments, ignoring permutations.

• silhouette coefficient(silhouette): measures how close a fiber is to its own cluster
in comparison to the rest of the clusters, i.e. whether there is another cluster
that might represent it better or as well. Silhouette analysis can be used to
study the separation distance between the resulting clusters.

The algorithm used for fibers classification is K-mean clustering, with k=2 and
k=3; metrics used to analyze this dataset are Hausdorff metric and NewSimilarity
metric.

Metric: Hausdorff
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 70528 0.078 0.048 0.060 -0.088 0.048 0.831
n_cluster 3 34999 0.085 0.028 0.042 -0.037 0.027 0.643

(a) Clustering Performance with Hausdorff metric.

Metric: NewSimilarity
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 46 0.048 0.023 0.032 0.018 0.023 0.646
n_cluster 3 22 0.239 0.074 0.113 0.004 0.074 0.610

(b) Clustering Performance with NewSimilarity metric.

Table 5.3: Clustering Performance using different metrics and K-means algorithm.
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5.3 Conclusions

In this chapter we have reported the results obtained by applying the distance
metrics to the datasets that have been selected come from data available online
by ISMRM 2015 Tractography challenge - Data, in Figure (5.1), Figures (5.2) and
Figures (5.3).

To each dataset the distance metrics of Frechet, Hausdammff, MDF and
NewSimilarity were applied using two different clustering algorithms, K-means
and Agglomerative clustering. The results obtained were subsequently evaluated
through the clustering indices explained in the previous chapters.

From the results obtained on the data available online it come out that in
different cases, using a metric that takes into account not only the distance between
fiber pairs, but also their shape as elaborated in our "NewSimilarity Metric" gives
back the best results in the clustering algorithms. The study of the shape parameter
that we have performed shows how important it is, to have a good similarity
metric, not to consider only the local component but also the global one. Indeed,
two fibers are usually considered similar if they are separated by a small distance,
have comparable length and similar shape. Motivated by this last point of view, in
our approach, we use the combination between the shape and distance similarity
highlighting the concept of shape among the fibers for clustering.
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Algorithm verification with clinical data

6.1 Introduction: Clinical Context

To date, Diffusion Tractography (DT) remains the only non-invasive method for
visualizing human brain connections. DT suffers from both fundamental and prac-
tical limitations that limit its use for modeling brain connections. Unlike many
invasive modalities, DT is incapable of determining the direction of information
flow, nor can it distinguish single-neuron and multi-neuron connections. DT may
also have difficulty resolving complex intra-voxel fiber crossings or non-dominant
fiber populations due to limitations in scan time, hardware, or processing meth-
ods. Despite its many limitations, DT has been successfully used to model human
neuronal connections for over two decades, including several pathways that are
putative Deep Brain Stimulation (DBS) targets.

There are many different DT data processing methods available, each with dif-
ferent requirements, assumptions, limitations and benefits. Several tractography
algorithms have been described. In brief, commonly used methods are deterministic
and probabilistic. Deterministic tractography uses a linear propagation approach
that takes into account the main eigenvector direction of each voxel [5]. Among
its main caveats is the potential misrepresentation of fibers in regions of crossing
projections. Probabilistic fiber tracking involves seeding the same region numer-
ous times so that the probability of a tract passing through each voxel may be
calculated [6,7].

Diffusion Tensor Imaging (DTI) is by far the most common DT method used
in DBS studies [66]. This technique has the advantage of being readily available
on most commercial scanners, as well as having a relatively quick acquisition, and
a simple reconstruction.

Deep brain stimulation is a well-studied therapeutic option for movement disor-
ders such as Parkinson’s disease, tremor, and dystonia. In addition, DBS is being
increasingly investigated for many other disorders affecting the central nervous
system.

In the clinic, tractography has been used in patients with tremor undergo-
ing ventral intermediate nucleus (ViM) thalamic DBS. The VIM is not directly
visualized on 3T images [12] and targeting relies on a combination of indirect
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measurements derived from different approaches and commonly used stereo-tactic
atlases [13].

Figure(6.1) shows the workflow we have applied to the fiber similarity metrics
for the classification of the anatomical bundles, to process clinical data. We con-
sider the data after the bundle fibers have been reconstructed to which we apply
the similarity metrics (distance metrics) and we study the DBS. This framework
shows a possible clinical application of distance metrics. With Diffusion Tractogra-
phy it is possible to segment the bundles of fibers and to identify the areas for Deep
Brain Stimulation; as they are visible from the magnetic resonance image. Once
the bundles have been identified and the region derived from the crossing of the
fibers is identified, it is possible to study various pathologies such as Parkinson’s
disease.

Fig. 6.1: Framework for a possible clinical application of distance metrics.
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In particular, we see in detail in which step of the clinical pipeline the analysis
of distance metrics is inserted. Before being able to apply the metrics described
in the literature, for the classification of the anatomical bundles of the brain, a
preliminary phase is performed. In this preliminary phase we found:

• acquisition of the dataset to be analyzed using the diffusion magnetic resonance
• use of different software for image pre-processing:

– reduction of artifacts
– choice of the combination of parameters (deterministic or probabilistic
tractography which fiber reconstruction algorithm must be used) to have
a clean dataset

– manual extraction of the regions of interest to extract the anatomical bun-
dles

• study of optimal software parameters:
the neurosurgeon evaluates the result of the extraction of the fibers of the
previous step based on his anatomical knowledge

Subsequently, the fibers of each bundles can be analyzed with the different
distance metrics. This is the central point of the thesis.

• fibers bundle segmentation:
fiber evaluation through the use of distance metrics. In this way, after having
extracted the fibers with the manual method (user positioned ROI) the results
are refined through the mathematical analysis which provides measurements
of proximity of the area to be treated Deep Brain Stimulation; treatment may
consist of the intersection of the anatomical bundles, of to reduce the tremor.

In the following we show the results obtained by analyzing, as a first step, only
the step related to the similarity metric. The clinical data used have been previ-
ously processed using the tractography algorithms and the bundles have already
been segmented.

The purpose is to understand which is the distance metrics that offers, com-
pared to a ground truth, the best recognition of the different anatomical bundles.
We also want to see if the metrics applied to online data are also applicable to
clinical data.

Afterwards we will summarize in a table the results obtained by applying the
selected metrics to the clinical datasets and how clustering occurs in the different
cases. We will present in detail the most significant cases. We use the library in
Python, "scikit-learn" for clustering classification.
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6.2 Input Datasets

Figure(6.2) shows the bundles of clinical cases that we have considered for our
analysis. In the first case we consider the Cortical Spinal bundle (left and right);
in the second case we have the Cortical Spinal bundle (left and right) and the
left Arcuate bundle and in the third case we have the Cortical Spinal (right) and
Inferior fronto occipital fasciculus (right) bundles.

Fig. 6.2: At the top of the figure, the clinical case concerns the CST (left and
right); in the left figure is represented the CST (left and right) and the Arcuate
left; otherwise in the right figure is represented the CST and IFOF left.

The data were visualized with the TrackVis software and this allowed us to
know the number of fibers of each bundle and the possibility of using this parameter
as ground truth (GT) for the clustering algorithms. Regarding data processing, we
have applied the same steps applied to the online data.
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In the analysis phase, we applied to the selected fibers our new metrics and the
other distance metrics most used in the literature. The results obtained through
the clustering algorithms have been qualitatively evaluated by means of the quality
indices defined in the previous chapter as we will see later summarized in the table.
The indices used need as input of the algorithm a ground truth of the fibers i.e. the
labels that identify the real position of the fibers in the anatomical bundle. The
ground truths we used were those of dividing the labels according to the bundles
considered. We want to identify the area, of the intersection of the anatomical
bundles, to be treated to reduce the tremor. For this scope is not necessary to
have an intra-bundles precision. In fact, from the medical point of view, there may
be fibers that are not classified in the correct way for some errors in the data
acquisition phase or errors due to the pre-processing phase. These errors do not
compromise the clinical analysis.

The important phase, and the one on which we have focused, is to apply the
distance metrics seen in the previous chapter to identify the anatomical bundles
by means of the distances between the fibers and to facilitate the identification of
the underlying area of interest.

6.3 Results

Figure(6.3) shows the results of Table(6.1a), and Figure(6.4) shows results show in
Table(6.1b). We have reported only the metrics that present significant indices of
value and that allow to identify well the differences in the selection of the bundles.
We analyze clustering performance and evaluate the indices the table shows best
values when we use the NewSimilarity metric compared to the Frechet metric.
This result is shown in Figure(6.3) and Figure(6.4b) where in the first case with
Frechet metric, the right bundle is not distinguished from the left. The same result
also occurs in the case, with the Frechet metric, in which the K-means algorithm
is used with k = 3. In the second case, using the NewSimilarity metric, with either
K-means algorithm with k=2 and K-means algorithm with k=3 the result of the
classification of the bundles is more precise.

We consider the result of the NewSimilarity metric more precise because, as
we can see in the figure, with our metric we can identify the right and left part
of the bundle. If we consider the K-mans clustering algorithm with k = 2; in
Figure(6.4b), there are some red color fibers incorporated in the violet color bundle,
but according to the opinion of the neurosurgeon it is an error due to the pre-
processing phase that does not depend on the metric type used and it does not
have a clinical impact.
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In the following we shows the results obtained with the K-means clustering
algorithms using the Frechet metric and the NewSimilarity metric. In agreement
with the neurosurgeon, with respect to the synthetic data, in the clinical data we
report the obtained results Figure(6.3) and Figure(6.4) with anterior and posterior
view of the beams. In this way there is a better view of the direction of the fibers.

(a) Cluster result with K-means algorithm and k=2.

(b) Cluster result with K-means algorithm and k=3.

Fig. 6.3: Cluster result with K-means algorithm and Frechet metric.
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(a) Cluster result with K-means algorithm and k=2.

(b) Cluster result with K-means algorithm and k=3.

Fig. 6.4: Cluster result with K-means algorithm and NewSimilarity metric.
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Table(6.1), shows the index to evaluate the clustering performance. The algo-
rithm used for fibers classification is K-mean clustering and the analyzed metrics
are Frechet metric and NewSimilarity metrics because with this metrics we have
relevant results. Considering the data in the Table(6.1), NewSimilarity metric be-
haves better than Frechet metric. If we consider the indices of cluster performance,
the results of the cluster algorithm, have good values and this can be seen in the
fibers classification.

Metric: Frechet
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 24393 0 0 0 -0.002 -0.001 0.618
n_cluster 3 11135 0.036 0.023 0.028 0.030 0.022 0.583

(a) Clustering Performance with Hausdorff metric.

Metric: NewSimilarity
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 9 0.524 0.511 0.517 0.493 0.511 0.684
n_cluster 3 3 0.896 0.558 0.688 0.602 0.557 0.666

(b) Clustering Performance with NewSimilarity metric.

Table 6.1: Clustering Performance using different metrics and K-means algorithm.

Figure(6.5) shows the results of Table(6.2a), Figure(6.6) shows the results of
Table(6.2b), Figure(6.7) shows the results of Table(6.2c) and Figure(6.8) shows
the results of Table(6.2d).

Compared to the previous dataset, in this analysis we considered four similarity
metrics, as described above. This choice is due to the greater difficulty in classifying
different bundles, since the initial dataset shown in Figure (2) is composed of
anatomical bundles that are spatially close to each other. Consequently, in this
type of dataset, compared to that in Figure (1) classification is more problematic
but of routine in clinical application. We are therefore interested in seeing how our
metric behaves in the presence of a real clinical case like this.
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Figure(6.5) shows the results obtained with K-means algorithm with Frechet
metric. Using clustering algorithm with k = 2, the metric tends to identify both
bundles with the same color; there are few red fibers that identify the horizontal
bundle. Even in case of clustering algorithm with k = 3 the metric seems to behave
well. The splitting of the dataset into three bundles appears disordered. With k =
2, the few red fibers are not considered important errors due to the pre-processing
phase of the data, as previously mentioned; this we can affirm it because the metric
tends to group the bundles with the same color, in this case violet color.

(a) Cluster result with K-means algorithm and k=2.

(b) Cluster result with K-means algorithm and k=3.

Fig. 6.5: Cluster result with K-mean algorithm and Frechet metric.

Figure(6.6) shows the results obtained with K-means algorithm with Hausdorff
metric. In this case, clustering algorithm with k = 2, the metric tends to identify
with red color the horizontal bundle and violet color the vertical bundle. Some red
fibers are inserted inside the violet colored bundle, but this result compared to
the Frechet metric is better because the metric identifies, even if not completely
correct, the two anatomical bundles. In the case of clustering algorithm with k =
3 we have no significant improvement over the results obtained with the Frechet
metric.
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(a) Cluster result with K-mean algorithm and k=2.

(b) Cluster result with K-mean algorithm and k=3.

Fig. 6.6: Cluster result with K-mean algorithm and Hausdorff metric.

Figure(6.7) shows the results obtained with K-means algorithm with LCSS
metric. In this case with algorithm clustering with k = 2 and algorithm clustering
with k = 3, LCSS metric does not produce good results. We have introduced this
type of metric because the LCSS metric, as described in chapter two, gives more
importance to the concept of form. The Frechet and Hausdorff metrics used in
the previous dataset and online datasets give more importance to the concept of
point-to-point distance.
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(a) Cluster result with K-mean algorithm and k=2.

(b) Cluster result with K-mean algorithm and k=3.

Fig. 6.7: Cluster result with K-mean algorithm and LCSS metric.

Figure(6.8) shows of results obtained with K-means algorithm with NewSimi-
larity metric. In the case of clustering algorithm with k = 2, the metric identifies
the vertical bundle with the red color and the horizontal bundle with the violet
color. Also in the case of k = 3 we have, compared to the previous metrics the
best results. We obtain better results because if we compare the results obtained
with algorithm clustering with k = 3 compared to the other metrics, we see a bet-
ter classification of the fibers. In fact, for example with the NewSimilarity metric
the vertical and horizontal bundles are classified more precisely than the previous
results.
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(a) Cluster result with K-mean algorithm and k=2.

(b) Cluster result with K-mean algorithm and k=3.

Fig. 6.8: Cluster result with K-mean algorithm and NewSimilarity metric.

Table(6.2), shows the tables that contain the index for evaluate the cluster-
ing performance. The algorithm used for fibers classification is K-mean clustering
and the analyzed metrics are Frechet metric, Hausdorff metric, LCSS metric and
NewSimilarity metric because with this metrics we have relevant results. Consid-
ering the data in the Table(6.2), NewSimilarity metric behaves better than others
metrics; the results of the cluster algorithm, if we consider the indices of cluster
performance, have good values and this can be seen in the different fibers classifi-
cation.
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Metric: Frechet
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 241910 0.139 0.250 0.179 0.271 0.138 0.817
n_cluster 3 59604 0.139 0.084 0.105 0.115 0.083 0.714

(a) Clustering Performance with Frechet metric.

Metric: Hausdorff
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 17677 0.215 0.196 0.205 0.333 0.195 0.688
n_cluster 3 9411 0.264 0.168 0.205 0.339 0.167 0.648

(b) Clustering Performance with Hausdorff metric.

Metric: LCSS
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 0 0.063 0.165 0.091 o.147 0.062 0.963
n_cluster 3 0 0.077 0.148 0.101 0.173 0.075 0.968

(c) Clustering Performance with LCSS metric.

Metric: NewSimilarity
Clustering Algorithm: K-means

Cluster Inertia Homogeneity Completeness V-meas ARI AMI Silhouette
n_cluster 2 9 0.452 0.478 0.465 0.631 0.452 0.815
n_cluster 3 3 0.675 0.78 0.560 0.744 0.478 0.804

(d) Clustering Performance with NewSimilarity metric.

Table 6.2: Clustering Performance using different metrics and K-means algorithm.
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6.4 Conclusions

In this section we have described the results obtained by applying some of the
similarity metrics for brain fiber classification of the analysis of clinical datasets.
The results obtained with the NewSimilarity metric are good in terms of quality
as can be seen in the images where the fibers are colored according to the clus-
ters, and by evaluating the performance indices of the cluster. Figure(6.8) shows
the results obtained with K-means algorithm with NewSimilarity metric. These
results outperform the other metrics available in the literature and confirm the
applicability of the new method to clinical cases. With the use of NewSimilarity
metric for fibers classification we obtain results that agree with the anatomy of
the brain bundles.
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Conclusions and future work

7.1 Introduction

In this thesis, the field of application of our analysis was introduced in the first
chapter. To recognize the anatomic bundles within the brain is a very important
task in the scientific community. It is important both in the diagnostic phase,
because a good display of the subdivision of the areas of the brain may help the
surgeon in the general view of the problem and in the intra-operative phase since
the identification the fascicles is the basis for a good result in neurosurgical resec-
tion of the tumor. From MR data, the white matter fiber tract can be reconstructed
using a class of technique called tractography. Each dataset derived by tractogra-
phy is composed of a large number of streamlines, which are sequences of points
in 3D space. To simplify the visualization and analysis of white matter fiber tracts
obtained from MR data, it is often necessary to group them into larger clusters
or bundles. In order to perform clustering, first a mathematical definition of fiber
similarity (or more commonly a fiber distance) must be specified. Then, pairwise
fiber distance may be calculated and used as input for a clustering algorithm. We
have defined a new metric called "NewSimilarity" to assess the similarity of tracts,
we have established the right number of clusters and we have evaluated, once the
clusters are obtained, qualitatively and quantitatively the results. The final scope
of this analysis is to obtain a new metric for brain fiber classification. In subse-
quent chapters, we analyze the similarity metrics among fibers best known in the
literature and we have studied the main clustering methods. Then, we summarize
the mathematics used to describe our method, the obtained results, and we explain
the possible field of application of the NewSimilarity metric.

7.1.1 Mathematical Background

After a brief introduction explaining metric spaces and the proprieties needed
to talk about distance, we have introduced the concept of curve, for planar and
three dimensional cases. Considering the fibers of the brain as a set of points that
form generic curves, we analyze the behavior of the curves in 3D space; then, we
introduced the concept of correlation and its proprieties. Specifically we described
cross-correlation, which is the function used to evaluate our similarity metric.
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The most common measures used for distance only capture the local relation-
ship between streamlines but not the global structure of the fiber. Global structure,
refer to the fiber variability shape. Together, local and global information, may
define a good measure of similarity.

Therefore, to analyze the shape of fibers, we introduced two parameters, lin-
ear distance between points and angular shape, that describe the new geometric
distance computed for each pair of fibers. The values of the tangents are obtained
from the Frenet frame previously calculated. In order to obtain even spatial in-
formation on the fiber pattern, we computed the internal product of the tangents
values. The distance between the fibers is calculated from the standard Euclidean
definition. The point coordinates refer to the reference frame of the data acquisi-
tion system, in our case to the magnetic resonance system. For each fiber in the
bundle the similarity is calculated for each pairs of points in two different fibers.
Two fibers belong to the same bundle, if the distance separating them is small
if they have similar shapes. The criterion used to classify fibers is based on the
correlation concept.

7.1.2 Results

For our analysis we have considered two types of datasets; the first dataset is
available online by ISMRM 2015 Tractography challenge - Data. The second is a
clinical dataset. We have considered for analysis only some of the metric described
in the previous chapters; Frechet metric, Hausdorff metric, MDF metric and our
metric that we call "NewSimilarity" metric. We have done a quantitative analysis
of the dataset. The similarity metrics are applied to the initial dataset and a clus-
tering algorithm is chosen for the classification of the fibers. We use two graphs
to represent this analysis; the first one where the fibers of the initial dataset are
colored after the clustering. In this way we have a first visual result of the clas-
sification of the fibers. The second graph, where in x-axis we represent the value
of similarity fibers and in y-axis we represent the number of element(fibers) in
each cluster: by comparing the similarity values, we see the corresponding number
of fibers classified within the cluster. This second analysis that we have done is
quantitative and to facilitate the comparison of the different metrics, we report a
summary table of the clustering performance with the index values. The results
confirm that by considering distance and shape informations in fibers brain clas-
sification we obtain better results than by using distance alone. In fact, this is
the key of where, in addition to the linear distance between points, we add the
"Angular Shape" component.

7.1.3 Future Work

To date, Diffusion Tractography (DT) remains the only non-invasive method for
visualizing human brain connections. DT suffers from both fundamental and prac-
tical short comings that limit its use for modeling brain connections. Unlike many
invasive modalities, DT is incapable of determining the direction of information
flow, nor can it distinguish single-neuron and multi-neuron connections. DT may
also have difficulty resolving complex intra-voxel fiber crossings or non-dominant



7.1 Introduction 115

fiber populations due to limitations in scan time, hardware, or processing meth-
ods. Despite these limitations, DT has been successfully used to model human
neuronal connections for over two decades, including several pathways that are
putative Deep Brain Stimulation (DBS) targets. Diffusion Tensor Imaging (DTI)
is by far the most common DT method used in DBS studies.

We have seen where the analysis of distance metrics can be inserted in the clin-
ical pipeline. Before applying the metrics described in the literature, to classify the
anatomical bundles of the brain, a preliminary test was performed: the acquisition
of the dataset using the diffusion magnetic resonance, use of different software
for image pre-processing, study of optimal software parameters and fibers bundle
classification. Fibers of each bundles can be analyzed with the different distance
metrics and this is the main contribution of the thesis as a future work. We want
to study the phases prior to the fiber segmentation. In fact, in order to identify
the area to perform DBS to reduce the tremor in some pathologies, it is necessary
to understand which are the best data acquisition and pre-processing parameters
and which facilitate the segmentation of the anatomical bundles. This task re-
quires first to apply the deterministic and probabilistic tract algorithms to the
data acquired through the DTI; second, on the basis of these algorithms, we need
to understand which work pipeline is best for the similarity metrics applied.

After applying the similarity metrics to the fibers, that make up the anatomical
bundles of the brain, the volume occupied by these bundles must be identified: the
intersection volume of the bundles gives us information about the area to be treated
with DBS. A good estimate of distance between the anatomical bundles is useful
to localize the area for stimulation and identify the boundaries of the bundles. It
is necessary to know the distance between the inner fibers, and in this thesis we
have analyzed this phase. We hope that in a near future we will be able to apply
this approach to real clinical cases.





Sommario

Le tecniche di diffusione di immagini a risonanza magnetica (dMRI) forniscono un
modo non invasivo per esplorare l’organizzazione e l’integrità delle strutture della
materia bianca nel cervello umano. dMRI quantifica in ciascun voxel, il processo
di diffusione delle molecole d’acqua che sono costrette meccanicamente nel loro
movimento dagli assoni dei neuroni. Questa tecnica può essere utilizzata nella pi-
anificazione chirurgica e nello studio della connettività anatomica, dei cambiamenti
cerebrali e dei disturbi mentali. Dai dati di dMRI, i tratti di fibra della materia
bianca possono essere ricostruiti usando una classe di tecnica chiamata tractog-
raphy. Il set di dati derivato dalla trattografia è composto da un gran numero di
fibre o streamlines, che sono sequenze di punti nello spazio 3D. Per semplificare la
visualizzazione e l’analisi di tratti di fibre di materia bianca ottenuti con algoritmi
di trattografia, è spesso necessario raggrupparli in cluster o bundles anatomici.
Questo passaggio è chiamato clustering. Per eseguire il clustering, è necessario
fornire una definizione matematica della similarità delle fibre (o più comunemente
una distanza tra le fibre). Sulla base di questa metrica, la distanza tra coppie di
fibre può essere calcolata e utilizzata come input per gli algoritmi di clustering.
Le metriche più comuni utilizzate per la misurazione della distanza sono in grado
di acquisire solo la relazione locale tra le fibre del cercello ma non la struttura
globale della fibra. La struttura globale si riferisce alla variabilità della forma.
Insieme, le informazioni locali e globali, possono definire una migliore metrica di
somiglianza. Abbiamo estratto le informazioni globali utilizzando una rappresen-
tazione matematica basata sullo studio del tratto con equazioni di Fr ’enet. In
particolare, abbiamo definito alcuni parametri intrinseci delle fibre che hanno por-
tato a una classificazione dei tratti basata su caratteristiche geometriche globali.
Utilizzando questi parametri, è stata sviluppata una nuova metrica di distanza per
la somiglianza delle fibre. Per la valutazione della bontà della nuova metrica, sono
stati utilizzati degli indici per uno studio qualitativo dei risultati.
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